Knowledge

Quasiparticle

Source đź“ť

768:—usually described as pairs of electrons—that move through the crystal lattice without resistance. A broken Cooper pair is called a Bogoliubov quasiparticle. It differs from the conventional quasiparticle in metal because it combines the properties of a negatively charged electron and a positively charged hole (an electron void). Physical objects like impurity atoms, from which quasiparticles scatter in an ordinary metal, only weakly affect the energy of a Cooper pair in a conventional superconductor. In conventional superconductors, interference between Bogoliubov quasiparticles is difficult for an STM to detect. Because of their complex global electronic structures, however, high-Tc cuprate superconductors are another matter. Thus Davis and his colleagues were able to resolve distinctive patterns of quasiparticle interference in Bi-2212. 256:(PDE) on a 3×10-dimensional vector space—one dimension for each coordinate (x, y, z) of each particle. Directly and straightforwardly trying to solve such a PDE is impossible in practice. Solving a PDE on a 2-dimensional space is typically much harder than solving a PDE on a 1-dimensional space (whether analytically or numerically); solving a PDE on a 3-dimensional space is significantly harder still; and thus solving a PDE on a 3×10-dimensional space is quite impossible by straightforward methods. 3073: 3501: 3525: 2951: 1022:. "As we have seen, the quasiparticle consists of the original real, individual particle, plus a cloud of disturbed neighbors. It behaves very much like an individual particle, except that it has an effective mass and a lifetime. But there also exist other kinds of fictitious particles in many-body systems, i.e. 'collective excitations'. These do not center around individual particles, but instead involve collective, wavelike motion of 225: 3537: 3513: 882:) is a quasiparticle made of two particles coupled by hydrodynamic forces. These classical quasiparticles were observed as the elementary excitations in a 2D colloidal crystal driven by viscous flow. The pairs are stabilized because the forces the particles exert on each other are of the same magnitude and 381:
that involves the precession of many spins. In the first case, the magnon is envisioned as a quasiparticle, in the second case, as a collective excitation. However, both (a) and (b) are equivalent and correct descriptions. As this example shows, the intuitive distinction between a quasiparticle and a
837:
can be used to describe the rotation of molecules in solvents. First postulated theoretically in 2015, the existence of the angulon was confirmed in February 2017, after a series of experiments spanning 20 years. Heavy and light species of molecules were found to rotate inside
497:
This section contains examples of quasiparticles and collective excitations. The first subsection below contains common ones that occur in a wide variety of materials under ordinary conditions; the second subsection contains examples that arise only in special contexts.
385:
The problems arising from the collective nature of quasiparticles have also been discussed within the philosophy of science, notably in relation to the identity conditions of quasiparticles and whether they should be considered "real" by the standards of, for example,
297:
When the material is characterized as having "several elementary excitations", this statement presupposes that the different excitations can be combined. In other words, it presupposes that the excitations can coexist simultaneously and independently. This is never
789:
and carry an effective magnetic charge as well as being endowed with other typical quasiparticle properties such as an effective mass. They may be formed through spin flips in frustrated pyrochlore ferromagnets and interact through a Coulomb
321:
Therefore, using quasiparticles / collective excitations, instead of analyzing 10 particles, one needs to deal with only a handful of somewhat-independent elementary excitations. It is, therefore, an effective approach to simplify the
193:
that occurs inside the solid. Therefore, while it is quite possible to have a single particle (electron, proton, or neutron) floating in space, a quasiparticle can only exist inside interacting many-particle systems such as solids.
361:
which differs from its real mass. On the other hand, a collective excitation is usually imagined to be a reflection of the aggregate behavior of the system, with no single real particle at its "core". A standard example is the
357:: it is built around a real particle at its "core", but the behavior of the particle is affected by the environment. A standard example is the "electron quasiparticle": an electron in a crystal behaves as if it had an 1696:
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang (2018). "Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations".
201:) by all the other electrons and protons in the solid (which may themselves be in motion). It is these strong interactions that make it very difficult to predict and understand the behavior of solids (see 886:(in contrast to momentum-conserving forces which are opposite by Newton's 3rd law). The resulting pairs ("duons") are zero-frequency excitations that emerge at the Dirac cones of the crystal's spectrum. 267:
with higher and higher energy above the ground state. In many contexts, only the "low-lying" excited states, with energy reasonably close to the ground state, are relevant. This occurs because of the
290:
is added to the crystal (in other words, if the crystal is made to vibrate slightly at a particular frequency) then the crystal is now in a low-lying excited state. The single phonon is called an
244:
describe every particle in a macroscopic system. For example, a barely-visible (0.1mm) grain of sand contains around 10 nuclei and 10 electrons. Each of these attracts or repels every other by
209:
classical particle is relatively simple; it would move in a straight line at constant velocity. This is the motivation for the concept of quasiparticles: The complicated motion of the
377:
can be considered in one of two perfectly equivalent ways: (a) as a mobile defect (a misdirected spin) in a perfect alignment of magnetic moments or (b) as a quantum of a collective
294:. More generally, low-lying excited states may contain any number of elementary excitations (for example, many phonons, along with other quasiparticles and collective excitations). 473:
between the charged particles are neglected. When a kinetic equation of the mean-field type is a valid first-order description of a system, second-order corrections determine the
302:
true. For example, a solid with two identical phonons does not have exactly twice the excitation energy of a solid with just one phonon, because the crystal vibration is slightly
1876: 1229: 1215: 2987: 469:. In the plasma approximation, charged particles are considered to be moving in the electromagnetic field collectively generated by all other particles, and hard 353:
There is a difference in the way that quasiparticles and collective excitations are intuitively envisioned. A quasiparticle is usually thought of as being like a
213:
particles in a solid can be mathematically transformed into the much simpler motion of imagined quasiparticles, which behave more like non-interacting particles.
40:
is a concept used to describe a collective behavior of a group of particles that can be treated as if they were a single particle. Formally, quasiparticles and
466: 398:
By investigating the properties of individual quasiparticles, it is possible to obtain a great deal of information about low-energy systems, including the
1298:
Hoffman, J. E.; McElroy, K.; Lee, D. H.; Lang, K. M.; Eisaki, H.; Uchida, S.; Davis, J. C.; et al. (2002). "Imaging Quasiparticle Interference in Bi
748: 314:, they are treated as free, independent entities, and then corrections are included via interactions between the elementary excitations, such as "phonon- 545:. In many other respects, especially in metals under ordinary conditions, these so-called Landau quasiparticles closely resemble familiar electrons; as 623:
as affected by its interactions with the material. In particular, the photon quasiparticle has a modified relation between wavelength and energy (
2874: 1375:
Banerjee, A.; Bridges, C. A.; Yan, J.-Q.; et al. (4 April 2016). "Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet".
