Knowledge

Electrocatalyst

Source đź“ť

349: 535: 389: 495:-based materials can be used as electrocatalysts. The carbon surfaces of graphene and carbon nanotubes are well suited to the adsorption of many chemical species, which can promote certain electrocatalytic reactions. In addition, their conductivity means they are good electrode materials. Carbon nanotubes have a very high surface area, maximizing surface sites at which electrochemical transformations can occur. Graphene can also serve as a platform for constructing composites with other kinds of 376:. In principle, atoms with lower coordination number (kinks and defects) tend to be more reactive and therefore adsorb the reactants more easily: this may promote kinetics but could also depress it if the adsorbing species isn't the reactant, thus inactivating the catalyst. Advances in nanotechnology make it possible to surface engineer the catalyst so that just some desired crystal planes are exposed to reactants, maximizing the number of effective reaction sites for the desired reaction. 140: 554: 20: 285:, i.e. convert nitrogen gas into molecules such as ammonia. Immobilizing the protein onto an electrode surface and employing an electron mediator greatly improves the efficiency of this process. The effectiveness of bioelectrocatalysts generally depends on the ease of electron transport between the active site of the enzyme and the electrode surface. Other enzymes provide insight for the development of synthetic catalysts. For example, 105:, a drawback is that they can suffer from high activation barriers. The energy diverted to overcome these activation barriers is transformed into heat. In most exothermic combustion reactions this heat would simply propagate the reaction catalytically. In a redox reaction, this heat is a useless byproduct lost to the system. The extra energy required to overcome kinetic barriers is usually described in terms of low 327:. Water electrolysis is conventionally conducted at inert bulk metal electrodes such as platinum or iridium. The activity of an electrocatalyst can be tuned with a chemical modification, commonly obtained by alloying two or more metals. This is due to a change in the electronic structure, especially in the d band which is considered to be responsible for the catalytic properties of noble metals. 561:
Hydrogen and oxygen can be combined through by the use of a fuel cell. In this process, the reaction is broken into two half reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. Useful energy can be obtained from the thermal heat
297:
are another way that biological systems can be leveraged for electrocatalytic applications. Microbial-based systems leverage the metabolic pathways of an entire organism, rather than the activity of a specific enzyme, meaning that they can catalyze a broad range of chemical reactions. Microbial fuel
722:
Electrocatalysts are used to promote certain chemical reactions to obtain synthetic products. Graphene and graphene oxides have shown promise as electrocatalytic materials for synthesis. Electrocatalytic methods also have potential for polymer synthesis. Electrocatalytic synthesis reactions can be
693:
hydrogen gas, and water. Although this process is thermodynamically favored, the activation barrier is extremely high, so in practice this reaction is not typically observed. However, electrocatalysts can speed up this reaction greatly, making methanol a possible route to hydrogen storage for fuel
81:
Electrocatalysts can be evaluated according to activity, stability, and selectivity. The activity of electrocatalysts can be assessed quantitatively by the current density is generated, and therefore how fast a reaction is taking place, for a given applied potential. This relationship is described
676:
are those that have a higher energy content, meaning that they can be reused as fuels. Thus, catalyst development focuses on the production of products such as methane and methanol. Homogeneous catalysts, such as enzymes and synthetic coordination complexes have been employed for this purpose. A
392:
An example of a particle-size effect: the number of reaction sites of different kinds depends on the size of the particle. In this four FCC nanoparticles model, the kink site between (111) and (100) planes (coordination number 6, represented by golden spheres) is 24 for all of the four different
360:
Also, higher reaction rates can be achieved by precisely controlling the arrangement of surface atoms: indeed, in nanometric systems, the number of available reaction sites is a better parameter than the exposed surface area in order to estimate electrocatalytic activity. Sites are the positions
77:
required for an electrochemical reaction. Some electrocatalysts change the potential at which oxidation and reduction processes occur. In other cases, an electrocatalyst can impart selectivity by favoring specific chemical interaction at an electrode surface. Given that electrochemical reactions
310:
A heterogeneous electrocatalyst is one that is present in a different phase of matter from the reactants, for example, a solid surface catalyzing a reaction in solution. Different types of heterogeneous electrocatalyst materials are shown above in green. Since heterogeneous electrocatalytic
311:
reactions need an electron transfer between the solid catalyst (typically a metal) and the electrolyte, which can be a liquid solution but also a polymer or a ceramic capable of ionic conduction, the reaction kinetics depend on both the catalyst and the electrolyte as well as on the
379:
To date, a generalized surface dependence mechanism cannot be formulated since every surface effect is strongly reaction-specific. A few classifications of reactions based on their surface dependence have been proposed but there are still many exceptions that do not fall into them.
128:, multiple electron transfers, and the evolution or consumption of gases in their overall chemical transformations, will often have considerable kinetic barriers. Furthermore, there is often more than one possible reaction at the surface of an electrode. For example, during the 152:
A homogeneous electrocatalyst is one that is present in the same phase of matter as the reactants, for example, a water-soluble coordination complex catalyzing an electrochemical conversion in solution. This technology is not practiced commercially, but is of research interest.
90:(TON). The selectivity of electrocatalysts refers to the product distribution. Selectivity can be quantitatively assessed through a selectivity coefficient, which compares the response of the material to the desired analyte or substrate with the response to other interferents. 78:
occur when electrons are passed from one chemical species to another, favorable interactions at an electrode surface increase the likelihood of electrochemical transformations occurring, thus reducing the potential required to achieve these transformations.
2734:
Ji, Yangyuan; Choi, Youn Jeong; Fang, Yuhang; Pham, Hoang Son; Nou, Alliyan Tan; Lee, Linda S.; Niu, Junfeng; Warsinger, David M. (2023-01-19). "Electric Field-Assisted Nanofiltration for PFOA Removal with Exceptional Flux, Selectivity, and Destruction".
518:. MOFs provide potential active sites at both metal centers and organic ligand sites. They can also be functionalized, or encapsulate other materials such as nanoparticles. MOFs can also be combined with carbon-based materials to form electrocatalysts. 525:
However, many MOFs are known unstable in chemical and electrochemical conditions, making it difficult to tell if MOFs are actually catalysts or precatalysts. The real active sites of MOFs during electrocatalysis need to be analyzed comprehensively.
