Knowledge

Cryogenic electron microscopy

Source 📝

637: 509: 608: 59: 578: 2935: 613: 612: 609: 2947: 614: 25: 649: 611: 402:, and the highest resolution achieved on record (as of September 30, 2022) is 0.48 Å. As of 2020, the majority of the protein structures determined by cryo-EM are at a lower resolution of 3–4 Å. However, as of 2020, the best cryo-EM resolution has been recorded at 1.22 Å, making it a competitor in resolution in some cases. 382:
Traditionally, X-ray crystallography has been the most popular technique for determining the 3D structures of biological molecules. However, the aforementioned improvements in cryo-EM have increased its popularity as a tool for examining the details of biological molecules. Since 2010, yearly cryo-EM
386:
The resolution of X-ray crystallography is limited by crystal homogeneity, and coaxing biological molecules with unknown ideal crystallization conditions into a crystalline state can be very time-consuming, in extreme cases taking months or even years. To contrast, sample preparation in cryo-EM may
96:. While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to 474:. Colloquially, the term "cryogenic electron microscopy" or its shortening "cryo-EM" refers to cryogenic transmission electron microscopy by default, as the vast majority of cryo-EM is done in transmission electron microscopes, rather than scanning electron microscopes. 387:
require several rounds of screening and optimization to overcome issues such as protein aggregation and preferred orientations, but it does not require the sample to form a crystal, rather samples for cryo-EM are flash-frozen and examined in their near-native states.
179:
Thin crystals mounted on carbon film were found to be from 30 to 300 times more beam-resistant at 4 K than at room temperature... Most of our results can be explained by assuming that cryoprotection in the region of 4 K is strongly dependent on the
610: 146:
for structure determination methods was limited because of the radiation damage due to high energy electron beams. Scientists hypothesized that examining specimens at low temperatures would reduce beam-induced radiation damage. Both
383:
structure deposits have outpaced X-ray crystallography. Though X-ray crystallography has drastically more total deposits due to a decades-longer history, total deposits of the two methods are projected to eclipse around 2035.
2254:
Xiao, C., Fischer, M.G., Bolotaulo, D.M., Ulloa-Rondeau, N., Avila, G.A., and Suttle, C.A. (2017) "Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses".
327:
to be able to resolve protein particles in the image, making 3D reconstruction difficult or impossible. Imaging scaffolds boost the SNR of smaller proteins by binding them to a larger object, the scaffold. The
494:
opened the Dubochet Center For Imaging (DCI) at the end of November 2021, for the purposes of applying and further developing cryo-EM. Less than a month after the first identification of the
190:
just two years later informing that the beam resistance was less significant than initially anticipated. The protection gained at 4 K was closer to "tenfold for standard samples of L-
636: 498:, researchers at the DCI were able to define its structure, identify the crucial mutations to circumvent individual vaccines and provide insights for new therapeutic approaches. 43: 265: 1903: 528:(cryo-ET), a specialized application where many images are taken of individual samples at various tilt angles, resulting in a 3D reconstruction of a single sample. 505:
was inaugurated on December 1, 2016. EMBION is a cryo-EM consortium between Danish Universities (Aarhus University host and University of Copenhagen co-host).
291:
to roll out and market the new design. At about the same time, Gatan Inc. of Pleasanton, California came out with a similar detector designed by Peter Denes (
2579: 249: 198: 648: 315:
More recently, advancements in the use of protein-based imaging scaffolds are helping to solve the problems of sample orientation bias and size limit.
268:
have led to a "resolution revolution" pushing the resolution barrier beneath the crucial ~2-3 Å limit to resolve amino acid position and orientation.
2562: 2557: 483: 577: 2706: 2409: 168: 2696: 2299: 329: 2599: 2572: 808: 2507: 1928: 2567: 2711: 1204:"High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics" 2973: 300: 2527: 1795:
Yip KM, Fischer N, Paknia E, Chari A, Stark H (November 2020). "Atomic-resolution protein structure determination by cryo-EM".
2651: 2517: 2464: 417: 411: 333: 292: 202: 2951: 2906: 2634: 2619: 2545: 972:
Knapek E, Dubochet J (August 1980). "Beam damage to organic material is considerably reduced in cryo-electron microscopy".
459: 454: 34: 229:
pattern confirmed the presence of amorphous/vitreous ice. In 1984, Dubochet's group demonstrated the power of cryo-EM in
276: 1445:"Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB" 1336:"Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold" 368:"for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution." 123:"for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution." 2656: 2489: 2342: 2292: 545: 1505: 2644: 2639: 2537: 2512: 2479: 463: 438: 433: 287:
to fund and develop a first prototype. The consortium then joined forces with the electron microscope manufacturer
143: 1846:
Sartori-Rupp A, Cordero Cervantes D, Pepe A, Gousset K, Delage E, Corroyer-Dulmont S, et al. (January 2019).
2716: 2701: 2681: 2988: 2911: 2484: 2419: 2327: 2149:
Gruene T, Wennmacher JT, Zaubitzer C, Holstein JJ, Heidler J, Fecteau-Lefebvre A, et al. (December 2018).
280: 2901: 2661: 361: 272: 120: 2939: 2499: 2285: 442: 2983: 2686: 2604: 495: 264:
The 2010s were marked with drastic advancements of electron cameras. Notably, the improvements made to
253: 209:
pure water in a thin film by spraying it onto a hydrophilic carbon film that was rapidly plunged into
2051:
Jones CG, Martynowycz MW, Hattne J, Fulton TJ, Stoltz BM, Rodriguez JA, et al. (November 2018).