2980: 334:, the elementary excitations are so far from being independent that it is not even useful as a starting point to treat them as independent. 777:
is a particle which equals its own antiparticle, and can emerge as a quasiparticle in certain superconductors, or in a quantum spin liquid.
128:, although the precise distinction is not universally agreed upon. Thus, electrons and electron holes (fermions) are typically called 3517: 2624: 570:
is a quasiparticle consisting of the lack of an electron in a state; it is most commonly used in the context of empty states in the
2973: 2862: 820: 1493:
Schmidt, Richard; Lemeshko, Mikhail (18 May 2015). "Rotation of Quantum Impurities in the Presence of a Many-Body Environment".
1233: 1036: 962: 17: 538: 358: 72: 1904: 1870: 995: 3568: 3505: 2760: 1256: 1191: 1108: 1073: 608:
is a collective excitation associated with the electrons' spin structure in a crystal lattice. It is a quantum of a
2841: 87:
or a hole band in a metal behave as though the material instead contained positively charged quasiparticles called
719:
arise in a two-dimensional system subject to a large magnetic field, most famously those systems that exhibit the
558: 1554:
Lemeshko, Mikhail (27 February 2017). "Quasiparticle Approach to Molecules Interacting with Quantum Solvents".
723:. These quasiparticles are quite unlike normal particles in two ways. First, their charge can be less than the 720: 1438:
Shaginyan, V. R.; et al. (2012). "Identification of Strongly Correlated Spin Liquid in Herbertsmithite".
3541: 3486: 3097: 554: 253: 3032: 2857: 331: 278:
Quasiparticles and collective excitations are a type of low-lying excited state. For example, a crystal at
3583: 3563: 3277: 3186: 521:
as affected by the other forces and interactions in the solid. The electron quasiparticle has the same
3226: 3201: 2933: 1138: 3396: 3150: 3140: 2996: 2345: 756: 542: 140: 33: 3578: 3573: 3242: 2901: 2536: 2163: 1897: 450: 744:. An anyon has a simple kind of memory which is being investigated for use in quantum computing. 249: 2836: 2173: 1133: 1097:
Ohtsu, Motoichi; Kobayashi, Kiyoshi; Kawazoe, Tadashi; Yatsui, Takashi; Naruse, Makoto (2008).
901: 812: 730:. In fact, they have been observed with charges of e/3, e/4, e/5, and e/7. Second, they can be 507: 268: 1098: 987: 980: 216:
In summary, quasiparticles are a mathematical tool for simplifying the description of solids.
197:
Motion in a solid is extremely complicated: Each electron and proton is pushed and pulled (by
3293: 3272: 3206: 2923: 1015: 952: 868:
is a quantized field associated with the quantization of the lattice displacement field of a
537:. However, its mass can differ substantially from that of a normal electron; see the article 430: 252:
predicts exactly how this system will behave. But the Schrödinger equation in this case is a
67:, its motion is disturbed in a complex way by its interactions with other electrons and with 44:
are closely related phenomena that arise when a microscopically complicated system such as a
3262: 3037: 1773: 1716: 1652: 1573: 1512: 1459: 1396: 1333: 668: 446: 272: 8: 3216: 3196: 3181: 3130: 2938: 1921: 869: 816: 628: 624: 530: 189: 1777: 1720: 1656: 1577: 1516: 1463: 1400: 1337: 3363: 3353: 3191: 3102: 2881: 1890: 1797: 1763: 1732: 1706: 1673: 1638: 1597: 1563: 1536: 1502: 1475: 1449: 1420: 1386: 1357: 1323: 1151: 856: 852: 655: 546: 478: 474: 441:. For these systems a strong similarity exists between the notion of quasiparticle and 106: 3524: 3471: 3436: 3343: 3267: 2950: 2918: 2831: 2310: 2055: 1982: 1801: 1789: 1751: 1736: 1678: 1589: 1528: 1479: 1412: 1349: 1262: 1252: 1197: 1187: 1104: 1079: 1069: 991: 958: 916: 906: 896: 839: 781: 761: 724: 715: 588: 486: 454: 323: 315: 259:
One simplifying factor is that the system as a whole, like any quantum system, has a
202: 148: 144: 1361: 1155: 3441: 3333: 3313: 3308: 3303: 3298: 3155: 3135: 3092: 3057: 3027: 2928: 2699: 2474: 2335: 2320: 2002: 1913: 1781: 1724: 1668: 1660: 1643: 1615: 1601: 1585: 1581: 1540: 1524: 1520: 1471: 1467: 1424: 1404: 1377: 1341: 1143: 773: 482: 462: 442: 354: 245: 198: 172: 687:
is a coupled optical phonon and dressed photon consisting of a plasmon and photon.
658:(wherein all the electrons simultaneously oscillate with respect to all the ions). 3466: 3421: 3087: 3004: 2896: 2821: 2805: 2745: 2155: 2080: 2070: 2060: 1972: 921: 828: 522: 458: 1842:(1963, 1975). Prentice-Hall, New Jersey; Dover Publications, New York, New York. 1147: 337: 3529: 3476: 3358: 3247: 2955: 2869: 2826: 2562: 2350: 2123: 2045: 2040: 1962: 1835: 1785: 1728: 911: 847: 550: 526: 485:. In other words, every type of mean-field kinetic equation, and in fact every 387: 240:
The principal motivation for quasiparticles is that it is almost impossible to
68: 421:, etc. Each of these is a separate contribution to the overall heat capacity. 3557: 3401: 3368: 3348: 3252: 3221: 3052: 2913: 2765: 2524: 2494: 2426: 2285: 2065: 1992: 1977: 1793: 1440: 1172:(The Frontiers Collection), Berlin, Germany: Springer 2007, esp. pp. 243–246. 872:. It is a quantum of vibration and static strain field of a dislocation line. 587:
is a collective excitation associated with the vibration of atoms in a rigid
575: 566: 403: 399: 279: 264: 233: 89: 84: 64: 1345: 1083: 703:
is a collective excitation associated with the rotation of a fluid (often a
3338: 3160: 3062: 2965: 2891: 2441: 2431: 2421: 2182: 2133: 2075: 1997: 1952: 1682: 1664: 1593: 1532: 1416: 1353: 1065:
Stalin's great science : the times and adventures of Soviet physicists
765: 571: 434: 366:, which characterizes the vibrational motion of every atom in the crystal. 283: 260: 229: 99:, a quasiparticle derived from the vibrations of atoms in a solid, and the 80: 3458: 3176: 3145: 3125: 3072: 2906: 2674: 2577: 2572: 2489: 2484: 2414: 2368: 2325: 2290: 2249: 2141: 2105: 1967: 1328: 1063: 667:
is a quasiparticle which comes about when an electron interacts with the
374: 342:
Usually, an elementary excitation is called a "quasiparticle" if it is a
492: 3373: 3211: 3047: 2648: 2542: 2532: 2514: 2404: 2305: 2240: 1957: 1882: 1817: 704: 596: 369:
However, these two visualizations leave some ambiguity. For example, a
303: 152: 1280: 3431: 3257: 3042: 2790: 2780: 2750: 2643: 2609: 2602: 2479: 2469: 2464: 2436: 2204: 1987: 1408: 1037:"Ultracold atoms permit direct observation of quasiparticle dynamics" 633: 609: 470: 378: 481:-type collision term, in which figure only "far collisions" between 409:
In the heat capacity example, a crystal can store energy by forming
382:
collective excitation is not particularly important or fundamental.
