Knowledge

Direct and indirect band gaps

Source đź“ť

213:, where an electron in the conduction band annihilates a hole in the valence band, releasing the excess energy as a photon. This is possible in a direct band gap semiconductor if the electron has a k-vector near the conduction band minimum (the hole will share the same k-vector), but not possible in an indirect band gap semiconductor, as photons cannot carry crystal momentum, and thus conservation of crystal momentum would be violated. For radiative recombination to occur in an indirect band gap material, the process must also involve the absorption or emission of a 105: 143: 126: 1374: 289:
The absorption spectrum of an indirect band gap material usually depends more on temperature than that of a direct material, because at low temperatures there are fewer phonons, and therefore it is less likely that a photon and phonon can be simultaneously absorbed to create an indirect transition.
1146:
This formula is valid only for light with photon energy larger, but not too much larger, than the band gap (more specifically, this formula assumes the bands are approximately parabolic), and ignores all other sources of absorption other than the band-to-band absorption in question, as well as the
258:
The exact reverse of radiative recombination is light absorption. For the same reason as above, light with a photon energy close to the band gap can penetrate much farther before being absorbed in an indirect band gap material than a direct band gap one (at least insofar as the light absorption is
245:
loop in the material. At the edge of the loop, the planes above and beneath the "dislocation disk" are pulled apart, creating a negative pressure, which raises the energy of the conduction band substantially, with the result that the electrons cannot pass this edge. Provided that the area directly
236:
The fact that radiative recombination is slow in indirect band gap materials also means that, under most circumstances, radiative recombinations will be a small proportion of total recombinations, with most recombinations being non-radiative, taking place at point defects or at
112:
for a semiconductor with an indirect band gap, showing that an electron cannot shift from the highest-energy state in the valence band (red) to the lowest-energy state in the conduction band (green) without a change in momentum. Here, almost all of the energy comes from a
1164: 221:, which performs essentially the same role. The involvement of the phonon makes this process much less likely to occur in a given span of time, which is why radiative recombination is far slower in indirect band gap materials than direct band gap ones. This is why 875: 530: 241:. However, if the excited electrons are prevented from reaching these recombination places, they have no choice but to eventually fall back into the valence band by radiative recombination. This can be done by creating a 266:(solar cells). Crystalline silicon is the most common solar-cell substrate material, despite the fact that it is indirect-gap and therefore does not absorb light very well. As such, they are typically hundreds of 133:
for a semiconductor with a direct band gap, showing that an electron can shift from the highest-energy state in the valence band (red) to the lowest-energy state in the conduction band (green) without a change in
397: 1369:{\displaystyle \alpha \propto {\frac {(h\nu -E_{\text{g}}+E_{\text{p}})^{2}}{\exp({\frac {E_{\text{p}}}{kT}})-1}}+{\frac {(h\nu -E_{\text{g}}-E_{\text{p}})^{2}}{1-\exp(-{\frac {E_{\text{p}}}{kT}})}}} 74:; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice. 250:
possible), the electrons will fall back into the valence shell by radiative recombination, thus emitting light. This is the principle on which "DELEDs" (Dislocation Engineered LEDs) are based.
1671:
In some materials with an indirect gap, the value of the gap is negative. The top of the valence band is higher than the bottom of the conduction band in energy. Such materials are known as
1661: 779: 402: 939: 907: 714: 66:. If the k-vectors are different, the material has an "indirect gap". The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the 1602: 1053: 1407: 1085: 970: 743: 1518: 1628: 1544: 556: 338: 1136: 673: 1745: 1567: 1491: 772: 627: 1105: 651: 578: 1458: 1433: 1021: 996: 600: 209:(i.e., conservation of total k-vector). A photon with an energy near a semiconductor band gap has almost zero momentum. One important process is called 286:), which absorb the light in a much thinner region, and consequently can be made with a very thin active layer (often less than 1 micron thick). 1779: 1604:
forms a straight line, it can normally be inferred that there is an indirect band gap, measurable by extrapolating the straight line to the
1520:
forms a straight line, it can normally be inferred that there is a direct band gap, measurable by extrapolating the straight line to the
346: 270:
thick; thinner wafers would allow much of the light (particularly in longer wavelengths) to simply pass through. By comparison,
942: 170:
model. Note that Si and Ge are indirect band gap with minima at X and L, while GaAs and InAs are direct band gap materials.
