Knowledge

Coccolithophore

Source 📝

2167:. During photosynthesis carbon dioxide is removed from the water, making it more basic. Also calcification removes carbon dioxide, but chemistry behind it leads to the opposite pH reaction; it makes the water more acidic. The combination of photosynthesis and calcification therefore even out each other regarding pH changes. In addition, these exoskeletons may confer an advantage in energy production, as coccolithogenesis seems highly coupled with photosynthesis. Organic precipitation of calcium carbonate from bicarbonate solution produces free carbon dioxide directly within the cellular body of the alga, this additional source of gas is then available to the Coccolithophore for photosynthesis. It has been suggested that they may provide a cell-wall like barrier to isolate intracellular chemistry from the marine environment. More specific, defensive properties of coccoliths may include protection from osmotic changes, chemical or mechanical shock, and short-wavelength light. It has also been proposed that the added weight of multiple layers of coccoliths allows the organism to sink to lower, more nutrient rich layers of the water and conversely, that coccoliths add buoyancy, stopping the cell from sinking to dangerous depths. Coccolith appendages have also been proposed to serve several functions, such as inhibiting grazing by zooplankton. 601: 2400:) plates that constitute the dinoflagellate shell, should rather be favored at high H concentrations because these usually coincide with high . Under these conditions dinoflagellates could down-regulate the energy-consuming operation of carbon concentrating mechanisms to fuel the production of organic source material for their shell. Therefore, a shift in carbonate chemistry conditions toward high may promote their competitiveness relative to coccolithophores. However, such a hypothetical gain in competitiveness due to altered carbonate chemistry conditions would not automatically lead to dinoflagellate dominance because a huge number of factors other than carbonate chemistry have an influence on 2196: 2295: 1322: 700: 2497: 852: 1338: 7927: 3184: 143: 1036: 1446: 2980: 2028: 774:
coccolithophores are K strategist and are usually found on nutrient-poor surface waters. They are poor competitors when compared to other phytoplankton and thrive in habitats where other phytoplankton would not survive. These two stages in the life cycle of coccolithophores occur seasonally, where more nutrition is available in warmer seasons and less is available in cooler seasons. This type of life cycle is known as a complex heteromorphic life cycle.
783: 120: 951: 231: 6669: 6363: 5490: 5439: 5323: 3499: 3396: 585:. These are estimated to consume about two-thirds of the primary production in the ocean and microzooplankton can exert a strong grazing pressure on coccolithophore populations. Although calcification does not prevent predation, it has been argued that the coccosphere reduces the grazing efficiency by making it more difficult for the predator to utilise the organic content of coccolithophores. 3137:, impairs ion channel function and therefore places evolutionary selective pressure on coccolithophores and makes them (and other ocean calcifiers) vulnerable to ocean acidification. In 2008, field evidence indicating an increase in calcification of newly formed ocean sediments containing coccolithophores bolstered the first ever experimental data showing that an increase in ocean CO 2392:(diatom shell) seems to be the most inexpensive armor under all circumstances because diatoms typically outcompete all other groups when silicate is available. The coccosphere is relatively inexpensive under sufficient , high , and low because the substrate is saturating and protons are easily released into seawater. In contrast, the construction of 2282:(C) Mechanical and structural processes account for the secretion of the completed coccoliths that are transported from their original position adjacent to the nucleus to the cell periphery, where they are transferred to the surface of the cell. The costs associated with these processes are likely to be comparable to organic-scale 920: 890: 904: 808:
considered the Central North Zone which is an area between 30 N and 5 N, composed of the North Equatorial Current and the Equatorial Countercurrent. These two currents move in opposite directions, east and west, allowing for a strong mixing of waters and allowing a large variety of species to populate the area.
954: 953: 958: 957: 952: 1179:
have been found to produce haemolytic compounds, the agent responsible for toxicity. Some of these toxic species are responsible for large fish kills and can be accumulated in organisms such as shellfish; transferring it through the food chain. In laboratory tests for toxicity members of the oceanic
1018:
Recent studies show that climate change has direct and indirect impacts on Coccolithophore distribution and productivity. They will inevitably be affected by the increasing temperatures and thermal stratification of the top layer of the ocean, since these are prime controls on their ecology, although
3095:
is instead released back into the atmosphere. As a result of this, researchers have postulated that large blooms of coccolithophores may contribute to global warming in the short term. A more widely accepted idea, however, is that over the long term coccolithophores contribute to an overall decrease
2471:
prey and found no evidence that the coccosphere prevents ingestion by the grazer. Instead, ingestion rates were dependent on the offered genotype of E. huxleyi. Altogether, these two studies suggest that the genotype has a strong influence on ingestion by the microzooplankton species, but if and how
2153:
crystals. These crystals are thought to form at least partially outside the cell. Heterococcoliths occur only in the diploid phase, have radial symmetry, and are composed of relatively few complex crystal units (fewer than 100). Although they are rare, combination coccospheres, which contain both
1115:
or other groups of phytoplankton, such as coccolithophores. A low silicate to nitrogen and phosphorus ratio allows coccolithophores to outcompete other phytoplankton species; however, when silicate to phosphorus to nitrogen ratios are high coccolithophores are outcompeted by diatoms. The increase in
880:
The upper photic zone is low in nutrient concentration, high in light intensity and penetration, and usually higher in temperature. The lower photic zone is high in nutrient concentration, low in light intensity and penetration and relatively cool. The middle photic zone is an area that contains the
795:
conditions, the most abundant areas of coccolithophores where there is the highest species diversity are located in subtropical zones with a temperate climate. While water temperature and the amount of light intensity entering the water's surface are the more influential factors in determining where
6328:
Daniels, Chris J.; Poulton, Alex J.; Balch, William M.; Marañón, Emilio; Adey, Tim; Bowler, Bruce C.; Cermeño, Pedro; Charalampopoulou, Anastasia; Crawford, David W.; Drapeau, Dave; Feng, Yuanyuan; Fernández, Ana; Fernández, Emilio; Fragoso, Glaucia M.; González, Natalia; Graziano, Lisa M.; Heslop,
3172:
saturation contrary to predictions. Understanding the effects of increasing ocean acidification on coccolithophore species is absolutely essential to predicting the future chemical composition of the ocean, particularly its carbonate chemistry. Viable conservation and management measures will come
959: 2302:
The diagram on the left shows the benefits of coccolithophore calcification. (A) Accelerated photosynthesis includes CCM (1) and enhanced light uptake via scattering of scarce photons for deep-dwelling species (2). (B) Protection from photodamage includes sunshade protection from ultraviolet (UV)
1349: (E), the reference species for coccolithophore studies, is contrasted with a range of other species spanning the biodiversity of modern coccolithophores. All images are scanning electron micrographs of cells collected by seawater filtration from the open ocean. Species illustrated: (A)  807:
Within the Pacific Ocean, approximately 90 species have been identified with six separate zones relating to different Pacific currents that contain unique groupings of different species of coccolithophores. The highest diversity of coccolithophores in the Pacific Ocean was in an area of the ocean
2148:
and added to the inner surface of the coccosphere. This means that the most recently produced coccoliths may lie beneath older coccoliths. Depending upon the phytoplankton's stage in the life cycle, two different types of coccoliths may be formed. Holococcoliths are produced only in the haploid
1224:
need sunlight and nutrients from the ocean to survive, so they thrive in areas with large inputs of nutrient rich water upwelling from the lower levels of the ocean. Most coccolithophores require sunlight only for energy production, and have a higher ratio of nitrate uptake over ammonium uptake
868:
The complete distribution of coccolithophores is currently not known and some regions, such as the Indian Ocean, are not as well studied as other locations in the Pacific and Atlantic Oceans. It is also very hard to explain distributions due to multiple constantly changing factors involving the
773:
of coccolithophores depend on their life cycle stage. When coccolithophores are diploid, they are r-selected. In this phase they tolerate a wider range of nutrient compositions. When they are haploid they are K- selected and are often more competitive in stable low nutrient environments. Most
2343:
chemistry conditions is possible within one year. Unraveling these fundamental constraints and the limits of adaptation should be a focus in future coccolithophore studies because knowing them is the key information required to understand to what extent the calcification response to carbonate
2123:
process known as coccolithogenesis. Generally, calcification of coccoliths occurs in the presence of light, and these scales are produced much more during the exponential phase of growth than the stationary phase. Although not yet entirely understood, the biomineralization process is tightly
3100:
concentrations. During calcification two carbon atoms are taken up and one of them becomes trapped as calcium carbonate. This calcium carbonate sinks to the bottom of the ocean in the form of coccoliths and becomes part of sediment; thus, coccolithophores provide a sink for emitted carbon,
572:
As of 2021, it is not known why coccolithophores calcify and how their ability to produce coccoliths is associated with their ecological success. The most plausible benefit of having a coccosphere seems to be a protection against predators or viruses. Viral infection is an important cause of
5651:
Balch, W. M.; Drapeau, D. T.; Bowler, B. C.; Lyczskowski, E.; Booth, E. S.; Alley, D. (2011). "The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the "Great Calcite Belt" hypothesis".
