Knowledge

Divertor

Source 📝

40: 20: 32: 142:, which is a small piece of material that projects a short distance into the outer edge of the main plasma confinement area. Ions from the fuel that are travelling outwards strike the limiter, thereby protecting the walls of the chamber from this damage. However, the problems with material being deposited into the fuel remained; the limiter simply changed where that material was coming from. 862: 237:(LHD), utilizes large helical coils to create a diverting field. This design permits adjustment of the stochastic layer size, situated between the confined plasma volume and the field lines ending on the divertor plate. However, the compatibility of the Helical Divertor with stellarators optimized for 149:
pull the lower edge of the plasma to create a small region where the outer edge of the plasma, the "Scrape-Off Layer" (SOL), hits a limiter-like plate. The divertor improves on the limiter in several ways, mainly because modern reactors try to create plasmas with D-shaped cross-sections ("elongation"
248:
provides an alternative design for optimized stellarators with significant bootstrap currents. This approach leverages sharp "ridges" on the plasma boundary to channel flux. The bootstrap currents modify the shape, not the location, of these ridges, providing an effective channeling mechanism. This
110:
being created and left in the fuel (the so-called "fusion ash"). These impurities were responsible for the loss of heat, and caused other effects that made it more difficult to keep the reaction going. The divertor was proposed as a solution to this problem. Operating on the same principle as a
252:
Given the complexity of the design of stellarator divertors, compared to their two-dimensional tokamak counterparts, a thorough understanding of their performance is crucial in stellarator optimization. The experiments with divertors in the W7-X and LHD have shown promising results and provide
225:
stellarator. The magnetic island chain in the plasma edge can control plasma fueling. Despite some challenges, the island divertor concept has demonstrated great potential for managing power and particle exhaust in fusion reactors, and further research could lead to more efficient and reliable
122:
When early long-shot reactors started to appear in the 1970s, a serious practical problem emerged. No matter how tightly constrained, plasma continued to leak out of the main confinement area, striking the walls of the reactor core and causing problems. A major concern was
70:
which separates the confined plasma from the material surface of the device. The plasma particles which diffuse across the boundary of the confined region are diverted by the open, wall-intersecting magnetic field lines to wall structures which are called the
253:
valuable insights for future improvements in shape and performance. Furthermore, the advent of non-resonant divertors offers an exciting path forward for quasi-symmetric stellarators and other configurations not optimized for minimizing plasma currents.
221:, for managing power and particle exhaust. The island divertor has shown success in accessing and stabilizing detached scenarios and has demonstrated reliable heat flux and detachment control with hydrogen gas injection, and impurity seeding in the 75:, usually remote from the confined plasma. The magnetic divertor extracts heat and ash produced by the fusion reaction, minimizes plasma contamination, and protects the surrounding walls from thermal and neutronic loads. 119:, colliding with some sort of absorber material, and depositing its energy as heat. Initially considered to be a device required for operational reactors, few early designs included a divertor. 173:
