Knowledge

Commutation theorem for traces

Source 📝

4694: 2260:
The theory of Hilbert algebras can be used to deduce the commutation theorems of Murray and von Neumann; equally well the main results on Hilbert algebras can also be deduced directly from the commutation theorems for traces. The theory of Hilbert algebras was generalised by Takesaki as a tool for proving commutation theorems for semifinite weights in
2259:
naturally lead to examples of Hilbert algebras. Every von Neumann algebra endowed with a semifinite trace has a canonical "completed" or "full" Hilbert algebra associated with it; and conversely a completed Hilbert algebra of exactly this form can be canonically associated with every Hilbert algebra.
991: 2939: 1929: 883: 838: 1680: 3001: 3292: 2134:
is again valid in this case. This result can be proved directly by a variety of methods, but follows immediately from the result for finite traces, by repeated use of the following elementary fact:
1766: 1354: 2856: 1999: 1064: 1514: 406: 1475: 639: 3520: 315: 1276: 1400: 878: 702: 3402: 3378: 3342: 3318: 3147: 3115: 3054: 2780: 2748: 2443: 2389: 2358: 2298: 2125: 459: 3456: 2247:
The theory of Hilbert algebras was introduced by Godement (under the name "unitary algebras"), Segal and Dixmier to formalize the classical method of defining the trace for
529: 1433: 1153: 2049: 2657: 2591: 2504: 2875: 3534:
There is a one-one correspondence between von Neumann algebras on H with faithful semifinite trace and full Hilbert algebras with Hilbert space completion H.
715: 1850: 4583: 4419: 4246: 986:{\displaystyle \lambda (\Gamma )^{\prime \prime }=\rho (\Gamma )^{\prime },\,\,\rho (\Gamma )^{\prime \prime }=\lambda (\Gamma )^{\prime }.} 1608: 1552:
is required when there is no invariant measure in the equivalence class, even though the equivalence class of the measure is preserved by
534:
an orthogonal direct sum for the real part of the inner product. This is just the real orthogonal decomposition for the ±1 eigenspaces of
1301: 4738: 4409: 101: 3250: 1000: 4733: 4723: 4536: 4391: 2954: 4367: 3827: 3485: 1211: 1710: 1373: 4259: 2788: 4348: 4239: 4216: 4198: 4180: 4105: 3932: 3907: 3881: 3848: 3806: 1940: 40: 3414: 4618: 2455:
The Hilbert–Schmidt operators on an infinite-dimensional Hilbert space form a Hilbert algebra with inner product (
1480: 4263: 1192:, ÎŒ) be a probability space and let Γ be a countable discrete group of measure-preserving transformations of ( 369: 124: 1438: 605: 4718: 4414: 128: 278: 4697: 4470: 4404: 4232: 2252: 1528:
One of the most important cases of the group–measure space construction is when Γ is the group of integers
1124: 88:
and other closely related representations. In particular this framework led to an abstract version of the
4434: 1091: 661:
One of the simplest cases of the commutation theorem, where it can easily be seen directly, is that of a
234: 847: 671: 4679: 4633: 4557: 4439: 3560: 2261: 2242: 1549: 136: 4674: 4490: 3822:, Lecture Notes in Mathematics, vol. (AlgĂšbres d'OpĂ©rateurs), Springer-Verlag, pp. 19–143, 3383: 3359: 3323: 3299: 3128: 3096: 3020: 2761: 2729: 2424: 2370: 2339: 2279: 2091: 425: 3945:(1951), "MĂ©moire sur la thĂ©orie des caractĂšres dans les groupes localement compacts unimodulaires", 4526: 4424: 4327: 2214: 496: 4728: 4623: 4399: 1545: 1106: 1540:
must preserve the probability measure Ό. Semifinite traces are required to handle the case when
1412: 4654: 4598: 4562: 2256: 709: 705: 97: 85: 74: 4114:
Rieffel, M.A.; van Daele, A. (1977), "A bounded operator approach to Tomita–Takesaki theory",
2018: 4361: 4175:, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, 4061: 4024: 3989: 2562: 81: 47: 4357: 4637: 2934:{\displaystyle \lambda ({\mathfrak {A}})^{\prime \prime }=\rho ({\mathfrak {A}})^{\prime }} 2642: 2576: 2489: 2248: 1188:, it was one of von Neumann's original motivations for studying von Neumann algebras. Let ( 4224: 8: 4603: 4541: 4255: 3555: 3550: 666: 160: 67: 32: 4628: 4495: 4156: 4085: 4050: 4013: 3978: 230: 89: 1121:, ÎŒ) and the constant function 1 is a cyclic-separating trace vector. It follows that 4608: 4212: 4194: 4176: 4101: 3928: 3903: 3877: 3844: 3823: 3802: 3074:
The proof relies on the notion of "bounded elements" in the Hilbert space completion
1576: 1083: 3836: 4613: 4531: 4500: 4480: 4465: 4460: 4455: 4148: 4123: 4077: 4065: 4040: 4028: 4005: 3993: 3970: 3247:
The commutation theorem follows immediately from the last assertion. In particular
1924:{\displaystyle M_{0}=\left\{a\in M\mid \tau \left(a^{*}a\right)<\infty \right\}} 1784: 1174: 59: 51: 4292: 4475: 4429: 4377: 4372: 4343: 3916: 3891: 3869: 3857: 3633: 2528:
is a von Neumann algebra with faithful semifinite trace τ, then the *-subalgebra
1367: 113: 4302: 3921: 3896: 1821:
If in addition τ is non-zero on every non-zero projection, then τ is called a
4664: 4516: 4317: 3958: 3942: 1516:
is a cyclic-separating trace vector. Moreover the modular conjugation operator
1357: 1185: 1070: 109: 63: 55: 4712: 4669: 4593: 4322: 4307: 4297: 152: 36: 4128: 4659: 4312: 4282: 4136: 3862:
Les algÚbres d'opérateurs dans l'espace hilbertien: algÚbres de von Neumann
3815: 2754:
denote the extension of the involution to a conjugate-linear involution of
2620: 2559: 662: 105: 93: 78: 139:
was developed, heralding a new era in the theory of von Neumann algebras.
4588: 4578: 4485: 4287: 4168: 132: 20: 4100:, London Mathematical Society Monographs, vol. 14, Academic Press, 2865:. In this case the commutation theorem for Hilbert algebras states that 229:. It is called a trace vector because the last condition means that the 4521: 4353: 4160: 4089: 4054: 4017: 3982: 2713:
Any dense *-subalgebra of a Hilbert algebra is also a Hilbert algebra.