1396:
Kleinhaus, Julian T.; Wolf, Jonas; Pellumbi, Kevinjeorjios; Wickert, Leon; Viswanathan, Sangita C.; Junge Puring, Kai; Siegmund, Daniel; Apfel, Ulf-Peter (2023). "Developing electrochemical hydrogenation towards industrial application".
344:
materials have been demonstrated to promote various electrochemical reactions, although none have been commercialized. These catalysts can be tuned with respect to their size and shape, as well as the surface
54:. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall 735:, and are key in destroying byproducts from disinfection, pesticides, and other hazardous compound. There is an emerging effort to enable these processes to destroy more tenacious compounds, especially 2348:
Zheng, Weiran; Liu, Mengjie; Lee, Lawrence Yoon Suk (3 January 2020). "Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites".
177:
There is much interest in replacing traditional chemical catalysis with electrocatalysis. In such a scheme electrons supplied by an electrode are reagents. The topic is a theme within the area of
420:
is commonly considered to be the main parameter relating electrocatalyst size with its activity, to understand the particle-size effect, several more phenomena need to be taken into account:
1534:
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09).
522:, particularly those that contain metals, can also serve as electrocatalysts. COFs constructed from cobalt porphyrins demonstrated the ability to reduce carbon dioxide to carbon monoxide. 1456:
Guo, Wenhan; Zhang, Kexin; Liang, Zibin; Zou, Ruqiang; Xu, Qiang (2019). "Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design".
577:. In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. 2301:
Sharma, Rakesh Kumar; Yadav, Priya; Yadav, Manavi; Gupta, Radhika; Rana, Pooja; Srivastava, Anju; Zbořil, Radek; Varma, Rajender S.; Antonietti, Markus; Gawande, Manoj B. (2020).
748:
Valenti, G.; Boni, A.; Melchionna, M.; Cargnello, M.; Nasi, L.; Bertoli, G.; Gorte, R. J.; Marcaccio, M.; Rapino, S.; Bonchio, M.; Fornasiero, P.; Prato, M.; Paolucci, F. (2016).
820: 2435: 323:
Electrocatalysis can occur at the surface of some bulk materials, such as platinum metal. Bulk metal surfaces of gold have been employed for the decomposition methanol for
499:
such as single atom catalysts. Because of their conductivity, carbon-based materials can potentially replace metal electrodes to perform metal-free electrocatalysis.
1353:
Wiedner, Eric S.; Appel, Aaron M.; Raugei, Simone; Shaw, Wendy J.; Bullock, R. Morris (2022). "Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines".
361:
where the reaction could take place; the likelihood of a reaction to occur in a certain site depends on the electronic structure of the catalyst, which determines the
672:. Electrocatalysts can promote the reduction of carbon dioxide into methanol and other useful fuel and stock chemicals. The most valuable reduction products of CO 2561: 694:
cells. Electrocatalysts such as gold, platinum, and various carbon-based materials have been shown to effectively catalyze this process. An electrocatalyst of
985:
Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang (2015). "Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions".
455:: the crystal lattice of a small nanoparticle is perfect; thus, reactions enhanced by defects as reaction sites get slowed down as the particle size decreases 397:
The interest in reducing as much as possible the costs of the catalyst for electrochemical processes led to the use of fine catalyst powders since the
723:
performed under a constant current, constant potential, or constant cell-voltage conditions, depending on the scale and purpose of the reaction.
24: 1079: 372:, the catalyst surface atoms can be classified as terrace, step or kink atoms according to their position, each characterized by a different 750:"Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution" 655: 262: 258:
The ammonia represents an energy source since it is combustable. In this way electrification can be seen as a means for energy storage.
1143:
Brown, Micah D.; Schoenfisch, Mark H. (2019-11-27). "Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization".
2464:
Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L. (2018-02-13).
479:: nanoparticles are often fixed onto a support in order to stay in place, therefore part of their surface is unavailable for reactants 461:: small nanoparticles have the tendency to lose mass due to the diffusion of their atoms towards bigger particles, according to the 471:: in order to stabilize nanoparticles it is necessary a capping layer, therefore part of their surface is unavailable for reactants 315:
between them. The nature of the electrocatalyst surface determines some properties of the reaction including rate and selectivity.
2439: 289:, a nickel-containing enzyme, has inspired the development of synthetic complexes with similar molecular structures for use in CO 1432: 2685:
Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W.; Remita, Hynd; Cornu, David; Kokoh, K. Boniface (2017-10-06).
1216: 435:: a given size for a nanoparticle corresponds to a certain number of surface atoms and only some of them host a reaction site 165:
catalyze electrochemical reactions, although few have achieved commercial success. Well investigated processes include the
136:
or a four electron process to oxygen. The presence of an electrocatalyst could facilitate either of the reaction pathways.
1965: 2303:"Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications" 862: 402: 125: 39: 1055: 2565: 298:
cells can derive current from the oxidation of substrates such as glucose, and be leveraged for processes such as CO
731:
Water treatment systems often require the degradation of hazardous compounds. These treatment processes are dubbed
2236:"Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction" 1296:"Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective" 429:: for any given size of a nanoparticle there is an equilibrium shape which exactly determines its crystal planes 557:
A schematic of a hydrogen fuel cell. To supply hydrogen, electrocatalytic water splitting is commonly employed.
409:
design is based on a polymeric membrane charged in platinum nanoparticles as an electrocatalyst (the so-called
1937:
Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. (2013). "A comprehensive review on PEM water electrolysis".
2395:"Electrochemical Versus Heat-Engine Energy Technology: A Tribute to Wilhelm Ostwald's Visionary Statements" 417: 1198: 566:
with an upper efficiency of 60% (for compression ratio of 10 and specific heat ratio of 1.4) based on the
581: 507: 166: 1100:
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry".
732: 563: 519: 573:. It is also possible to combine the hydrogen and oxygen through redox mechanism as in the case of a 2788: 2041:
Wildgoose, Gregory G.; Banks, Craig E.; Leventis, Henry C.; Compton, Richard G. (November 30, 2005).