3298:
help to produce thicker clouds to block the sun. When the oceans cool, the number of coccolithophorids decrease and the amount of clouds also decrease. When there are fewer clouds blocking the sun, the temperature also rises. This, therefore, maintains the balance and equilibrium of nature.
1052: 989:
predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups.
766:
In this process the coccoliths from the parent cell are divided between the two daughter cells. There have been suggestions stating the possible presence of a sexual reproduction process due to the diploid stages of the coccolithophores, but this process has never been observed.
956: 1249:. These viruses, known as E. huxleyi viruses (EhVs), appear to infect the coccosphere coated diploid phase of the life cycle almost exclusively. It has been proposed that as the haploid organism is not infected and therefore not affected by the virus, the co-evolutionary " 2335:) to co-adapt in order to keep H efflux alive. The obligatory H efflux associated with calcification may therefore pose a fundamental constraint on adaptation which may potentially explain why "calcification crisis" were possible during long-lasting (thousands of years) CO 4328:
Monteiro, Fanny M.; Bach, Lennart T.; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E. M.; Poulton, Alex J.; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A.; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy (2016).
3201: 799:
Although motility and colony formation vary according to the life cycle of different coccolithophore species, there is often alternation between a motile, haploid phase, and a non-motile diploid phase. In both phases, the organism's dispersal is largely due to ocean
6329:
Rachel; Holligan, Patrick M.; Hopkins, Jason; Huete-Ortega, María; Hutchins, David A.; Lam, Phoebe J.; Lipsen, Michael S.; López-Sandoval, Daffne C.; Loucaides, Socratis; Marchetti, Adrian; Mayers, Kyle M. J.; Rees, Andrew P.; Sobrino, Cristina; et al. (2018).
1157:
Their predators include the common predators of all phytoplankton including small fish, zooplankton, and shellfish larvae. Viruses specific to this species have been isolated from several locations worldwide and appear to play a major role in spring bloom dynamics.
3217: 2355:
do not need to sustain the calcification-related H efflux. Thus, they probably do not need to adapt in order to keep costs for the production of structural elements low. On the contrary, dinoflagellates (except for calcifying species; with generally inefficient
1140:, meaning photosythetic production is diminished due to an excess of light. In case 1), a high concentration of coccoliths leads to a simultaneous increase in surface water temperature and decrease in the temperature of deeper waters. This results in more 790:
Coccolithophores occur throughout the world's oceans. Their distribution varies vertically by stratified layers in the ocean and geographically by different temporal zones. While most modern coccolithophores can be located in their associated stratified
7054:
Mayers, Kyle M. J.; Poulton, Alex J.; Bidle, Kay; Thamatrakoln, Kimberlee; Schieler, Brittany; Giering, Sarah L. C.; Wells, Seona R.; Tarran, Glen A.; Mayor, Dan; Johnson, Matthew; Riebesell, Ulf; Larsen, Aud; Vardi, Assaf; Harvey, Elizabeth L. (2020).
2187:
that cover up to 35% of the ocean floor and is kilometres thick in places. Because of their abundance and wide geographic ranges, the coccoliths which make up the layers of this ooze and the chalky sediment formed as it is compacted serve as valuable
2303:
light and photosynthetic active radiation (PAR) (1) and energy dissipation under high-light conditions (2). (C) Armor protection includes protection against viral/bacterial infections (1) and grazing by selective (2) and nonselective (3) grazers.
4122:
Honjo, Susumu; Manganini, Steven J.; Krishfield, Richard A.; Francois, Roger (2008). "Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983".
746:
to produce haploid cells again, starting the cycle over. With coccolithophores, asexual reproduction by mitosis is possible in both phases of the life cycle, which is a contrast with most other organisms that have alternating life cycles. Both
2154:
holococcoliths and heterococcoliths, have been observed in the plankton recording coccolithophore life cycle transitions. Finally, the coccospheres of some species are highly modified with various appendages made of specialized coccoliths.
1005:
spring and summer in the Southern Ocean, plays an important role in climate fluctuations, accounting for over 60% of the Southern Ocean area (30–60° S). The region between 30° and 50° S has the highest uptake of anthropogenic carbon dioxide
2412:
Currently, the evidence supporting or refuting a protective function of the coccosphere against predation is limited. Some researchers found that overall microzooplankton predation rates were reduced during blooms of the coccolithophore
2377: 2162:
While the exact function of the coccosphere is unclear, many potential functions have been proposed. Most obviously coccoliths may protect the phytoplankton from predators. It also appears that it helps them to create a more stable
5059:
Houdan; Probert, I; Zatylny, C; Véron, B; Billard, C; et al. (2006), ". Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus",
6969:
Olson, M.Brady; Strom, Suzanne L. (2002). "Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: Insight into the formation and temporal persistence of an Emiliania huxleyi bloom".
4882:
Moheimani, N.R.; Webb, J.P.; Borowitzka, M.A. (2012), "Bioremediation and other potential applications of coccolithophorid algae: A review. . Bioremediation and other potential applications of coccolithophorid algae: A review",
6518:
Lohbeck, Annette; Tietjens, Maike; Bund, Andreas (2014). "Das physische Selbstkonzept, die individuell präferierte Bezugsnormorientierung und die Zielorientierung bei Grundschulkindern der zweiten und vierten Jahrgangsstufe".
6786:
Fu, Fei-Xue; Zhang, Yaohong; Warner, Mark E.; Feng, Yuanyuan; Sun, Jun; Hutchins, David A. (2008). "A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum".
3996:
Poulton, Alex J.; Adey, Tim R.; Balch, William M.; Holligan, Patrick M. (2007). "Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export".
2099:. The coccoliths are created inside the coccolithophore cell and while some species maintain a single layer throughout life only producing new coccoliths as the cell grows, others continually produce and shed coccoliths. 2318:
for intra-cellular calcification) to become more costly with ongoing ocean acidification as the electrochemical H inside-out gradient is reduced and passive proton outflow impeded. Adapted cells would have to activate
3129:, as coccolith production would otherwise produce a toxic excess of H ions. When the function of these ion channels is disrupted, the coccolithophores stop the calcification process to avoid acidosis, thus forming a 1148:
of the ocean is less than that from anthropogenic factors. Therefore, the overall result of large blooms of coccolithophores is a decrease in water column productivity, rather than a contribution to global warming.
5174:
Boeckel; Baumann, Karl-Heinz; Henrich, Rüdiger; Kinkel, Hanno; et al. (2006), "Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients",
5419:
Durak, G.M., Taylor, A.R., Walker, C.E., Probert, I., De Vargas, C., Audic, S., Schroeder, D., Brownlee, C. and Wheeler, G.L. (2016) "A role for diatom-like silicon transporters in calcifying coccolithophores".