3799:
Operator Algebras and Quantum Statistical Mechanics 1, Second Edition
1067: 833:{\displaystyle (\lambda (g)f)(x)=f(g^{-1}x),\,\,(\rho (g)f)(x)=f(xg)} 192: 28: 4152: 4081: 4045: 4009: 3974: 1675:{\displaystyle \tau (\lambda a+\mu b)=\lambda \tau (a)+\mu \tau (b)} 3628:
can be identified with the space of square integrable functions on
54:
in the 1930s and applies to the von Neumann algebra generated by a
1798:τ is completely additive on orthogonal families of projections in 1532:, i.e. the case of a single invertible measurable transformation 1844:, τ) be the Hilbert space completion of the inner product space 1184:
The third class of examples combines the above two. Coming from
4139:(1953), "A non-commutative extension of abstract integration", 1066:
Exactly the same results remain true if Γ is allowed to be any
123:
It was not until the late 1960s, prompted partly by results in
1813:
is as orthogonal direct sum of projections with finite trace (
1196:, Ό). The group therefore acts unitarily on the Hilbert space 2996:{\displaystyle M=\lambda ({\mathfrak {A}})^{\prime \prime },} 2758:. Define a representation λ and an anti-representation ρ of 1559: 4254: 3528: 3014: 2869: 2085: 419: 3645:
It should not be confused with the von Neumann algebra on
16:
Identifies the commutant of a specific von Neumann algebra
3961:(1954), "ThĂ©orie des caractĂšres. I. AlgĂšbres unitaires", 3478:) and ∞ otherwise, yields a faithful semifinite trace on 2674:) is a Hilbert algebra with the usual inner product from 2600:) is a Hilbert algebra with the usual inner product from 2513:) is a Hilbert algebra with the usual inner product from 1073:. The von Neumann algebra λ(Γ)' ' is usually called the 142: 2535:
defined above is a Hilbert algebra with inner product (
2264:; they can be dispensed with when dealing with states. 2081:= I. The commutation theorem of Murray and von Neumann 3161:). In this case it is straightforward to prove that: 3006:
the von Neumann algebra generated by the operators λ(
2985: 2900: 953: 904: 3488: 3417: 3386: 3362: 3326: 3302: 3253: 3131: 3099: 3023: 2957: 2878: 2791: 2764: 2732: 2645: 2579: 2492: 2427: 2373: 2342: 2282: 2094: 2021: 1943: 1853: 1713: 1611: 1483: 1441: 1415: 1376: 1304: 1214: 1127: 1003: 886: 850: 718: 674: 608: 499: 428: 372: 281: 468:
One of the easiest ways to see this is to introduce
112:. Their work was put in final form in the 1950s by 4584:Spectral theory of ordinary differential equations 3920: 3895: 3514: 3450: 3396: 3372: 3336: 3312: 3286: 3141: 3109: 3048: 2995: 2933: 2850: 2774: 2742: 2651: 2585: 2498: 2437: 2383: 2352: 2292: 2119: 2043: 1993: 1923: 1761:{\displaystyle \tau \left(uau^{*}\right)=\tau (a)} 1760: 1674: 1544:(or more generally Γ) only preserves an infinite 1508: 1469: 1427: 1394: 1349:{\displaystyle H_{1}=H\otimes \ell ^{2}(\Gamma ),} 1348: 1270: 1147: 1058: 985: 872: 832: 696: 633: 523: 453: 400: 309: 73:Another important application is in the theory of 4060: 4023: 3988: 2851:{\displaystyle \lambda (a)x=ax,\,\,\rho (a)x=xa.} 4710: 4113: 3796: 3747: 3593: 3578: 2861:These actions extend continuously to actions on 1286:and normalises the Abelian von Neumann algebra 3820:Sur la thĂ©orie non commutative de l’intĂ©gration 3681: 3679: 2478:, ÎŒ) is an infinite measure space, the algebra 1994:{\displaystyle (a,b)=\tau \left(b^{*}a\right).} 3287:{\displaystyle M=\lambda ({\mathfrak {B}})''.} 2073:and extends to a conjugate-linear isometry of 1059:{\displaystyle Jf(g)={\overline {f(g^{-1})}}.} 4240: 4039:(2), American Mathematical Society: 208–248, 92:for unimodular locally compact groups due to 3676: 2782:on itself by left and right multiplication: 1509:{\displaystyle \Omega =1\otimes \delta _{1}} 1402:is defined to be the von Neumann algebra on 249:-module. It is called separating because if 3607: 3605: 3603: 3601: 3344:as a dense *-subalgebra. It is said to be 3063:These results were proved independently by 1082:Another important example is provided by a 84:, where the theory has been applied to the 4247: 4233: 2750:with respect to the inner product and let 2012:and can be identified with its image. Let 102:Plancherel theorem for spherical functions 4127: 4098:C* algebras and their automorphism groups 4044: 3835: 3770: 3589: 3587: 2820: 2819: 1560:Commutation theorem for semifinite traces 935: 934: 880:and the commutation theorem implies that 781: 780: 401:{\displaystyle JMJ\subseteq M^{\prime }.} 4537:Group algebra of a locally compact group 4206: 4188: 4095: 3957: 3941: 3898:Les C*-algĂšbres et leurs reprĂ©sentations 3781: 3736: 3696: 3685: 3598: 3064: 1470:{\displaystyle U_{g}\otimes \lambda (g)} 634:{\displaystyle JM^{\prime }J\subseteq M} 241:. It is called cyclic since Ω generates 3915: 3890: 3868: 3856: 3758: 3611: 328:defines a conjugate-linear isometry of 4711: 3814: 3671: 3584: 3515:{\displaystyle M_{0}={\mathfrak {B}}.