2886: 2714: 2669: 2653: 2614: 2587: 2300: 2295: 2275: 2245: 2235: 2230: 2050: 2025: 2020: 1947: 1768: 1752:"Quasiparticles, flat bands and the melting of hydrodynamic matter" 1711: 1568: 1507: 1391: 824: 794: 786: 518: 438: 350:. However, the precise distinction is not universally agreed upon. 176: 151:. The theory of quasiparticles was started by the Soviet physicist 60: 49: 1454: 1266: 1201: 306:. However, in many materials, the elementary excitations are very 187:. None of these are quasiparticles; instead a quasiparticle is an 3481: 3448: 3426: 3406: 2795: 2785: 2755: 2709: 2704: 2679: 2597: 2582: 2509: 2504: 2409: 2394: 2340: 2315: 2280: 2209: 2191: 1930: 811:
is represented by quasiparticle produced as a result of electron
800: 737: 676: 663: 650: 592: 534: 418: 414: 343: 184: 117: 101: 1639:"Discovery of Lorentz-violating type II Weyl fermions in LaAlGe" 224: 75:
travelling unperturbed in vacuum. Such an electron is called an
3416: 3411: 3017: 2775: 2770: 2399: 2386: 2377: 2199: 2113: 2012: 1637:
Xu, S. Y.; Alidoust, N.; Chang, G.; et al. (2 June 2017).
864: 807: 708: 637:, especially near a resonance of the material. For example, an 620: 604: 583: 410: 370: 363: 287: 180: 95: 79:. In another example, the aggregate motion of electrons in the 53: 3391: 3012: 2800: 2740: 2592: 2451: 2330: 2270: 2225: 2118: 2096: 1939: 1750:
Saeed, Imran; Pak, Hyuk Kyu; Tlusty, Tsvi (26 January 2023).
1124:
Gelfert, Axel (2003). "Manipulative success and the unreal".
741: 731: 699: 347: 338:
Distinction between quasiparticles and collective excitations
168: 125: 93:. Other quasiparticles or collective excitations include the 45: 2567: 2499: 2459: 2035: 2030: 1096: 132:, while phonons and plasmons (bosons) are typically called 219: 3022: 1695: 48:
behaves as if it contained different weakly interacting
1879:
by Jacqui Hayes, Cosmos 6 June 2008. Accessed June 2008
1840:
Methods of Quantum Field Theory in Statistical Physics
986:(1st ed.). Holt, Rinehart, and Winston. pp.  541:. Its electric field is also modified, as a result of 326:
in quantum mechanics. This approach is not useful for
1297: 1251:. New York, New York: Penguin Press. pp. 89–90. 493:
Examples of quasiparticles and collective excitations
1018:
A guide to Feynman diagrams in the many-body problem
842:
droplets, in good agreement with the angulon theory.
654:
is a collective excitation, which is the quantum of
437:, which was originally invented for studying liquid 71:. The electron behaves as though it has a different 1374: 1126:International Studies in the Philosophy of Science 979: 449:. The dynamics of Landau's theory is defined by a 1186:. New York, New York: Penguin Press. p. 88. 641:is a superposition of an exciton and a photon; a 3555: 971: 578:. A hole has the opposite charge of an electron. 533:) electron, and like a normal electron, it is a 275:are unlikely to occur at any given temperature. 1636: 1616:"Existence of a new quasiparticle demonstrated" 1492: 736:, an exotic type of particle that is neither a 232:along with an infinite series of higher-energy 1749: 977: 957:. Cambridge University Press. pp. 65–69. 2981: 1898: 228:Any system, no matter how complicated, has a 2995: 1026:the particles in the system simultaneously." 691: 645:is a superposition of a phonon and a photon. 393: 1068:. London, England: Imperial College Press. 1061: 859:, which cannot be broken by real particles. 3071: 2988: 2974: 1905: 1891: 1877:Curious 'quasiparticles' baffle physicists 1860:(1998). Westview Press, Boulder, Colorado. 1853:(1999). Westview Press, Boulder, Colorado. 785:arise in condensed matter systems such as 139:The quasiparticle concept is important in 1767: 1710: 1672: 1567: 1506: 1453: 1437: 1390: 1327: 1287:. Lawrence Livermore National Laboratory. 1137: 1011: 1009: 1007: 954:Atomic and Electronic Structure of Solids 946: 944: 942: 940: 938: 936: 429:The idea of quasiparticles originated in 346:and a "collective excitation" if it is a 1912: 1553: 1184:Fundalmentals : Ten Keys to Reality 223: 1249:Fundamentals : Ten Keys to Reality 1181: 1123: 950: 821:strongly correlated quantum spin liquid 680:is an electron and hole bound together. 501: 220:Relation to many-body quantum mechanics 163: 14: 3556: 2376: 1873:– Scientists find new 'quasiparticles' 1246: 1004: 933: 310:to being independent. Therefore, as a 271:, which implies that very-high-energy 205:). On the other hand, the motion of a 2969: 1886: 951:Kaxiras, Efthimios (9 January 2003). 112:These phenomena are typically called 3512: 489:, involves a quasiparticle concept. 