5687:
Sabine, C. L.; Feely, R. A.; Gruber, N.; Key, R. M.; Lee, K.; Bullister, J. L.; Wanninkhof, R.; Wong, C. S.; Wallace, D. W.; Tilbrook, B.; Millero, F. J.; Peng, T. H.; Kozyr, A.; Ono, T.; Rios, A. F. (2004).
3613:
Hay, W.W.; Mohler, H.P.; Roth, P.H.; Schmidt, R.R.; Boudreaux, J.E. (1967), "Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area, and transoceanic correlation",
2372:
fertilization. Under the assumption that any form of shell/exoskeleton protects phytoplankton against predation non-calcareous armors may be the preferable solution to realize protection in a future ocean.
1166:
No environmental evidence of coccolithophore toxicity has been reported, but they belong to the class Prymnesiophyceae which contain orders with toxic species. Toxic species have been found in the genera
573:
phytoplankton death in the oceans, and it has recently been shown that calcification can influence the interaction between a coccolithophore and its virus. The major predators of marine phytoplankton are
3117:
in the atmosphere may affect the calcification machinery of coccolithophores. This may not only affect immediate events such as increases in population or coccolith production, but also may induce
955: 1225:(nitrogen is required for growth and can be used directly from nitrate but not ammonium). Because of this they thrive in still, nutrient-poor environments where other phytoplankton are starving. 537:. Today, coccolithophores contribute ~1–10% to inorganic carbon fixation (calcification) to total carbon fixation (calcification plus photosynthesis) in the surface ocean and ~50% to pelagic CaCO 5456:
Smith, Helen E. K.; Poulton, Alex J.; Garley, Rebecca; Hopkins, Jason; Lubelczyk, Laura C.; Drapeau, Dave T.; Rauschenberg, Sara; Twining, Ben S.; Bates, Nicholas R.; Balch, William M. (2017).
6926:
Fileman, E.S.; Cummings, D.G.; Llewellyn, C.A. (2002). "Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast".
5591:
Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R. (2004).
2388:
The diagram on the right is a representation of how the comparative energetic effort for armor construction in diatoms, dinoflagellates and coccolithophores appear to operate. The
592:
are able to selectively choose prey on the basis of its size or shape and through chemical signals and may thus favor other prey that is available and not protected by coccoliths.
5304:
Gafar, N. A., Eyre, B. D. and Schulz, K. G. (2019). "A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton".
6229:
Irie, Takahiro; et al. (2010), "Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores",
1132:
in calcium carbonate allows coccoliths to scatter more light than they absorb. This has two important consequences: 1) Surface waters become brighter, meaning they have a higher
3653:
Buitenhuis, Erik T.; Pangerc, Tanja; Franklin, Daniel J.; Le Quéré, Corinne; Malin, Gill (2008), "Growth Rates of Six Coccolithoripd Strains as a Function of Temperature",
4498:
Johns, Christopher T.; Grubb, Austin R.; Nissimov, Jozef I.; Natale, Frank; Knapp, Viki; Mui, Alwin; Fredricks, Helen F.; Van Mooy, Benjamin A. S.; Bidle, Kay D. (2019).
3879:"Detection of Phagotrophy in the Marine Phytoplankton Group of the Coccolithophores (Calcihaptophycidae, Haptophyta) During Nutrient‐replete and Phosphate‐limited Growth" 5548:
Sarmiento, Jorge L.; Hughes, Tertia M. C.; Stouffer, Ronald J.; Manabe, Syukuro (1998). "Simulated response of the ocean carbon cycle to anthropogenic climate warming".
5345:
Young, J.R.; et al. (2009), "Coccolith function and morphogenesis: insights from appendage-bearing coccolithophores of the family syracosphaeraceae (haptophyta)",
7275:
Mackinder; Wheeler, Glen; Schroeder, Declan; Riebesell, Ulf; Brownlee, Colin; et al. (2010), "Molecular Mechanisms Underlying Calcification in Coccolithophores",
6093: 1144:
in the water column and a decrease in the vertical mixing of nutrients. However, a 2012 study estimated that the overall effect of coccolithophores on the increase in
6166:
Linschooten, Cornelis; et al. (1991), "Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (haptophyceae)",
8525: 5939:
Litchman, E.; et al. (2007), "The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level",
3449:
de Vries, Joost; Monteiro, Fanny; Wheeler, Glen; Poulton, Alex; Godrijan, Jelena; Cerino, Federica; Malinverno, Elisa; Langer, Gerald; Brownlee, Colin (2021-02-16).
1019:
it is not clear whether global warming would result in net increase or decrease of coccolithophores. As they are calcifying organisms, it has been suggested that
8545: 7639:
Charlson, Robert J.; Lovelock, James E.; Andreae, Meinrat O.; Warren, Stephen G. (1987). "Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate".
7005:
Mayers, K.M.J.; Poulton, A.J.; Daniels, C.J.; Wells, S.R.; Woodward, E.M.S.; Tarran, G.A.; Widdicombe, C.E.; Mayor, D.J.; Atkinson, A.; Giering, S.L.C. (2019).
4641:
Mayers, K.M.J.; Poulton, A.J.; Daniels, C.J.; Wells, S.R.; Woodward, E.M.S.; Tarran, G.A.; Widdicombe, C.E.; Mayor, D.J.; Atkinson, A.; Giering, S.L.C. (2019).
3576:
Yunev, O.A.; et al. (2007), "Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes",
9444: 742:. These haploid cells can then divide further through mitosis or undergo sexual reproduction with other haploid cells. The resulting diploid cell goes through 722:(sexual) life cycle, and (c) coccolithophores tend to utilize a haplo-diplontic life cycle. Note that not all coccolithophores calcify in their haploid phase. 9493: 9380: 9375: 2457:
that was offered, rather than on their degree of calcification. In the same study, however, the authors found that predators which preyed on non-calcifying
9498: 9400: 3141:
concentration results in an increase in calcification of these organisms. Decreasing coccolith mass is related to both the increasing concentrations of CO
9571: 9545: 9439: 5271:
Kinkel, H.; et al. (2000), "Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability",
2963: 2059: 6200: 9576: 9488: 9395: 8959: 6471:"Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and p CO 2" 9385: 9313: 9297: 9214: 9204: 9170: 8997: 4836:
Henderiks, Jorijntje (2008). "Coccolithophore size rules — Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths".
4248:
Young, J. R. (1994). "Functions of coccoliths", in Coccolithophores, eds A. Winter and W. G. Siesser (Cambridge: Cambridge University Press), 63–82.
3519:
Smith, H.E.K.; et al. (2012), "Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay",
3200: 9483: 9478: 9416: 9370: 9240: 9230: 8987: 7317:
Bates; Michaels, Anthony F.; Knap, Anthony H.; et al. (1996), "Alkalinity changes in the Sargasso Sea; geochemical evidence of calfication?",
1327:
Evolutionary history of coccolithophores: (A) Coccolithophore species richness over time; (B) The fossil record of major coccolithophore
2427:
did not differ significantly from those on similar sized non-calcifying phytoplankton. In laboratory experiments the heterotrophic dinoflagellate
9827: 9714: 9582: 9250: 1790: 5214:
de Vargas, C.; Aubrey, M.P.; Probert, I.; Young, J. (2007). "From coastal hunters to oceanic farmers.". In Falkowski, P.G.; Knoll, A.H. (eds.).
3216: 3177:
are monitoring the responses of coccolithophore populations to varying pH's and working to determine environmentally sound measures of control.
9245: 9235: 9209: 8535: 444:
Coccolithophores (or coccolithophorids, from the adjective) form a group of about 200 phytoplankton species. They belong either to the kingdom
4914:
Billard, Chantal; Inouye, Isoa (August 17, 2004). "What is new in coccolithophore biology?". In Thierstein, Hans R.; Young, Jeremy R. (eds.).
9753: 9527: 9118: 686:, coils and uncoils in response to environmental stimuli. Although poorly understood, it has been proposed to be involved in prey capture. 5111:
Geisen, M.; et al. (August 17, 2004). "Species level variation in coccolithophores=". In Thierstein, Hans R.; Young, Jeremy R. (eds.).