} 2155:are two von Neumann algebras such that 583:In particular Ω is a trace vector for 415:of Murray and von Neumann states that 310:{\displaystyle Ja\Omega =a^{*}\Omega } 4228: 4167: 4147:(3), Annals of Mathematics: 401–457, 4135: 4076:(4), Annals of Mathematics: 716–808, 4004:(1), Annals of Mathematics: 116–229, 3797:Bratteli, O.; Robinson, D.W. (1987), 3708: 3068: 2308:* and an inner product (,) such that 1271:{\displaystyle U_{g}f(x)=f(g^{-1}x),} 486:denotes the self-adjoint elements in 233:corresponding to Ω defines a tracial 143:Commutation theorem for finite traces 4068:(1943), "On rings of operators IV", 4031:(1937), "On rings of operators II", 135:, that the more general non-tracial 46:The first such result was proved by 4173:Trace ideals and their applications 3969:(1), Annals of Mathematics: 47–62, 3504: 3389: 3365: 3329: 3320:forms a Hilbert algebra containing 3305: 3268: 3190:is given by the bounded operator ρ( 3168:is also a bounded element, denoted 3134: 3102: 2972: 2916: 2887: 2767: 2735: 2726:be the Hilbert space completion of 2430: 2376: 2345: 2285: 2236: 1548:measure; and the full force of the 665:Γ acting on the finite-dimensional 472:, the closure of the real subspace 13: 3296:The space of all bounded elements 3153:extends to a bounded operator on 3041: 2982: 2926: 2897: 2394:* is the adjoint, in other words ( 2112: 1934:with respect to the inner product 1913: 1484: 1395:{\displaystyle M=A\rtimes \Gamma } 1389: 1337: 1173:), the von Neumann algebra of all 975: 967: 950: 942: 926: 918: 901: 893: 873:{\displaystyle \ell ^{2}(\Gamma )} 864: 697:{\displaystyle \ell ^{2}(\Gamma )} 688: 644:follows by reversing the roles of 617: 446: 390: 304: 288: 14: 4750: 4739:Theorems in representation theory 3996:(1936), "On rings of operators", 2698:) denotes the closed subspace of 4693: 4692: 4619:Topological quantum field theory 2417:the linear span of all products 1363:group–measure space construction 351:It is immediately verified that 4734:Theorems in functional analysis 4724:Representation theory of groups 3775: 3764: 3752: 3741: 3730: 3713: 3397:{\displaystyle {\mathfrak {B}}} 3373:{\displaystyle {\mathfrak {B}}} 3337:{\displaystyle {\mathfrak {A}}} 3313:{\displaystyle {\mathfrak {B}}} 3142:{\displaystyle {\mathfrak {A}}} 3110:{\displaystyle {\mathfrak {A}}} 3049:{\displaystyle JMJ=M^{\prime }} 2775:{\displaystyle {\mathfrak {A}}} 2743:{\displaystyle {\mathfrak {A}}} 2438:{\displaystyle {\mathfrak {A}}} 2384:{\displaystyle {\mathfrak {A}}} 2363:left multiplication by a fixed 2353:{\displaystyle {\mathfrak {A}}} 2293:{\displaystyle {\mathfrak {A}}} 2257:representation theory of groups 2120:{\displaystyle JMJ=M^{\prime }} 2008:acts by left multiplication on 1524:' can be explicitly identified. 454:{\displaystyle JMJ=M^{\prime }} 167:with a unit vector Ω such that 4209:Theory of Operator Algebras II 3702: 3690: 3665: 3639: 3616: 3572: 3451:{\displaystyle \tau (x)=(a,a)} 3445: 3433: 3427: 3421: 3274: 3263: 2978: 2967: 2922: 2911: 2893: 2882: 2830: 2824: 2801: 2795: 1956: 1944: 1755: 1749: 1669: 1663: 1651: 1645: 1633: 1615: 1464: 1458: 1435:and the normalising operators 1340: 1334: 1262: 1243: 1234: 1228: 1208:, ÎŒ) according to the formula 1044: 1028: 1016: 1010: 971: 964: 946: 939: 922: 915: 897: 890: 867: 861: 827: 818: 809: 803: 800: 794: 788: 782: 774: 755: 746: 740: 737: 731: 725: 719: 691: 685: 227:cyclic-separating trace vector 125:algebraic quantum field theory 25:commutation theorem for traces 1: 4415:Uniform boundedness principle 4191:Theory of Operator Algebras I 3841:Treatise on Analysis, Vol. II 3790: 3380:must actually already lie in 2717: 2449: 2267: 1568:be a von Neumann algebra and 599:'. So the opposite inclusion 524:{\displaystyle H=K\oplus iK,} 129:quantum statistical mechanics 3748:Bratteli & Robinson 1987 3719:Dixmier uses the adjectives 3594:Rieffel & van Daele 1977 3579:Bratteli & Robinson 1987 2071:modular conjugation operator 1828:If τ is a faithful trace on 1048: 346:modular conjugation operator 7: 3544: 2187:for a family of projections 1092:Abelian von Neumann algebra 655: 10: 4755: 4558:Invariant subspace problem 2702:-biinvariant functions in 2623:, the convolution algebra 2565:, the convolution algebra 2240: 1428:{\displaystyle A\otimes I} 1162:maximal Abelian subalgebra 712:are given by the formulas 332:with square the identity, 27:explicitly identifies the 4688: 4647: 4571: 4550: 4509: 4448: 4390: 4336: 4278: 4271: 3632:x Γ with respect to the 2253:Hilbert–Schmidt operators 1409:generated by the algebra 1076:group von Neumann algebra 225:The vector Ω is called a 116:as part of the theory of 64:measurable transformation 4527:Spectrum of a C*-algebra 3566: 3216:' is generated by the ρ( 2215:strong operator topology 2044:{\displaystyle Ja=a^{*}} 2004:The von Neumann algebra 1107:multiplication operators 997:is given by the formula 538:. On the other hand for 359:commute on the subspace 272:It follows that the map 4624:Noncommutative geometry 4129:10.2140/pjm.1977.69.187 4096:Pedersen, G.K. (1979), 4033:Trans. Amer. Math. Soc. 3352:because any element in 1595:is a functional τ from 1360:of Hilbert spaces. The 710:unitary representations 706:regular representations 568:is self-adjoint. Hence 564:Ω, Ω) is real, because 75:unitary representations 4680:Tomita–Takesaki theory 4655:Approximation property 4599:Calculus of variations 3561:Tomita–Takesaki theory 3516: 3452: 3404:. The functional τ on 3398: 3374: 3338: 3314: 3288: 3143: 3111: 3050: 2997: 2935: 2852: 2776: 2744: 2653: 2587: 2500: 2439: 2391:is a bounded operator; 2385: 2354: 2294: 2262:Tomita–Takesaki theory 2255:. Applications in the 2243:Tomita–Takesaki theory 2121: 2045: 1995: 1925: 1762: 1676: 1550:Tomita–Takesaki theory 1510: 1471: 1429: 1396: 1350: 1272: 1149: 1060: 987: 874: 834: 704:by the left and right 698: 635: 525: 455: 402: 344:is usually called the 311: 137:Tomita–Takesaki theory 86:regular representation 82:locally compact groups 4675:Banach–Mazur distance 4638:Generalized functions 4207:Takesaki, M. (2002), 4189:Takesaki, M. (1979), 3938:(English translation) 3887:(English translation) 