84:
temperatures. For biological specimens, the structure is preserved by embedding in an environment of
2865: 2691: 1334:
Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, et al. (September 2023).
676: 567: 531: 512: 365: 108: 2151:"Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction" 854: 2614: 2550: 2424: 2383: 1202:
Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R. (2015-04-20).
525: 642:
Cryo-EM image of an intact ARMAN cell from an Iron Mountain biofilm. Image width is 576 nm.
2804: 2100:
de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes FE, et al. (February 2017).
1904:"Inauguration of the Dubochet Center for Imaging (DCI) on the campuses of UNIGE, UNIL and EPFL" 487: 2102:"Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED" 2978: 2809: 2629: 1640:
Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PM, et al. (November 2020).
1271:"High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM" 377: 324: 97: 2814: 2373: 2211: 2004:"High-resolution structure determination by continuous-rotation data collection in MicroED" 1859: 1804: 1653: 1542: 1347: 1282: 1215: 1152: 1094: 1020: 714: 561: 491: 245: 226: 1443:
Chiu, Wah; Schmid, Michael F.; Pintilie, Grigore D.; Lawson, Catherine L. (January 2021).
8: 2779: 2764: 2671: 2666: 2609: 2474: 2456: 2388: 2378: 2322: 2308: 2053:"The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination" 681: 508: 63: 2215: 1863: 1808: 1752:
Acta Crystallographica. Section F, Structural Biology and Crystallization Communications
1657: 1546: 1368: 1351: 1335: 1286: 1219: 1156: 1098: 1082: 1024: 718: 2850: 2429: 2393: 2232: 2199: 2175: 2150: 2126: 2101: 2077: 2052: 2028: 2003: 1880: 1847: 1828: 1772: 1747: 1723: 1698: 1674: 1641: 1614: 1579: 1479: 1444: 1417: 1392: 1311: 1270: 1246: 1203: 1184: 1118: 1066: 1049: 949: 922: 903: 826: 784: 759: 735: 702: 467: 421: 284: 230: 175:
published comments on beam damage at cryogenic temperatures sharing observations that:
1848:"Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells" 1140: 570:
cryo-EM, an averaging method to determine protein structure from monodisperse samples.
394:, the median resolution achieved by X-ray crystallography (as of May 19, 2019) on the 2794: 2789: 2237: 2180: 2131: 2082: 2033: 1984: 1976: 1885: 1832: 1820: 1777: 1728: 1679: 1619: 1601: 1560: 1484: 1466: 1422: 1373: 1316: 1298: 1251: 1233: 1176: 1168: 1110: 989: 985: 954: 895: 830: 789: 740: 557: 471: 395: 167:(−195.79 °C or 77 K or −320 °F) were considered as cryogens. In 1980, 39: 2881: 1188: 907: 2744: 2676: 2264: 2227: 2219: 2170: 2162: 2121: 2113: 2072: 2064: 2023: 2015: 1966: 1961:. From Protein Sequence to Structure at Warp Speed: How Alphafold Impacts Biology. 1875: 1867: 1812: 1767: 1759: 1718: 1710: 1669: 1661: 1609: 1591: 1550: 1474: 1456: 1412: 1404: 1363: 1355: 1306: 1290: 1241: 1223: 1160: 1122: 1102: 1061: 1028: 981: 944: 934: 887: 816: 779: 771: 730: 722: 445:
technique with a scanning electron microscope's cold stage in a cryogenic chamber.
353: 304: 241: 186: 172: 112: 101: 88:. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid 58: 2799: 1228: 939: 626: 621: 205:, reported the first successful implementation of cryo-EM. McDowall and Dubochet 164: 104:
for macromolecular structure determination without the need for crystallization.
352:
In recognition of the impact cryo-EM has had on biochemistry, three scientists,
2754: 2368: 2268: 2068: 1871: 1555: 1530: 1340:
Proceedings of the National Academy of Sciences of the United States of America
1294: 775: 340:(roughly 19 kDa in size) by utilising a rigidified imaging scaffold, and using 125: 77: 1971: 1954: 1816: 1763: 1699:"How cryo-electron microscopy and X-ray crystallography complement each other" 1665: 1596: 1461: 821: 726: 184:
However, these results were not reproducible and amendments were published in
2967: 2830: 2774: 2434: 1980: 1605: 1470: 1302: 1237: 1172: 899: 591: 357: 320: 234: 222: 206: 148: 116: 85: 2223: 1359: 1164: 344:
as modular binding domain between the scaffold and the protein-of-interest.
2891: 2855: 2749: 2739: 2414: 2363: 2241: 2184: 2166: 2135: 2086: 2037: 1988: 1889: 1824: 1781: 1732: 1683: 1623: 1564: 1488: 1426: 1377: 1320: 1255: 1180: 958: 793: 744: 671: 237: 1114: 993: 2835: 2769: 2759: 391: 296: 288: 1845: 2916: 2896: 2337: 2332: 2117: 2019: 891: 210: 160: 2277: 1408: 2784: 2439: 1714: 1106: 1033: 1008: 308: 81: 2886: 2352: 583: 399: 2200:"Single-particle cryo-EM-How did it get here and where will it go" 1580:"Challenges and opportunities in cryo-EM single-particle analysis" 1333: 2840: 2522: 2148: 1748:"Crystal structure of small protein crambin at 0.48 Å resolution" 553: 549: 316: 214: 152: 93: 1929:"Scientists uncover Omicron variant mysteries using microscopes" 2860: 341: 218: 191: 156: 89: 1269:
Herzik, Mark A.; Wu, Mengyu; Lander, Gabriel C. (2019-03-04).