985:
is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its
6551:"Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia" 5747: 3011: 2380:
Representation of comparative energetic effort for armor construction in three major shell-forming phytoplankton taxa as a function of
2011: 7787: 848:
depths. These coccolithophores increase in abundance when the nutricline and thermocline are deep and decrease when they are shallow.
3174: 2183:, and of other similar rocks in many other parts of the world. At the present day sedimented coccoliths are a major component of the 7100:"Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: Size selectivity and preference for calcified Emiliania huxleyi cells" 6469:
Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H. (2013).
5000:
Vardi, A.; et al. (2012), "Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population",
3268:
in the ocean. Finally, field evidence of coccolithophore fossils in rock were used to show that the deep-sea fossil record bears a
2111:. Calcium carbonate is transparent, so the organisms' photosynthetic activity is not compromised by encapsulation in a coccosphere. 9688: 4588:
Calbet, Albert; Landry, Michael R. (2004). "Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems".
3157:
in the world's oceans. This lower calcification is assumed to put coccolithophores at ecological disadvantage. Some species like
9727: 7941: 4748:"The role of dissolved infochemicals in mediating predator-prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina" 2419:, while others found high microzooplankton grazing rates on natural coccolithophore communities. In 2020, researchers found that 2052: 1257:
evolutionary framework, but instead a "Cheshire Cat" ecological dynamic. More recent work has suggested that viral synthesis of
1229:
associated with these faster growth rates include a smaller cell radius and lower cell volume than other types of phytoplankton.
2149:
phase, lack radial symmetry, and are composed of anywhere from hundreds to thousands of similar minute (ca 0.1 μm) rhombic
1313:
due to decreasing global temperatures, with species that produced large and heavily calcified coccoliths most heavily affected.
8465: 7856: 3183: 1305:, when more than 90% of coccolithophore species became extinct. Coccoliths reached another, lower apex of diversity during the 7564: 6593:
Erba, Elisabetta (2006). "The first 150 million years history of calcareous nannoplankton: Biosphere–geosphere interactions".
4075:"Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio" 2368:
as their source of structural elements in the form of cellulose should be facilitated by the ocean acidification-associated CO
2230:(A) Transport processes include the transport into the cell from the surrounding seawater of primary calcification substrates 7693: 5870: 4224: 3980: 3947: 3854: 3430: 1302: 796:
species are located, the ocean currents also can determine the location where certain species of coccolithophores are found.
9732: 6040: 2437:, which was hypothesised to be due to size selective feeding behaviour, since calcified cells are larger than non-calcified 1083:
Coccolithophores are one of the more abundant primary producers in the ocean. As such, they are a large contributor to the
1306: 5458:"The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt" 3930:
Bown, Paul R.; Lees, Jackie A.; Young, Jeremy R. (2004). "Calcareous nannoplankton evolution and diversity through time".
6686:
Van De Waal, Dedmer B.; John, Uwe; Ziveri, Patrizia; Reichart, Gert-Jan; Hoins, Mirja; Sluijs, Appy; Rost, Björn (2013).
2376: 939:, but they are heavily calcified and make important contributions to global calcification. Unmarked scale bars 5 μm. 5509:"Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data" 8578: 7820: 6637:"A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework" 4960: 3091:
However, the production of calcium carbonate drives surface alkalinity down, and in conditions of low alkalinity the CO
2045: 727: 7565:"Calcareous Nannofossil Assemblage Changes Across the Paleocene-Eocene Thermal Maximum: Evidence from a Shelf Setting" 7467: 3168:
might be (study results are mixed). Also, highly calcified coccolithophorids have been found in conditions of low CaCO
2461:
grew faster than those fed with calcified cells. In 2018, Strom et al. compared predation rates of the dinoflagellate
553:
precipitation of calcium carbonate during coccolith formation reduces the total alkalinity of seawater and releases CO
6150: 5876: 5120: 4923: 4439: 4239:
Young, J. R. (1987). Possible Functional Interpretations of Coccolith Morphology. New York: Springer-Verlag, 305–313.
3916: 3261: 7391:
Beaufort, L.; et al. (2011), "Sensitivity of coccolithophores to carbonate chemistry and ocean acidification",
4207:
Rost, Björn; Riebesell, Ulf (2004). "Coccolithophores and the biological pump: Responses to environmental changes".
3413:
Rost, Björn; Riebesell, Ulf (2004). "Coccolithophores and the biological pump: Responses to environmental changes".
9789: 8615: 3364:"Influence of the Calcium Carbonate Shell of Coccolithophores on Ingestion and Growth of a Dinoflagellate Predator" 375:-related coccolithophore blooms, as these blooms lead to a decrease in nutrient flow to lower levels of the ocean. 17: 9758: 5386:
Daniels, C.J., Sheward, R.M. and Poulton, A.J. (2014) "Biogeochemical implications of comparative growth rates of
2331:. Reduced intra-cellular pH would severely affect the entire cellular machinery and require other processes (e.g. 8610: 6048: 2449:
as well as calcified strains that differed in the degree of calcification. They found that the ingestion rate of
600: 7597:
Lloyd, G.T.; et al. (2011), "Quantifying the deep-sea rock and fossil record bias using coccolithophores",
6434:
Taylor, Alison R.; Brownlee, Colin; Wheeler, Glen L. (2012). "Proton channels in algae: Reasons to be excited".
460:, according to the newer biological classification system. Within the Hacrobia, the coccolithophores are in the 3249:. They are the largest global source of biogenic calcium carbonate, and significantly contribute to the global 3004: 3290:
The coccolithophorids help in regulating the temperature of the oceans. They thrive in warm seas and release
2195: 2144:
control the shape and growth of these crystals. As each scale is produced, it is exported in a Golgi-derived
730:, and is characterized by an alternation of both asexual and sexual phases. The asexual phase is known as the 280:, according to a newer biological classification system. Within the Hacrobia, the coccolithophores are in the 9740: 8694: 8684: 8667: 3237: 2867: 1922: 1917: 1750: 1551: 1120:
of waters and thus, coccolithophore blooms in these high nitrogen and phosphorus, low silicate environments.
142: 3803:"A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation" 347:
Coccolithophores are ecologically important, and biogeochemically they play significant roles in the marine
8530: 6635:
Bach, Lennart Thomas; Riebesell, Ulf; Gutowska, Magdalena A.; Federwisch, Luisa; Schulz, Kai Georg (2015).
2907: 2273:
crystals. The completed coccolith (gray plate) is a complex structure of intricately arranged CAPs and CaCO
994: 449: 269: 7007:"Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)" 5097:. Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment. 4643:"Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)" 616:
Coccolithophores are spherical cells about 5–100 micrometres across, enclosed by calcareous plates called
8455: 7966: 6110:
Gardin, Silvia; Krystyn, Leopold; Richoz, Sylvain; Bartolini, Annachiara; Galbrun, Bruno (October 2012).
5234:
Okada; Honjo, Susumu; et al. (1973), "The distribution of oceanic coccolithophores in the Pacific",
2596: 1745: 416:. It is also the fastest growing coccolithophore in laboratory cultures. It is studied for the extensive 6201:"Microscopic marine plants bioengineer their environment to enhance their own growth - The Conversation" 2496: 8445: 7946: 7911: 7792: 6111: 6057: 5911:
Houdan, A.; et al. (2004), "Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta)",
3318: 3034: 2958: 2690: 2565: 2032: 1979: 1061: 5592: 4557:"The Calcium Carbonate Shell of Emiliania huxleyi Provides Limited Protection Against Viral Infection" 2706: 2472:
calcification protects coccolithophores from microzooplankton predation could not be fully clarified.
9794: 9653: 8500: 7487: 7182:"Phytoplankton defenses: Do Emiliania huxleyi coccoliths protect against microzooplankton predators?" 4160:"Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2" 3362:
Haunost, Mathias; Riebesell, Ulf; D'Amore, Francesco; Kelting, Ole; Bach, Lennart T. (30 June 2021).