3536: 477:, and generally take the form of a 27:Concept in condensed matter physics 24: 1811: 627:), as described by the material's 330:systems, however. For example, in 25: 3595: 1864: 1849:(1966). W.A. Benjamin, New York. 3535: 3523: 3511: 3500: 3499: 2949: 2842:Timeline of particle discoveries 171:are made of only three kinds of 1743: 1689: 1630: 1608: 1547: 1486: 1431: 1368: 1291: 1273: 1240: 1222: 1208: 1851:Volume I: Normal Fermi Liquids 1586:10.1103/PhysRevLett.118.095301 1525:10.1103/PhysRevLett.114.203001 1175: 1162: 1117: 1090: 1055: 1029: 721:fractional quantum Hall effect 13: 1: 3098:Spontaneous symmetry breaking 1858:Quantum Many-Particle Systems 1856:J. W. Negele, and H. Orland, 1847:The Theory of Quantum Liquids 1285:Science and Technology Review 927: 332:strongly correlated materials 254:partial differential equation 2858:History of subatomic physics 857:special theory of relativity 143:because it can simplify the 7: 1845:D. Pines, and P. Nozières, 1838:, and I. E. Dzyaloshinski, 1232:. June 2008. Archived from 1148:10.1080/0269859032000169451 1100:Principles of Nanophotonics 1062:Kozhevnikov, A. B. (2004). 890: 158: 10: 3600: 3278:Spin gapless semiconductor 3187:Nearly free electron model 1786:10.1038/s41567-022-01893-5 1472:10.1209/0295-5075/97/56001 1103:. CRC Press. p. 205. 631:. It may also be termed a 505: 457:. A similar equation, the 424: 105:, a particle derived from 3495: 3457: 3382: 3326: 3286: 3235: 3227:Density functional theory 3202:electronic band structure 3169: 3118: 3111: 3080: 3069: 3003: 2947: 2850: 2814: 2731: 2692: 2662: 2636: 2632: 2623: 2555: 2523: 2450: 2385: 2367: 2263: 2218: 2190: 2181: 2172: 2154: 2132: 2104: 2095: 2011: 1938: 1929: 1920: 978:Ashcroft; Mermin (1976). 757:Bogoliubov quasiparticles 692:More specialized examples 394:Effect on bulk properties 3569:Condensed matter physics 3397:Bogoliubov quasiparticle 3141:Quantum spin Hall effect 3033:Bose–Einstein condensate 2997:Condensed matter physics 2875:mathematical formulation 2470:Eta and eta prime mesons 1729:10.1088/1367-2630/aaa383 855:, the foundation of the 707:). It is a quantum of a 671:of its surrounding ions. 543:electric field screening 141:condensed matter physics 34:condensed matter physics 2537:Double-charm tetraquark 1556:Physical Review Letters 1495:Physical Review Letters 1346:10.1126/science.1072640 1216:"Physics Today Article" 1182:Wilczek, Frank (2021). 752:in ferromagnetic metals 124:if they are related to 116:if they are related to 1699:New Journal of Physics 1665:10.1126/sciadv.1603266 1247:Wilcek, Frank (2021). 902:List of quasiparticles 813:spin-charge separation 515:electron quasiparticle 508:List of quasiparticles 269:Boltzmann distribution 237: 134:collective excitations 122:collective excitations 77:electron quasiparticle 42:collective excitations 3273:Topological insulator 3207:Anderson localization 2934:Wave–particle duality 2924:Relativistic particle 2061:Electron antineutrino 1281:"Josephson Junctions" 292:elementary excitation 227: 18:Collective excitation 3151:Aharonov–Bohm effect 3038:Fermionic condensate 2164:Faddeev–Popov ghosts 1914:Particles in physics 1170:Particle Metaphysics 1016:Richard D. Mattuck, 815:, and can form both 760:in superconductors. 502:More common examples 467:plasma approximation 447:quantum field theory 273:thermal fluctuations 250:Schrödinger equation 248:. In principle, the 164:General introduction 3542:Physics WikiProject 3217:tight binding model 3197:Fermi liquid theory 3182:Free electron model 3131:Quantum Hall effect 3112:Electrons in solids 2939:Particle chauvinism 2882:Subatomic particles 1778:2023NatPh..19..536S 1721:2018NJPh...20b3010L 1657:2017SciA....3E3266X 1578:2017PhRvL.118i5301L 1517:2015PhRvL.114t3001S 1464:2012EL.....9756001S 1401:2016NatMa..15..733B 1338:2002Sci...297.1148H 1322:(5584): 1148–1151. 982:Solid State Physics 870:crystal dislocation 817:quantum spin liquid 656:plasma oscillations 629:index of refraction 625:dispersion relation 619:quasiparticle is a 531:elementary particle 190:emergent phenomenon 59:For example, as an 3584:Mesoscopic physics 3564:Physical phenomena 3103:Critical phenomena 1829:Soviet Phys. JETP. 1822:Soviet Phys. JETP. 782:Magnetic monopoles 749:Stoner excitations 716:Composite fermions 475:entropy production 238: 107:plasma oscillation 63:travels through a 3551: 3550: 3437:Exciton-polariton 3322: 3321: 3294:Thermoelectricity 2963: 2962: 2919:Massless particle 2727: 2726: 2723: 2722: 2688: 2687: 2551: 2550: 2363: 2362: 2359: 2358: 2311:Magnetic monopole 2259: 2258: 2150: 2149: 2091: 2090: 2071:Muon antineutrino 2056:Electron neutrino 1834:A. A. Abrikosov, 1230:"Cosmos magazine" 964:978-0-521-52339-4 917:Composite fermion 907:Mean-field theory 897:Fractionalization 876:Hydrodynamic pair 840:superfluid helium 762:Superconductivity 639:exciton-polariton 589:crystal structure 487:mean-field theory 483:virtual particles 465:in the so-called 461:, is valid for a 443:dressed particles 417:, and/or forming 413:, and/or forming 324:many-body problem 316:phonon scattering 203:many-body problem 149:quantum mechanics 145:many-body problem 