353: 1762: 1028: 887:"Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial" 51: 1493:"Renewable electron-driven bioinorganic nitrogen fixation: A superior route toward green ammonia?" 1731: 1492: 886: 580:
The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the
451: 1765:; Cuenya, B.R. (2016). "Nanostructured electrocatalysts with tunable activity and selectivity". 714:
can be oxidized into the necessary hydrogen ions and electrons required to create electricity.
2089: 1803:
Kleijn, Steven E. F.; Lai, Stanley C. S.; Koper, Marc T. M.; Unwin, Patrick R. (2014-04-01).
1693:"Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry" 934:
Debe, Mark K. (2012). "Electrocatalyst approaches and challenges for automotive fuel cells".
815: 548: 398: 286: 143:
Types of electrocatalyst materials, including homogeneous and heterogeneous electrocatalysts.
129: 2630:"Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery" 1584: 664:
reduction is not practiced commercially but remains a topic of research. The reduction of CO
534: 510:, especially conductive frameworks, can be used as electrocatalysts for processes such as CO 2477: 2247: 2101: 1903: 1855: 1774: 1208: 943: 761: 538:
Some transition metal complexes that exhibit some activity as homogeneous electrocatalysts.
439: 162: 46:
surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be
8: 1894:
Koper, M.T.M. (2011). "Structure sensitivity and nanoscale effects in electrocatalysis".
570: 388: 373: 352:
Electronic density difference of a Cl atom adsorbed on a Cu(111) surface obtained with a
348: 324: 294: 197: 2481: 2251: 2105: 1907: 1859: 1778: 947: 765: 2793: 2764: 2687:"Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules" 2662: 2629: 2542: 2375: 2330: 2278: 2235: 2216: 2133: 2070: 1620: 1330: 1295: 1176: 1073: 967: 916: 782: 749: 703: 425: 312: 182: 106: 2515:"Designing CO 2 reduction electrode materials by morphology and interface engineering" 2768: 2756: 2748: 2716: 2708: 2667: 2649: 2610: 2589:"Recent advances in the catalytic applications of GO/rGO for green organic synthesis" 2546: 2534: 2495: 2416: 2379: 2334: 2322: 2283: 2265: 2220: 2208: 2137: 2125: 2117: 2062: 2042: 2023: 2015: 1919: 1871: 1824: 1712: 1670: 1662: 1624: 1612: 1604: 1565: 1557: 1473: 1414: 1378: 1370: 1335: 1317: 1267: 1212: 1180: 1168: 1160: 1125: 1117: 1061: 1051: 1002: 959: 920: 858: 854: 787: 369: 282: 193: 133: 102: 74: 2074: 365:
energy of the reactants together with many other variables not yet fully clarified.
2740: 2698: 2657: 2641: 2600: 2526: 2485: 2406: 2365: 2357: 2314: 2273: 2255: 2200: 2164: 2109: 2054: 2007: 1950: 1946: 1911: 1863: 1816: 1782: 1747: 1743: 1730:
Carmo, Marcelo; Fritz, David L.; Mergel, JĂĽrgen; Stolten, Detlef (March 14, 2013).
1704: 1654: 1596: 1547: 1507: 1465: 1406: 1362: 1325: 1307: 1259: 1152: 1109: 994: 971: 951: 906: 898: 850: 805: 777: 769: 475: 462: 406: 1843: 1641:
Yang, Jenny Y.; Kerr, Tyler A.; Wang, Xinran S.; Barlow, Jeffrey M. (2020-11-18).
189:
processes that use protons. This technology remains economically noncompetitive.
2645: 2169: 2152: 1643:"Reducing CO 2 to HCO 2 – at Mild Potentials: Lessons from Formate Dehydrogenase" 1600: 902: 515: 488: 186: 87: 2490: 2465: 1969: 1642: 1552: 1535: 1366: 1156: 2260: 2113: 2090:"Graphene-supported single-atom catalysts and applications in electrocatalysis" 1867: 825: 707: 669: 553: 410: 83: 2188: 2058: 1804: 1786: 1247: 2782: 2752: 2712: 2653: 2614: 2538: 2499: 2361: 2326: 2269: 2234:
Singh, Chanderpratap; Mukhopadhyay, Subhabrata; Hod, Idan (January 5, 2021).
2121: 2066: 2019: 1995: 1875: 1716: 1666: 1608: 1561: 1321: 1204: 1194: 1164: 1121: 496: 444: 205: 110: 94: 55: 47: 2744: 1246:
Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc (2011-08-01).
1065: 401:
increases as the average particle size decreases. For instance, most common
139: 2760: 2720: 2703: 2686: 2671: 2420: 2411: 2394: 2287: 2212: 2204: 2129: 2027: 1923: 1828: 1820: 1674: 1616: 1569: 1477: 1418: 1382: 1339: 1312: 1271: 1263: 1172: 1129: 1006: 963: 791: 341: 178: 2605: 2588: 2088:
Zhang, Qin; Zhang, Xiaoxiang; Wang, Junzhong; Wang, Congwei (2021-01-15).
1536:"Fundamentals, Applications, and Future Directions of Bioelectrocatalysis" 1658: 845:
Kotrel, Stefan; BrUninger, Sigmar (2008). "Industrial Electrocatalysis".
278: 185:. Several conversions that use of hydrogen gas could be transformed into 86:. In assessing the stability of electrocatalysts, the a key parameter is 23:
A platinum cathode electrocatalyst's stability being measured by chemist
2370: 2187:
Jiao, Long; Wang, Yang; Jiang, Hai-Long; Xu, Qiang (November 27, 2017).
955: 773: 2530: 2514: 2318: 2302: 1915: 1511: 1469: 1410: 998: 567: 362: 2011: 1433:"Dream or Reality? Electrification of the Chemical Process Industries" 1374: 1113: 911: 19: 1708: 1692: 810: 681:
reduction, including carbon-based materials and framework materials.
574: 118: 114: 98: 59: 43: 42:. Electrocatalysts are a specific form of catalysts that function at 35: 1996:"Advanced Carbon Electrode Materials for Molecular Electrochemistry" 1294:
Kinzel, Niklas W.; Werlé, Christophe; Leitner, Walter (2021-01-19).
