Knowledge

Disphenoid

Source 📝

1101: 27: 58: 2115: 1057: 253:
faces. When right triangles are glued together in the pattern of a disphenoid, they form a flat figure (a doubly-covered rectangle) that does not enclose any volume. When obtuse triangles are glued in this way, the resulting surface can be folded to form a disphenoid (by
1422: 609: 1193:, a paper toy that can rotate on 4 sets of faces in a hexagon. The rotation of the six disphenoids with opposite edges of length l, m and n (without loss of generality n≤l, n≤m) is physically realizable if and only if 854: 1169:. It is symmetrical about each of three mutually perpendicular diad axes of symmetry in all classes except the tetragonal-disphenoidal, in which the form is generated by an inverse tetrad axis of symmetry. 869: 689: 1199: 1116:. The disphenoid whose four vertices are (-1, 0, 0), (1, 0, 0), (0, 1, 1), and (0, 1, -1) is such a disphenoid. Each of its four faces is an isosceles triangle with edges of lengths 742: 448: 765: 1052:{\displaystyle {\tfrac {1}{2}}(l^{2}+m^{2}-n^{2}),\quad {\tfrac {1}{2}}(l^{2}-m^{2}+n^{2}),\quad {\tfrac {1}{2}}(-l^{2}+m^{2}+n^{2}).} 2084: 1165:. It has four triangular faces that are alike and that correspond in position to alternate faces of the tetragonal or orthorhombic 2099: 624: 1760: 258:) but one with acute triangle faces and with edges that in general do not lie along the edges of the given obtuse triangles. 47:
bisecting two opposite faces. Both have four equal edges going around the sides. The digonal has two pairs of congruent
255: 2059: 1565: 1514: 1512:; Matsunaga, Kiyoko (2020), "An Algorithm for Folding a Conway Tile into an Isotetrahedron or a Rectangle Dihedron", 1494: 860: 1135: 1841:
Brown, B. H. (April 1926), "Theorem of Bang. Isosceles tetrahedra", Undergraduate Mathematics Clubs: Club Topics,
418:
in the shape of an acute triangle, divided into four similar triangles by segments connecting the edge midpoints.
1780: 1417:{\displaystyle -8*(l^{2}-m^{2})^{2}*(l^{2}+m^{2})-5*n^{6}+11*(l^{2}-m^{2})^{2}*n^{2}+2*(l^{2}+m^{2})*n^{4}>=0} 1746: 1476: 1843: 1691: 174: 1750: 1162: 704: 1584: 1457: 1158: 1589: 1481: 1438: 604:{\displaystyle V={\sqrt {\frac {(l^{2}+m^{2}-n^{2})(l^{2}-m^{2}+n^{2})(-l^{2}+m^{2}+n^{2})}{72}}}.} 1067:
If the four faces of a tetrahedron have the same perimeter, then the tetrahedron is a disphenoid.
265:
has faces with two different shapes, both isosceles triangles, with two faces of each shape. The
1486: 759:. There is also the following interesting relation connecting the volume and the circumradius: 277: 1433: 1882: 1555: 406:, the tetrahedra in which all four faces have the same area, and the tetrahedra in which the 107: 242:: as well as being congruent to each other, all of their faces are symmetric to each other. 153:
of a disphenoid are the same, and the sum of the face angles at each vertex is equal to two
2025: 1996: 1909: 1799: 1720: 1661: 1618: 1113: 1074: 615: 308: 194: 180: 2149: 8: 2172: 231: 184: 1901: 197:, although this is not normally called a disphenoid. When the faces of a disphenoid are 2052:
The Changing Shape of Geometry: Celebrating a Century of Geometry and Geometry Teaching
2013: 1961: 1953: 1860: 1724: 1708: 1665: 1622: 1606: 1533: 756: 198: 158: 48: 2145: 2126: 2093: 2055: 1991: 1965: 1756: 1669: 1626: 1561: 1537: 1490: 304: 212: 110:
acute-angled triangles. It can also be described as a tetrahedron in which every two
68: 1728: 395:
The disphenoids are the only polyhedra having infinitely many non-self-intersecting
261:
Two more types of tetrahedron generalize the disphenoid and have similar names. The
114:
that are opposite each other have equal lengths. Other names for the same shape are
2005: 1945: 1897: 1856: 1852: 1704: 1700: 1649: 1598: 1557:
Crystallography: An Introduction for Earth Science (and other Solid State) Students
1523: 1173: 1078: 695: 415: 312: 281: 239: 230:
dihedral symmetry. Unlike the tetragonal disphenoid, the rhombic disphenoid has no
216: 2021: 1905: 1878: 1795: 1716: 1657: 1614: 1443: 396: 250: 162: 111: 103: 2130: 1070:
If the four faces of a tetrahedron have the same area, then it is a disphenoid.