was built with divertor channels at both top and bottom. A divertor design called Super-X has been designed to reduce the heat density in the divertor by adopting a design resembling a funnel.
106:
The divertor was initially introduced during the earliest studies of fusion power systems in the 1950s. It was realized early on that successful fusion would result in heavier
355: 757: 193:), which allows the energy absorbing part of the divertor to be placed outside the plasma. The divertor configuration also makes it easier to obtain a more stable 662:"Overview of the results from divertor experiments with attached and detached plasmas at Wendelstein 7-X and their implications for steady-state operation" 554: 325:] T N Todd and C G Windsor, Progress in Magnetic Confinement Fusion Research, Contemporary Physics, 1998, volume 39, number 4, pages 255-282 604: 78:
The term divertor usually describes the magnetic configuration itself or the region between the confined plasma and the target. Sometimes
337: 309: 826: 391: 150:
and "triangularity") so the lower edge of the D is a natural location for the divertor. In modern examples the plates are replaced by
417: 796: 366: 903: 490:"Stable heat and particle flux detachment with efficient particle exhaust in the island divertor of Wendelstein 7-X" 605:"Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators" 555:"First demonstration of radiative power exhaust with impurity seeding in the island divertor at Wendelstein 7-X" 145:
This led to the re-emergence of the divertor, as a device for protecting the reactor itself. In these designs,
927: 190: 51: 95: 896: 115:, the plasma passes through the divertor region where heavier ions are flung out of the fuel mass by 710: 91: 432: 238: 198: 334: 313: 922: 803: 194: 823: 128: 889: 769: 722: 673: 616: 569: 501: 444: 395: 234: 162: 465: 8: 154:
metal, which better captures the ions and causes less cooling when it enters the plasma.
773: 734: 726: 677: 620: 573: 505: 448: 738: 711:"Initial experiments towards edge plasma control with a closed helical divertor in LHD" 691: 642: 585: 535: 470: 201:
in the divertor faces significantly different stresses compared to the majority of the
742: 695: 646: 637: 589: 539: 527: 522: 456: 116: 112: 474: 869: 777: 730: 681: 632: 624: 577: 517: 509: 460: 452: 877: 847: 830: 341: 138:
During the 1980s it became common for reactors to include a feature known as the
44: 39: 19: 842: 287: 873: 686: 661: 581: 513: 262: 189:
tokamak. In this configuration, the particles escape through a magnetic "gap" (
132: 781: 916: 170: 24: 392:"MIT Plasma Science & Fusion Center: Research>alcator>information" 797:"Progress in Divertor and Edge Transport Research for Stellarator Plasmas" 214: 67: 31: 217:, low-order magnetic islands can be used to form a divertor volume, the 418:"First results from UK tokamak offers a STEP towards commercial fusion" 202: 124: 628: 531: 489: 433:"Physics of island divertors as highlighted by the example of W7-AS" 249:
design, although promising, has not been experimentally tested yet.
151: 63: 146: 35:
Divertor design for K-DEMO, a planned future tokamak experiment
27:
showing the lower divertor channel at the bottom of the torus
267: 222: 158: 87: 861: 356:"Tokamak Divertor System Concept and the Design for ITER" 107: 824:
Snowflake and the multiple divertor concepts. March 2016