1080: 587: 539: 448: 2050: 2845: 1953:
Bäuerlein, Felix J. B.; Baumeister, Wolfgang (2021-10-01).
1081:
Adrian M, Dubochet J, Lepault J, McDowall AW (March 1984).
655: 535: 337: 279:, Cambridge, UK) formed a consortium with engineers at the 2099: 1745: 1639: 757: 2002:
Nannenga BL, Shi D, Leslie AG, Gonen T (September 2014).
1531:"Revolutionary cryo-EM is taking over structural biology" 405: 336:
were able to create a clearer image of three variants of
1746:
Schmidt A, Teeter M, Weckert E, Lamzin VS (April 2011).
1442: 758:
Cheng Y, Grigorieff N, Penczek PA, Walz T (April 2015).
129:
also named cryo-EM as the "Method of the Year" in 2015.
502: 371: 2001: 760:"A primer to single-particle cryo-electron microscopy" 1794: 1050:"Vitrification of Pure Water for Electron Microscopy" 809:"Structural biology: How proteins got their close-up" 878:
Doerr A (January 2017). "Cryo-electron tomography".
1952: 1201: 501:The Danish National cryo-EM Facility also known as 427: 700: 1635: 1633: 923:"Ups and downs in early electron cryo-microscopy" 2965: 1047: 347: 701:Tivol WF, Briegel A, Jensen GJ (October 2008). 2707:Serial block-face scanning electron microscopy 2410:Detectors for transmission electron microscopy 1955:"Towards Visual Proteomics at High Resolution" 1642:"Single-particle cryo-EM at atomic resolution" 1630: 1268: 971: 920: 849: 847: 16:Form of transmission electron microscopy (TEM) 2293: 1390: 1009:"Cryo-transmission microscopy Fading hopes" 844: 303:). A third type of camera was developed by 2300: 2286: 2044: 1896: 1138: 460:Cryogenic transmission electron microscopy 449:Cryogenic transmission electron microscopy 420:cryo-TEM and cryo-ET were used to observe 2231: 2174: 2125: 2076: 2027: 1970: 1921: 1879: 1771: 1722: 1673: 1613: 1595: 1554: 1478: 1460: 1416: 1367: 1310: 1245: 1227: 1065: 1048:Dubochet J, McDowall AW (December 1981). 1032: 948: 938: 820: 783: 734: 703:"An improved cryogen for plunge freezing" 534:, method to determine the arrangement of 221:cooled to 77 K). The thin layer of 1696: 1528: 806: 507: 201:and Jacques Dubochet, scientists at the 57: 2307: 1577: 1006: 800: 548:, method to determine the structure of 301:University of California, San Francisco 80:technique applied on samples cooled to 2966: 1506:"Resolution - Proteopedia, life in 3D" 406:Correlative light cryo-TEM and cryo-ET 259: 2281: 2197: 1500: 1498: 1438: 1436: 1391:Smyth MS, Martin JH (February 2000). 1134: 1132: 1083:"Cryo-electron microscopy of viruses" 877: 412:Correlative light-electron microscopy 293:Lawrence Berkeley National Laboratory 225:was less than 1 μm thick and an 203:European Molecular Biology Laboratory 2946: 455:Transmission electron cryomicroscopy 372:Comparisons to X-ray crystallography 194:", than what was previously stated. 137: 35:Transmission electron cryomicroscopy 18: 921:Dubochet J, Knapek E (April 2018). 855:"The Nobel Prize in Chemistry 2017" 519: 277:MRC Laboratory of Molecular Biology 13: 1690: 1522: 1495: 1433: 1129: 1067:10.1111/j.1365-2818.1981.tb02483.x 92:or a mixture of liquid ethane and 14: 3000: 2343:Timeline of microscope technology 1697:Wang HW, Wang JW (January 2017). 1139:Kühlbrandt, Werner (2014-03-28). 2945: 2934: 2933: 647: 635: 606: 576: 560:, and inorganic compounds using 464:transmission electron microscopy 439:Scanning electron cryomicroscopy 434:Scanning electron cryomicroscopy 428:Scanning electron cryomicroscopy 307:at the Direct Electron company ( 144:transmission electron microscopy 23: 2702:Precession electron diffraction 2248: 2191: 2142: 2093: 1995: 1946: 1839: 1788: 1739: 1584:Journal of Biological Chemistry 1571: 1449:Journal of Biological Chemistry 1384: 1327: 1262: 1195: 1074: 1007:Newmark P (30 September 1982). 484:Federal Institute of Technology 2974:Electron microscopy techniques 1578:Lyumkis, Dmitry (2019-03-29). 