3517: 3453: 3399: 3375: 3339: 3315: 3289: 3144: 3112: 3051: 2998: 2936: 2853: 2777: 2745: 2654: 2652:{\displaystyle \cap } 2588: 2586:{\displaystyle \cap } 2563:locally compact group 2501: 2499:{\displaystyle \cap } 2440: 2386: 2355: 2295: 2249:trace class operators 2122: 2046: 1996: 1926: 1763: 1677: 1511: 1472: 1430: 1397: 1351: 1273: 1150: 1148:{\displaystyle A'=A,} 1061: 988: 875: 835: 699: 636: 560:, the inner product ( 526: 456: 403: 312: 131:due to the school of 48:Francis Joseph Murray 39:in the presence of a 4719:Von Neumann algebras 4420:Kakutani fixed-point 4405:Riesz representation 3947:J. Math. Pures Appl. 3902:, Gauthier-Villars, 3874:Von Neumann algebras 3486: 3415: 3384: 3360: 3356:bounded relative to 3324: 3300: 3251: 3129: 3097: 3021: 2955: 2876: 2789: 2762: 2730: 2643: 2577: 2490: 2425: 2371: 2340: 2280: 2092: 2069:is again called the 2019: 1941: 1851: 1711: 1609: 1481: 1439: 1413: 1374: 1370:von Neumann algebra 1302: 1212: 1125: 1001: 884: 848: 716: 672: 606: 497: 426: 370: 279: 4604:Functional calculus 4563:Mahler's conjecture 4542:Von Neumann algebra 4256:Functional analysis 4211:, Springer-Verlag, 4193:, Springer-Verlag, 3801:, Springer-Verlag, 3761:, Appendix A54–A61. 3556:Affiliated operator 3551:von Neumann algebra 2198:in the commutant of 1809:each projection in 1587:(or sometimes just 1583:. By definition, a 667:inner product space 413:commutation theorem 161:von Neumann algebra 98:Forrest Stinespring 68:probability measure 33:von Neumann algebra 4629:Riemann hypothesis 4328:Topological vector 3864:, Gauthier-Villars 3843:, Academic Press, 3699:, pp. 324–325 3653:and the operators 3512: 3448: 3394: 3370: 3334: 3310: 3284: 3139: 3107: 3046: 2993: 2931: 2848: 2772: 2740: 2649: 2583: 2496: 2435: 2381: 2350: 2290: 2117: 2041: 1991: 1921: 1793:unitary invariance 1758: 1672: 1577:positive operators 1506: 1467: 1425: 1392: 1346: 1268: 1145: 1056: 983: 870: 830: 694: 631: 521: 490:. It follows that 451: 398: 307: 265:Ω= (0), and hence 231:matrix coefficient 104:associated with a 90:Plancherel theorem 62:associated with a 4706: 4705: 4609:Integral operator 4386: 4385: 3927:, North Holland, 3876:, North Holland, 3829:978-3-540-09512-5 3540: 3539: 3059: 3058: 2944: 2943: 2130: 2129: 1175:bounded operators 1084:probability space 1051: 464: 463: 245:as a topological 183:' Ω is dense in 4746: 4696: 4695: 4614:Jones polynomial 4532:Operator algebra 4276: 4275: 4249: 4242: 4235: 4226: 4225: 4221: 4203: 4185: 4163: 4132: 4131: 4116:Pacific J. Math. 4110: 4092: 4057: 4048: 4020: 3985: 3954: 3937: 3926: 3912: 3901: 3886: 3865: 3853: 3832: 3811: 3785: 3784:, pp. 52–53 3779: 3773: 3768: 3762: 3756: 3750: 3745: 3739: 3734: 3728: 3717: 3711: 3706: 3700: 3694: 3688: 3683: 3674: 3669: 3663: 3643: 3637: 3620: 3614: 3609: 3596: 3591: 3582: 3581:, pp. 81–82 3576: 3529: 3521: 3519: 3518: 3513: 3508: 3507: 3498: 3497: 3457: 3455: 3454: 3449: 3403: 3401: 3400: 3395: 3393: 3392: 3379: 3377: 3376: 3371: 3369: 3368: 3343: 3341: 3340: 3335: 3333: 3332: 3319: 3317: 3316: 3311: 3309: 3308: 3293: 3291: 3290: 3285: 3280: 3272: 3271: 3148: 3146: 3145: 3140: 3138: 3137: 3116: 3114: 3113: 3108: 3106: 3105: 3055: 3053: 3052: 3047: 3045: 3044: 3015: 3002: 3000: 2999: 2994: 2989: 2988: 2976: 2975: 2940: 2938: 2937: 2932: 2930: 2929: 2920: 2919: 2904: 2903: 2891: 2890: 2870: 2857: 2855: 2854: 2849: 2781: 2779: 2778: 2773: 2771: 2770: 2749: 2747: 2746: 2741: 2739: 2738: 2658: 2656: 2655: 2650: 2592: 2590: 2589: 2584: 2505: 2503: 2502: 2497: 2444: 2442: 2441: 2436: 2434: 2433: 2390: 2388: 2387: 2382: 2380: 2379: 2359: 2357: 2356: 2351: 2349: 2348: 2300:with involution 2299: 2297: 2296: 2291: 2289: 2288: 2237:Hilbert algebras 2126: 2124: 2123: 2118: 2116: 2115: 2086: 2050: 2048: 2047: 2042: 2040: 2039: 2000: 1998: 1997: 1992: 1987: 1983: 1979: 1978: 1930: 1928: 1927: 1922: 1920: 1916: 1909: 1905: 1901: 1900: 1863: 1862: 1785:unitary operator 1767: 1765: 1764: 1759: 1742: 1738: 1737: 1736: 1703: 1702: 1681: 1679: 1678: 1673: 1602:into such that 1585:semifinite trace 1515: 1513: 1512: 1507: 1505: 1504: 1476: 1474: 1473: 1468: 1451: 1450: 1434: 1432: 1431: 1426: 1401: 1399: 1398: 1393: 1355: 1353: 1352: 1347: 1333: 1332: 1314: 1313: 1277: 1275: 1274: 1269: 1258: 1257: 1224: 1223: 1154: 1152: 1151: 1146: 1135: 1065: 1063: 1062: 1057: 1052: 1047: 1043: 1042: 1023: 992: 990: 989: 984: 979: 978: 957: 956: 930: 929: 908: 907: 879: 877: 876: 871: 860: 859: 839: 837: 836: 831: 770: 769: 703: 701: 700: 695: 684: 683: 640: 638: 637: 632: 621: 620: 591:is unaltered if 572:is unaltered if 530: 528: 527: 522: 460: 458: 457: 452: 450: 449: 420: 407: 405: 404: 399: 394: 393: 316: 314: 313: 308: 303: 302: 118:Hilbert algebras 100:and an abstract 60:dynamical system 52:John von Neumann 4754: 4753: 4749: 4748: 4747: 4745: 4744: 4743: 4709: 4708: 4707: 4702: 4684: 4648:Advanced topics 4643: 4567: 4546: 4505: 4471:Hilbert–Schmidt 4444: 4435:Gelfand–Naimark 4382: 4332: 4267: 4253: 4219: 4201: 4183: 4153:10.2307/1969729 4108: 4082:10.2307/1969107 4066:von Neumann, J. 4046:10.2307/1989620 4029:von Neumann, J. 4010:10.2307/1968693 3994:von Neumann, J. 3975:10.2307/1969832 3935: 3910: 3884: 3851: 3830: 3809: 3793: 3788: 3780: 3776: 3769: 3765: 3757: 3753: 3746: 3742: 3735: 3731: 3718: 3714: 3707: 3703: 3695: 3691: 3684: 3677: 3670: 3666: 3661: 3644: 3640: 3634:product measure 3627: 3621: 3617: 3610: 3599: 3592: 3585: 3577: 3573: 3569: 3547: 3503: 3502: 3493: 3489: 3487: 3484: 3483: 3416: 3413: 3412: 3410: 3388: 3387: 3385: 3382: 