1150: 1142:
describes, it can be folded without cutting or overlaps from a single sheet of
1105: 407: 297: 293: 246: 91: 1653: 2166: 1447: 1177: 1089: 389: 150: 1100: 2119: 1742: 1528: 1190: 1131: 2074: 1686: 1642:
International Journal of Mathematical Education in Science and Technology
1509: 402:
The disphenoids are the tetrahedra in which all four faces have the same
154: 146: 99: 26: 2038:
Gibb, William (1990), "Paper patterns: solid shapes from metric paper",
1712: 51:
faces, while the tetragonal has four congruent isosceles triangle faces.
2017: 1957: 1864: 1610: 2154: 2135: 1189:
Six tetragonal disphenoids attached end-to-end in a ring construct a
1166: 1104:
A space-filling tetrahedral disphenoid inside a cube. Two edges have
403: 273: 235: 57: 2009: 1949: 1936:
Leech, John (1950), "Some properties of the isosceles tetrahedron",
1602: 1143: 1082: 399:. On a disphenoid, all closed geodesics are non-self-intersecting. 303:
We also have that a tetrahedron is a disphenoid if and only if the
83: 34: 849:{\displaystyle \displaystyle 16T^{2}R^{2}=l^{2}m^{2}n^{2}+9V^{2}.} 1640:
Hajja, Mowaffaq; Walker, Peter (2001), "Equifacial tetrahedra",
75:. It has three sets of edge lengths, existing as opposite pairs. 427: 72: 44: 2143: 1788:
MATCH Communications in Mathematical and in Computer Chemistry
38: 2078: 269:
similarly has faces with two shapes of scalene triangles.
238:. Both tetragonal disphenoids and rhombic disphenoids are 1587:(1950), "Some properties of the isosceles tetrahedron", 684:{\displaystyle R={\sqrt {\frac {l^{2}+m^{2}+n^{2}}{8}}}} 2073: 990: 932: 874: 367:, then the tetrahedron is a disphenoid if and only if 1202: 872: 769: 768: 707: 627: 451: 175:
Tetrahedron § Isometries of irregular tetrahedra
168: 2124: 1741: 1149:"Disphenoid" is also used to describe two forms of 1108:
of 90°, and four edges have dihedral angles of 60°.
2116:Mathematical Analysis of Disphenoid by H C Rajpoot 1416: 1051: 848: 736: 683: 603: 245:It is not possible to construct a disphenoid with 2164: 2054:, Cambridge University Press, pp. 363–366, 1508: 1817: 430:of a disphenoid with opposite edges of length 165:, and its edges have three different lengths. 1176:arranged in pairs, constituting a tetragonal 1092:to the edges they connect and to each other. 1689:(2007), "Tile-makers and semi-tile-makers", 1485:(3rd ed.), Dover Publications, p.  1813: 1811: 1809: 1774: 1772: 1755:, Cambridge University Press, p. 424, 1639: 1549: 1547: 755:is the area of any face, which is given by 1877: 1822:(2nd ed.), Birkhäuser, pp. 30–31 1095: 71:faces, and can fit diagonally inside of a 2085:On-Line Encyclopedia of Integer Sequences 2049: 1778: 1681: 1679: 1553: 1527: 161:, because, in general, its faces are not 16:Tetrahedron whose faces are all congruent 1994:(1981), "Which tetrahedra fill space?", 1990: 1931: 1929: 1927: 1925: 1923: 1921: 1919: 1836: 1834: 1832: 1830: 1806: 1769: 1544: 1450:with 12 equilateral triangle faces and D 1099: 318:Another characterization states