217:, where the phonon momentum equals the difference between the electron and hole momentum. It can also, instead, involve a 1799: 17: 314:
against photon energy, one can normally tell both what value the band gap is, and whether or not it is direct.
279: 138:. Depicted is a transition in which a photon excites an electron from the valence band to the conduction band. 1633: 870:{\displaystyle m_{\text{r}}={\frac {m_{\text{h}}^{*}m_{\text{e}}^{*}}{m_{\text{h}}^{*}+m_{\text{e}}^{*}}}} 525:{\displaystyle A^{*}={\frac {q^{2}x_{vc}^{2}(2m_{\text{r}})^{3/2}}{\lambda _{0}\epsilon _{0}\hbar ^{3}n}}} 247: 912: 880: 1461: 290:
For example, silicon is opaque to visible light at room temperature, but transparent to red light at
1155:, or in the case that many of the valence band states are empty or conduction band states are full. 682: 1804: 1684: 1572: 1031: 1385: 1063: 948: 721: 1776: 1496: 1138:
is a "matrix element", with units of length and typical value the same order of magnitude as the
676: 303: 218: 210: 180: 1607: 1523: 318: 311: 202: 541: 323: 31: 1747:. However, in the Pankove version, the units / dimensional analysis appears not to work out. 1111: 658: 1723: 1549: 1473: 1152: 750: 609: 271: 222: 1090: 636: 563: 8: 1056: 1024: 302:
A common and simple method for determining whether a band gap is direct or indirect uses
229:
are almost always made of direct band gap materials, and not indirect band gap ones like
90: 1443: 1436: 1418: 1006: 981: 585: 1786:
at Electrical and Computer Engineering Department of University of Colorado at Boulder
999: 275: 78: 1139: 206: 135: 130: 109: 59: 294:
temperatures, because red photons can only be absorbed in an indirect transition.
1783: 603: 67: 51: 238: 147: 63: 1793: 291: 263: 190: 167: 39: 973: 71: 55: 1720:
Pankove has the same equation, but with an apparently different prefactor
242: 226: 1147:
electrical attraction between the newly created electron and hole (see
1689: 1672: 307: 155: 94: 142: 186: 104: 35: 27:
Types of energy range in a solid where no electron states can exist
340:
is related to light frequency according to the following formula:
274:
are made of direct band gap materials (such as amorphous silicon,
1148: 230: 151: 97:. Some III–V materials are indirect bandgap as well, for example 1151:). It is also invalid in the case that the direct transition is 392:{\displaystyle \alpha \approx A^{*}{\sqrt {h\nu -E_{\text{g}}}}} 117:(vertical arrow), while almost all of the momentum comes from a 1467:
This formula involves the same approximations mentioned above.
1410: 630: 267: 214: 198: 194: 118: 114: 1158:
On the other hand, for an indirect band gap, the formula is:
558:
is the absorption coefficient, a function of light frequency
283: 174: 163: 159: 98: 86: 82: 77:
Examples of direct bandgap materials include hydrogenated
125: 1777:
B. Van Zeghbroeck's Principles of Semiconductor Devices