3381: 3364: 3363: 3361: 3358: 3357: 3328: 3327: 3325: 3322: 3321: 3304: 3303: 3301: 3298: 3297: 3273: 3267: 3266: 3252: 3249: 3248: 3157:, denoted by λ( 3133: 3132: 3130: 3127: 3126: 3101: 3100: 3098: 3095: 3094: 3065:Godement (1954) 3040: 3036: 3022: 3019: 3018: 2981: 2977: 2971: 2970: 2956: 2953: 2952: 2925: 2921: 2915: 2914: 2896: 2892: 2886: 2885: 2877: 2874: 2873: 2790: 2787: 2786: 2766: 2765: 2763: 2760: 2759: 2734: 2733: 2731: 2728: 2727: 2720: 2644: 2641: 2640: 2578: 2575: 2574: 2534: 2491: 2488: 2487: 2452: 2429: 2428: 2426: 2423: 2422: 2375: 2374: 2372: 2369: 2368: 2344: 2343: 2341: 2338: 2337: 2284: 2283: 2281: 2278: 2277: 2274:Hilbert algebra 2270: 2245: 2239: 2231: 2224: 2205: 2196: 2185: 2179: 2170: 2164: 2153: 2146: 2111: 2107: 2093: 2090: 2089: 2065:. The operator 2064: 2035: 2031: 2020: 2017: 2016: 1974: 1970: 1969: 1965: 1942: 1939: 1938: 1896: 1892: 1891: 1887: 1871: 1867: 1858: 1854: 1852: 1849: 1848: 1778: 1732: 1728: 1721: 1717: 1712: 1709: 1708: 1700: 1699: 1696: 1610: 1607: 1606: 1601: 1574: 1562: 1500: 1496: 1482: 1479: 1478: 1446: 1442: 1440: 1437: 1436: 1414: 1411: 1410: 1408: 1375: 1372: 1371: 1368:crossed product 1328: 1324: 1309: 1305: 1303: 1300: 1299: 1250: 1246: 1219: 1215: 1213: 1210: 1209: 1128: 1126: 1123: 1122: 1035: 1031: 1024: 1022: 1002: 999: 998: 974: 970: 949: 945: 925: 921: 900: 896: 885: 882: 881: 855: 851: 849: 846: 845: 762: 758: 717: 714: 713: 708:λ and ρ. These 679: 675: 673: 670: 669: 658: 616: 612: 607: 604: 603: 595:is replaced by 576:is replaced by 559: 548: 498: 495: 494: 485: 478: 445: 441: 427: 424: 423: 389: 385: 371: 368: 367: 340:. The operator 298: 294: 280: 277: 276: 174:Ω is dense in 145: 114:Jacques Dixmier 17: 12: 11: 5: 4752: 4742: 4741: 4736: 4731: 4729:Ergodic theory 4726: 4721: 4704: 4703: 4701: 4700: 4689: 4686: 4685: 4683: 4682: 4677: 4672: 4667: 4665:Choquet theory 4662: 4657: 4651: 4649: 4645: 4644: 4642: 4641: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4591: 4586: 4581: 4575: 4573: 4569: 4568: 4566: 4565: 4560: 4554: 4552: 4548: 4547: 4545: 4544: 4539: 4534: 4529: 4524: 4519: 4517:Banach algebra 4513: 4511: 4507: 4506: 4504: 4503: 4498: 4493: 4488: 4483: 4478: 4473: 4468: 4463: 4458: 4452: 4450: 4446: 4445: 4443: 4442: 4440:Banach–Alaoglu 4437: 4432: 4427: 4422: 4417: 4412: 4407: 4402: 4396: 4394: 4388: 4387: 4384: 4383: 4381: 4380: 4375: 4370: 4368:Locally convex 4365: 4351: 4346: 4340: 4338: 4334: 4333: 4331: 4330: 4325: 4320: 4315: 4310: 4305: 4300: 4295: 4290: 4285: 4279: 4273: 4269: 4268: 4252: 4251: 4244: 4237: 4229: 4223: 4222: 4217: 4204: 4199: 4186: 4181: 4165: 4133: 4111: 4106: 4093: 4058: 4021: 3986: 3955: 3939: 3933: 3913: 3908: 3888: 3882: 3866: 3854: 3849: 3833: 3828: 3812: 3807: 3792: 3789: 3787: 3786: 3774: 3771:DieudonnĂ© 1976 3763: 3751: 3740: 3729: 3712: 3701: 3689: 3675: 3664: 3657: 3638: 3625: 3615: 3597: 3583: 3570: 3568: 3565: 3564: 3563: 3558: 3553: 3546: 3543: 3542: 3541: 3538: 3537: 3511: 3506: 3501: 3496: 3492: 3447: 3444: 3441: 3438: 3435: 3432: 3429: 3426: 3423: 3420: 3408: 3391: 3367: 3331: 3307: 3283: 3279: 3276: 3270: 3265: 3262: 3259: 3256: 3245: 3244: 3235:) commute for 3225: 3211: 3181: 3136: 3104: 3089:is said to be 3081:An element of 3061: 3060: 3057: 3056: 3043: 3039: 3035: 3032: 3029: 3026: 3004: 3003: 2992: 2987: 2984: 2980: 2974: 2969: 2966: 2963: 2960: 2946: 2945: 2942: 2941: 2928: 2924: 2918: 2913: 2910: 2907: 2902: 2899: 2895: 2889: 2884: 2881: 2859: 2858: 2847: 2844: 2841: 2838: 2835: 2832: 2829: 2826: 2823: 2818: 2815: 2812: 2809: 2806: 2803: 2800: 2797: 2794: 2769: 2737: 2719: 2716: 2715: 2714: 2711: 2648: 2609: 2582: 2552: 2532: 2522: 2495: 2472: 2451: 2448: 2447: 2446: 2432: 2415: 2392: 2378: 2361: 2347: 2287: 2276:is an algebra 2269: 2266: 2251:starting from 2238: 2235: 2234: 2233: 2229: 2222: 2203: 2192: 2183: 2175: 2168: 2160: 2151: 2144: 2132: 2131: 2128: 2127: 2114: 2110: 2106: 2103: 2100: 2097: 2062: 2052: 2051: 2038: 2034: 2030: 2027: 2024: 2002: 2001: 1990: 1986: 1982: 1977: 1973: 1968: 1964: 1961: 1958: 1955: 1952: 1949: 1946: 1932: 1931: 1919: 1915: 1912: 1908: 1904: 1899: 1895: 1890: 1886: 1883: 1880: 1877: 1874: 1870: 1866: 1861: 1857: 1823:faithful trace 1819: 1818: 1815:semifiniteness 1807: 1796: 1776: 1757: 1754: 1751: 1748: 1745: 1741: 1735: 1731: 1727: 1724: 1720: 1716: 1706: 1697:and λ, ÎŒ ≄ 0 ( 1694: 1671: 1668: 1665: 1662: 1659: 1656: 1653: 1650: 1647: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1599: 1572: 1561: 1558: 1526: 1525: 1520:and commutant 1503: 1499: 1495: 1492: 1489: 1486: 1466: 1463: 1460: 1457: 1454: 1449: 1445: 1424: 1421: 1418: 1406: 1391: 1388: 1385: 1382: 1379: 1358:tensor product 1345: 1342: 1339: 1336: 1331: 1327: 1323: 1320: 1317: 1312: 1308: 1267: 1264: 1261: 1256: 1253: 1249: 1245: 1242: 1239: 1236: 1233: 1230: 1227: 1222: 1218: 1186:ergodic theory 1182: 1144: 1141: 1138: 1134: 1131: 1080: 1071:discrete group 1055: 1050: 1046: 1041: 1038: 1034: 1030: 1027: 1021: 1018: 1015: 1012: 1009: 1006: 982: 977: 973: 969: 966: 963: 960: 955: 952: 948: 944: 941: 938: 933: 928: 924: 920: 917: 914: 911: 906: 903: 899: 895: 892: 889: 869: 866: 863: 858: 854: 829: 826: 823: 820: 817: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 784: 779: 776: 773: 768: 765: 761: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 693: 690: 687: 682: 678: 657: 654: 642: 641: 630: 627: 624: 619: 615: 611: 557: 546: 532: 531: 520: 517: 514: 511: 508: 505: 502: 483: 476: 466: 465: 462: 461: 448: 444: 440: 437: 434: 431: 409: 408: 397: 