that if 272:Disphenoids can also be seen as digonal 1978: 1883:"Closed geodesics on regular polyhedra" 1818:Andreescu, Titu; Gelca, Razvan (2009), 1685: 1579: 1577: 1502: 1475: 2165: 1676: 1112:Some tetragonal disphenoids will form 2144: 2125: 1935: 1916: 1840: 1827: 1583: 2037: 1574: 1139: 751:is the volume of the disphenoid and 287: 1902:10.17323/1609-4514-2007-7-2-265-279 1157:A wedge-shaped crystal form of the 1062: 13: 2098:: CS1 maint: overridden setting ( 859:The squares of the lengths of the 737:{\displaystyle r={\frac {3V}{4T}}} 421: 414:. They are the polyhedra having a 14: 2184: 2109: 1515:Journal of Information Processing 339:are the common perpendiculars of 179:If the faces of a disphenoid are 169:Special cases and generalizations 157:. However, a disphenoid is not a 1820:Mathematical Olympiad Challenges 1172:A crystal form bounded by eight 1136:disphenoid tetrahedral honeycomb 56: 25: 2067: 2031: 1984: 1972: 1871: 988: 930: 618:has radius (the circumradius): 256:Alexandrov's uniqueness theorem 2050:Pritchard, Chris, ed. (2003), 1857:10.1080/00029890.1926.11986564 1735: 1705:10.1080/00029890.2007.11920450 1633: 1469: 1392: 1366: 1335: 1308: 1277: 1251: 1239: 1212: 1043: 1001: 982: 943: 924: 885: 588: 546: 543: 504: 501: 462: 363:respectively in a tetrahedron 292:A tetrahedron is a disphenoid 1: 1844:American Mathematical Monthly 1692:American Mathematical Monthly 1463: 1184: 1781:"The most chiral disphenoid" 1752:Geometric Folding Algorithms 1554:Whittaker, E. J. W. (2013), 7: 1890:Moscow Mathematical Journal 1881:; Fuchs, Ekaterina (2007), 1427: 410:of all four vertices equal 43:can be positioned inside a 10: 2189: 2075:Sloane, N. J. A. 1779:Petitjean, Michel (2015), 1458:Trirectangular tetrahedron 172: 136:almost regular tetrahedron 1654:10.1080/00207390110038231 219:as its faces is called a 1590:The Mathematical Gazette 1560:, Elsevier, p. 89, 1439:Orthocentric tetrahedron 98: 'wedgelike') is a 2150:"Isosceles tetrahedron" 2079:"Sequence A338336" 1096:Honeycombs and crystals 1529:10.2197/ipsjjip.28.750 1418: 1109: 1053: 850: 738: 685: 605: 205:. In this case it has 132:equifacial tetrahedron 2040:Mathematics in School 1419: 1103: 1054: 851: 739: 686: 606: 203:tetragonal disphenoid 181:equilateral triangles 173:Further information: 128:isosceles tetrahedron 1997:Mathematics Magazine 1938:Mathematical Gazette 1434:Irregular tetrahedra 1200: 870: 766: 705: 625: 616:circumscribed sphere 449: 309:circumscribed sphere 195:tetrahedral symmetry 1896:(2): 265–279, 350, 1163:orthorhombic system 1085:of the disphenoid. 1073:The centers in the 232:reflection symmetry 199:isosceles triangles 185:regular tetrahedron 2146:Weisstein, Eric W. 2127:Weisstein, Eric W. 1992:Senechal, Marjorie 1981:, pp. 71–72). 