3264:
55 million years ago. This period is thought to correspond most directly to the current levels of CO
3125:
in to constantly pump H ions out of the cell during coccolith production. This allows them to avoid
2997: 2922: 2695: 1973: 1632: 1362: 1297:
boundary. Diversity steadily increased over the course of the Mesozoic, reaching its apex during the
1254: 1084: 356: 5853: 2199:
Energetic costs of coccolithophore calcification. Energetic costs reported as a percentage of total
933:
Larger coccolithophores such as the species above are less numerous than the smaller but ubiquitous
8162: 8034: 8021: 7783:
University of California, Berkeley. Museum of Paleontology: "Introduction to the Prymnesiophyta".
6214:
Westbroek, P.; et al. (1983), "Calcification in Coccolithophoridae: Wasteful or Functional?",
2244:(black arrows) and the removal of the end product H from the cell (gray arrow). The transport of Ca 1519: 6814:
Reinfelder, John R. (2011). "Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton".
4978:
Young, J.R.; Karen, H. (2003). "Biomineralization Within Vesicles: The Calcite of Coccoliths". In
3760:
Bentaleb, I.; et al. (1999), "Silicate as regulating nutrient in phytoplankton competition",
8699: 8440: 8420: 7886: 3207: 3118: 2943: 2912: 2589: 2226:
production. The diagram on the right shows the energetic costs of coccolithophore calcification:
1755: 1627: 1386: 1087:
of the tropical and subtropical oceans, however, exactly how much has yet to have been recorded.
877:
environments, unique oceanic topography, and pockets of isolated high or low water temperatures.
433: 249: 2294: 9837: 9615: 8571: 8450: 8302: 7813: 5848: 3332: 2917: 2790: 1944: 1769: 1141: 562: 541:
sediments. Their calcareous shell increases the sinking velocity of photosynthetically fixed CO
6112:"Where and when the earliest coccolithophores?: Where and when the earliest coccolithophores?" 9822: 8662: 8495: 8322: 8265: 8000: 7866: 7782: 6859:"Coccolith arrangement follows Eulerian mathematics in the coccolithophore Emiliania huxleyi" 4703:
Tillmann, Urban (2004). "Interactions between Planktonic Microalgae and Protozoan Grazers1".
3910: 3697:
Egge, JK; Aksnes, DL (1992), "Silicate as regulating nutrient in phytoplankton competition",
3254: 3223: 3190: 3121:
of coccolithophore species over longer periods of time. For example, coccolithophores use H
2311: 2180: 1507: 1380: 1368: 1262: 1212:
Coccolithophorids are predominantly found as single, free-floating haploid or diploid cells.
660: 9781: 9771: 9719: 3736: 9832: 9817: 9675: 8247: 8047: 7951: 7916: 7718: 7648: 7606: 7572: 7442: 7326: 7284: 7229:
Mejia, R. (2011), "Will Ion Channels Help Coccolithophores Adapt to Ocean Acidification?",
7193: 7018: 6979: 6935: 6823: 6758: 6699: 6648: 6602: 6562: 6383:
Taylor, Alison R.; Chrachri, Abdul; Wheeler, Glen; Goddard, Helen; Brownlee, Colin (2011).
6342: 6300: 6238: 6061: 5994: 5948: 5704: 5661: 5607: 5557: 5520: 5469: 5280: 5243: 5184: 5009: 4845: 4792: 4654: 4597: 4511: 4342: 4271: 4171: 4132: 4086: 4045: 4006: 3817: 3706: 3662: 3585: 3528: 3462: 2847: 2611: 2179:, a Late Cretaceous rock formation which outcrops widely in southern England and forms the 1539: 1321: 770: 759: 352: 7180:
Strom, Suzanne L.; Bright, Kelley J.; Fredrickson, Kerri A.; Cooney, Elizabeth C. (2018).
5981:
Frada, M.; et al. (2008), "The "Cheshire Cat" escape strategy of the coccolithophore
3164:, however, are not affected in this way, while the most abundant coccolithophore species, 3080:
Because coccolithophores are photosynthetic organisms, they are able to use some of the CO
2393: 1111:
within phytoplankton communities. Each ratio essentially tips the odds in favor of either
8: 8830: 8490: 8425: 8192: 8181: 8058: 8041: 7683: 6835: 6073: 3737:"Life at the Edge of Sight — Scott Chimileski, Roberto Kolter | Harvard University Press" 3110: 2931: 2852: 2770: 2401: 2307: 2219: 2184: 1461: 1108: 1020: 699: 558: 417: 364: 323: 273: 7722: 7652: 7610: 7576: 7446: 7330: 7288: 7197: 7022: 6983: 6939: 6827: 6762: 6703: 6652: 6606: 6566: 6346: 6304: 6242: 6065: 5998: 5952: 5708: 5665: 5611: 5561: 5524: 5473: 5284: 5247: 5188: 5013: 4952: 4849: 4796: 4658: 4601: 4515: 4455:
Brussaard, Corina P. D. (2004). "Viral Control of Phytoplankton Populations-a Review1".
4346: 4275: 4175: 4136: 4090: 4049: 4010: 3878: 3821: 3710: 3666: 3589: 3532: 3466: 389: 8679: 8657: 8645: 8620: 7734: 7664: 7622: 7540: 7513: 7416: 7300: 7253: 7211: 7036: 6951: 6895: 6858: 6722: 6687: 6495: 6470: 6411: 6384: 6261: 6183: 6017: 5728: 5633: 5573: 5370: 5157: 5032: 4818: 4728: 4716: 4672: 4623: 4532: 4499: 4480: 4468: 4431: 4363: 4330: 4104: 3680: 3551: 3488: 2936: 2872: 2754: 2324: 1994: 1984: 1835: 1801: 1718: 1711: 1622: 1471: 1072: 978: 972: 964: 340:
remain elusive. One key function may be that the coccosphere offers protection against
137: 7367: 6991: 5773: 5292: 3773: 9766: 9662: 9555: 9550: 8969: 8689: 8652: 8640: 8630: 8564: 8385: 8380: 8375: 8197: 8116: 7961: 7881: 7806: 7738: 7689: 7626: 7545: 7472: 7433:
Tyrell, T.; et al. (1999), "Optical impacts of oceanic coccolithophore blooms",
7408: 7371: 7338: 7258: 7040: 6900: 6882: 6839: 6727: 6500: 6451: 6416: 6266: 6179: 6146: 6127: 6085: 6077: 6022: 5964: 5960: 5866: 5720: 5507:
Balch, W. M.; Gordon, Howard R.; Bowler, B. C.; Drapeau, D. T.; Booth, E. S. (2005).
5362: 5358: 5255: 5116: 5037: 4956: 4919: 4861: 4810: 4720: 4676: 4537: 4472: 4435: 4368: 4220: 3976: 3943: 3898: 3850: 3802: 3556: 3492: 3480: 3426: 3385: 3291: 3038: 2984: 2877: 2658: 2584: 2415: 2258: 2211: 2145: 2125: 2120: 1999: 1909: 1578: 1512: 1437: 1374: 1345: 1328: 1145: 1067: 935: 861: 837: 813: 763: 507: 490: 480: 476: 465: 453: 380: 327: 296: 285: 7514:"A voltage-gated H channel underlying pH homeostasis in calcifying coccolithophores" 7304: 7215: 6955: 6385:"A Voltage-Gated H Channel Underlying pH Homeostasis in Calcifying Coccolithophores" 6187: 5637: 5374: 4732: 4627: 4484: 4108: 3684: 3243: 851: 264:
community. They form a group of about 200 species, and belong either to the kingdom
9537: 9521: 9358: 9255: 9025: 9007: 8954: 8949: 8812: 8763: 8604: 8327: 8307: 8231: 8105: 8052: 7991: 7726: 7709:
Larsen, S. H. (2005). "Solar variability, dimethyl sulphide, clouds, and climate".