392: 388: 384: 381: 378: 375: 318: 317: 306: 301: 297: 293: 290: 287: 284: 223: 222: 209:Ω, Ω) for all 199: 191:' denotes the 178: 144: 141: 110:Roger Godement 56:discrete group 31:of a specific 15: 9: 6: 4: 3: 2: 4751: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4716: 4714: 4699: 4691: 4690: 4687: 4681: 4678: 4676: 4673: 4671: 4670:Weak topology 4668: 4666: 4663: 4661: 4658: 4656: 4653: 4652: 4650: 4646: 4639: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4594:Index theorem 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4576: 4574: 4570: 4564: 4561: 4559: 4556: 4555: 4553: 4551:Open problems 4549: 4543: 4540: 4538: 4535: 4533: 4530: 4528: 4525: 4523: 4520: 4518: 4515: 4514: 4512: 4508: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4453: 4451: 4447: 4441: 4438: 4436: 4433: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4401: 4398: 4397: 4395: 4393: 4389: 4379: 4376: 4374: 4371: 4369: 4366: 4363: 4359: 4355: 4352: 4350: 4347: 4345: 4342: 4341: 4339: 4335: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4306: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4280: 4277: 4274: 4270: 4265: 4261: 4257: 4250: 4245: 4243: 4238: 4236: 4231: 4230: 4227: 4220: 4218:3-540-42248-X 4214: 4210: 4205: 4202: 4200:3-540-42914-X 4196: 4192: 4187: 4184: 4182:0-521-22286-9 4178: 4174: 4170: 4166: 4162: 4158: 4154: 4150: 4146: 4142: 4141:Ann. of Math. 4138: 4134: 4130: 4125: 4121: 4117: 4112: 4109: 4107:0-12-549450-5 4103: 4099: 4094: 4091: 4087: 4083: 4079: 4075: 4071: 4070:Ann. of Math. 4067: 4063: 4059: 4056: 4052: 4047: 4042: 4038: 4034: 4030: 4026: 4022: 4019: 4015: 4011: 4007: 4003: 3999: 3998:Ann. of Math. 3995: 3991: 3987: 3984: 3980: 3976: 3972: 3968: 3964: 3963:Ann. of Math. 3960: 3956: 3952: 3948: 3944: 3940: 3936: 3934:0-7204-0762-1 3930: 3925: 3924: 3918: 3914: 3911: 3909:0-7204-0762-1 3905: 3900: 3899: 3893: 3889: 3885: 3883:0-444-86308-7 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3852: 3850:0-12-215502-5 3846: 3842: 3838: 3837:DieudonnĂ©, J. 3834: 3831: 3825: 3821: 3817: 3813: 3810: 3808:3-540-17093-6 3804: 3800: 3795: 3794: 3783: 3782:Godement 1954 3778: 3772: 3767: 3760: 3755: 3749: 3744: 3738: 3737:Pedersen 1979 3733: 3726: 3722: 3716: 3710: 3705: 3698: 3697:Takesaki 1979 3693: 3687: 3686:Takesaki 2002 3682: 3680: 3673: 3668: 3660: 3656: 3652: 3649:generated by 3648: 3642: 3635: 3631: 3624: 3619: 3613: 3608: 3606: 3604: 3602: 3595: 3590: 3588: 3580: 3575: 3571: 3562: 3559: 3557: 3554: 3552: 3549: 3548: 3536: 3535: 3531: 3530: 3527: 3526: 3525: 3522: 3509: 3499: 3494: 3490: 3481: 3477: 3473: 3469: 3465: 3461: 3442: 3439: 3436: 3430: 3424: 3418: 3407: 3355: 3351: 3347: 3294: 3281: 3277: 3260: 3257: 3254: 3242: 3238: 3234: 3230: 3226: 3223: 3219: 3215: 3212: 3209: 3205: 3201: 3197: 3193: 3189: 3185: 3182: 3179: 3175: 3171: 3167: 3164: 3163: 3162: 3160: 3156: 3152: 3124: 3120: 3117:) if the map 3093:(relative to 3092: 3088: 3084: 3079: 3077: 3072: 3070: 3066: 3037: 3033: 3030: 3027: 3024: 3017: 3016: 3013: 3012: 3011: 3009: 2990: 2964: 2961: 2958: 2951: 2950: 2949: 2908: 2905: 2879: 2872: 2871: 2868: 2867: 2866: 2864: 2845: 2842: 2839: 2836: 2833: 2827: 2821: 2816: 2813: 2810: 2807: 2804: 2798: 2792: 2785: 2784: 2783: 2757: 2753: 2725: 2712: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2646: 2638: 2634: 2630: 2626: 2622: 2618: 2614: 2610: 2607: 2603: 2599: 2595: 2580: 2572: 2568: 2564: 2561: 2557: 2553: 2550: 2546: 2542: 2538: 2531: 2527: 2523: 2520: 2516: 2512: 2508: 2493: 2485: 2481: 2477: 2473: 2470: 2466: 2462: 2458: 2454: 2453: 2420: 2416: 2413: 2409: 2405: 2401: 2397: 2393: 2366: 2362: 2335: 2331: 2327: 2323: 2319: 2315: 2311: 2310: 2309: 2307: 2303: 2275: 2265: 2263: 2258: 2254: 2250: 2244: 2228: 2221: 2218: 2216: 2211: 2208: 2207:increasing to 2202: 2199: 2195: 2191: 2188: 2182: 2178: 2174: 2167: 2163: 2159: 2156: 2150: 2143: 2140: 2137: 2136: 2135: 2108: 2104: 2101: 2098: 2095: 2088: 2087: 2084: 2083: 2082: 2080: 2076: 2072: 2068: 2061: 2057: 2036: 2032: 2028: 2025: 2022: 2015: 2014: 2013: 2011: 2007: 1988: 1984: 1980: 1975: 1971: 1966: 1962: 1959: 1953: 1950: 1947: 1937: 1936: 1935: 1917: 1910: 1906: 1902: 1897: 1893: 1888: 1884: 1881: 1878: 1875: 1872: 1868: 1864: 1859: 1855: 1847: 1846: 1845: 1843: 1839: 1835: 1831: 1826: 1824: 1816: 1812: 1808: 1805: 1801: 1797: 1794: 1790: 1786: 1782: 1775: 1771: 1752: 1746: 1743: 1739: 1733: 1729: 1725: 1722: 1718: 1714: 1707: 1704: 1701:semilinearity 1693: 1689: 1685: 1666: 1660: 1657: 1654: 1648: 1642: 1639: 1636: 1630: 1627: 1624: 1621: 1618: 1612: 1605: 1604: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1567: 1557: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1523: 1519: 1501: 1497: 1493: 1490: 1487: 1477:. The vector 1461: 1455: 1452: 1447: 1443: 1422: 1419: 1416: 1405: 1386: 1383: 1380: 1377: 1369: 1365: 1364: 1359: 1343: 1329: 1325: 1321: 1318: 1315: 1310: 1306: 1297: 1293: 1289: 1285: 1281: 1265: 1259: 1254: 1251: 1247: 1240: 1237: 1231: 1225: 1220: 1216: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1180: 1176: 1172: 1168: 1164: 1163: 1158: 1142: 1139: 1136: 1132: 1129: 1120: 1116: 1112: 1108: 1105:, ÎŒ) acts by 1104: 1100: 1096: 1093: 1089: 1085: 1081: 1078: 1077: 1072: 1069: 1053: 1039: 1036: 1032: 1025: 1019: 1013: 1007: 1004: 996: 993:The operator 980: 961: 958: 936: 931: 912: 909: 887: 856: 852: 843: 824: 821: 815: 812: 806: 797: 791: 785: 777: 771: 766: 763: 759: 752: 749: 743: 734: 728: 722: 711: 707: 680: 676: 668: 664: 660: 659: 653: 651: 647: 628: 625: 