1726: 1636: 1610: 1575: 1552: 1526: 1499: 1476: 1446: 1421: 1388: 1167: 1114: 1093: 1066: 1034: 1009: 984: 951: 915: 883: 782: 753: 724: 685: 661: 639: 612: 588: 566: 544: 405: 349: 326: 253: 1739: 1655: 1622: 1596: 1561: 1538: 1512: 1485: 1452: 1427: 1401: 1368: 1130: 1099: 1079: 1047: 1015: 990: 964: 933: 901: 869: 766: 737: 708: 667: 645: 621: 594: 572: 550: 524: 391: 332: 1791: 1087:is the vacuum wavelength for light of frequency 259:due to exciting electrons across the band gap). 246:above the dislocation loop is defect-free (no 201:, and other particles are required to satisfy 1755: 1753: 1711:, by E. Rosencher, 2002, equation (7.25). 774:is a certain constant, with formula above 297: 945:of the electron and hole, respectively ( 175:Implications for radiative recombination 141: 124: 103: 14: 1792: 1750: 1546:axis. On the other hand, if a plot of 1656:{\displaystyle E_{\text{p}}\approx 0} 89:. Indirect bandgap materials include 58:are each characterized by a certain 54:and the maximal-energy state in the 50:. The minimal-energy state in the 1761:Optical Processes in Semiconductors 24: 25: 1816: 1770: 254:Implications for light absorption 81:and some III–V materials such as 1666: 934:{\displaystyle m_{\text{h}}^{*}} 902:{\displaystyle m_{\text{e}}^{*}} 262:This fact is very important for 1714: 1702: 1413:that assists in the transition 1360: 1332: 1309: 1273: 1255: 1230: 1213: 1177: 709:{\displaystyle \hbar =h/2\pi } 467: 450: 13: 1: 1695: 1597:{\displaystyle \alpha ^{1/2}} 1048:{\displaystyle \epsilon _{0}} 42:can be of two basic types, a 1402:{\displaystyle E_{\text{p}}} 1080:{\displaystyle \lambda _{0}} 965:{\displaystyle m_{\text{r}}} 738:{\displaystyle E_{\text{g}}} 7: 1678: 1513:{\displaystyle \alpha ^{2}} 317:For a direct band gap, the 248:non-radiative recombination 10: 1821: 1800:Electronic band structures 178: 1623:{\displaystyle \alpha =0} 1539:{\displaystyle \alpha =0} 1462:thermodynamic temperature 1470:Therefore, if a plot of 677:reduced Planck constant 551:{\displaystyle \alpha } 333:{\displaystyle \alpha } 308:plotting certain powers 304:absorption spectroscopy 219:crystallographic defect 211:radiative recombination 181:Radiative recombination 1741: 1657: 1624: 1598: 1563: 1540: 1514: 1487: 1454: 1429: 1403: 1370: 1132: 1131:{\displaystyle x_{vc}} 1101: 1081: 1049: 1017: 992: 966: 935: 903: 871: 768: 745:is the band gap energy 739: 710: 669: 668:{\displaystyle \hbar } 647: 623: 596: 574: 552: 526: 393: 334: 319:absorption coefficient 312:absorption coefficient 298:Formula for absorption 203:conservation of energy 171: 139: 122: 1742: 1740:{\displaystyle A^{*}} 1658: 1625: 1599: 1564: 1562:{\displaystyle h\nu } 1541: 1515: 1488: 1486:{\displaystyle h\nu } 1455: 1430: 1409:is the energy of the 1404: 1371: 1133: 1102: 1082: 1050: 1018: 993: 967: 936: 904: 872: 769: 767:{\displaystyle A^{*}} 740: 711: 670: 648: 624: 622:{\displaystyle h\nu } 597: 575: 553: 527: 394: 335: 272:thin-film solar cells 145: 128: 107: 32:semiconductor physics 1724: 1685:Moss–Burstein effect 1634: 1608: 1573: 1550: 1524: 1497: 1474: 1444: 1419: 1386: 1165: 1112: 1100:{\displaystyle \nu } 1091: 1064: 1032: 1007: 982: 949: 913: 881: 780: 751: 722: 683: 659: 646:{\displaystyle \nu } 637: 610: 586: 573:{\displaystyle \nu } 564: 542: 403: 347: 324: 1057:vacuum permittivity 1025:index of refraction 930: 898: 863: 845: 828: 813: 629:is the energy of a 449: 185:Interactions among 121:(horizontal arrow). 