1844:"Strain-controlled electrocatalysis on multimetallic nanomaterials" 695: 492: 234: 209: 2189:"Metal-Organic Frameworks as Platforms for Catalytic Applications" 726: 2043:"Chemically Modified Carbon Nanotubes for Use in Electroanalysis" 711: 699: 201: 2463: 1245: 132:, the anode can oxidize water through a two electron process to 821:
Non-faradaic electrochemical modification of catalytic activity
274: 238: 747: 393:
nanoparticles, while the number of other surface sites varies.
281:, an enzyme that contains a MoFe cluster, can be leveraged to 2040: 1585:"Nitrogenase Bioelectrochemistry for Synthesis Applications" 1395: 736: 447:
of a nanoparticle changes and its band structure fades away
1760: 1029:"Electrocatalysis 101 | GCEP Symposium - October 11, 2012" 2727: 2684: 172: 2153:"Carbon-based catalysts for metal-free electrocatalysis" 1936: 1729: 1533: 542: 1352: 1200:
Electrochemical methods: fundamentals and applications
1048:
Electrochemical methods: fundamentals and applications
677:
variety of nanomaterials have also been studied for CO
2300: 1889: 1887: 1885: 1491:
Wang, Bo; Zhang, Yifeng; Minteer, Shelley D. (2023).
1045: 984: 702:
on carbon backed tin-dioxide nanoparticles can break
2466:"A Practical Beginner's Guide to Cyclic Voltammetry" 2392: 2233: 2628:Siu, Juno C.; Fu, Niankai; Lin, Song (2020-03-17). 1842:Luo, Mingchuan; Guo, Shaojun (September 26, 2017). 1802: 1583:Milton, Ross D.; Minteer, Shelley D. (2019-12-17). 689:
Aqueous solutions of methanol can decompose into CO
668:into useable products is a potential way to combat 156: 121:would require its own specialized electrocatalyst. 16:
Catalyst participating in electrochemical reactions
2087: 1882: 1732:"A comprehensive review on PEM water electrolysis" 1640: 1293: 1691:Qiao, Yan; Bao, Shu-Juan; Li, Chang Ming (2010). 305: 2780: 1902:(5). The Royal Society of Chemistry: 2054–2073. 1490: 1455: 1142: 58:. Major challenges in electrocatalysts focus on 2186: 1966:"CNTs tuned to provide electrocatalyst support" 844: 727:Advanced oxidation processes in water treatment 529: 147: 2733: 2438:. Science learning New Zealand. Archived from 261:Another process attracting much effort is the 1582: 1187: 684: 1193: 181:, because the electrons can be sourced from 2553: 2347: 1754: 656:Electrochemical reduction of carbon dioxide 649: 263:electrochemical reduction of carbon dioxide 93:In many electrochemical systems, including 1930: 1078:: CS1 maint: location missing publisher ( 1046:Bard, Allen J.; Larry R. Faulkner (2001). 2702: 2661: 2604: 2489: 2433: 2410: 2369: 2277: 2259: 2168: 1690: 1551: 1329: 1311: 1026: 910: 781: 483: 2627: 2586: 1993: 1939:International Journal of Hydrogen Energy 1736:International Journal of Hydrogen Energy 1647:Journal of the American Chemical Society 1099: 552: 533: 387: 347: 192:Another example is found in the area of 138: 68: 18: 2512: 2399:Angewandte Chemie International Edition 1809:Angewandte Chemie International Edition 1300:Angewandte Chemie International Edition 1252:Angewandte Chemie International Edition 884: 646:HER can be promoted by many catalysts. 383: 2781: 2737:Environmental Science & Technology 2559: 2393:Kunze, Julia; Ulrich Stimming (2009). 2182: 2180: 1994:McCreery, Richard L. (June 17, 2008). 1989: 1987: 1841: 1636: 1634: 1289: 1287: 1285: 1283: 1281: 1241: 1239: 1237: 1235: 502: 173:Electrification of catalytic processes 2427: 1893: 1798: 1796: 1686: 1684: 1529: 1527: 1525: 1523: 1521: 1197:; Faulkner, Larry R. (January 2001). 1022: 1020: 1018: 1016: 741: 717: 113:. In these systems, each of the two 1963: 1095: 1093: 1091: 1089: 1027:Jaramillo, Tom (September 3, 2014). 933: 880: 878: 876: 874: 543:Water splitting / Hydrogen evolution 2739:. American Chemical Society (ACS). 2177: 2157:Current Opinion in Electrochemistry 2150: 1984: 1957: 1805:"Electrochemistry of Nanoparticles" 1723: 1631: 1278: 1232: 847:Handbook of Heterogeneous Catalysis 277:can function as electrocatalysts. 13: 2519:Energy & Environmental Science 2434:Haverkamp, Richard (3 June 2008). 1793: 1697:Energy & Environmental Science 1681: 1576: 1518: 1500:Energy & Environmental Science 1013: 838: 520:Covalent organic frameworks (COFs) 14: 2805: 2587:Sachdeva, Harshita (2020-09-30). 1968:. Nanotechweb.org. Archived from 1086: 871: 318: 2562:"Booze-powered cars coming soon" 2560:Harris, Mark (26 January 2009). 2513:Pan, Fuping; Yang, Yang (2020). 2443:(QuickTime video and transcript) 1050:(Second ed.). Hoboken, NJ. 855:10.1002/9783527610044.hetcat0103 335: 330: 233:In the electrified version, the 157:Synthetic coordination complexes 2678: 2621: 2580: 2564:. techradar.com. Archived from 2506: 2457: 2386: 2341: 2294: 2227: 2144: 2081: 2034: 1835: 1484: 1449: 1425: 1389: 1346: 885:Roduner, Emil (June 13, 2017). 