16:(Redirected from 3591: 3539: 3538: 3527: 3515: 3514: 3503: 3502: 3442:Phonon polariton 3334:Amorphous magnet 3314:Electrostriction 3309:Flexoelectricity 3304:Ferroelectricity 3299:Piezoelectricity 3156:Josephson effect 3136:Spin Hall effect 3116: 3115: 3093:Phase transition 3075: 3058:Luttinger liquid 3005:States of matter 2990: 2983: 2976: 2967: 2966: 2953: 2929:Virtual particle 2700:Mesonic molecule 2634: 2633: 2630: 2629: 2475:Bottom eta meson 2383: 2382: 2374: 2373: 2346:W′ and Z′ bosons 2336:Sterile neutrino 2321:Majorana fermion 2188: 2187: 2179: 2178: 2102: 2101: 2081:Tau antineutrino 1936: 1935: 1927: 1926: 1907: 1900: 1893: 1884: 1883: 1806: 1805: 1771: 1747: 1741: 1740: 1714: 1693: 1687: 1686: 1676: 1644:Science Advances 1634: 1628: 1627: 1625: 1623: 1612: 1606: 1605: 1571: 1551: 1545: 1544: 1510: 1490: 1484: 1483: 1457: 1435: 1429: 1428: 1409:10.1038/nmat4604 1394: 1378:Nature Materials 1372: 1366: 1365: 1331: 1329:cond-mat/0209276 1295: 1289: 1288: 1277: 1271: 1270: 1244: 1238: 1237: 1226: 1220: 1219: 1212: 1206: 1205: 1179: 1173: 1166: 1160: 1159: 1141: 1121: 1115: 1114: 1094: 1088: 1087: 1059: 1053: 1052: 1050: 1048: 1033: 1027: 1013: 1002: 1001: 985: 975: 969: 968: 948: 853:Lorentz symmetry 774:Majorana fermion 643:phonon-polariton 615:In materials, a 561:upon scattering. 557:can image their 451:kinetic equation 355:dressed particle 21: 3599: 3598: 3594: 3593: 3592: 3590: 3589: 3588: 3554: 3553: 3552: 3547: 3491: 3472:Granular matter 3467:Amorphous solid 3453: 3378: 3364:Antiferromagnet 3354:Superparamagnet 3327:Magnetic phases 3318: 3282: 3231: 3192:Bloch's theorem 3165: 3107: 3088:Order parameter 3081:Phase phenomena 3076: 3067: 2999: 2994: 2964: 2959: 2943: 2897:Nuclear physics 2846: 2810: 2746:Davydov soliton 2719: 2684: 2658: 2619: 2547: 2519: 2446: 2355: 2255: 2214: 2168: 2146: 2128: 2087: 2007: 1916: 1911: 1867: 1814: 1812:Further reading 1809: 1748: 1744: 1694: 1690: 1651:(6): e1603266. 1635: 1631: 1621: 1619: 1614: 1613: 1609: 1552: 1548: 1491: 1487: 1436: 1432: 1373: 1369: 1313: 1309: 1305: 1301: 1296: 1292: 1279: 1278: 1274: 1259: 1245: 1241: 1236:on 9 June 2008. 1228: 1227: 1223: 1214: 1213: 1209: 1194: 1180: 1176: 1168:B. Falkenburg, 1167: 1163: 1139:10.1.1.405.2111 1122: 1118: 1111: 1095: 1091: 1076: 1060: 1056: 1046: 1044: 1043:. 18 March 2021 1035: 1034: 1030: 1014: 1005: 998: 976: 972: 965: 949: 934: 930: 922:Composite boson 893: 829:Herbertsmithite 725:electron charge 694: 529:as a "normal" ( 510: 504: 495: 459:Vlasov equation 455:mean-field type 427: 400:flow properties 396: 340: 222: 207:non-interacting 166: 161: 28: 23: 22: 15: 12: 11: 5: 3597: 3587: 3586: 3581: 3579:Quasiparticles 3576: 3574:Quantum phases 3571: 3566: 3549: 3548: 3546: 3545: 3533: 3530:Physics Portal 3521: 3509: 3496: 3493: 3492: 3490: 3489: 3484: 3479: 3477:Liquid crystal 3474: 3469: 3463: 3461: 3455: 3454: 3452: 3451: 3446: 3445: 3444: 3439: 3429: 3424: 3419: 3414: 3409: 3404: 3399: 3394: 3388: 3386: 3384:Quasiparticles 3380: 3379: 3377: 3376: 3371: 3366: 3361: 3356: 3351: 3346: 3344:Superdiamagnet 3341: 3336: 3330: 3328: 3324: 3323: 3320: 3319: 3317: 3316: 3311: 3306: 3301: 3296: 3290: 3288: 3284: 3283: 3281: 3280: 3275: 3270: 3268:Superconductor 3265: 3260: 3255: 3250: 3248:Mott insulator 3245: 3239: 3237: 3233: 3232: 3230: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3173: 3171: 3167: 3166: 3164: 3163: 3158: 3153: 3148: 3143: 3138: 3133: 3128: 3122: 3120: 3113: 3109: 3108: 3106: 3105: 3100: 3095: 3090: 3084: 3082: 3078: 3077: 3070: 3068: 3066: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3020: 3015: 3009: 3007: 3001: 3000: 2993: 2992: 2985: 2978: 2970: 2961: 2960: 2956:Physics portal 2948: 2945: 2944: 2942: 2941: 2936: 2931: 2926: 2921: 2916: 2911: 2910: 2909: 2899: 2894: 2889: 2884: 2879: 2878: 2877: 2870:Standard Model 2867: 2866: 2865: 2854: 2852: 2848: 2847: 2845: 2844: 2839: 2837:Quasiparticles 2834: 2829: 2824: 2818: 2816: 2812: 2811: 2809: 2808: 2803: 2798: 2793: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2737: 2735: 2733:Quasiparticles 2729: 2728: 2725: 2724: 2721: 2720: 2718: 2717: 2712: 2707: 2702: 2696: 2694: 2690: 2689: 2686: 2685: 2683: 2682: 2677: 2672: 2666: 2664: 2660: 2659: 2657: 2656: 2651: 2646: 2640: 2638: 2627: 2621: 2620: 2618: 2617: 2612: 2607: 2606: 2605: 2600: 2595: 2590: 2585: 2580: 2570: 2565: 2559: 2557: 2553: 2552: 2549: 2548: 2546: 2545: 2540: 2529: 2527: 2525:Exotic hadrons 2521: 2520: 2518: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2472: 2467: 2462: 2456: 2454: 2448: 2447: 2445: 2444: 2439: 2434: 2429: 2424: 2419: 2418: 2417: 2412: 2407: 2402: 2391: 2389: 2380: 2371: 2365: 2364: 2361: 2360: 2357: 2356: 2354: 2353: 2351:X and Y bosons 2348: 2343: 2338: 2333: 2328: 2323: 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2283: 2278: 2273: 2267: 2265: 2261: 2260: 2257: 2256: 2254: 2253: 2243: 2238: 2233: 2228: 2222: 2220: 2216: 2215: 2213: 2212: 2207: 2202: 2196: 2194: 2185: 2176: 2170: 2169: 2167: 2166: 2160: 2158: 2152: 2151: 2148: 2147: 2145: 2144: 2138: 2136: 2130: 2129: 2127: 2126: 2124:W and Z bosons 2121: 2116: 2110: 2108: 2099: 2093: 2092: 2089: 2088: 2086: 2085: 2084: 2083: 2078: 2073: 2068: 2063: 2058: 2048: 2043: 2038: 2033: 2028: 2023: 2017: 2015: 2009: 2008: 2006: 2005: 2000: 1995: 1990: 1985: 1980: 1978:Strange (quark 1975: 1970: 1965: 1960: 1955: 1950: 1944: 1942: 1933: 1924: 1918: 1917: 1910: 1909: 1902: 1895: 1887: 1881: 1880: 1874: 1866: 1865:External links 1863: 1862: 1861: 1854: 1843: 1832: 1827:L. D. Landau, 1825: 1813: 1810: 1808: 1807: 1762:(4): 536–544. 