1041: 1000: 965: 914: 871: 751: 694: 281:Rutherford Appleton Laboratory 1: 687: 660:(scale bar represents 200 nm) 526:Cryogenic electron tomography 348:2017 Nobel Prize in Chemistry 70:Cryogenic electron microscopy 1959:Journal of Molecular Biology 1529:Callaway E (February 2020). 1229:10.1371/journal.pone.0123146 986:10.1016/0022-2836(80)90382-4 974:Journal of Molecular Biology 940:10.1371/journal.pbio.2005550 707:Microscopy and Microanalysis 443:scanning electron microscopy 323:generally have insufficient 7: 1141:"The Resolution Revolution" 807:Stoddart C (1 March 2022). 665: 32:It has been suggested that 10: 3005: 2687:Immune electron microscopy 2605:Annular dark-field imaging 2420:Everhart–Thornley detector 2269:10.1038/s41598-017-05824-w 2069:10.1021/acscentsci.8b00760 1872:10.1038/s41467-018-08178-7 1556:10.1038/d41586-020-00341-9 1295:10.1038/s41467-019-08991-8 776:10.1016/j.cell.2015.03.050 496:SARS-CoV-2 Omicron variant 477: 466:technique that is used in 452: 431: 424:(TNTs) in neuronal cells. 409: 375: 254:Vesicular-Stomatitis-Virus 132: 2929: 2874: 2841:Hitachi High-Technologies 2823: 2732: 2725: 2592: 2536: 2498: 2455: 2448: 2402: 2351: 2315: 1972:10.1016/j.jmb.2021.167187 1817:10.1038/s41586-020-2833-4 1764:10.1107/S1744309110052607 1666:10.1038/s41586-020-2829-0 1597:10.1074/jbc.rev118.005602 1462:10.1016/j.jbc.2021.100560 822:10.1146/knowable-022822-1 727:10.1017/S1431927608080781 266:direct electron detectors 142:In the 1960s, the use of 49:Proposed since July 2024. 2866:Thermo Fisher Scientific 2692:Geometric phase analysis 2580:Aberration-Corrected TEM 682:Electron tomography (ET) 677:Cryo bio-crystallography 568:Single particle analysis 532:Electron crystallography 513:Single particle analysis 366:Nobel Prize in Chemistry 109:Nobel Prize in Chemistry 2615:Charge contrast imaging 2425:Field electron emission 2224:10.1126/science.aat4346 2198:Cheng Y (August 2018). 1393:"x ray crystallography" 1360:10.1073/pnas.2305494120 1165:10.1126/science.1251652 2805:Thomas Eugene Everhart 2167:10.1002/anie.201811318 516: 488:University of Lausanne 313: 283:and scientists at the 182: 66: 2989:Scientific techniques 2810:Vernon Ellis Cosslett 2630:Dark-field microscopy 1852:Nature Communications 1275:Nature Communications 1054:Journal of Microscopy 654:Cryo-EM image of the 511: 378:X-ray crystallography 309:San Diego, California 270: 177: 98:X-ray crystallography 61: 2815:Vladimir K. Zworykin 2465:Correlative light EM 2374:Electron diffraction 562:electron diffraction 492:University of Geneva 422:tunnelling nanotubes 246:Semliki Forest virus 227:electron diffraction 42:into this article. ( 2780:Manfred von Ardenne 2765:Gerasimos Danilatos 2672:Electron tomography 2667:Electron holography 2610:Cathodoluminescence 2389:Secondary electrons 2379:Electron scattering 2323:Electron microscopy 2309:Electron microscopy 2216:2018Sci...361..876C 2161:(50): 16313–16317. 2057:ACS Central Science 1864:2019NatCo..10..342S 1809:2020Natur.587..157Y 1658:2020Natur.587..152N 1547:2020Natur.578..201C 1397:Molecular Pathology 1352:2023PNAS..12005494C 1346:(37): e2305494120. 1287:2019NatCo..10.1032H 1220:2015PLoSO..1023146K 1157:2014Sci...343.1443K 1151:(6178): 1443–1444. 1099:1984Natur.308...32A 1025:1982Natur.299..386N 719:2008MiMic..14..375T 364:, were awarded the 260:Recent advancements 64:University of Leeds 62:Titan Krios at the 2902:Digital Micrograph 2508:Environmental SEM 2430:Field emission gun 2394:X-ray fluorescence 2257:Scientific Reports 2118:10.1038/nmeth.4178 2020:10.1038/nmeth.3043 892:10.1038/nmeth.4115 658:giant marine virus 517: 468:structural biology 285:Max Planck Society 231:structural biology 67: 2984:Protein structure 2961: 2960: 2925: 2924: 2795:Nestor J. Zaluzec 2790:Maximilian Haider 2588: 2587: 2210:(6405): 876–880. 2155:Angewandte Chemie 2063:(11): 1587–1592. 1803:(7832): 157–161. 1758:(Pt 4): 424–428. 1652:(7832): 152–156. 1590:(13): 5181–5197. 1409:10.1136/mp.53.1.8 1019:(5882): 386–387. 