622: 613: 609: 602: 601: 600: 598: 594: 590: 586: 581: 579: 575: 571: 567: 563: 556: 552: 545: 541: 537: 518: 515: 512: 509: 506: 503: 500: 493: 492: 491: 489: 482: 475: 471: 442: 438: 435: 432: 429: 422: 421: 418: 417: 416: 414: 395: 386: 382: 379: 376: 373: 366: 365: 364: 362: 358: 354: 349: 347: 343: 339: 335: 331: 327: 323: 299: 295: 291: 285: 282: 275: 274: 273: 270: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 220: 216: 212: 208: 204: 200: 198: 194: 190: 186: 182: 179: 177: 173: 170: 169: 168: 166: 162: 158: 154: 153:Hilbert space 150: 140: 138: 134: 130: 126: 121: 119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 80: 76: 71: 69: 66:preserving a 65: 61: 57: 53: 49: 44: 42: 38: 37:Hilbert space 34: 30: 26: 22: 4660:Balanced set 4634:Distribution 4572:Applications 4425:Krein–Milman 4410:Closed graph 4208: 4190: 4172: 4144: 4140: 4119: 4115: 4097: 4073: 4069: 4062:Murray, F.J. 4036: 4032: 4025:Murray, F.J. 4001: 3997: 3990:Murray, F.J. 3966: 3962: 3959:Godement, R. 3950: 3946: 3943:Godement, R. 3922: 3897: 3873: 3861: 3840: 3819: 3798: 3777: 3766: 3759:Dixmier 1977 3754: 3743: 3732: 3724: 3720: 3715: 3704: 3692: 3667: 3658: 3654: 3650: 3646: 3641: 3629: 3622: 3618: 3612:Dixmier 1957 3574: 3533: 3532: 3523: 3479: 3475: 3471: 3467: 3463: 3459: 3405: 3353: 3349: 3345: 3295: 3246: 3240: 3236: 3232: 3228: 3221: 3217: 3213: 3207: 3203: 3199: 3195: 3191: 3187: 3183: 3177: 3173: 3169: 3165: 3158: 3154: 3150: 3122: 3118: 3090: 3086: 3082: 3080: 3075: 3073: 3069:Segal (1953) 3062: 3007: 3005: 2948:Moreover if 2947: 2862: 2860: 2755: 2751: 2723: 2721: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2636: 2632: 2628: 2624: 2621:Gelfand pair 2616: 2612: 2605: 2601: 2597: 2593: 2570: 2566: 2555: 2548: 2544: 2540: 2536: 2529: 2525: 2518: 2514: 2510: 2506: 2483: 2479: 2475: 2468: 2464: 2460: 2456: 2421:is dense in 2418: 2411: 2407: 2403: 2399: 2395: 2364: 2333: 2329: 2325: 2321: 2317: 2313: 2305: 2301: 2273: 2271: 2246: 2226: 2219: 2212: 2209: 2206: 2200: 2197: 2193: 2189: 2186: 2180: 2176: 2172: 2165: 2161: 2157: 2154: 2148: 2141: 2138: 2133: 2078: 2074: 2070: 2066: 2059: 2055: 2053: 2009: 2005: 2003: 1933: 1841: 1837: 1833: 1829: 1827: 1822: 1820: 1814: 1810: 1803: 1799: 1792: 1788: 1780: 1773: 1769: 1698: 1691: 1687: 1683: 1596: 1592: 1588: 1584: 1580: 1569: 1565: 1563: 1553: 1541: 1537: 1533: 1529: 1527: 1521: 1517: 1403: 1362: 1361: 1295: 1291: 1287: 1283: 1279: 1205: 1201: 1197: 1193: 1189: 1178: 1170: 1166: 1161: 1160: 1156: 1118: 1114: 1110: 1102: 1098: 1094: 1087: 1075: 1074: 994: 841: 663:finite group 649: 645: 643: 596: 592: 588: 584: 582: 577: 573: 569: 565: 561: 554: 550: 543: 539: 535: 533: 487: 480: 473: 469: 467: 412: 410: 360: 356: 352: 350: 345: 341: 337: 333: 329: 325: 321: 319: 271: 266: 262: 258: 254: 250: 246: 242: 238: 226: 224: 218: 214: 210: 206: 202: 196: 188: 184: 180: 175: 171: 164: 156: 148: 146: 122: 117: 106:Gelfand pair 94:Irving Segal 72: 45: 35:acting on a 24: 18: 4589:Heat kernel 4579:Hardy space 4486:Trace class 4400:Hahn–Banach 4362:Topological 4164:(Section 5) 4137:Segal, I.E. 4122:: 187–221, 3923:C* algebras 3917:Dixmier, J. 3892:Dixmier, J. 3870:Dixmier, J. 3858:Dixmier, J. 3672:Connes 1979 3411:defined by 2077:satisfying 1575:the set of 363:Ω, so that 133:Rudolf Haag 21:mathematics 4713:Categories 4522:C*-algebra 4337:Properties 3816:Connes, A. 3791:References 3709:Simon 1979 2718:Properties 2560:unimodular 2268:Definition 2241:See also: 1546:equivalent 1298:, ÎŒ). Let 1090:, ÎŒ). The 253:Ω = 0 for 79:unimodular 58:or by the 4496:Unbounded 4491:Transpose 4449:Operators 4378:Separable 4373:Reflexive 4358:Algebraic 4344:Barrelled 4169:Simon, B. 3419:τ 3346:completed 3261:λ 3220:)'s with 3172:*, and λ( 3042:′ 2986:′ 2983:′ 2965:λ 2927:′ 2909:ρ 2901:′ 2898:′ 2880:λ 2822:ρ 2793:λ 2647:∩ 2581:∩ 2494:∩ 2113:′ 2037:∗ 1976:∗ 1963:τ 1914:∞ 1898:∗ 1885:τ 1882:∣ 1876:∈ 1804:normality 1747:τ 1734:∗ 1715:τ 1661:τ 1658:μ 1643:τ 1640:λ 1628:μ 1619:λ 1613:τ 1498:δ 1494:⊗ 1485:Ω 1456:λ 1453:⊗ 1420:⊗ 1390:Γ 1387:⋊ 1338:Γ 1326:ℓ 1322:⊗ 1252:− 1068:countable 1049:¯ 1037:− 976:′ 968:Γ 962:λ 954:′ 951:′ 943:Γ 937:ρ 927:′ 919:Γ 913:ρ 905:′ 902:′ 894:Γ 888:λ 865:Γ 853:ℓ 786:ρ 764:− 723:λ 689:Γ 677:ℓ 626:⊆ 618:′ 510:⊕ 479:Ω, where 447:′ 391:′ 383:⊆ 305:Ω 300:∗ 289:Ω 205:Ω, Ω) = ( 193:commutant 29:commutant 4698:Category 4510:Algebras 4392:Theorems 4349:Complete 4318:Schwartz 4264:glossary 4171:(1979), 3919:(1977), 3894:(1969), 3872:(1981), 3860:(1957), 3839:(1976), 3818:(1979), 3725:maximale 3545:See also 3278:″ 3243:bounded. 3231:) and ρ( 3224:bounded; 3010:), then 2682:); here 2463:) = Tr ( 2450:Examples 1556:(or Γ). 1155:so that 1133:′ 656:Examples 187:, where 4501:Unitary 4481:Nuclear 4466:Compact 4461:Bounded 4456:Adjoint 4430:Min–max 4323:Sobolev 4308:Nuclear 4298:Hilbert 4293:FrĂ©chet 4258: ( 4161:1969729 4090:1969107 4055:1989620 4018:1968693 3983:1969832 3953:: 1–110 3721:achevĂ©e 3176:*) = λ( 3091:bounded 2619:) is a 2543:) = τ( 2328:*) for 2213:in the 1536:. Here 261:, then 108:due to 4476:Normal 4313:Orlicz 4303:Hölder 4283:Banach 4272:Spaces 4260:topics 4215:  4197:  4179:  4159:  4104:  4088:  4053:  4016:  3981:  3931:  3906:  3880:  3847:  3826:  3805:  3524:Thus: 2217:, then 1832:, let 4288:Besov 4157:JSTOR 4086:JSTOR 4072:, 2, 4051:JSTOR 4014:JSTOR 4000:, 2, 3979:JSTOR 3567:Notes 3482:with 3149:into 2558:is a 2402:) = ( 2320:) = ( 1591:) on 1589:trace 1159:is a 1079:of Γ. 269:= 0. 