91:crystalline silicon 1782:2009-01-22 at the 1737: 1653: 1620: 1594: 1559: 1536: 1510: 1483: 1450: 1437:Boltzmann constant 1425: 1399: 1366: 1128: 1097: 1077: 1045: 1013: 988: 962: 931: 916: 899: 884: 867: 849: 831: 814: 799: 764: 735: 706: 665: 643: 619: 592: 580:is light frequency 570: 548: 522: 432: 389: 330: 172: 140: 123: 62:(k-vector) in the 1644: 1453:{\displaystyle T} 1428:{\displaystyle k} 1396: 1364: 1358: 1347: 1305: 1292: 1265: 1253: 1242: 1209: 1196: 1016:{\displaystyle n} 1000:elementary charge 991:{\displaystyle q} 959: 923: 891: 865: 856: 838: 821: 806: 790: 732: 595:{\displaystyle h} 520: 463: 387: 384: 79:amorphous silicon 48:indirect band gap 16:(Redirected from 1812: 1764: 1757: 1748: 1746: 1744: 1743: 1738: 1736: 1735: 1718: 1712: 1706: 1662: 1660: 1659: 1654: 1646: 1645: 1642: 1629: 1627: 1626: 1621: 1603: 1601: 1600: 1595: 1593: 1592: 1588: 1568: 1566: 1565: 1560: 1545: 1543: 1542: 1537: 1519: 1517: 1516: 1511: 1509: 1508: 1492: 1490: 1489: 1484: 1459: 1457: 1456: 1451: 1434: 1432: 1431: 1426: 1408: 1406: 1405: 1400: 1398: 1397: 1394: 1375: 1373: 1372: 1367: 1365: 1363: 1359: 1357: 1349: 1348: 1345: 1339: 1318: 1317: 1316: 1307: 1306: 1303: 1294: 1293: 1290: 1271: 1266: 1264: 1254: 1252: 1244: 1243: 1240: 1234: 1222: 1221: 1220: 1211: 1210: 1207: 1198: 1197: 1194: 1175: 1140:lattice constant 1137: 1135: 1134: 1129: 1127: 1126: 1106: 1104: 1103: 1098: 1086: 1084: 1083: 1078: 1076: 1075: 1054: 1052: 1051: 1046: 1044: 1043: 1022: 1020: 1019: 1014: 997: 995: 994: 989: 971: 969: 968: 963: 961: 960: 957: 943:effective masses 940: 938: 937: 932: 929: 924: 921: 908: 906: 905: 900: 897: 892: 889: 876: 874: 873: 868: 866: 864: 862: 857: 854: 844: 839: 836: 829: 827: 822: 819: 812: 807: 804: 797: 792: 791: 788: 773: 771: 770: 765: 763: 762: 744: 742: 741: 736: 734: 733: 730: 715: 713: 712: 707: 699: 674: 672: 671: 666: 652: 650: 649: 644: 628: 626: 625: 620: 601: 599: 598: 593: 579: 577: 576: 571: 557: 555: 554: 549: 531: 529: 528: 523: 521: 519: 515: 514: 505: 504: 495: 494: 484: 483: 482: 478: 465: 464: 461: 448: 443: 431: 430: 420: 415: 414: 398: 396: 395: 390: 388: 386: 385: 382: 367: 365: 364: 339: 337: 336: 331: 239:grain boundaries 207:crystal momentum 136:crystal momentum 131:crystal momentum 110:crystal momentum 60:crystal momentum 21: 1820: 1819: 1815: 1814: 1813: 1811: 1810: 1809: 1805:Optoelectronics 1790: 1789: 1784:Wayback Machine 1773: 1768: 1767: 1758: 1751: 1731: 1727: 1725: 1722: 1721: 1719: 1715: 1709:Optoelectronics 1707: 1703: 1698: 1681: 1669: 1641: 1637: 1635: 1632: 1631: 1630:axis (assuming 1609: 1606: 1605: 1584: 1580: 1576: 1574: 1571: 1570: 1551: 1548: 1547: 1525: 1522: 1521: 1504: 1500: 1498: 1495: 1494: 1475: 1472: 1471: 1445: 1442: 1441: 1420: 1417: 1416: 1393: 1389: 1387: 1384: 1383: 1350: 1344: 1340: 