813:Knowable Magazine 615: 558:organic molecules 472:materials science 418:correlative light 396:Protein Data Bank 362:Richard Henderson 319:smaller than ~50 250:Bacteriophage CbK 233:with analysis of 199:Alasdair McDowall 138:Early development 121:Richard Henderson 56: 55: 51: 2996: 2949: 2948: 2937: 2936: 2745:Bodo von Borries 2730: 2729: 2490:Photoemission EM 2453: 2452: 2302: 2295: 2288: 2279: 2278: 2272: 2252: 2246: 2245: 2235: 2195: 2189: 2188: 2178: 2146: 2140: 2139: 2129: 2097: 2091: 2090: 2080: 2048: 2042: 2041: 2031: 1999: 1993: 1992: 1974: 1950: 1944: 1943: 1941: 1940: 1925: 1919: 1918: 1916: 1915: 1900: 1894: 1893: 1883: 1843: 1837: 1836: 1792: 1786: 1785: 1775: 1743: 1737: 1736: 1726: 1715:10.1002/pro.3022 1694: 1688: 1687: 1677: 1637: 1628: 1627: 1617: 1599: 1575: 1569: 1568: 1558: 1526: 1520: 1519: 1517: 1516: 1502: 1493: 1492: 1482: 1464: 1440: 1431: 1430: 1420: 1388: 1382: 1381: 1371: 1331: 1325: 1324: 1314: 1266: 1260: 1259: 1249: 1231: 1199: 1193: 1192: 1136: 1127: 1126: 1107:10.1038/308032a0 1078: 1072: 1071: 1069: 1045: 1039: 1038: 1036: 1034:10.1038/299386c0 1004: 998: 997: 969: 963: 962: 952: 942: 918: 912: 911: 875: 869: 868: 866: 865: 851: 842: 841: 839: 837: 824: 804: 798: 797: 787: 755: 749: 748: 738: 698: 651: 639: 617: 616: 600: 599: 580: 564:from 3D crystals 520:Advanced methods 462:(cryo-TEM) is a 354:Jacques Dubochet 305:Nguyen-Huu Xuong 242:T4 bacteriophage 173:Jacques Dubochet 113:Jacques Dubochet 102:NMR spectroscopy 47: 27: 26: 19: 3004: 3003: 2999: 2998: 2997: 2995: 2994: 2993: 2964: 2963: 2962: 2957: 2921: 2870: 2819: 2800:Ondrej Krivanek 2721: 2584: 2532: 2494: 2480:Liquid-Phase EM 2444: 2403:Instrumentation 2398: 2356: 2347: 2311: 2306: 2276: 2275: 2253: 2249: 2196: 2192: 2147: 2143: 2098: 2094: 2049: 2045: 2000: 1996: 1951: 1947: 1938: 1936: 1927: 1926: 1922: 1913: 1911: 1902: 1901: 1897: 1844: 1840: 1793: 1789: 1744: 1740: 1703:Protein Science 1695: 1691: 1638: 1631: 1576: 1572: 1527: 1523: 1514: 1512: 1510:proteopedia.org 1504: 1503: 1496: 1441: 1434: 1389: 1385: 1332: 1328: 1267: 1263: 1214:(4): e0123146. 1200: 1196: 1137: 1130: 1093:(5954): 32–36. 1079: 1075: 1046: 1042: 1005: 1001: 970: 966: 933:(4): e2005550. 919: 915: 876: 872: 863: 861: 853: 852: 845: 835: 833: 805: 801: 756: 752: 699: 695: 690: 668: 661: 659: 652: 643: 640: 631: 627:Pichia pastoris 622:alcohol oxidase 618: 607: 602: 601:× magnification 597: 595: 581: 522: 480: 457: 451: 441:(cryoSEM) is a 436: 430: 414: 408: 380: 374: 350: 262: 165:liquid nitrogen 159:or −452.2  140: 135: 111:was awarded to 52: 28: 24: 17: 12: 11: 5: 3002: 2992: 2991: 2986: 2981: 2976: 2959: 2958: 2956: 2955: 2943: 2930: 2927: 2926: 2923: 2922: 2920: 2919: 2914: 2909: 2907:Direct methods 2904: 2899: 2894: 2889: 2884: 2878: 2876: 2872: 2871: 2869: 2868: 2863: 2858: 2853: 2848: 2843: 2838: 2833: 2827: 2825: 2821: 2820: 2818: 2817: 2812: 2807: 2802: 2797: 2792: 2787: 2782: 2777: 2772: 2767: 2762: 2757: 2755:Ernst G. Bauer 2752: 2747: 2742: 2736: 2734: 2727: 2723: 2722: 2720: 2719: 2714: 2709: 2704: 2699: 2694: 2689: 2684: 2679: 2674: 2669: 2664: 2659: 2654: 2649: 2648: 2647: 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2596: 2594: 2590: 2589: 2586: 2585: 2583: 2582: 2577: 2576: 2575: 2565: 2560: 2555: 2554: 2553: 2542: 2540: 2534: 2533: 2531: 2530: 2525: 2520: 2515: 2510: 2504: 2502: 2496: 2495: 2493: 2492: 2487: 2482: 2477: 2472: 2467: 2461: 2459: 2450: 2446: 2445: 2443: 2442: 2437: 2432: 2427: 2422: 2417: 2412: 2406: 2404: 2400: 2399: 2397: 2396: 2391: 2386: 2381: 2376: 2371: 2369:Bremsstrahlung 2366: 2360: 2358: 2349: 2348: 2346: 2345: 2340: 2335: 2330: 2325: 2319: 2317: 2313: 2312: 2305: 2304: 2297: 2290: 2282: 2274: 2273: 2247: 2190: 2141: 2112:(4): 399–402. 2106:Nature Methods 2092: 2043: 2014:(9): 927–930. 2008:Nature Methods 1994: 1965:(20): 167187. 