508:Metal—organic frameworks (MOFs) 2593:Green Processing and Synthesis 1951:10.1016/j.ijhydene.2013.01.151 1748:10.1016/j.ijhydene.2013.01.151 1136: 1039: 978: 927: 706:at room temperature with only 433:Reaction sites relative number 306:Heterogeneous electrocatalysts 73:An electrocatalyst lowers the 1: 2634:Accounts of Chemical Research 2470:Journal of Chemical Education 2436:"What is an electrocatalyst?" 2151:Dai, Liming (June 13, 2017). 1964:Wang, Xin (19 January 2008). 1589:Accounts of Chemical Research 1248:"Splitting Water with Cobalt" 831: 2646:10.1021/acs.accounts.9b00529 2170:10.1016/j.coelec.2017.06.004 1601:10.1021/acs.accounts.9b00494 903:10.1016/j.cattod.2017.05.091 733:Advanced oxidation processes 562:of this reaction through an 530:Research on electrocatalysis 443:: below a certain size, the 418:surface area to volume ratio 148:Homogeneous electrocatalysts 7: 2491:10.1021/acs.jchemed.7b00361 1553:10.1021/acs.chemrev.0c00472 1367:10.1021/acs.chemrev.1c01001 1157:10.1021/acs.chemrev.8b00797 799: 582:standard hydrogen electrode 237:is provided in the form of 167:hydrogen evolution reaction 10: 2810: 2261:10.1186/s40580-020-00251-6 1868:10.1038/natrevmats.2017.59 1761:Mistry, H.; Varela, A.S.; 685:Ethanol-powered fuel cells 653: 564:internal combustion engine 546: 268: 2059:10.1007/s00604-005-0449-x 1787:10.1038/natrevmats.2016.9 710:as a by-product, so that 124:Half-reactions involving 40:electrochemical reactions 2362:10.1021/acscatal.9b03790 2114:10.1088/1361-6528/abbd70 1848:Nature Reviews Materials 1767:Nature Reviews Materials 1458:Chemical Society Reviews 1399:Chemical Society Reviews 987:Chemical Society Reviews 650:Carbon dioxide reduction 283:fix atmospheric nitrogen 250:+ 6 H + 6 e → 2 NH 2745:10.1021/acs.est.2c04874 660:Electrocatalysis for CO 2704:10.1002/cphc.201700447 2412:10.1002/anie.200903603 2205:10.1002/adma.201703663 1821:10.1002/anie.201306828 1313:10.1002/anie.202006988 1264:10.1002/anie.201007987 558: 539: 484:Carbon-based materials 394: 357: 163:coordination complexes 144: 27: 2606:10.1515/gps-2020-0055 816:Electrolysis of water 754:Nature Communications 556: 549:Electrolysis of water 537: 399:specific surface area 391: 351: 287:formate dehydrogenase 142: 130:electrolysis of water 101:and various forms of 69:Background and theory 38:that participates in 22: 1659:10.1021/jacs.0c07965 595:Reduction Potential 440:Electronic structure 384:Particle size effect 295:Microbial fuel cells 52:platinized electrode 2482:2018JChEd..95..197E 2252:2021NanoC...8....1S 2106:2021Nanot..32c2001Z 1908:2011Nanos...3.2054K 1860:2017NatRM...217059L 1779:2016NatRM...116009M 1653:(46): 19438–19445. 1546:(23): 12903–12993. 1361:(14): 12427–12474. 1306:(21): 11628–11686. 1151:(22): 11551–11575. 956:10.1038/nature11115 948:2012Natur.486...43D 774:10.1038/ncomms13549 766:2016NatCo...713549V 588: 571:thermodynamic cycle 503:Framework materials 374:coordination number 325:hydrogen production 198:Haber-Bosch process 183:renewable resources 117:and its associated 107:faradaic efficiency 2531:10.1039/D0EE00900H 2319:10.1039/C9MH00856J 2307:Materials Horizons 2193:Advanced Materials 1972:on 22 January 2009 1916:10.1039/c0nr00857e 1512:10.1039/D2EE03132A 1470:10.1039/C9CS00159J 1411:10.1039/D3CS00419H 999:10.1039/C4CS00470A 742:Additional reading 718:Chemical synthesis 587: 559: 540: 395: 358: 196:. The traditional 145: 103:electrolytic cells 28: 2697:(19): 2573–2605. 2405:(49): 9230–9237. 2047:Microchimica Acta 2012:10.1021/cr068076m 1945:(12): 4901–4934. 1815:(14): 3558–3586. 1742:(12): 4901–4934. 1595:(12): 3351–3360. 1464:(24): 5658–5716. 1437:www.aiche-cep.com 1405:(21): 7305–7332. 1258:(32): 7238–7266. 1218:978-0-471-04372-0 1114:10.1021/cr068076m 644: 643: 426:Equilibrium shape 368:According to the 194:nitrogen fixation 134:hydrogen peroxide 75:activation energy 2801: 2789:Electrochemistry 2773: 2772: 2731: 2725: 2724: 2706: 2682: 2676: 2675: 2665: 2625: 2619: 2618: 2608: 2584: 2578: 2577: 2575: 2573: 2557: 2551: 2550: 2525:(8): 2275–2309. 2510: 2504: 2503: 2493: 2461: 2455: 2454: 2452: 2450: 2445:on 29 April 2023 2444: 2431: 2425: 2424: 2414: 2390: 2384: 2383: 2373: 2345: 2339: 2338: 2298: 2292: 2291: 2281: 2263: 2240:Nano Convergence 2231: 2225: 2224: 2184: 2175: 2174: 2172: 2148: 2142: 2141: 2085: 2079: 2078: 2053:(3–4): 187–214. 2038: 2032: 2031: 2006:(7): 2646–2687. 