7668: 7656: 7614: 7584: 7580: 7535: 7525: 7450: 7420: 7400: 7363: 7334: 7292: 7248: 7238: 7201: 7157: 7147: 7111: 7078: 7068: 7026: 6987: 6943: 6908: 6890: 6872: 6831: 6796: 6766: 6717: 6707: 6656: 6610: 6570: 6528: 6490: 6482: 6443: 6406: 6396: 6350: 6308: 6256: 6246: 6175: 6123: 6069: 6012: 6002: 5956: 5920: 5858: 5732: 5712: 5669: 5623: 5615: 5577: 5565: 5528: 5477: 5429: 5403: 5354: 5313: 5288: 5251: 5192: 5161: 5149: 5069: 5027: 5017: 4979: 4948: 4894: 4857: 4853: 4822: 4800: 4759: 4712: 4662: 4613: 4605: 4568: 4527: 4519: 4464: 4427: 4399: 4358: 4350: 4289: 4279: 4212: 4189: 4179: 4140: 4094: 4053: 4014: 3968: 3935: 3890: 3825: 3769: 3714: 3670: 3593: 3546: 3536: 3470: 3418: 3375: 3313: 2579: 2538: 1959: 1949: 1929: 1546: 1466: 574: 546: 472: 413: 341: 292: 197: 6447: 5689: 5140:
Jordan, R. W.; Chamberlain, A.H.L. (1997), "Biodiversity among haptophyte algae",
4034:"Ratio of coccolith CaCO3to foraminifera CaCO3in late Holocene deep sea sediments" 2506: 1023:
due to increasing carbon dioxide could severely affect coccolithophores. Recent CO
234:
Coccolithophore cells are covered with protective calcified (chalk) scales called
9516: 9017: 8992: 8979: 8941: 8856: 8839: 8804: 8435: 8312: 8138: 8122: 7926: 7851: 7530: 7243: 7031: 7006: 6747:"Evolutionary and ecological perspectives on carbon acquisition in phytoplankton" 6712: 6688:"Ocean Acidification Reduces Growth and Calcification in a Marine Dinoflagellate" 6661: 6636: 6614: 6401: 6313: 6288: 6251: 4693:, Eds A. Winter and W. G. Siesser (Cambridge: Cambridge University Press), 63–82. 4667: 4642: 4144: 3972: 3939: 3844: 3323: 3308: 3285: 2902: 2800: 2759: 2749: 2429: 2365: 2141: 1825: 1701: 1615: 1583: 1298: 1289:. The oldest known coccolithophores are known from the Late Triassic, around the 1137: 1056: 801: 656: 530: 348: 9745: 9667: 6532: 5862: 4898: 4216: 3829: 3787: 3634:"Biogeography and dispersal of micro-organisms: a review emphasizing protists", 3422: 1337: 1002: 738:
phase. During the haploid phase, coccolithophores produce haploid cells through
493:. However, there are Prymnesiophyceae species lacking coccoliths (e.g. in genus 344:
predation, which is one of the main causes of phytoplankton death in the ocean.
9638: 9508: 9327: 9188: 9149: 9002: 8900: 8848: 8635: 8505: 8236: 8151: 8027: 7769: 7761:– illustrated guide to the taxonomy of coccolithophores and other nannofossils. 6673: 6367: 5494: 5443: 5327: 5317: 4885: 4746:
Breckels, M. N.; Roberts, E. C.; Archer, S. D.; Malin, G.; Steinke, M. (2011).
4018: 3597: 3503: 3400: 3085: 3042: 2862: 2842: 2810: 2715: 2647: 2557: 2543: 2352: 2332: 2320: 2200: 1967: 1830: 1817: 1671: 1644: 1639: 1117: 982: 752: 707: 582: 385: 372: 360: 304: 300: 212: 167: 7296: 7073: 7056: 6947: 6800: 6771: 6746: 6355: 6330: 5834:"Coccolithophores and the biological pump: responses to environmental changes" 5196: 5153: 4609: 4573: 4556: 4184: 4159: 3675: 3380: 3363: 2222:. Coccolithophores are the major planktonic group responsible for pelagic CaCO 782: 9811: 9470: 9449: 8932: 8892: 8736: 8515: 8485: 8370: 8365: 8092: 8069: 8006: 7976: 7971: 6886: 6283:
Krumhardt, Kristen M.; Lovenduski, Nicole S.; Iglesias-Rodriguez, M. Debora;
6081: 4865: 4814: 4404: 4387: 3902: 3484: 3389: 3273: 3130: 2815: 2669: 2601: 2514: 2262: 2207: 2133: 2073: 1989: 1934: 1774: 1737: 1600: 1558: 1529: 1524: 1408: 1258: 1221: 1040: 998: 586: 503: 429: 253: 219: 76: 7152: 7135: 6282: 6007: 5925: 5716: 5482: 5457: 5407: 5022: 4805: 4780: 4764: 4747: 4523: 3541: 3475: 3450: 1027:
increases have seen a sharp increase in the population of coccolithophores.
518:) which cover the cell surface in the form of a spherical coating, called a 9282: 8883: 8510: 8405: 8332: 8287: 8259: 8156: 8132: 7981: 7906: 7876: 7871: 7861: 7549: 7512:
Taylor, A.R.; Chrachri, A.; Wheeler, G.; Goddard, H.; Brownlee, C. (2011).
7412: 7375: 7262: 6904: 6843: 6731: 6504: 6486: 6455: 6420: 6284: 6270: 6089: 6026: 5968: 5724: 5366: 5041: 4724: 4541: 4476: 4372: 4354: 3560: 3250: 3122: 3030: 2857: 2805: 2795: 2735: 2631: 2606: 2533: 2528: 2189: 2004: 1681: 1676: 1658: 1476: 1282: 1076: 1035: 792: 672: 652: 648: 640: 625: 621: 37: 6912: 5833: 5796: 4500:"The mutual interplay between calcification and coccolithovirus infection" 2310:
is presently unknown. Cell physiological examinations found the essential
919: 9701: 9647: 9344: 9158: 9080: 8918: 8874: 8724: 8475: 8460: 8410: 8275: 8099: 7896: 7891: 7846: 7730: 7454: 7354:
Marsh, M.E. (2003), "Regulation of CaCO3 formation in coccolithophores",
6575: 6550: 5673: 5619: 5533: 5508: 4099: 4074: 4058: 4033: 3963:
Hay, William W. (2004). "Carbonate fluxes and calcareous nannoplankton".
3246: 3046: 2953: 2948: 2897: 2837: 2829: 2740: 2519: 2463: 2176: 2092: 1954: 1939: 1882: 1796: 1563: 1495: 1351: 1266: 1253:" between coccolithophores and these viruses does not follow the classic 1242: 1044: 910: 889: 845: 683: 519: 421: 420:
it forms in nutrient depleted waters after the reformation of the summer
397: 368: 332: 312: 257: 128: 51: 7404: 5433: 4618: 4294: 1445: 903: 620:, which are about 2–25 micrometres across. Each cell contains two brown 119: 9336: 9273: 8964: 8910: 8360: 8297: 8226: 8218: 8016: 8011: 7956: 6877: 4986:. Washington, D.C.: Mineralogical Society of America. pp. 189–216. 4422:
Hamm, Christian; Smetacek, Victor (2007). "Armor: Why, when, and How".
4193: 3719: 3295: 3134: 2663: 2574: 2287: 2283: 2266: 2088: 1534: 1278: 1269:
arms race at least between the coccolithoviruses and diploid organism.
1100: 841: 636: 617: 523: 495: 468: 409: 355:. Depending on habitat, they can produce up to 40 percent of the local 288: 187: 96: 61: 9706: 8556: 7206: 7181: 7116: 7099: 7083: 7057:"The Possession of Coccoliths Fails to Deter Microzooplankton Grazers" 6588: 6586: 6544: 6542: 6475:
Philosophical Transactions of the Royal Society B: Biological Sciences
6378: 6376: 5074: 4417: 4415: 4284: 4259: 4158:
Frankignoulle, Michel; Canon, Christine; Gattuso, Jean-Pierre (1994).