1756:Nature Physics 1742: 1688: 1629: 1607: 1546: 1501:(20): 203001. 1485: 1430: 1385:(7): 733–740. 1367: 1311: 1307: 1303: 1299: 1290: 1272: 1257: 1239: 1221: 1207: 1192: 1174: 1161: 1132:(3): 245–263. 1116: 1109: 1089: 1074: 1054: 1028: 1003: 997:978-0030839931 996: 970: 963: 931: 929: 926: 925: 924: 919: 914: 912:Pseudoparticle 909: 904: 899: 892: 889: 888: 887: 873: 860: 843: 832: 804: 791: 778: 769: 764:is carried by 753: 745: 712: 693: 690: 689: 688: 681: 672: 659: 646: 613: 600: 579: 562: 551:quantum corral 539:effective mass 513:In solids, an 503: 500: 494: 491: 426: 423: 395: 392: 388:entity realism 359:effective mass 339: 336: 312:starting point 265:excited states 234:excited states 221: 218: 165: 162: 160: 157: 155:in the 1930s. 130:quasiparticles 114:quasiparticles 90:electron holes 73:effective mass 26: 9: 6: 4: 3: 2: 3596: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3567: 3565: 3562: 3561: 3559: 3544: 3543: 3534: 3532: 3531: 3526: 3522: 3520: 3519: 3510: 3508: 3507: 3498: 3497: 3494: 3488: 3485: 3483: 3480: 3478: 3475: 3473: 3470: 3468: 3465: 3464: 3462: 3460: 3456: 3450: 3447: 3443: 3440: 3438: 3435: 3434: 3433: 3430: 3428: 3425: 3423: 3420: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3389: 3387: 3385: 3381: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3331: 3329: 3325: 3315: 3312: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3291: 3289: 3285: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3253:Semiconductor 3251: 3249: 3246: 3244: 3241: 3240: 3238: 3234: 3228: 3225: 3223: 3222:Hubbard model 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3174: 3172: 3168: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3123: 3121: 3117: 3114: 3110: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3085: 3083: 3079: 3074: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3010: 3008: 3006: 3002: 2998: 2991: 2986: 2984: 2979: 2977: 2972: 2971: 2968: 2958: 2957: 2952: 2946: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2914:Exotic matter 2912: 2908: 2905: 2904: 2903: 2902:Eightfold way 2900: 2898: 2895: 2893: 2892:Antiparticles 2890: 2888: 2885: 2883: 2880: 2876: 2873: 2872: 2871: 2868: 2864: 2861: 2860: 2859: 2856: 2855: 2853: 2849: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2819: 2817: 2813: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2738: 2736: 2734: 2730: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2697: 2695: 2691: 2681: 2678: 2676: 2673: 2671: 2668: 2667: 2665: 2661: 2655: 2652: 2650: 2647: 2645: 2642: 2641: 2639: 2635: 2631: 2628: 2626: 2622: 2616: 2613: 2611: 2608: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2575: 2574: 2571: 2569: 2566: 2564: 2563:Atomic nuclei 2561: 2560: 2558: 2554: 2544: 2541: 2538: 2534: 2531: 2530: 2528: 2526: 2522: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2495:Upsilon meson 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2457: 2455: 2453: 2449: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2427:Lambda baryon 2425: 2423: 2420: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2397: 2396: 2393: 2392: 2390: 2388: 2384: 2381: 2379: 2375: 2372: 2370: 2366: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2286:Dual graviton 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2268: 2266: 2262: 2251: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2223: 2221: 2217: 2211: 2208: 2206: 2203: 2201: 2198: 2197: 2195: 2193: 2189: 2186: 2184: 2183:Superpartners 2180: 2177: 2175: 2171: 2165: 2162: 2161: 2159: 2157: 2153: 2143: 2140: 2139: 2137: 2135: 2131: 2125: 2122: 2120: 2117: 2115: 2112: 2111: 2109: 2107: 2103: 2100: 2098: 2094: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2066:Muon neutrino 2064: 2062: 2059: 2057: 2054: 2053: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2018: 2016: 2014: 2010: 2004: 2001: 1999: 1998:Bottom (quark 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1945: 1943: 1941: 1937: 1934: 1932: 1928: 1925: 1923: 1919: 1915: 1908: 1903: 1901: 1896: 1894: 1889: 1888: 1885: 1878: 1875: 1872: 1869: 1868: 1859: 1855: 1852: 1848: 1844: 1841: 1837: 1836:L. P. Gor'kov 1833: 1831:5: 101 (1957) 1830: 1826: 1824:3: 920 (1957) 1823: 1819: 1816: 1815: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1770: 1765: 1761: 1757: 1753: 1746: 1738: 1734: 1730: 1726: 1722: 1718: 1713: 1708: 1705:(2): 023010. 