2000:Chemical Reviews 1991: 1982: 1981: 1979: 1977: 1961: 1955: 1954: 1934: 1928: 1927: 1891: 1880: 1879: 1839: 1833: 1832: 1800: 1791: 1790: 1758: 1752: 1751: 1727: 1721: 1720: 1709:10.1039/b923503e 1688: 1679: 1678: 1638: 1629: 1628: 1580: 1574: 1573: 1555: 1540:Chemical Reviews 1531: 1516: 1515: 1497: 1488: 1482: 1481: 1453: 1447: 1446: 1444: 1443: 1429: 1423: 1422: 1393: 1387: 1386: 1355:Chemical Reviews 1350: 1344: 1343: 1333: 1315: 1291: 1276: 1275: 1243: 1230: 1229: 1227: 1225: 1191: 1185: 1184: 1145:Chemical Reviews 1140: 1134: 1133: 1108:(7): 2646–2687. 1102:Chemical Reviews 1097: 1084: 1083: 1077: 1069: 1043: 1037: 1036: 1024: 1011: 1010: 993:(8): 2060–2086. 982: 976: 975: 931: 925: 924: 914: 882: 869: 868: 842: 806:Electrochemistry 795: 785: 589: 586: 489:Carbon nanotubes 463:Ostwald ripening 254: 229: 2809: 2808: 2804: 2803: 2802: 2800: 2799: 2798: 2779: 2778: 2777: 2776: 2732: 2728: 2683: 2679: 2626: 2622: 2585: 2581: 2571: 2569: 2568:on 2 March 2009 2558: 2554: 2511: 2507: 2462: 2458: 2448: 2446: 2442: 2432: 2428: 2391: 2387: 2346: 2342: 2299: 2295: 2232: 2228: 2199:(37): 1703663. 2185: 2178: 2149: 2145: 2086: 2082: 2039: 2035: 1992: 1985: 1975: 1973: 1962: 1958: 1935: 1931: 1892: 1883: 1840: 1836: 1801: 1794: 1759: 1755: 1728: 1724: 1689: 1682: 1639: 1632: 1581: 1577: 1532: 1519: 1495: 1489: 1485: 1454: 1450: 1441: 1439: 1431: 1430: 1426: 1394: 1390: 1351: 1347: 1292: 1279: 1244: 1233: 1223: 1221: 1219: 1192: 1188: 1141: 1137: 1098: 1087: 1071: 1070: 1058: 1044: 1040: 1025: 1014: 983: 979: 942:(7401): 43–51. 932: 928: 891:Catalysis Today 883: 872: 865: 843: 839: 834: 802: 744: 729: 720: 692: 687: 680: 675: 667: 663: 658: 652: 634: 630: 626: 611: 600: 551: 545: 532: 516:water splitting 513: 505: 486: 386: 338: 333: 321: 308: 301: 292: 271: 253: 249: 245: 241:and electrons: 228: 224: 220: 216: 187:electrochemical 175: 159: 150: 88:turnover number 71: 65: 32:electrocatalyst 17: 12: 11: 5: 2807: 2797: 2796: 2791: 2775: 2774: 2726: 2677: 2640:(3): 547–560. 2620: 2599:(1): 515–537. 2579: 2552: 2505: 2476:(2): 197–206. 2456: 2426: 2385: 2340: 2313:(2): 411–454. 2293: 2226: 2176: 2143: 2094:Nanotechnology 2080: 2033: 1983: 1956: 1929: 1881: 1834: 1792: 1753: 1722: 1680: 1630: 1575: 1517: 1506:(2): 404–420. 1483: 1448: 1424: 1388: 1345: 1277: 1231: 1217: 1195:Bard, Allen J. 1186: 1135: 1085: 1056: 1038: 1012: 977: 926: 870: 864:978-3527312412 863: 836: 835: 833: 830: 829: 828: 826:Tafel equation 823: 818: 813: 808: 801: 798: 797: 796: 743: 740: 728: 725: 719: 716: 708:carbon dioxide 690: 686: 683: 678: 673: 670:climate change 665: 661: 654:Main article: 651: 648: 642: 641: 636: 632: 628: 627:+ 4H + 4e → 2H 624: 619: 618: 613: 609: 604: 603: 598: 593: 592:Half Reaction 547:Main article: 544: 541: 531: 528: 514:reduction and 511: 504: 501: 485: 482: 481: 480: 472: 469:Capping agents 466: 456: 448: 436: 430: 411:platinum black 403:PEM fuel cells 385: 382: 337: 334: 332: 329: 320: 319:Bulk materials 317: 307: 304: 299: 290: 270: 267: 256: 255: 251: 247: 231: 230: 226: 222: 218: 174: 171: 158: 155: 149: 146: 126:multiple steps 111:overpotentials 95:galvanic cells 84:Tafel equation 70: 67: 15: 9: 6: 4: 3: 2: 2806: 2795: 2792: 2790: 2787: 2786: 2784: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2738: 2730: 2722: 2718: 2714: 2710: 2705: 2700: 2696: 2692: 2688: 2681: 2673: 2669: 2664: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2631: 2624: 2616: 2612: 2607: 2602: 2598: 2594: 2590: 2583: 2567: 2563: 2556: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2509: 2501: 2497: 2492: 2487: 2483: 2479: 2475: 2471: 2467: 2460: 2441: 2437: 2430: 2422: 2418: 2413: 2408: 2404: 2400: 2396: 2389: 2381: 2377: 2372: 2367: 2363: 2359: 2355: 2351: 2350:ACS Catalysis 2344: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2297: 2289: 2285: 2280: 2275: 2271: 2267: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2183: 2181: 2171: 2166: 2162: 2158: 2154: 2147: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2100:(3): 032001. 2099: 2095: 2091: 2084: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2037: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1990: 1988: 1971: 1967: 1960: 1952: 1948: 1944: 1940: 1933: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1890: 1888: 1886: 1877: 1873: 1869: 1865: 1861: 1857: 1854:(11): 17059. 