1945: 1920: 1895: 1838: 1787: 1738: 1689: 1629: 1570: 1521: 1494: 1432: 1383: 1326: 1261: 1194: 1128: 1073: 1040: 999: 980:(2): 147–161. 964: 913: 880:Nature Methods 870: 859:NobelPrize.org 843: 799: 770:(3): 438–449. 750: 713:(5): 375–379. 692: 691: 689: 686: 685: 684: 679: 674: 667: 664: 663: 662: 653: 646: 644: 641: 634: 632: 619: 605: 603: 582: 575: 572: 571: 565: 543: 529: 521: 518: 479: 476: 453:Main article: 450: 447: 432:Main article: 429: 426: 410:Main article: 407: 404: 376:Main article: 373: 370: 349: 346: 261: 258: 139: 136: 134: 131: 126:Nature Methods 78:cryomicroscopy 54: 53: 31: 29: 22: 15: 9: 6: 4: 3: 2: 3001: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2971: 2969: 2954: 2953: 2944: 2942: 2941: 2932: 2931: 2928: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2879: 2877: 2873: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2831:Carl Zeiss AG 2829: 2828: 2826: 2824:Manufacturers 2822: 2816: 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2796: 2793: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2775:James Hillier 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2737: 2735: 2731: 2728: 2724: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2646: 2643: 2642: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2597: 2595: 2591: 2581: 2578: 2574: 2571: 2570: 2569: 2566: 2564: 2561: 2559: 2556: 2552: 2549: 2548: 2547: 2544: 2543: 2541: 2539: 2535: 2529: 2528:Ultrafast SEM 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2505: 2503: 2501: 2497: 2491: 2488: 2486: 2485:Low-energy EM 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2462: 2460: 2458: 2454: 2451: 2447: 2441: 2438: 2436: 2435:Magnetic lens 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2407: 2405: 2401: 2395: 2392: 2390: 2387: 2385: 2384:Kikuchi lines 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2361: 2359: 2354: 2350: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2320: 2318: 2314: 2310: 2303: 2298: 2296: 2291: 2289: 2284: 2283: 2280: 2270: 2266: 2262: 2258: 2251: 2243: 2239: 2234: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2186: 2182: 2177: 2172: 2168: 2164: 2160: 2156: 2152: 2145: 2137: 2133: 2128: 2123: 2119: 2115: 2111: 2107: 2103: 2096: 2088: 2084: 2079: 2074: 2070: 2066: 2062: 2058: 2054: 2047: 2039: 2035: 2030: 2025: 2021: 2017: 2013: 2009: 2005: 1998: 1990: 1986: 1982: 1978: 1973: 1968: 1964: 1960: 1956: 1949: 1934: 1930: 1924: 1909: 1905: 1899: 1891: 1887: 1882: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1842: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1791: 1783: 1779: 1774: 1769: 1765: 1761: 1757: 1753: 1749: 1742: 1734: 1730: 1725: 1720: 1716: 1712: 1708: 1704: 1700: 1693: 1685: 1681: 1676: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1636: 1634: 1625: 1621: 1616: 1611: 1607: 1603: 1598: 1593: 1589: 1585: 1581: 1574: 1566: 1562: 1557: 1552: 1548: 1544: 1541:(7794): 201. 1540: 1536: 1532: 1525: 1511: 1507: 1501: 1499: 1490: 1486: 1481: 1476: 1472: 1468: 1463: 1458: 1454: 1450: 1446: 1439: 1437: 1428: 1424: 1419: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1379: 1375: 1370: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1330: 1322: 1318: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1257: 1253: 1248: 1243: 1239: 1235: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1133: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1068: 1063: 1059: 1055: 1051: 1044: 1035: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 995: 991: 987: 983: 979: 975: 968: 960: 956: 951: 946: 941: 936: 932: 928: 924: 917: 909: 905: 901: 897: 893: 889: 885: 881: 874: 860: 856: 850: 848: 832: 828: 823: 818: 814: 810: 803: 795: 791: 786: 781: 777: 773: 769: 765: 761: 754: 746: 742: 737: 732: 728: 724: 720: 716: 712: 708: 704: 697: 693: 683: 680: 678: 675: 673: 670: 669: 657: 650: 645: 638: 633: 629: 628: 623: 620:Structure of 604: 593: 592:amorphous ice 590:suspended in 589: 585: 579: 574: 573: 569: 566: 563: 