1414: 1134:space to form the 1110: 1088:The bimedians are 1081:coincide with the 1049: 999: 941: 883: 846: 845: 734: 681: 601: 296:its circumscribed 267:phyllic disphenoid 263:digonal disphenoid 221:rhombic disphenoid 215:. A sphenoid with 159:regular polyhedron 65:rhombic disphenoid 49:isosceles triangle 2088:, OEIS Foundation 1762:978-0-521-71522-5 1482:Regular Polytopes 1477:Coxeter, H. S. M. 1174:scalene triangles 1079:inscribed spheres 998: 940: 882: 732: 679: 678: 596: 595: 300:is right-angled. 288:Characterizations 217:scalene triangles 213:dihedral symmetry 201:, it is called a 2180: 2159: 2158: 2140: 2139: 2104: 2103: 2097: 2089: 2071: 2065: 2064: 2047: 2035: 2029: 2028: 1988: 1982: 1976: 1970: 1968: 1944:(310): 269–271, 1933: 1914: 1912: 1887: 1875: 1869: 1867: 1838: 1825: 1823: 1815: 1804: 1802: 1785: 1776: 1767: 1765: 1747:O'Rourke, Joseph 1739: 1733: 1731: 1683: 1674: 1672: 1637: 1631: 1629: 1597:(310): 269–271, 1581: 1572: 1570: 1551: 1542: 1540: 1531: 1506: 1500: 1499: 1473: 1423: 1421: 1420: 1415: 1407: 1406: 1391: 1390: 1378: 1377: 1356: 1355: 1343: 1342: 1333: 1332: 1320: 1319: 1298: 1297: 1276: 1275: 1263: 1262: 1247: 1246: 1237: 1236: 1224: 1223: 1130:, and 2. It can 1129: 1128: 1122: 1121: 1063:Other properties 1058: 1056: 1055: 1050: 1042: 1041: 1029: 1028: 1016: 1015: 1000: 991: 981: 980: 968: 967: 955: 954: 942: 933: 923: 922: 910: 909: 897: 896: 884: 875: 855: 853: 852: 847: 841: 840: 825: 824: 815: 814: 805: 804: 792: 791: 782: 781: 743: 741: 740: 735: 733: 731: 723: 715: 696:inscribed sphere 690: 688: 687: 682: 680: 674: 673: 672: 660: 659: 647: 646: 636: 635: 610: 608: 607: 602: 597: 591: 587: 586: 574: 573: 561: 560: 542: 541: 529: 528: 516: 515: 500: 499: 487: 486: 474: 473: 460: 459: 413: 397:closed geodesics 313:inscribed sphere 163:regular polygons 69:scalene triangle 60: 29: 2188: 2187: 2183: 2182: 2181: 2179: 2178: 2177: 2163: 2162: 2112: 2107: 2091: 2090: 2072: 2068: 2062: 2036: 2032: 2010:10.2307/2689983 1989: 1985: 1977: 1973: 1950:10.2307/3611029 1934: 1917: 1885: 1876: 1872: 1839: 1828: 1816: 1807: 1783: 1777: 1770: 1763: 1740: 1736: 1684: 1677: 1638: 1634: 1603:10.2307/3611029 1582: 1575: 1568: 1552: 1545: 1522:(28): 750–758, 1507: 1503: 1497: 1474: 1470: 1466: 1453: 1444:Snub disphenoid 1430: 1402: 1398: 1386: 1382: 1373: 1369: 1351: 1347: 1338: 1334: 1328: 1324: 1315: 1311: 1293: 1289: 1271: 1267: 1258: 1254: 1242: 1238: 1232: 1228: 1219: 1215: 1201: 1198: 1197: 1187: 1126: 1124: 1119: 1117: 1106:dihedral angles 1098: 1065: 1037: 1033: 1024: 1020: 1011: 1007: 989: 976: 972: 963: 959: 950: 946: 931: 918: 914: 905: 901: 892: 888: 873: 871: 868: 867: 836: 832: 820: 816: 810: 806: 800: 796: 787: 783: 777: 773: 767: 764: 763: 757:Heron's formula 724: 716: 714: 706: 703: 702: 668: 664: 655: 651: 642: 638: 637: 634: 626: 623: 622: 582: 578: 569: 565: 556: 552: 537: 533: 524: 520: 511: 507: 495: 491: 482: 478: 469: 465: 461: 458: 450: 447: 446: 424: 422:Metric formulas 411: 408:angular defects 386: 379: 372: 337: 330: 323: 290: 251:obtuse triangle 229: 211: 193: 177: 171: 140:tetramonohedron 80: 79: 78: 77: 76: 61: 53: 52: 30: 17: 12: 11: 5: 2186: 2176: 2175: 2161: 2160: 2141: 2122: 2111: 2110:External links 2108: 2106: 2105: 2066: 2060: 