1853: 1849: 1845: 1838: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1799: 1797: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1757: 1749: 1745: 1741: 1737: 1733: 1726: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1687: 1685: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1637: 1635: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1579: 1571: 1567: 1563: 1559: 1554: 1549: 1545: 1541: 1537: 1530: 1528: 1526: 1524: 1522: 1513: 1509: 1505: 1501: 1494: 1487: 1479: 1475: 1471: 1467: 1463: 1459: 1452: 1438: 1434: 1428: 1420: 1416: 1412: 1408: 1404: 1400: 1392: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1349: 1341: 1337: 1332: 1327: 1323: 1319: 1314: 1309: 1305: 1301: 1297: 1290: 1288: 1286: 1284: 1282: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1242: 1240: 1238: 1236: 1220: 1214: 1210: 1206: 1202: 1201: 1196: 1190: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1096: 1094: 1092: 1090: 1081: 1075: 1067: 1063: 1059: 1057:0-471-04372-9 1053: 1049: 1042: 1034: 1030: 1023: 1021: 1019: 1017: 1008: 1004: 1000: 996: 992: 988: 981: 973: 969: 965: 961: 957: 953: 949: 945: 941: 937: 930: 922: 918: 913: 908: 904: 900: 896: 892: 888: 881: 879: 877: 875: 866: 860: 856: 852: 848: 841: 837: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 803: 793: 789: 784: 779: 775: 771: 767: 763: 759: 755: 751: 746: 745: 739: 738: 734: 724: 715: 713: 709: 705: 701: 697: 682: 671: 657: 647: 640: 637: 635: 621: 620: 617: 614: 612: 606: 605: 602: 594: 591: 590: 585: 583: 578: 576: 572: 569: 565: 555: 550: 536: 527: 523: 521: 517: 509: 500: 498: 497:nanomaterials 494: 490: 478: 477: 473: 470: 467: 464: 460: 457: 454: 453: 449: 446: 445:work function 442: 441: 437: 434: 431: 428: 427: 423: 422: 421: 419: 416:Although the 414: 412: 408: 407:electrolyzers 404: 400: 390: 381: 377: 375: 371: 366: 364: 355: 350: 346: 343: 340:A variety of 336:Nanoparticles 331:Nanomaterials 328: 326: 316: 314: 303: 296: 288: 284: 280: 276: 266: 264: 259: 244: 243: 242: 240: 236: 215: 214: 213: 211: 207: 206:hydrogenation 203: 199: 195: 190: 188: 184: 180: 170: 168: 164: 154: 141: 137: 135: 131: 127: 122: 120: 116: 112: 108: 104: 100: 96: 91: 89: 85: 79: 76: 66: 63: 61: 57: 56:half reaction 53: 49: 48:heterogeneous 45: 41: 37: 33: 26: 25:Xiaoping Wang 21: 2736: 2729: 2694: 2691:ChemPhysChem 2690: 2680: 2637: 2633: 2623: 2596: 2592: 2582: 2570:. Retrieved 2566:the original 2555: 2522: 2518: 2508: 2473: 2469: 2459: 2447:. Retrieved 2440:the original 2429: 2402: 2398: 2388: 2371:10397/100175 2356:(1): 81–92. 2353: 2349: 2343: 2310: 2306: 2296: 2243: 2239: 2229: 2196: 2192: 2163:(1): 18–25. 2160: 2156: 2146: 2097: 2093: 2083: 2050: 2046: 2036: 2003: 1999: 1974:. Retrieved 1970:the original 1959: 1942: 1938: 1932: 1899: 1895: 1851: 1847: 1837: 1812: 1808: 1770: 1766: 1763:Strasser, P. 1756: 1739: 1735: 1725: 1700: 1696: 1650: 1646: 1592: 1588: 1578: 1543: 1539: 1503: 1499: 1486: 1461: 1457: 1451: 1440:. Retrieved 1436: 1427: 1402: 1398: 1391: 1358: 1354: 1348: 1303: 1299: 1255: 1251: 1222:. Retrieved 1199: 1189: 1148: 1144: 1138: 1105: 1101: 1047: 1041: 1032: 990: 986: 980: 939: 935: 929: 894: 890: 846: 840: 757: 753: 730: 721: 704:carbon bonds 688: 659: 645: 638: 622: 615: 607: 596: 579: 560: 524: 506: 487: 474: 468: 458: 450: 438: 432: 424: 415: 396: 378: 367: 359: 342:nanoparticle 339: 322: 309: 272: 260: 257: 232: 191: 179:green energy 176: 160: 151: 123: 92: 80: 72: 64: 31: 29: 2572:27 February 2449:27 February 1976:27 February 1773:(4): 1–14. 1224:27 February 1033:Youtube.com 897:: 263–268. 608:2H + 2e → H 356:simulation. 302:reduction. 293:reduction. 279:Nitrogenase 2783:Categories 1703:(5): 544. 1442:2021-08-22 912:2263/68699 832:References 465:phenomenon 363:adsorption 115:electrodes 99:fuel cells 60:fuel cells 50:such as a 2794:Catalysis 2769:256030682 2753:0013-936X 2713:1439-4235 2654:0001-4842 2615:2191-9550 2547:219737955 2539:1754-5692 2500:0021-9584 2380:212979103 2335:204292382 2327:2051-6347 2270:2196-5404 2221:205282723 2138:222146032 2122:0957-4484 2067:0026-3672 2020:0009-2665 1896:Nanoscale 1876:2058-8437 1717:1754-5692 1667:0002-7863 1625:208643374 1609:0001-4842 1562:0009-2665 1322:1433-7851 1181:202761809 1165:0009-2665 1122:0009-2665 1074:cite book 921:103395714 811:Catalysis 760:: 13549. 575:fuel cell 459:Stability 370:TSK model 313:interface 200:produces 119:half-cell 109:and high 82:with the 44:electrode 2761:36657468 2721:28732139 2672:32077681 2421:19894237 2288:33403521 2246:(1): 1. 2213:29178384 2130:33002887 2075:93373402 2028:18557655 1924:21399781 1829:24574053 1675:33141560 1617:31800207 1570:33050699 1478:31742279 1419:37814786 1383:35640056 1340:33464678 1272:21748828 1205:New York 1173:31553169 1130:18557655 1066:43859504 1007:25672249 964:22678278 800:See also 792:27941752 696:platinum 493:graphene 235:hydrogen 225:→ 2 NH 210:nitrogen 36:catalyst 2663:7245362 2478:Bibcode 2279:7785767 2248:Bibcode 2102:Bibcode 1904:Bibcode 1856:Bibcode 1775:Bibcode 1375:1922077 1331:8248444 972:4349039 944:Bibcode 783:5159813 762:Bibcode 712:ethanol 700:rhodium 584:(SHE). 