1704: 1700: 1692: 1684: 1680: 1675: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1645: 1640: 1633: 1617: 1611: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1570: 1565: 1562:(9): 095301. 1561: 1557: 1550: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1509: 1504: 1500: 1496: 1489: 1481: 1477: 1473: 1469: 1465: 1461: 1456: 1451: 1447: 1443: 1442: 1434: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1393: 1388: 1384: 1380: 1379: 1371: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1330: 1325: 1321: 1317: 1294: 1286: 1282: 1276: 1268: 1264: 1260: 1258:9780735223790 1254: 1250: 1243: 1235: 1231: 1225: 1217: 1211: 1203: 1199: 1195: 1193:9780735223790 1189: 1185: 1178: 1171: 1165: 1157: 1153: 1149: 1145: 1140: 1135: 1131: 1127: 1120: 1112: 1110:9781584889731 1106: 1102: 1101: 1093: 1085: 1081: 1077: 1075:1-86094-601-1 1071: 1067: 1066: 1058: 1042: 1041:Physics World 1038: 1032: 1025: 1021: 1019: 1012: 1010: 1008: 999: 993: 989: 984: 983: 974: 966: 960: 956: 955: 947: 945: 943: 941: 939: 937: 932: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 894: 885: 881: 877: 874: 871: 867: 866: 861: 858: 854: 850: 849: 848:Weyl fermions 844: 841: 836: 833: 830: 826: 822: 818: 814: 810: 809: 805: 803: 802: 797: 796: 792: 788: 784: 783: 779: 776: 775: 770: 767: 763: 759: 758: 754: 751: 750: 746: 743: 739: 735: 734: 729: 726: 722: 718: 717: 713: 710: 706: 702: 701: 696: 695: 686: 682: 679: 678: 673: 670: 666: 665: 660: 657: 653: 652: 647: 644: 640: 636: 635: 630: 626: 622: 618: 614: 611: 607: 606: 601: 598: 594: 590: 586: 585: 580: 577: 576:semiconductor 573: 569: 568: 563: 560: 556: 553:" showed, an 552: 548: 544: 540: 536: 532: 528: 524: 520: 516: 512: 511: 509: 499: 490: 488: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 435:Fermi liquids 432: 422: 420: 416: 412: 407: 405: 404:heat capacity 401: 391: 389: 383: 380: 376: 372: 367: 365: 360: 356: 351: 349: 345: 335: 333: 329: 325: 319: 317: 313: 309: 305: 301: 295: 293: 289: 286:, but if one 285: 281: 280:absolute zero 276: 274: 270: 266: 262: 257: 255: 251: 247: 246:Coulomb's law 243: 235: 231: 226: 217: 214: 212: 208: 204: 200: 199:Coulomb's law 195: 192: 191: 186: 182: 178: 174: 170: 156: 154: 150: 146: 142: 137: 135: 131: 127: 123: 120:, and called 119: 115: 110: 108: 104: 103: 98: 97: 92: 91: 86: 85:semiconductor 82: 78: 74: 70: 69:atomic nuclei 66: 65:semiconductor 62: 57: 55: 51: 47: 43: 39: 38:quasiparticle 35: 30: 19: 3540: 3528: 3516: 3504: 3422:Pines' demon 3383: 3161:Kondo effect 3063:Time crystal 2954: 2732: 2625:Hypothetical 2573:Exotic atoms 2442:Omega baryon 2432:Sigma baryon 2422:Delta baryon 2174:Hypothetical 2156:Ghost fields 2142:Higgs boson 2076:Tau neutrino 1968:Charm (quark 1857: 1850: 1846: 1839: 1828: 1821: 1818:L. D. Landau 1759: 1755: 1745: 1702: 1698: 1691: 1648: 1642: 1632: 1620:. Retrieved 1610: 1559: 1555: 1549: 1498: 1494: 1488: 1448:(5): 56001. 1445: 1439: 1433: 1382: 1376: 1370: 1319: 1315: 1293: 1284: 1275: 1248: 1242: 1234:the original 1224: 1210: 1183: 1177: 1169: 1164: 1129: 1125: 1119: 1099: 1092: 1064: 1057: 1045:. Retrieved 1040: 1031: 1023: 1017: 981: 973: 953: 883: 879: 875: 863: 845: 834: 806: 799: 793: 780: 772: 766:Cooper pairs 755: 747: 732: 727: 714: 698: 684: 675: 669:polarization 662: 649: 642: 638: 632: 616: 603: 582: 572:valence band 565: 559:interference 514: 496: 431:Lev Landau's 428: 408: 397: 384: 368: 352: 341: 327: 320: 311: 307: 299: 296: 291: 284:ground state 277: 263:and various 261:ground state 258: 241: 239: 230:ground state 215: 210: 206: 196: 188: 167: 138: 133: 129: 121: 113: 111: 100: 94: 88: 81:valence band 76: 58: 41: 37: 31: 29: 3459:Soft matter 3359:Ferromagnet 3177:Drude model 3146:Berry phase 3126:Hall effect 2907:Quark model 2675:Theta meson 2578:Positronium 2490:Omega meson 2485:J/psi meson 2415:Antineutron 2326:Dark photon 2291:Graviphoton 2250:Stop squark 1958:Down (quark 1871:PhysOrg.com 685:plasmariton 375:ferromagnet 3558:Categories 3374:Spin glass 3369:Metamagnet 3349:Paramagnet 3236:Conduction 3212:BCS theory 3053:Superfluid 3048:Supersolid 2649:Heptaquark 2610:Superatoms 2543:Pentaquark 2533:Tetraquark 2515:Quarkonium 2405:Antiproton 2306:Leptoquark 2241:Neutralino 2003:antiquark) 1993:antiquark) 1988:Top (quark 1983:antiquark) 1973:antiquark) 1963:antiquark) 1953:antiquark) 1922:Elementary 1769:2203.13615 1712:1708.07143 1618:. Phys.org 1569:1610.01604 1508:1502.03447 1392:1504.08037 1267:2020020086 1202:2020020086 928:References 790:potential. 