2030: 2004:(5): 227–243, 1983: 1971: 1915: 1870: 1851:(4): 224–226, 1826: 1805: 1794:(2): 375–384, 1768: 1761: 1734: 1699:(7): 602–609, 1675: 1648:(4): 501–508, 1632: 1573: 1566: 1543: 1501: 1495: 1467: 1465: 1462: 1461: 1460: 1455: 1451: 1441: 1436: 1429: 1426: 1425: 1424: 1413: 1410: 1405: 1401: 1397: 1394: 1389: 1385: 1381: 1376: 1372: 1368: 1365: 1362: 1359: 1354: 1350: 1346: 1341: 1337: 1331: 1327: 1323: 1318: 1314: 1310: 1307: 1304: 1301: 1296: 1292: 1288: 1285: 1282: 1279: 1274: 1270: 1266: 1261: 1257: 1253: 1250: 1245: 1241: 1235: 1231: 1227: 1222: 1218: 1214: 1211: 1208: 1205: 1186: 1183: 1182: 1181: 1170: 1097: 1094: 1064: 1061: 1060: 1059: 1048: 1045: 1040: 1036: 1032: 1027: 1023: 1019: 1014: 1010: 1006: 1003: 997: 994: 987: 984: 979: 975: 971: 966: 962: 958: 953: 949: 945: 939: 936: 929: 926: 921: 917: 913: 908: 904: 900: 895: 891: 887: 881: 878: 857: 856: 844: 839: 835: 831: 828: 823: 819: 813: 809: 803: 799: 795: 790: 786: 780: 776: 772: 745: 744: 730: 727: 722: 719: 713: 710: 692: 691: 677: 671: 667: 663: 658: 654: 650: 645: 641: 633: 630: 612: 611: 600: 594: 590: 585: 581: 577: 572: 568: 564: 559: 555: 551: 548: 545: 540: 536: 532: 527: 523: 519: 514: 510: 506: 503: 498: 494: 490: 485: 481: 477: 472: 468: 464: 457: 454: 423: 420: 384: 377: 370: 335: 328: 321: 298:parallelepiped 294:if and only if 289: 286: 280:quadrilateral 247:right triangle 227: 209: 191: 170: 167: 151:vertex figures 116:isotetrahedron 67:has congruent 62: 55: 54: 31: 24: 23: 22: 21: 20: 15: 9: 6: 4: 3: 2: 2185: 2174: 2171: 2170: 2168: 2157: 2156: 2151: 2147: 2142: 2138: 2137: 2132: 2128: 2123: 2121: 2117: 2114: 2113: 2101: 2095: 2087: 2086: 2080: 2076: 2070: 2063: 2061:0-521-53162-4 2057: 2053: 2048:Reprinted in 2045: 2041: 2034: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1998: 1993: 1987: 1980: 1979:Coxeter (1973 1975: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1932: 1930: 1928: 1926: 1924: 1922: 1920: 1911: 1907: 1903: 1899: 1895: 1891: 1884: 1880: 1879:Fuchs, Dmitry 1874: 1866: 1862: 1858: 1854: 1850: 1846: 1845: 1837: 1835: 1833: 1831: 1821: 1814: 1812: 1810: 1801: 1797: 1793: 1789: 1782: 1775: 1773: 1764: 1758: 1754: 1753: 1748: 1744: 1743:Demaine, Erik 1738: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1693: 1688: 1682: 1680: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1636: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1591: 1586: 1580: 1578: 1569: 1567:9781483285566 1563: 1559: 1558: 1550: 1548: 1539: 1535: 1530: 1525: 1521: 1517: 1516: 1511: 1505: 1498: 1496:0-486-61480-8 1492: 1488: 1484: 1483: 1478: 1472: 1468: 1459: 1456: 1449: 1448:Johnson solid 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1411: 1408: 1403: 1399: 1395: 1387: 1383: 1379: 1374: 1370: 1363: 1360: 1357: 1352: 1348: 1344: 1339: 1329: 1325: 1321: 1316: 1312: 1305: 1302: 1299: 1294: 1290: 1286: 1283: 1280: 1272: 1268: 1264: 1259: 1255: 1248: 1243: 1233: 1229: 1225: 1220: 1216: 1209: 1206: 1203: 1196: 1195: 1194: 1192: 1179: 1178:scalenohedron 