1338: 1319: 1312: 1308: 1302: 1298: 1289: 1285: 1272: 1270: 1245: 1239: 1235: 1233: 1223: 1216: 1212: 1206: 1202: 1193: 1189: 1176: 1174: 1166: 1163: 1162: 1119: 1115: 1113: 1110: 1109: 1092: 1089: 1088: 1071: 1067: 1065: 1062: 1061: 1039: 1035: 1033: 1030: 1029: 1008: 1005: 1004: 983: 980: 979: 956: 952: 950: 947: 946: 925: 920: 914: 911: 910: 893: 888: 882: 879: 878: 858: 853: 840: 835: 830: 823: 818: 808: 803: 798: 796: 787: 783: 781: 778: 777: 758: 754: 752: 749: 748: 729: 725: 723: 720: 719: 695: 684: 681: 680: 660: 657: 656: 638: 635: 634: 633:with frequency 611: 608: 607: 604:Planck constant 587: 584: 583: 565: 562: 561: 543: 540: 539: 510: 506: 500: 496: 490: 486: 485: 474: 470: 466: 460: 456: 444: 436: 426: 422: 421: 419: 410: 406: 404: 401: 400: 381: 377: 366: 360: 356: 348: 345: 344: 325: 322: 321: 300: 256: 183: 177: 166:generated with 68:conduction band 52:conduction band 44:direct band gap 28: 23: 22: 18:Direct band gap 15: 12: 11: 5: 1818: 1808: 1807: 1802: 1788: 1787: 1772: 1771:External links 1769: 1766: 1765: 1763:. Dover, 1971. 1759:J.I. Pankove, 1749: 1734: 1730: 1713: 1700: 1699: 1697: 1694: 1693: 1692: 1687: 1680: 1677: 1668: 1665: 1652: 1649: 1640: 1619: 1616: 1613: 1591: 1587: 1583: 1579: 1558: 1555: 1535: 1532: 1529: 1507: 1503: 1482: 1479: 1465: 1464: 1449: 1439: 1424: 1414: 1392: 1377: 1376: 1362: 1356: 1353: 1343: 1337: 1334: 1331: 1328: 1325: 1322: 1315: 1311: 1301: 1297: 1288: 1284: 1281: 1278: 1275: 1269: 1263: 1260: 1257: 1251: 1248: 1238: 1232: 1229: 1226: 1219: 1215: 1205: 1201: 1192: 1188: 1185: 1182: 1179: 1173: 1170: 1144: 1143: 1125: 1122: 1118: 1107: 1096: 1074: 1070: 1059: 1042: 1038: 1027: 1023:is the (real) 1012: 1002: 987: 977: 955: 928: 919: 896: 887: 861: 852: 848: 843: 834: 826: 817: 811: 802: 795: 786: 775: 761: 757: 746: 728: 717: 705: 702: 698: 694: 691: 688: 664: 654: 642: 618: 615: 591: 581: 569: 559: 547: 533: 532: 518: 513: 509: 503: 499: 493: 489: 481: 477: 473: 469: 459: 455: 452: 447: 442: 439: 435: 429: 425: 418: 413: 409: 380: 376: 373: 370: 363: 359: 355: 352: 329: 299: 296: 255: 252: 223:light-emitting 176: 173: 148:band structure 64:Brillouin zone 26: 9: 6: 4: 3: 2: 1817: 1806: 1803: 1801: 1798: 1797: 1795: 1785: 1781: 1778: 1775: 1774: 1762: 1756: 1754: 1732: 1728: 1717: 1710: 1705: 1701: 1691: 1688: 1686: 1683: 1682: 1676: 1674: 1667:Other aspects 1664: 1650: 1647: 1638: 1617: 1614: 1611: 1589: 1585: 1581: 1577: 1556: 1553: 1533: 1530: 1527: 1505: 1501: 1480: 1477: 1468: 1463: 1447: 1440: 1438: 1422: 1415: 1412: 1390: 1382: 1381: 1380: 1354: 1351: 1341: 1335: 1329: 1326: 1323: 1320: 1313: 1299: 1295: 1286: 1282: 1279: 1276: 1267: 1261: 1258: 1249: 1246: 1236: 1227: 1224: 1217: 1203: 1199: 1190: 1186: 1183: 1180: 1171: 1168: 1161: 1160: 1159: 1156: 1154: 1150: 1141: 1123: 1120: 1116: 1108: 1094: 1072: 1068: 1060: 1058: 1040: 1036: 1028: 1026: 1010: 1003: 1001: 985: 978: 975: 972:is called a " 953: 944: 926: 917: 894: 885: 859: 850: 846: 841: 832: 824: 815: 809: 800: 793: 784: 776: 759: 755: 747: 726: 718: 703: 700: 696: 692: 689: 