705:superfluid 597:sound wave 591:. It is a 506:See also: 471:collisions 433:theory of 304:anharmonic 282:is in the 153:Lev Landau 3432:Polariton 3339:Diamagnet 3287:Couplings 3263:Conductor 3258:Semimetal 3243:Insulator 3119:Phenomena 3043:Fermi gas 2887:Particles 2832:Particles 2791:Polariton 2781:Plasmaron 2751:Dropleton 2644:Hexaquark 2615:Molecules 2603:Protonium 2480:Phi meson 2465:Rho meson 2437:Xi baryon 2369:Composite 2205:Gravitino 1948:Up (quark 1802:247749037 1794:1745-2481 1737:119423231 1480:119288349 1455:1111.0179 1134:CiteSeerX 884:direction 795:Skyrmions 634:polariton 610:spin wave 547:Crommie's 479:Boltzmann 379:spin wave 177:electrons 173:particles 50:particles 3506:Category 3487:Colloids 2863:timeline 2715:R-hadron 2670:Glueball 2654:Skyrmion 2588:Tauonium 2301:Inflaton 2296:Graviton 2276:Curvaton 2246:Sfermion 2236:Higgsino 2231:Chargino 2192:Gauginos 2051:Neutrino 2036:Antimuon 2026:Positron 2021:Electron 1931:Fermions 1683:28630919 1594:28306270 1533:26047225 1417:27043779 1362:95868563 1354:12142440 1156:18345614 1084:62416599 1047:26 March 891:See also 846:Type-II 835:Angulons 825:minerals 823:in some 801:Hopfions 787:spin ice 519:electron 439:helium-3 419:plasmons 415:excitons 242:directly 185:neutrons 159:Overview 118:fermions 102:plasmons 61:electron 3518:Commons 3482:Polymer 3449:Polaron 3427:Plasmon 3407:Exciton 2851:Related 2822:Baryons 2796:Polaron 2786:Plasmon 2761:Fracton 2756:Exciton 2710:Diquark 2705:Pomeron 2680:T meson 2637:Baryons 2598:Pionium 2583:Muonium 2510:D meson 2505:B meson 2410:Neutron 2395:Nucleon 2387:Baryons 2378:Hadrons 2341:Tachyon 2316:Majoron 2281:Dilaton 2210:Photino 2046:Antitau 2013:Leptons 1774:Bibcode 1717:Bibcode 1674:5457030 1653:Bibcode 1622:1 March 1602:5190749 1574:Bibcode 1541:9111150 1513:Bibcode 1460:Bibcode 1425:3406627 1397:Bibcode 1334:Bibcode 1316:Science 1020:, p. 10 988:299–302 738:fermion 677:exciton 664:polaron 651:plasmon 593:quantum 535:fermion 453:of the 425:History 411:phonons 344:fermion 300:exactly 181:protons 3417:Phonon 3412:Magnon 3170:Theory 3028:Plasma 3018:Liquid 2827:Mesons 2776:Phonon 2771:Magnon 2693:Others 2663:Mesons 2556:Others 2452:Mesons 2400:Proton 2264:Others 2219:Others 2200:Gluino 2134:Scalar 2114:Photon 2097:Bosons 1940:Quarks 1800:  1792:  1735:  1681:  1671:  1600:  1592:  1539:  1531:  1478:  1423:  1415:  1360:  1352:  1265:  1255:  1200:  1190:  1154:  1136:  1107:  1082:  1072:  994:  961:  865:dislon 851:break 808:Spinon 733:anyons 709:vortex 621:photon 617:photon 605:magnon 584:phonon 523:charge 517:is an 463:plasma 371:magnon 364:phonon 288:phonon 183:, and 169:Solids 126:bosons 96:phonon 54:vacuum 3392:Anyon 3013:Solid 2815:Lists 2806:Trion 2801:Roton 2741:Anyon 2568:Atoms 2331:Preon 2271:Axion 2226:Axino 2119:Gluon 2106:Gauge 1798:S2CID 1764:arXiv 1733:S2CID 1707:arXiv 1598:S2CID 1564:arXiv 1537:S2CID 1503:arXiv 1476:S2CID 1450:arXiv 1421:S2CID 1387:arXiv 1358:S2CID 1324:arXiv 1152:S2CID 827:like 742:boson 700:roton 595:of a 574:of a 373:in a 348:boson 308:close 83:of a 46:solid 3402:Hole 2766:Hole 2593:Onia 2500:Kaon 2460:Pion 2031:Muon 1790:ISSN 1679:PMID 1624:2017 1590:PMID 1529:PMID 1413:PMID 1350:PMID 1306:CaCu 1263:LCCN 1253:ISBN 1198:LCCN 1188:ISBN 1105:ISBN 1080:OCLC 1070:ISBN 1049:2021 992:ISBN 959:ISBN 880:duon 878:(or 819:and 798:and 740:nor 567:hole 527:spin 525:and 402:and 211:real 36:, a 3023:Gas 2041:Tau 1782:doi 1725:doi 1669:PMC 1661:doi 1582:doi 1560:118 1521:doi 1499:114 1468:doi 1441:EPL 1405:doi 1342:doi 1320:297 1314:". 1312:8+δ 1144:doi 1024:all 674:An 555:STM 445:in 328:all 318:". 147:in 52:in 32:In 3560:: 1820:, 1796:. 1788:. 1780:. 1772:. 1760:19 1758:. 1754:. 1731:. 1723:. 1715:. 1703:20 1701:. 1677:. 1667:. 1659:. 1647:. 1641:. 1596:. 1588:. 1580:. 1572:. 1558:. 1535:. 1527:. 1519:. 1511:. 1497:. 1474:. 1466:. 1458:. 1446:97 1444:. 1419:. 1411:. 1403:. 1395:. 1383:15 1381:. 1356:. 1348:. 1340:. 1332:. 1318:. 1302:Sr 1283:. 1261:. 1196:. 1150:. 1142:. 1130:17 1128:. 1078:. 1039:. 1006:^ 990:. 935:^ 862:A 771:A 697:A 683:A 661:A 648:A 602:A 581:A 564:A 406:. 390:. 179:, 175:: 136:. 109:. 56:. 2989:e 2982:t 2975:v 2539:) 2535:( 2252:) 2248:( 1906:e 1899:t 1892:v 1804:. 1784:: 1776:: 1766:: 1739:. 1727:: 1719:: 1709:: 1685:. 1663:: 1655:: 1649:3 1626:. 1604:. 1584:: 1576:: 1566:: 1543:. 1523:: 1515:: 1505:: 1482:. 1470:: 1462:: 1452:: 1427:. 1407:: 1399:: 1389:: 1364:. 1344:: 1336:: 1326:: 1310:O 1308:2 1304:2 1300:2 1269:. 1218:. 1204:. 1158:. 1146:: 1113:. 1086:. 1051:. 1000:. 967:. 831:. 728:e 711:. 612:. 599:. 549:" 236:. 20:)

Index

Collective excitation
condensed matter physics
solid
particles
vacuum
electron
semiconductor
atomic nuclei
effective mass
valence band
semiconductor
electron holes
phonon
plasmons
plasma oscillation
fermions
bosons
condensed matter physics
many-body problem
quantum mechanics
Lev Landau
Solids
particles
electrons
protons
neutrons
emergent phenomenon
Coulomb's law
many-body problem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