476:Support 452:Defects 345:strain. 275:enzymes 269:Enzymes 239:protons 202:ammonia 2767:  2759:  2751:  2719:  2711:  2670:  2660:  2652:  2613:  2545:  2537:  2498:  2419:  2378:  2333:  2325:  2286:  2276:  2268:  2219:  2211:  2136:  2128:  2120:  2073:  2065:  2026:  2018:  1922:  1874:  1827:  1715:  1673:  1665:  1623:  1615:  1607:  1568:  1560:  1476:  1417:  1381:  1373:  1338:  1328:  1320:  1270:  1215:  1179:  1171:  1163:  1128:  1120:  1064:  1054:  1005:  970:  962:  936:Nature 919:  861:  790:  780:  2765:S2CID 2543:S2CID 2376:S2CID 2331:S2CID 2217:S2CID 2134:S2CID 2071:S2CID 1621:S2CID 1496:(PDF) 1209:Wiley 1177:S2CID 968:S2CID 917:S2CID 639:+1.23 610:2 (g) 273:Some 221:+ 3 H 212:gas: 161:Many 34:is a 2757:PMID 2749:ISSN 2717:PMID 2709:ISSN 2668:PMID 2650:ISSN 2611:ISSN 2574:2009 2535:ISSN 2496:ISSN 2451:2009 2417:PMID 2323:ISSN 2284:PMID 2266:ISSN 2209:PMID 2126:PMID 2118:ISSN 2063:ISSN 2024:PMID 2016:ISSN 1978:2009 1920:PMID 1872:ISSN 1825:PMID 1713:ISSN 1671:PMID 1663:ISSN 1613:PMID 1605:ISSN 1566:PMID 1558:ISSN 1474:PMID 1415:PMID 1379:PMID 1371:OSTI 1336:PMID 1318:ISSN 1268:PMID 1226:2009 1213:ISBN 1169:PMID 1161:ISSN 1126:PMID 1118:ISSN 1080:link 1062:OCLC 1052:ISBN 1003:PMID 960:PMID 859:ISBN 788:PMID 737:PFAS 698:and 625:2(g) 601:(V) 568:Otto 491:and 405:and 169:. 2741:doi 2699:doi 2658:PMC 2642:doi 2601:doi 2527:doi 2486:doi 2407:doi 2366:hdl 2358:doi 2315:doi 2274:PMC 2256:doi 2201:doi 2165:doi 2110:doi 2055:doi 2051:152 2008:doi 2004:108 1947:doi 1912:doi 1864:doi 1817:doi 1783:doi 1744:doi 1705:doi 1655:doi 1651:142 1597:doi 1548:doi 1544:120 1508:doi 1466:doi 1407:doi 1363:doi 1359:122 1326:PMC 1308:doi 1260:doi 1153:doi 1149:119 1110:doi 1106:108 995:doi 952:doi 940:486 907:hdl 899:doi 895:309 851:doi 778:PMC 770:doi 633:(l) 616:≡ 0 599:red 413:). 354:DFT 208:of 204:by 30:An 2785:: 2763:. 2755:. 2747:. 2715:. 2707:. 2695:18 2693:. 2689:. 2666:. 2656:. 2648:. 2638:53 2636:. 2632:. 2609:. 2595:. 2591:. 2541:. 2533:. 2523:13 2521:. 2517:. 2494:. 2484:. 2474:95 2472:. 2468:. 2415:. 2403:48 2401:. 2397:. 2374:. 2364:. 2354:10 2352:. 2329:. 2321:. 2309:. 2305:. 2282:. 2272:. 2264:. 2254:. 2242:. 2238:. 2215:. 2207:. 2197:30 2195:. 2191:. 2179:^ 2159:. 2155:. 2132:. 2124:. 2116:. 2108:. 2098:32 2096:. 2092:. 2069:. 2061:. 2049:. 2045:. 2022:. 2014:. 2002:. 1998:. 1986:^ 1943:38 1941:. 1918:. 1910:. 1898:. 1884:^ 1870:. 1862:. 1850:. 1846:. 1823:. 1813:53 1811:. 1807:. 1795:^ 1781:. 1769:. 1740:38 1738:. 1734:. 1711:. 1699:. 1695:. 1683:^ 1669:. 1661:. 1649:. 1645:. 1633:^ 1619:. 1611:. 1603:. 1593:52 1591:. 1587:. 1564:. 1556:. 1542:. 1538:. 1520:^ 1504:16 1502:. 1498:. 1472:. 1462:48 1460:. 1435:. 1413:. 1403:52 1401:. 1377:. 1369:. 1357:. 1334:. 1324:. 1316:. 1304:60 1302:. 1298:. 1280:^ 1266:. 1256:50 1254:. 1250:. 1234:^ 1211:. 1207:: 1203:. 1175:. 1167:. 1159:. 1147:. 1124:. 1116:. 1104:. 1088:^ 1076:}} 1072:{{ 1060:. 1031:. 1015:^ 1001:. 991:44 989:. 966:. 958:. 950:. 938:. 915:. 905:. 893:. 889:. 873:^ 857:. 849:. 786:. 776:. 768:. 756:. 752:. 265:. 97:, 62:. 2771:. 2743:: 2723:. 2701:: 2674:. 2644:: 2617:. 2603:: 2597:9 2576:. 2549:. 2529:: 2502:. 2488:: 2480:: 2453:. 2423:. 2409:: 2382:. 2368:: 2360:: 2337:. 2317:: 2311:7 2290:. 2258:: 2250:: 2244:8 2223:. 2203:: 2173:. 2167:: 2161:4 2140:. 2112:: 2104:: 2077:. 2057:: 2030:. 2010:: 1980:. 1953:. 1949:: 1926:. 1914:: 1906:: 1900:3 1878:. 1866:: 1858:: 1852:2 1831:. 1819:: 1789:. 1785:: 1777:: 1771:1 1750:. 1746:: 1719:. 1707:: 1701:3 1677:. 1657:: 1627:. 1599:: 1572:. 1550:: 1514:. 1510:: 1480:. 1468:: 1445:. 1421:. 1409:: 1385:. 1365:: 1342:. 1310:: 1274:. 1262:: 1228:. 1183:. 1155:: 1132:. 1112:: 1082:) 1068:. 1035:. 1009:. 997:: 974:. 954:: 946:: 923:. 909:: 901:: 867:. 853:: 794:. 772:: 764:: 758:7 691:2 679:2 674:2 666:2 662:2 631:O 629:2 623:O 597:E 512:2 300:2 291:2 252:3 248:2 246:N 227:3 223:2 219:2 217:N

Index


Xiaoping Wang
catalyst
electrochemical reactions
electrode
heterogeneous
platinized electrode
half reaction
fuel cells
activation energy
Tafel equation
turnover number
galvanic cells
fuel cells
electrolytic cells
faradaic efficiency
overpotentials
electrodes
half-cell
multiple steps
electrolysis of water
hydrogen peroxide

coordination complexes
hydrogen evolution reaction
green energy
renewable resources
electrochemical
nitrogen fixation
Haber-Bosch process

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