3894: 2441:. In 2015, Harvey et al. investigated predation by the dinoflagellate 9180: 8777: 8715: 8587: 8430: 8415: 8355: 8337: 8317: 8292: 8253: 8241: 8081: 7660: 7618: 7162: 5816: 5628: 2397: 2381: 2340: 2249: 2077: 1877: 1870: 1764: 1610: 1568: 1310: 1250: 1238: 1226: 870: 719: 711: 679: 676: 605: 515: 485: 393: 308: 235: 154: 101: 9693: 9609: 3272:
similar to the one that is widely accepted to affect the land-based
9632: 9140: 8795: 8786: 8674: 8591: 8480: 8186: 8145: 8127: 7901: 7838: 7829: 6583: 6539: 6373: 4412: 3417:. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 99–125. 3269: 3173:
from future research in this area. Groups like the European-based
3126: 2679: 2488: 2458: 2389: 1865: 1855: 1590: 1573: 1294: 1286: 1104: 1096: 664: 632: 550: 534: 457: 445: 425: 401: 277: 265: 261: 230: 177: 91: 86: 71: 66: 56: 7274: 6928:
Journal of the Marine Biological Association of the United Kingdom
5569: 4781:"Covariation of metabolic rates and cell size in coccolithophores" 3877:
Avrahami, Yoav; Frada, Miguel J. (31 March 2020). Mock, T. (ed.).
3616:
Transactions of the Gulf Coast Association of Geological Societies
3361: 2339:
perturbation events even though evolutionary adaption to changing
1013: 9051: 8540: 8470: 8347: 8086: 7758: 7134:
Harvey, Elizabeth L.; Bidle, Kay D.; Johnson, Matthew D. (2015).
6672:
Material was copied from this source, which is available under a
6366:
Material was copied from this source, which is available under a
5493:
Material was copied from this source, which is available under a
5442:
Material was copied from this source, which is available under a
5326:
Material was copied from this source, which is available under a
5093:
Hogan, M.C. ""Coccolithophores"". In Cleveland, Cutler J. (ed.).
3652: 3502:
Material was copied from this source, which is available under a
3399:
Material was copied from this source, which is available under a
2361: 2150: 2129: 1860: 1785: 1706: 1595: 1481: 1129: 881:
same values in between that of the lower and upper photic zones.
874: 748: 743: 739: 735: 731: 668: 667:
structures, which are involved not only in motility, but also in
644: 589: 578: 499:), so not every member of Prymnesiophyceae is a coccolithophore. 337: 106: 81: 6039:
Taylor, Alison R.; Brownlee, Colin; Wheeler, Glen (2017-01-03).
4121: 3104: 1188:
were shown to be non-toxic as were species of the coastal genus
1051: 367:
increases, their coccoliths may become even more important as a
8202: 8173: 6634: 3575: 2674: 2636: 2348: 2107:
The primary constituent of coccoliths is calcium carbonate, or
1889: 1290: 1133: 1112: 986: 715: 461: 281: 7053: 6289:"Coccolithophore growth and calcification in a changing ocean" 4388:"On the Genesis and Function of Coccolithophore Calcification" 3448: 3253:. They are the main constituent of chalk deposits such as the 3029:
Coccolithophores have both long and short term effects on the
2087:
Each coccolithophore encloses itself in a protective shell of
9680: 7638: 6863: 6685: 6668: 6362: 6331:"A global compilation of coccolithophore calcification rates" 5650: 5547: 5489: 5438: 5322: 3498: 3395: 2252:
to the CV is the dominant cost associated with calcification.
2238: 2231: 2108: 1605: 855:
Size comparison between the relatively large coccolithophore
316: 7511: 7179: 6382: 6109: 5748:"What's fueling the rise of coccolithophores in the oceans?" 8520: 7798: 5213: 5173: 4555:
Haunost, Mathias; Riebesell, Ulf; Bach, Lennart T. (2020).
2364:
may even profit from chemical changes since photosynthetic
1723: 1662: 359:. They are of particular interest to those studying global 6972:
Deep Sea Research Part II: Topical Studies in Oceanography
6327: 5113:
Coccolithophores-from molecular processes to global impact
4916:
Coccolithophores-from molecular processes to global impact
4745: 3999:
Deep Sea Research Part II: Topical Studies in Oceanography
3451:"Haplo-diplontic life cycle expands coccolithophore niche" 526:, and are able to photosynthesise as well as ingest prey. 7562: 7136:"Consequences of strain variability and calcification in 7004: 6856: 5590: 5455: 5058: 4640: 4260:"Environmental controls on coccolithophore calcification" 4157: 2347:
Silicate- or cellulose-armored functional groups such as
2344:
chemistry perturbations can be compensated by evolution.
1010:) alongside the North Atlantic and North Pacific oceans. 726:
The complex life cycle of coccolithophores is known as a
7765:
INA — International Nannoplankton Association
7491: 6925: 5506: 4497: 4327: 3995: 859:
and the relatively small but ubiquitous coccolithophore
647:
are located on either side of the cell and surround the
27:
Unicellular algae responsible for the formation of chalk
7764: 5177:
Deep-Sea Research Part I: Oceanographic Research Papers
4881: 2328: 2261:
include the synthesis of CAPs (gray rectangles) by the
2164: 755:
may affect the frequency with which each phase occurs.
557:. Thus, coccolithophores play an important role in the 6674:
Creative Commons Attribution 4.0 International License
6368:
Creative Commons Attribution 4.0 International License
5495:
Creative Commons Attribution 4.0 International License
5444:
Creative Commons Attribution 4.0 International License
5328:
Creative Commons Attribution 4.0 International License
3504:
Creative Commons Attribution 4.0 International License
3401:
Creative Commons Attribution 4.0 International License
3260:
Of particular interest are fossils dating back to the
3033:. The production of coccoliths requires the uptake of 2475: 2136:
where protein templates nucleate the formation of CaCO
1265:
provides a more direct link to study a Red Queen-like
1123: 997:(PIC) feature occurring alongside seasonally elevated 371:. Management strategies are being employed to prevent 6468: 6433: 6038: 811:
In the Atlantic Ocean, the most abundant species are
6041:"Coccolithophore Cell Biology: Chalking Up Progress" 5686: 4554: 3612: 1039:
Satellite photograph: The milky blue colour of this
786:
Global distribution of coccolithophores in the ocean
682:
is also present. This structure, which is unique to