686: 678: 662: 655: 640: 632: 616: 613: 605: 589: 582: 567: 560: 545: 538: 537: 536: 516: 511: 507: 501: 497: 491: 487: 479: 475: 471: 457: 453: 445: 440: 437: 433: 427: 423: 416: 411: 407: 378: 374: 371: 368: 361: 357: 353: 350: 343: 342: 341: 327: 320: 315: 313: 309: 305: 295: 293: 292:liquid helium 287: 285: 281: 277: 273: 269: 265: 264:photovoltaics 260: 251: 249: 244: 240: 234: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 182: 169: 168:tight binding 165: 161: 157: 153: 149: 144: 137: 132: 127: 120: 116: 111: 106: 102: 100: 96: 92: 88: 84: 80: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 40:semiconductor 37: 33: 19: 1760: 1716: 1708: 1704: 1670: 1469: 1466: 1378: 1157: 1145: 974:reduced mass 534: 316: 301: 288: 261: 257: 235: 227:laser diodes 184: 76: 72:valence band 56:valence band 47: 43: 29: 243:dislocation 129:Energy vs. 108:Energy vs. 1794:Categories 1696:References 1673:semimetals 179:See also: 1733:∗ 1690:Tauc plot 1648:≈ 1612:α 1578:α 1557:ν 1528:α 1502:α 1481:ν 1336:− 1330:⁡ 1324:− 1296:− 1283:− 1280:ν 1259:− 1228:⁡ 1187:− 1184:ν 1172:∝ 1169:α 1153:forbidden 1095:ν 1069:λ 1037:ϵ 927:∗ 895:∗ 860:∗ 842:∗ 825:∗ 810:∗ 760:∗ 704:π 687:ℏ 663:ℏ 641:ν 617:ν 568:ν 546:α 508:ℏ 498:ϵ 488:λ 412:∗ 375:− 372:ν 362:∗ 354:≈ 351:α 328:α 187:electrons 1780:Archived 1679:See also 941:are the 877:, where 70:and the 36:band gap 1569:versus 1493:versus 1460:is the 1435:is the 1379:where: 1149:exciton 1055:is the 998:is the 675:is the 602:is the 535:where: 399:, with 310:of the 268:microns 231:silicon 199:photons 195:phonons 1411:phonon 631:photon 215:phonon 119:phonon 115:photon 46:or an 34:, the 306:. By 191:holes 146:Bulk 38:of a 909:and 284:CZTS 280:CIGS 276:CdTe 225:and 205:and 164:InAs 162:and 160:GaAs 150:for 99:AlSb 93:and 87:GaAs 85:and 83:InAs 1663:). 1327:exp 1225:exp 282:or 30:In 1796:: 1752:^ 1675:. 976:") 278:, 233:. 197:, 193:, 189:, 158:, 156:Ge 154:, 152:Si 101:. 95:Ge 1729:A 1651:0 1643:p 1639:E 1618:0 1615:= 1590:2 1586:/ 1582:1 1554:h 1534:0 1531:= 1506:2 1478:h 1448:T 1423:k 1395:p 1391:E 1361:) 1355:T 1352:k 1346:p 1342:E 1333:( 1321:1 1314:2 1310:) 1304:p 1300:E 1291:g 1287:E 1277:h 1274:( 1268:+ 1262:1 1256:) 1250:T 1247:k 1241:p 1237:E 1231:( 1218:2 1214:) 1208:p 1204:E 1200:+ 1195:g 1191:E 1181:h 1178:( 1142:. 1124:c 1121:v 1117:x 1073:0 1041:0 1011:n 986:q 958:r 954:m 922:h 918:m 890:e 886:m 855:e 851:m 847:+ 837:h 833:m 820:e 816:m 805:h 801:m 794:= 789:r 785:m 756:A 731:g 727:E 716:) 701:2 697:/ 693:h 690:= 679:( 653:) 614:h 606:( 590:h 517:n 512:3 502:0 492:0 480:2 476:/ 472:3 468:) 462:r 458:m 454:2 451:( 446:2 441:c 438:v 434:x 428:2 424:q 417:= 408:A 383:g 379:E 369:h 358:A 20:)

Index

Direct band gap
semiconductor physics
band gap
semiconductor
conduction band
valence band
crystal momentum
Brillouin zone
conduction band
valence band
amorphous silicon
InAs
GaAs
crystalline silicon
Ge
AlSb

crystal momentum
photon
phonon

crystal momentum
crystal momentum

band structure
Si
Ge
GaAs
InAs
tight binding

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