1175: 1171: 1168: 1164: 1160: 1156: 1155: 1154: 1152: 1147: 1145: 1141: 1137: 1133: 1115: 1107: 1102: 1093: 1091: 1090:perpendicular 1086: 1084: 1080: 1076: 1075:circumscribed 1071: 1068: 1046: 1038: 1034: 1030: 1025: 1021: 1017: 1012: 1008: 1004: 995: 992: 985: 977: 973: 969: 964: 960: 956: 951: 947: 937: 934: 927: 919: 915: 911: 906: 902: 898: 893: 889: 879: 876: 866: 865: 864: 862: 842: 837: 833: 829: 826: 821: 817: 811: 807: 801: 797: 793: 788: 784: 778: 774: 770: 762: 761: 760: 758: 754: 750: 728: 725: 720: 717: 711: 708: 701: 700: 699: 697: 675: 669: 665: 661: 656: 652: 648: 643: 639: 631: 628: 621: 620: 619: 617: 598: 592: 583: 579: 575: 570: 566: 562: 557: 553: 549: 538: 534: 530: 525: 521: 517: 512: 508: 496: 492: 488: 483: 479: 475: 470: 466: 455: 452: 445: 444: 443: 442:is given by: 441: 437: 433: 429: 419: 417: 409: 405: 400: 398: 393: 391: 390:perpendicular 388:are pairwise 387: 380: 373: 366: 362: 358: 354: 350: 346: 342: 338: 331: 324: 316: 314: 310: 306: 301: 299: 295: 285: 283: 279: 275: 270: 268: 264: 259: 257: 252: 248: 243: 241: 237: 233: 226: 222: 218: 214: 208: 204: 200: 196: 190: 186: 182: 176: 166: 164: 160: 156: 152: 148: 143: 141: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 74: 70: 66: 59: 50: 46: 42: 40: 36: 28: 19: 2153: 2134: 2131:"Disphenoid" 2120:Academia.edu 2082: 2069: 2051: 2043: 2039: 2033: 2001: 1995: 1986: 1974: 1941: 1937: 1893: 1889: 1873: 1848: 1842: 1819: 1791: 1787: 1751: 1737: 1696: 1690: 1687:Akiyama, Jin 1645: 1641: 1635: 1594: 1588: 1556: 1519: 1513: 1510:Akiyama, Jin 1504: 1480: 1471: 1191:kaleidocycle 1188: 1148: 1111: 1087: 1072: 1069: 1066: 858: 752: 748: 746: 698:has radius: 693: 613: 439: 435: 431: 425: 401: 394: 382: 375: 368: 364: 360: 356: 352: 348: 344: 340: 333: 326: 319: 317: 302: 291: 271: 266: 262: 260: 244: 224: 220: 206: 202: 188: 178: 155:right angles 147:solid angles 144: 139: 135: 131: 127: 123: 119: 115: 95: 87: 81: 64: 33: 18: 1585:Leech, John 1140:Gibb (1990) 234:, so it is 223:and it has 102:whose four 100:tetrahedron 96:sphenoeides 41:disphenoids 2173:Tetrahedra 1464:References 1185:Other uses 1159:tetragonal 1132:tessellate 1114:honeycombs 315:coincide. 278:alternated 274:antiprisms 183:, it is a 124:bisphenoid 90:(from 88:disphenoid 35:tetragonal 2155:MathWorld 2136:MathWorld 1966:125145099 1670:218495301 1627:125145099 1538:230108666 1454:symmetry. 1396:∗ 1364:∗ 1345:∗ 1322:− 1306:∗ 1287:∗ 1281:− 1249:∗ 1226:− 1210:∗ 1204:− 1167:dipyramid 1005:− 957:− 912:− 861:bimedians 550:− 518:− 489:− 404:perimeter 108:congruent 2167:Category 2094:cite web 2046:(3): 2–4 1749:(2007), 1729:32897155 1713:27642275 1479:(1973), 1428:See also 1144:a4 paper 1083:centroid 694:and the 311:and the 240:isohedra 145:All the 120:sphenoid 84:geometry 2077:(ed.), 2026:0644075 2018:2689983 1958:3611029 1910:2337883 1865:2299548 1800:3242747 1721:2341323 1662:1847966 1619:0038667 1611:3611029 1151:crystal 1125:√ 1118:√ 307:in the 39:digonal 2058:  2024:  2016:  1964:  1956:  1908:  