559: 555: 551: 547: 544: 541: 537: 533: 530: 527: 524: 523: 514: 510: 506: 504: 499: 497: 493: 489: 485: 475: 473: 469: 465: 461: 456: 446: 444: 440: 435: 425: 423: 419: 413: 403: 401: 397: 393: 390:According to 388: 384: 379: 369: 367: 363: 359: 358:Joachim Frank 355: 345: 343: 339: 335: 331: 326: 322: 318: 312: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 269: 267: 257: 255: 251: 247: 243: 239: 236: 232: 228: 224: 223:amorphous ice 220: 216: 212: 208: 204: 200: 195: 193: 189: 188: 181: 176: 174: 170: 166: 162: 158: 154: 150: 149:liquid helium 145: 130: 128: 127: 122: 118: 117:Joachim Frank 114: 110: 107:In 2017, the 105: 103: 99: 95: 91: 87: 83: 79: 75: 71: 65: 60: 50: 45: 41: 37: 36: 30: 21: 20: 2979:Cell biology 2950: 2938: 2892:EM Data Bank 2856:Nion Company 2750:Dennis Gabor 2740:Albert Crewe 2624: 2518:Confocal SEM 2469: 2415:Electron gun 2364:Auger effect 2260: 2256: 2250: 2207: 2203: 2193: 2158: 2154: 2144: 2109: 2105: 2095: 2060: 2056: 2046: 2011: 2007: 1997: 1962: 1958: 1948: 1937:. Retrieved 1935:. 2021-12-30 1933:swissinfo.ch 1932: 1923: 1912:. Retrieved 1910:. 2021-11-30 1907: 1898: 1855: 1851: 1841: 1800: 1796: 1790: 1755: 1751: 1741: 1709:(1): 32–39. 1706: 1702: 1692: 1649: 1645: 1587: 1583: 1573: 1538: 1534: 1524: 1513:. Retrieved 1509: 1452: 1448: 1400: 1396: 1386: 1343: 1339: 1329: 1278: 1274: 1264: 1211: 1207: 1197: 1148: 1144: 1090: 1086: 1076: 1057: 1053: 1043: 1016: 1012: 1002: 977: 973: 967: 930: 927:PLOS Biology 926: 916: 883: 879: 873: 862:. Retrieved 858: 834:. Retrieved 812: 802: 767: 763: 753: 710: 706: 696: 672:Cryofixation 625: 500: 481: 458: 437: 415: 389: 385: 381: 351: 314: 271: 263: 196: 185: 183: 180:temperature. 178: 169:Erwin Knapek 141: 124: 106: 86:vitreous ice 73: 69: 68: 48: 33: 2836:FEI Company 2770:Harald Rose 2760:Ernst Ruska 2449:Microscopes 2357:with matter 2355:interaction 1403:(1): 8–14. 1281:(1): 1032. 542:using a TEM 392:Proteopedia 297:David Agard 151:(−269  2968:Categories 2917:Multislice 2733:Developers 2593:Techniques 2338:Microscope 2333:Micrograph 1939:2022-04-30 1914:2022-04-30 1858:(1): 342. 1515:2020-10-27 1455:: 100560. 1060:(3): 3–4. 864:2022-09-30 688:References 630:by Cryo-EM 238:adenovirus 217:or liquid 155:or 4  2785:Max Knoll 2440:Stigmator 1981:0022-2836 1833:224823207 1606:0021-9258 1471:0021-9258 1303:2041-1723 1238:1932-6203 1173:0036-8075 900:1548-7091 886:(1): 34. 831:247206999 586:image of 416:In 2019, 332:group at 273:Henderson 235:vitrified 207:vitrified 197:In 1981, 82:cryogenic 2940:Category 2887:CrysTBox 2875:Software 2546:Cryo-TEM 2353:Electron 2263:: 5484. 2242:30166484 2185:30325568 2136:28192420 2087:30555912 2038:25086503 1989:34384780 1908:unige.ch 1890:30664666 1825:33087927 1782:21505232 1733:27543495 1684:33087931 1624:30804214 1565:32047310 1489:33744287 1427:10884915 1378:37669364 1369:10500258 1321:30833564 1256:25894612 1208:PLOS ONE 1189:35524447 1181:24675944 959:29672565 908:27162203 836:25 March 794:25910204 745:18793481 666:See also 554:peptides 550:proteins 515:workflow 490:and the 398:is 2.05 317:Proteins 240:type 2, 213:(liquid 2952:Commons 2600:4D STEM 2573:4D STEM 2551:Cryo-ET 2523:SEM-XRF 2513:CryoSEM 2470:Cryo-EM 2328:History 2233:6460916 2212:Bibcode 2204:Science 2176:6468266 2127:5376236 2078:6276044 2029:4149488 1881:6341166 1860:Bibcode 1805:Bibcode 1773:3080141 1724:5192981 1675:7611073 1654:Bibcode 1615:6442032 1543:Bibcode 1480:8050867 1418:1186895 1348:Bibcode 1312:6399227 1283:Bibcode 1247:4403875 1216:Bibcode 1153:Bibcode 1145:Science 1123:4319199 1115:6322001 1095:Bibcode 1021:Bibcode 994:7441748 950:5929567 785:4409659 736:3058946 715:Bibcode 584:Cryo-EM 546:MicroED 478:Centers 342:DARPins 215:propane 211:cryogen 133:History 94:propane 76:) is a 74:cryo-EM 44:Discuss 2897:EMsoft 2882:CASINO 2861:TESCAN 2726:Others 2625:cryoEM 2316:Basics 2240:  2230:  2183:  2173:  2134:  2124:  2085:  2075:  2036:  