165:, the lowest region of the torus is configured as a 135:'s wall metal to flow into the fuel and to cool it. 552: 914: 708: 659: 897: 181:A tokamak featuring a divertor is known as a 602: 16:Magnetic confinement fusion device component 487: 127:in reactors with higher power and particle 86:are used interchangeably. For example, the 904: 890: 430: 90:divertor refers to the heavily engineered 685: 636: 521: 464: 208: 38: 30: 18: 353: 62:is a magnetic field configuration of a 915: 755: 794: 856: 176: 660:Jakubowksi, M; et al. (2021). 347: 13: 817: 553:Effenberg, F; et al. (2019). 14: 939: 836: 795:Bader, Aaron (December 6, 2018). 709:Morisaki, T; et al. (2013). 860: 603:Stephey, L; et al. (2018). 488:Schmitz, O; et al. (2021). 354:Stoafer, Chris (14 April 2011). 161:and the latest configuration of 788: 749: 702: 653: 596: 94:designed to handle the intense 546: 481: 466:11858/00-001M-0000-0027-0DC4-8 424: 410: 384: 328: 302: 280: 1: 735:10.1088/0029-5515/53/6/063014 431:Feng, Y; et al. (2006). 288:"RF Absorbers material types" 273: 876:. You can help Knowledge by 407:retrieved September 11, 2012 7: 256: 131:, which caused ions of the 52:magnetic confinement fusion 10: 944: 855: 457:10.1088/0029-5515/46/8/006 290:. www.masttechnologies.com 101: 782:10.1017/S0022377815001373 762:Journal of Plasma Physics 638:21.11116/0000-0001-6AE2-9 523:21.11116/0000-0007-A4DC-8 340:January 10, 2014, at the 226:operation in the future. 687:10.1088/1741-4326/ac1b68 582:10.1088/1741-4326/ab32c4 514:10.1088/1741-4326/abb51e 335:"Limiters and Divertors" 96:plasma-wall interactions 92:plasma-facing components 872:–related article is a 239:neoclassical transport 199:plasma facing material 187:divertor configuration 60:diverted configuration 47: 36: 28: 756:Boozer, A.H. (2015). 363:www.apam.columbia.edu 246:non-resonant divertor 233:, as employed in the 209:Stellarator divertors 42: 34: 22: 928:Plasma physics stubs 758:"Stellarator design" 235:Large Helical Device 163:Joint European Torus 774:2015JPlPh..81f5106B 727:2013NucFu..53f3014M 678:2021NucFu..61j6003J 621:2018PhPl...25f2501S 574:2019NucFu..59j6020E 506:2021NucFu..61a6026S 449:2006NucFu..46..807F 241:remains uncertain. 829:2016-03-29 at the 609:Physics of Plasmas 197:of operation. The 48: 37: 29: 885: 884: 629:10.1063/1.5026324 177:Tokamak divertors 117:centrifugal force 113:mass spectrometer 935: 906: 899: 892: 864: 857: 811: 810: 808: 802:. Archived from 801: 792: 786: 785: 768:(6): 515810606. 753: 747: 746: 706: 700: 699: 689: 657: 651: 650: 640: 600: 594: 593: 559: 550: 544: 543: 525: 485: 479: 478: 468: 428: 422: 421: 414: 408: 406: 404: 403: 394:. Archived from 388: 382: 381: 379: 377: 371: 365:. Archived from 360: 351: 345: 332: 326: 324: 322: 321: 312:. Archived from 306: 300: 299: 297: 295: 284: 231:helical divertor 183:divertor tokamak 73:divertor targets 943: 942: 938: 937: 936: 934: 933: 932: 913: 912: 911: 910: 853: 839: 831:Wayback Machine 820: 818:Further reading 815: 814: 806: 799: 793: 789: 754: 750: 707: 703: 658: 654: 601: 597: 557: 551: 547: 486: 482: 429: 425: 416: 415: 411: 401: 399: 390: 389: 385: 375: 373: 369: 358: 352: 348: 342:Wayback Machine 333: 329: 319: 317: 308: 307: 303: 293: 291: 286: 285: 281: 276: 259: 219:island divertor 211: 179: 104: 80:divertor target 17: 12: 11: 5: 941: 931: 930: 925: 909: 908: 901: 894: 886: 883: 882: 870:plasma physics 865: 851: 850: 845: 838: 837:External links 835: 834: 833: 819: 816: 813: 812: 809:on 2023-07-26. 787: 748: 701: 672:(10): 106003. 652: 595: 568:(10): 106020. 545: 480: 443:(8): 807–819. 423: 420:. 25 May 2021. 