235:state 151:be a 41:trace 23:, a 4636:(or 4354:Dual 4213:ISBN 4195:ISBN 4177:ISBN 4102:ISBN 3929:ISBN 3904:ISBN 3878:ISBN 3845:ISBN 3824:ISBN 3803:ISBN 3350:full 3194:) = 3067:and 2722:Let 2611:If ( 2474:If ( 2367:in 2054:for 1911:< 1779:and 1768:for 1682:for 1564:Let 1278:for 840:for 648:and 587:and 549:and 542:in 411:The 355:and 320:for 155:and 147:Let 127:and 96:and 50:and 4149:doi 4124:doi 4078:doi 4041:doi 4006:doi 3971:doi 3723:or 3458:if 3348:or 3206:on 3180:)*; 3125:of 3085:in 2554:If 2524:If 2336:in 2324:*, 2058:in 1787:in 1772:in 1690:in 1579:in 1366:or 1282:in 1177:on 1165:of 1109:on 844:in 580:'. 553:in 353:JMJ 324:in 263:aM' 257:in 237:on 217:in 195:of 163:on 120:. 77:of 70:. 43:. 19:In 4715:: 4262:– 4155:, 4145:57 4143:, 4120:69 4118:, 4084:, 4074:44 4064:; 4049:, 4037:41 4035:, 4027:; 4012:, 4002:37 3992:; 3977:, 3967:59 3965:, 3951:30 3949:, 3678:^ 3600:^ 3586:^ 3470:)* 3462:= 3239:, 3227:λ( 3202:*) 3198:λ( 3188:ax 3186:→ 3166:Jx 3123:xa 3121:→ 3078:. 3071:. 2710:). 2615:, 2608:). 2551:). 2539:, 2521:). 2486:) 2471:). 2459:, 2419:xy 2414:); 2406:, 2398:, 2396:xy 2332:, 2316:, 2272:A 2225:= 2171:= 2147:⊇ 2139:If 1836:= 1825:. 1817:). 1806:); 1795:); 1783:a 1705:); 1686:, 1356:a 1290:= 1200:= 1113:= 1097:= 652:. 650:M' 585:M' 566:ab 562:ab 558:sa 555:M' 547:sa 484:sa 477:sa 348:. 336:= 213:, 207:ba 203:ab 159:a 4640:) 4364:) 4360:/ 4356:( 4266:) 4248:e 4241:t 4234:v 4151:: 4126:: 4080:: 4043:: 4008:: 3973:: 3727:. 3662:. 3659:g 3655:U 3651:A 3647:H 3636:. 3630:X 3626:1 3623:H 3510:. 3505:B 3500:= 3495:0 3491:M 3480:M 3476:a 3474:( 3472:λ 3468:a 3466:( 3464:λ 3460:x 3446:) 3443:a 3440:, 3437:a 3434:( 3431:= 3428:) 3425:x 3422:( 3409:+ 3406:M 3390:B 3366:B 3354:H 3330:A 3306:B 3282:. 3275:) 3269:B 3264:( 3258:= 3255:M 3241:y 3237:x 3233:y 3229:x 3222:x 3218:x 3214:M 3210:; 3208:H 3204:J 3200:x 3196:J 3192:x 3184:a 3178:x 3174:x 3170:x 3159:x 3155:H 3151:H 3135:A 3119:a 3103:A 3087:H 3083:x 3076:H 3038:M 3034:= 3031:J 3028:M 3025:J 3008:a 2991:, 2979:) 2973:A 2968:( 2962:= 2959:M 2923:) 2917:A 2912:( 2906:= 2894:) 2888:A 2883:( 2863:H 2846:. 2843:a 2840:x 2837:= 2834:x 2831:) 2828:a 2825:( 2817:, 2814:x 2811:a 2808:= 2805:x 2802:) 2799:a 2796:( 2768:A 2756:H 2752:J 2736:A 2724:H 2708:G 2706:( 2704:L 2700:K 2696:K 2694:/ 2692:G 2690:\ 2688:K 2686:( 2684:L 2680:G 2678:( 2676:L 2672:K 2670:/ 2668:G 2666:\ 2664:K 2662:( 2660:L 2639:) 2637:K 2635:/ 2633:G 2631:\ 2629:K 2627:( 2625:L 2617:K 2613:G 2606:G 2604:( 2602:L 2598:G 2596:( 2594:L 2573:) 2571:G 2569:( 2567:L 2556:G 2549:a 2547:* 2545:b 2541:b 2537:a 2533:0 2530:M 2526:M 2519:X 2517:( 2515:L 2511:X 2509:( 2507:L 2484:X 2482:( 2480:L 2476:X 2469:a 2467:* 2465:b 2461:b 2457:a 2445:. 2431:A 2412:z 2410:* 2408:x 2404:y 2400:z 2377:A 2365:a 2360:; 2346:A 2334:b 2330:a 2326:a 2322:b 2318:b 2314:a 2312:( 2306:x 2304:→ 2302:x 2286:A 2232:. 2230:2 2227:M 2223:1 2220:M 2210:I 2204:1 2201:M 2194:n 2190:p 2184:2 2181:M 2177:n 2173:p 2169:1 2166:M 2162:n 2158:p 2152:2 2149:M 2145:1 2142:M 2109:M 2105:= 2102:J 2099:M 2096:J 2079:J 2075:H 2067:J 2063:0 2060:M 2056:a 2033:a 2029:= 2026:a 2023:J 2010:H 2006:M 1989:. 1985:) 1981:a 1972:b 1967:( 1960:= 1957:) 1954:b 1951:, 1948:a 1945:( 1918:} 1907:) 1903:a 1894:a 1889:( 1879:M 1873:a 1869:{ 1865:= 1860:0 1856:M 1842:M 1840:( 1838:L 1834:H 1830:M 1811:M 1802:( 1800:M 1791:( 1789:M 1781:u 1777:+ 1774:M 1770:a 1756:) 1753:a 1750:( 1744:= 1740:) 1730:u 1726:a 1723:u 1719:( 1695:+ 1692:M 1688:b 1684:a 1670:) 1667:b 1664:( 1655:+ 1652:) 1649:a 1646:( 1637:= 1634:) 1631:b 1625:+ 1622:a 1616:( 1600:+ 1597:M 1593:M 1581:M 1573:+ 1570:M 1566:M 1554:T 1542:T 1538:T 1534:T 1530:Z 1522:M 1518:J 1502:1 1491:1 1488:= 1465:) 1462:g 1459:( 1448:g 1444:U 1423:I 1417:A 1407:1 1404:H 1384:A 1381:= 1378:M 1344:, 1341:) 1335:( 1330:2 1319:H 1316:= 1311:1 1307:H 1296:X 1294:( 1292:L 1288:A 1284:H 1280:f 1266:, 1263:) 1260:x 1255:1 1248:g 1244:( 1241:f 1238:= 1235:) 1232:x 1229:( 1226:f 1221:g 1217:U 1206:X 1204:( 1202:L 1198:H 1194:X 1190:X 1181:. 1179:H 1171:H 1169:( 1167:B 1157:A 1143:, 1140:A 1137:= 1130:A 1119:X 1117:( 1115:L 1111:H 1103:X 1101:( 1099:L 1095:A 1088:X 1086:( 1054:. 1045:) 1040:1 1033:g 1029:( 1026:f 1020:= 1017:) 1014:g 1011:( 1008:f 1005:J 995:J 981:. 972:) 965:( 959:= 947:) 940:( 932:, 923:) 916:( 910:= 898:) 891:( 868:) 862:( 857:2 842:f 828:) 825:g 822:x 819:( 816:f 813:= 810:) 807:x 804:( 801:) 798:f 795:) 792:g 789:( 783:( 778:, 775:) 772:x 767:1 760:g 756:( 753:f 750:= 747:) 744:x 741:( 738:) 735:f 732:) 729:g 726:( 720:( 692:) 686:( 681:2 646:M 629:M 623:J 614:M 610:J 597:M 593:M 589:J 578:M 574:M 570:K 551:b 544:M 540:a 536:J 519:, 516:K 513:i 507:K 504:= 501:H 488:M 481:M 474:M 470:K 443:M 439:= 436:J 433:M 430:J 396:. 387:M 380:J 377:M 374:J 361:M 357:M 342:J 338:I 334:J 330:H 326:M 322:a 296:a 292:= 286:a 283:J 267:a 259:M 255:a 251:a 247:M 243:H 239:M 221:. 219:M 215:b 211:a 201:( 197:M 189:M 185:H 181:M 176:H 172:M 165:H 157:M 149:H

Index

mathematics
commutant
von Neumann algebra
Hilbert space
trace
Francis Joseph Murray
John von Neumann
discrete group
dynamical system
measurable transformation
probability measure
unitary representations
unimodular
locally compact groups
regular representation
Plancherel theorem
Irving Segal
Forrest Stinespring
Plancherel theorem for spherical functions
Gelfand pair
Roger Godement
Jacques Dixmier
algebraic quantum field theory
quantum statistical mechanics
Rudolf Haag
Tomita–Takesaki theory
Hilbert space
von Neumann algebra
commutant
matrix coefficient

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