2026:  1987:  1979:  1888:  1878:  1831:  1823:  1797:Nature 1780:  1770:  1731:  1721:  1682:  1672:  1646:Nature 1622:  1612:  1604:  1563:  1535:Nature 1487:  1477:  1469:  1425:  1415:  1376:  1366:  1319:  1309:  1301:  1254:  1244:  1236:  1187:  1179:  1171:  1121:  1113:  1087:Nature 1013:Nature 992:  957:  947:  906:  898:  829:  792:  782:  743:  733:  540:solids 503:EMBION 486:, the 330:Yeates 295:) and 252:, and 219:ethane 192:valine 187:Nature 163:) and 119:, and 90:ethane 40:merged 2851:Leica 2697:PINEM 2563:HRTEM 2558:EFTEM 1829:S2CID 1185:S2CID 1119:S2CID 904:S2CID 827:S2CID 624:from 588:GroEL 536:atoms 2912:IUCr 2846:JEOL 2717:WBDF 2712:WDXS 2662:EBIC 2657:EELS 2652:ECCI 2640:EBSD 2620:CBED 2568:STEM 2238:PMID 2181:PMID 2132:PMID 2083:PMID 2034:PMID 1985:PMID 1977:ISSN 1886:PMID 1821:PMID 1778:PMID 1729:PMID 1680:PMID 1620:PMID 1602:ISSN 1561:PMID 1485:PMID 1467:ISSN 1423:PMID 1374:PMID 1317:PMID 1299:ISSN 1252:PMID 1234:ISSN 1177:PMID 1169:ISSN 1111:PMID 990:PMID 955:PMID 896:ISSN 838:2022 790:PMID 764:Cell 741:PMID 656:CroV 482:The 470:and 360:and 338:KRAS 334:UCLA 171:and 2682:FEM 2677:FIB 2645:TKD 2635:EDS 2538:TEM 2500:SEM 2475:EMP 2265:doi 2228:PMC 2220:doi 2208:361 2171:PMC 2163:doi 2122:PMC 2114:doi 2073:PMC 2065:doi 2024:PMC 2016:doi 1967:doi 1963:433 1876:PMC 1868:doi 1813:doi 1801:587 1768:PMC 1760:doi 1719:PMC 1711:doi 1670:PMC 1662:doi 1650:587 1610:PMC 1592:doi 1588:294 1551:doi 1539:578 1475:PMC 1457:doi 1453:296 1413:PMC 1405:doi 1364:PMC 1356:doi 1344:120 1307:PMC 1291:doi 1242:PMC 1224:doi 1161:doi 1149:343 1103:doi 1091:308 1062:doi 1058:124 1029:doi 1017:299 982:doi 978:141 945:PMC 935:doi 888:doi 817:doi 780:PMC 772:doi 768:161 731:PMC 723:doi 598:000 594:at 538:in 325:SNR 321:kDa 289:FEI 100:or 38:be 2970:: 2457:EM 2259:, 2236:. 2226:. 2218:. 2206:. 2202:. 2179:. 2169:. 2159:57 2157:. 2153:. 2130:. 2120:. 2110:14 2108:. 2104:. 2081:. 2071:. 2059:. 2055:. 2032:. 2022:. 2012:11 2010:. 2006:. 1983:. 1975:. 1957:. 1931:. 1906:. 1884:. 1874:. 1866:. 1856:10 1854:. 1850:. 1827:. 1819:. 1811:. 1799:. 1776:. 1766:. 1756:67 1754:. 1750:. 1727:. 1717:. 1707:26 1705:. 1701:. 1678:. 1668:. 1660:. 1648:. 1644:. 1632:^ 1618:. 1608:. 1600:. 1586:. 1582:. 1559:. 1549:. 1537:. 1533:. 1508:. 1497:^ 1483:. 1473:. 1465:. 1451:. 1447:. 1435:^ 1421:. 1411:. 1401:53 1399:. 1395:. 1372:. 1362:. 1354:. 1342:. 1338:. 1315:. 1305:. 1297:. 1289:. 1279:10 1277:. 1273:. 1250:. 1240:. 1232:. 1222:. 1212:10 1210:. 1206:. 1183:. 1175:. 1167:. 1159:. 1147:. 1143:. 1131:^ 1117:. 1109:. 1101:. 1089:. 1085:. 1056:. 1052:. 1027:. 1015:. 1011:. 988:. 976:. 953:. 943:. 931:16 929:. 925:. 902:. 894:. 884:14 882:. 857:. 846:^ 825:. 815:. 811:. 788:. 778:. 766:. 762:. 739:. 729:. 721:. 711:14 709:. 705:. 596:50 556:, 552:, 356:, 311:). 256:. 248:, 244:, 161:°F 153:°C 115:, 2301:e 2294:t 2287:v 2271:. 2267:: 2261:7 2244:. 2222:: 2214:: 2187:. 2165:: 2138:. 2116:: 2089:. 2067:: 2061:4 2040:. 2018:: 1991:. 1969:: 1942:. 1917:. 1892:. 1870:: 1862:: 1835:. 1815:: 1807:: 1784:. 1762:: 1735:. 1713:: 1686:. 1664:: 1656:: 1626:. 1594:: 1567:. 1553:: 1545:: 1518:. 1491:. 1459:: 1429:. 1407:: 1380:. 1358:: 1350:: 1323:. 1293:: 1285:: 1258:. 1226:: 1218:: 1191:. 1163:: 1155:: 1125:. 1105:: 1097:: 1070:. 1064:: 1037:. 1031:: 1023:: 996:. 984:: 961:. 937:: 910:. 890:: 867:. 840:. 819:: 796:. 774:: 747:. 725:: 717:: 400:Å 299:( 275:( 157:K 72:( 46:)

Index

Transmission electron cryomicroscopy
merged
Discuss

University of Leeds
cryomicroscopy
cryogenic
vitreous ice
ethane
propane
X-ray crystallography
NMR spectroscopy
Nobel Prize in Chemistry
Jacques Dubochet
Joachim Frank
Richard Henderson
Nature Methods
transmission electron microscopy
liquid helium
°C
K
°F
liquid nitrogen
Erwin Knapek
Jacques Dubochet
Nature
valine
Alasdair McDowall
European Molecular Biology Laboratory
vitrified

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.