409: 383: 346: 327: 301: 278: 277: 275: 272: 271: 270: 265: 263:Nuclear fusion 258: 255: 210: 207: 178: 175: 133:vacuum chamber 103: 100: 15: 9: 6: 4: 3: 2: 940: 929: 926: 924: 921: 920: 918: 907: 902: 900: 895: 893: 888: 887: 881: 879: 875: 871: 866: 863: 859: 858: 854: 849: 846: 844: 841: 840: 832: 828: 825: 822: 821: 805: 798: 791: 783: 779: 775: 771: 767: 763: 759: 752: 744: 740: 736: 732: 728: 724: 721:(6): 063014. 720: 716: 712: 705: 697: 693: 688: 683: 679: 675: 671: 667: 663: 656: 648: 644: 639: 634: 630: 626: 622: 618: 615:(6): 062501. 614: 610: 606: 599: 591: 587: 583: 579: 575: 571: 567: 563: 556: 549: 541: 537: 533: 529: 524: 519: 515: 511: 507: 503: 500:(1): 016026. 499: 495: 491: 484: 476: 472: 467: 462: 458: 454: 450: 446: 442: 438: 434: 427: 419: 413: 398:on 2012-06-17 397: 393: 387: 372:on 2013-12-11 368: 364: 357: 350: 343: 339: 336: 331: 316:on 2014-01-10 315: 311: 305: 289: 283: 279: 269: 266: 264: 261: 260: 254: 250: 247: 242: 240: 236: 232: 227: 224: 220: 216: 206: 204: 200: 196: 192: 188: 184: 174: 172: 171:Alcator C-Mod 168: 164: 160: 155: 153: 148: 143: 141: 136: 134: 130: 126: 120: 118: 114: 109: 99: 97: 93: 89: 85: 81: 76: 74: 69: 65: 61: 57: 53: 46: 41: 33: 26: 25:Alcator C-Mod 21: 923:Fusion power 878:expanding it 867: 852: 804:the original 790: 765: 761: 751: 718: 715:Nucl. Fusion 714: 704: 669: 666:Nucl. Fusion 665: 655: 612: 608: 598: 565: 562:Nucl. Fusion 561: 548: 497: 494:Nucl. Fusion 493: 483: 440: 437:Nucl. Fusion 436: 426: 412: 400:. Retrieved 396:the original 386: 376:11 September 374:. Retrieved 367:the original 362: 349: 330: 318:. Retrieved 314:the original 304: 292:. Retrieved 282: 251: 245: 243: 230: 228: 218: 215:stellarators 212: 186: 182: 180: 166: 156: 144: 139: 137: 129:flux density 121: 105: 83: 79: 77: 72: 59: 55: 49: 43:Divertor of 23:Interior of 68:stellarator 917:Categories 402:2012-09-11 320:2014-01-10 274:References 203:first wall 191:separatrix 125:sputtering 98:foreseen. 848:Divertors 743:122537627 696:237408135 647:125652747 590:199132000 540:225288529 294:30 August 843:Limiters 827:Archived 475:62893155 338:Archived 310:"Fusrev" 257:See also 169:, while 167:divertor 84:divertor 56:divertor 770:Bibcode 723:Bibcode 674:Bibcode 617:Bibcode 570:Bibcode 532:1814444 502:Bibcode 445:Bibcode 152:lithium 147:magnets 140:limiter 102:History 64:tokamak 45:COMPASS 741:  694:  645:  588:  538:  530:  473:  344:, EFDA 195:H-mode 868:This 807:(PDF) 800:(PDF) 739:S2CID 692:S2CID 643:S2CID 586:S2CID 558:(PDF) 536:S2CID 471:S2CID 370:(PDF) 359:(PDF) 66:or a 874:stub 528:OSTI 378:2012 296:2015 268:ITER 244:The 229:The 223:W7-X 159:ITER 108:ions 88:ITER 82:and 54:, a 778:doi 731:doi 682:doi 633:hdl 625:doi 578:doi 518:hdl 510:doi 461:hdl 453:doi 213:In 185:or 157:In 58:or 50:In 919:: 776:. 766:81 764:. 760:. 737:. 729:. 719:53 717:. 713:. 690:. 680:. 670:61 668:. 664:. 641:. 631:. 623:. 613:25 611:. 607:. 584:. 576:. 566:59 564:. 560:. 534:. 526:. 516:. 508:. 498:61 496:. 492:. 469:. 459:. 451:. 441:46 439:. 435:. 361:. 205:. 905:e 898:t 891:v 880:. 784:. 780:: 772:: 745:. 733:: 725:: 698:. 684:: 676:: 649:. 635:: 627:: 619:: 592:. 580:: 572:: 542:. 520:: 512:: 504:: 477:. 463:: 455:: 447:: 405:. 380:. 323:. 298:.

Index


Alcator C-Mod


COMPASS
magnetic confinement fusion
tokamak
stellarator
ITER
plasma-facing components
plasma-wall interactions
ions
mass spectrometer
centrifugal force
sputtering
flux density
vacuum chamber
magnets
lithium
ITER
Joint European Torus
Alcator C-Mod
separatrix
H-mode
plasma facing material
first wall
stellarators
W7-X
Large Helical Device
neoclassical transport

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.