1863:  1798:  1759:  1727:  1719:  1711:  1668:  1660:  1625:  1617:  1609:  1564:  1536:  1493:  747:where 428:volume 355:; and 305:center 282:prisms 276:or as 236:chiral 138:, and 73:cuboid 45:cuboid 2118:from 2014:JSTOR 1962:S2CID 1954:JSTOR 1886:(PDF) 1861:JSTOR 1784:(PDF) 1725:S2CID 1709:JSTOR 1666:S2CID 1623:S2CID 1607:JSTOR 1534:S2CID 1409:>= 1138:. As 863:are: 187:with 112:edges 104:faces 94: 92:Greek 2100:link 2083:The 2056:ISBN 1757:ISBN 1562:ISBN 1491:ISBN 1446:- A 1077:and 614:The 438:and 426:The 381:and 365:ABCD 359:and 351:and 343:and 332:and 149:and 106:are 86:, a 37:and 32:The 2006:doi 1946:doi 1898:doi 1853:doi 1701:doi 1697:114 1650:doi 1599:doi 1524:doi 1161:or 416:net 249:or 82:In 2169:: 2152:, 2148:, 2133:, 2129:, 2096:}} 2092:{{ 2081:, 2044:19 2042:, 2022:MR 2020:, 2012:, 2002:54 2000:, 1960:, 1952:, 1942:34 1940:, 1918:^ 1906:MR 1904:, 1892:, 1888:, 1859:, 1849:33 1847:, 1829:^ 1808:^ 1796:MR 1792:73 1790:, 1786:, 1771:^ 1745:; 1723:, 1717:MR 1715:, 1707:, 1695:, 1678:^ 1664:, 1658:MR 1656:, 1646:32 1644:, 1621:, 1615:MR 1613:, 1605:, 1595:34 1593:, 1576:^ 1546:^ 1532:, 1520:28 1518:, 1489:, 1487:15 1452:2d 1303:11 1153:: 1146:. 1123:, 771:16 593:72 434:, 392:. 374:, 361:BC 357:AD 353:BD 349:AC 347:; 345:CD 341:AB 325:, 284:. 210:2d 142:. 134:, 130:, 126:, 122:, 118:, 63:A 2102:) 2008:: 1969:. 1948:: 1913:. 1900:: 1894:7 1868:. 1855:: 1824:. 1803:. 1766:. 1732:. 1703:: 1673:. 1652:: 1630:. 1601:: 1571:. 1541:. 1526:: 1412:0 1404:4 1400:n 1393:) 1388:2 1384:m 1380:+ 1375:2 1371:l 1367:( 1361:2 1358:+ 1353:2 1349:n 1340:2 1336:) 1330:2 1326:m 1317:2 1313:l 1309:( 1300:+ 1295:6 1291:n 1284:5 1278:) 1273:2 1269:m 1265:+ 1260:2 1256:l 1252:( 1244:2 1240:) 1234:2 1230:m 1221:2 1217:l 1213:( 1207:8 1180:. 1127:3 1120:3 1047:. 1044:) 1039:2 1035:n 1031:+ 1026:2 1022:m 1018:+ 1013:2 1009:l 1002:( 996:2 993:1 986:, 983:) 978:2 974:n 970:+ 965:2 961:m 952:2 948:l 944:( 938:2 935:1 928:, 925:) 920:2 916:n 907:2 903:m 899:+ 894:2 890:l 886:( 880:2 877:1 843:. 838:2 834:V 830:9 827:+ 822:2 818:n 812:2 808:m 802:2 798:l 794:= 789:2 785:R 779:2 775:T 753:T 749:V 729:T 726:4 721:V 718:3 712:= 709:r 676:8 670:2 666:n 662:+ 657:2 653:m 649:+ 644:2 640:l 632:= 629:R 599:. 589:) 584:2 580:n 576:+ 571:2 567:m 563:+ 558:2 554:l 547:( 544:) 539:2 535:n 531:+ 526:2 522:m 513:2 509:l 505:( 502:) 497:2 493:n 484:2 480:m 476:+ 471:2 467:l 463:( 456:= 453:V 440:n 436:m 432:l 412:π 385:3 383:d 378:2 376:d 371:1 369:d 336:3 334:d 329:2 327:d 322:1 320:d 228:2 225:D 207:D 192:d 189:T

Index


tetragonal
digonal
cuboid
isosceles triangle

scalene triangle
cuboid
geometry
Greek
tetrahedron
faces
congruent
edges
solid angles
vertex figures
right angles
regular polyhedron
regular polygons
Tetrahedron § Isometries of irregular tetrahedra
equilateral triangles
regular tetrahedron
tetrahedral symmetry
isosceles triangles
dihedral symmetry
scalene triangles
reflection symmetry
chiral
isohedra
right triangle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.