7097: 6517: 4689:Young, J. R. (1994) "Functions of coccoliths". In: 3101:mediating the effects of greenhouse gas emissions. 869:ocean's properties, such as coastal and equatorial 631:Enclosed in each coccosphere is a single cell with 7133: 3800: 3731: 3729: 1232: 7788:The Paleontology Portal: Calcareous Nanoplankton 7316: 6785: 6595:Palaeogeography, Palaeoclimatology, Palaeoecology 6032: 5593:"Response of ocean ecosystems to climate warming" 5139: 604:Coccolithophore cell surrounded by its shield of 479:). Coccolithophores are distinguished by special 9809: 7599:Geological Society, London, Special Publications 7386: 7384: 6141:Falkowski, P.G.; Knoll, A.H. (August 29, 2007). 4877: 4875: 2433:preferred calcified over non-calcified cells of 663:, and other organelles. Each cell also has two 483:plates (or scales) of uncertain function called 7681: 7556: 6159: 5987:Proceedings of the National Academy of Sciences 5892: 5209: 5207: 5205: 5002:Proceedings of the National Academy of Sciences 4323: 4321: 4319: 4317: 4315: 4313: 4311: 4309: 4307: 4305: 3726: 3521:Proceedings of the National Academy of Sciences 3231: 2306:The degree by which calcification can adapt to 1014:Effect of global climate change on distribution 993:The Great Calcite Belt, defined as an elevated 529:Coccolithophores have been an integral part of 424:. and for its production of molecules known as 8838: 8803: 7460: 7268: 6857:Xu, K.; Hutchins, D.; Gao, K. (9 April 2018). 6549:Erba, Elisabetta; Tremolada, Fabrizio (2004). 6145:. Amsterdam, Boston: Elsevier Academic Press. 6140: 4909: 4907: 3801:Young, J. R.; Geisen, M.; Probert, I. (2005). 3444: 3442: 1047:strongly suggests it contains coccolithophores 734:phase, while the sexual phase is known as the 378:The most abundant species of coccolithophore, 8847: 8572: 7814: 7381: 7349: 7347: 7129: 7127: 6548: 6207: 6134: 5906: 5904: 5886: 5831: 5266: 5264: 5236:Deep-Sea Research and Oceanographic Abstracts 5135: 5133: 5106: 5104: 5054: 5052: 5050: 4938: 4936: 4913: 4872: 4257: 4206: 4031: 3929: 3876: 3646: 3412: 3357: 3355: 3353: 3351: 3349: 3242:Coccolith fossils are prominent and valuable 3105:Evolutionary responses to ocean acidification 3024: 3005: 2053: 1301:. However, there was a sharp drop during the 1152: 7432: 7175: 7173: 7098:Hansen, FC; Witte, HJ; Passarge, J. (1996). 5932: 5340: 5338: 5336: 5229: 5227: 5225: 5202: 5088: 5086: 5084: 4995: 4993: 4973: 4971: 4587: 4421: 4302: 4032:Broecker, Wallace; Clark, Elizabeth (2009). 2407: 311:, and exist in large numbers throughout the 9432: 9111: 7426: 6630: 6628: 6626: 6624: 6165: 5167: 4904: 4073:Klaas, Christine; Archer, David E. (2002). 4072: 3753: 3627: 3571: 3569: 3514: 3512: 3439: 3084:released in the calcification reaction for 1309:, but have subsequently declined since the 821:with smaller concentrations of the species 609: 608:. The coccolith-bearing cell is called the 299:). Coccolithophores are almost exclusively 9157: 9104: 8756: 8579: 8565: 7821: 7807: 7590: 7344: 7310: 7222: 7124: 6968: 6813: 5901: 5895:Introduction to the Biology of Marine Life 5261: 5233: 5130: 5101: 5047: 4977: 4933: 3842: 3696: 3346: 3012: 2998: 2060: 2046: 1277:Coccolithophores are members of the clade 1272: 1107:in particular areas of the ocean dictates 1090: 326:on the planet, covering themselves with a 118: 9335: 9073: 7539: 7529: 7356:Comparative Biochemistry and Physiology B 7252: 7242: 7205: 7170: 7161: 7151: 7115: 7082: 7072: 7030: 6894: 6876: 6770: 6721: 6711: 6660: 6574: 6494: 6410: 6400: 6354: 6312: 6260: 6250: 6213: 6143:Evolution of Primary Producers in the Sea 6016: 6006: 5974: 5924: 5852: 5766: 5644: 5627: 5532: 5500: 5481: 5449: 5333: 5222: 5081: 5073: 5031: 5021: 4990: 4968: 4835: 4804: 4763: 4666: 4617: 4572: 4531: 4454: 4424:Evolution of Primary Producers in the Sea 4403: 4362: 4293: 4283: 4183: 4098: 4057: 3718: 3674: 3608: 3606: 3550: 3540: 3474: 3379: 2445:on different genotypes of non-calcifying 2298:Benefits of coccolithophore calcification 1424: 1207: 322:Coccolithophores are the most productive 9066: 7480: 7390: 6621: 6222: 5938: 5825: 5690:"The Oceanic Sink for Anthropogenic CO2" 5216:Origin and Evolution of Coccolithophores 4702: 3788:"International Nanoplankton Association" 3759: 3566: 3509: 2375: 2293: 2194: 2083:Exoskeleton: coccospheres and coccoliths 1095:The ratio between the concentrations of 1050: 1034: 949: 850: 781: 698: 694: 599: 565:and the oceanic uptake of atmospheric CO 229: 8794: 8586: 6744: 3690: 3279: 2423:ingestion rates of microzooplankton on 1030: 14: 9828:Extant Late Triassic first appearances 9810: 7708: 7563:Self-Trail, J.M.; et al. (2012), 5910: 5893:Morrissey, J.F.; Sumich, J.L. (2012). 5270: 5110: 4984:Reviews in Mineralogy and Geochemistry 4942: 4778: 4705:The Journal of Eukaryotic Microbiology 4457:The Journal of Eukaryotic Microbiology 4385: 3603: 3113:due to increasing concentrations of CO 1245:infect coccolithophores, particularly 777: 704:Life cycle strategies of phytoplankton 549:organic matter. At the same time, the 9614: 9613: 8560: 7802: 7596: 7353: 7228: 5980: 5745: 5344: 5218:. Boston: Elsevier. pp. 251–285. 4999: 3518: 2265:(white rectangles) that regulate the 2175:Coccoliths are the main component of 2091:, calcified scales which make up its 1303:Cretaceous-Paleogene extinction event 945: 561:by influencing the efficiency of the 6836:10.1146/annurev-marine-120709-142720 6592: 6228: 6074:10.1146/annurev-marine-122414-034032 5788: 5746:Gitau, Beatrice (28 November 2015). 5115:. Berlin: Springler. pp. 1–29. 4918:. Berlin: Springler. pp. 1–29. 3578:Estuarine, Coastal and Shelf Science 3049:by the following chemical reaction: 1200:, both coastal genera were toxic to 1182:Emiliania, Gephyrocapsa, Calcidiscus 675:. In some species, a functional or 7140:huxleyion microzooplankton grazing" 4953:10.1002/9780470015902.a0001981.pub2 4943:Jordan, R.W. (2012), "Haptophyta", 3962: 2476:Importance in global climate change 1124:Impact on water column productivity 502:Coccolithophores are single-celled 24: 7778:Introductions to coccolithophores 4982:; Yoreo, J.J.; Weiner, S. (eds.). 4791:(15). Copernicus GmbH: 4665–4692. 4717:10.1111/j.1550-7408.2004.tb00540.x 4469:10.1111/j.1550-7408.2004.tb00537.x 4331:"Why marine phytoplankton calcify" 25: 9849: 7749: 5985:in response to viral infection", 5092: 3461:(3). Copernicus GmbH: 1161–1184. 3262:Palaeocene-Eocene Thermal Maximum 3145:and decreasing concentrations of 2453:was dependent on the genotype of 7925: 7754:Sources of detailed information 7702: 7675: 7632: 7505: 6667: 6521:Zeitschrift für Sportpsychologie 6361: 6180:10.1111/j.0022-3646.1991.00082.x 6128:10.1111/j.1502-3931.2012.00311.x 6099:from the original on 2021-07-16. 5961:10.1111/j.1461-0248.2007.01117.x 5832:Rost, B.; Riebesell, U. (2004), 5794: 5488: 5437: 5359:10.1111/j.1529-8817.2008.00643.x 5321: 4432:10.1016/B978-012370518-1/50015-1 4258:Raven, JA; Crawfurd, K. (2012). 3497: 3394: 3215: 3199: 3182: 2979: 2978: 2495: 2027: 2026: 1444: 1336: 1320: 1307:Paleocene-Eocene thermal maximum 918: 902: 888: 836:. Deep-dwelling coccolithophore 260:(self-feeding) component of the 141: 49: 7468:"Can seashells save the world?" 7435:Journal of Geophysical Research 7091: 7047: 6998: 6962: 6919: 6850: 6816:Annual Review of Marine Science 6807: 6779: 6738: 6679: 6511: 6462: 6427: 6321: 6276: 6193: 6103: 6049:Annual Review of Marine Science 5882:from the original on 2012-11-10 5810: 5754:. The Christian Science Monitor 5739: 5680: 5654:Journal of Geophysical Research 5584: 5541: 5513:Journal of Geophysical Research 5413: 5380: 5298: 5142:Biodiversity & Conservation 4829: 4772: 4739: 4696: 4683: 4634: 4581: 4548: 4491: 4448: 4379: 4251: 4242: 4233: 4200: 4151: 4115: 4066: 4025: 3989: 3956: 3923: 3870: 3849:. Academic Press. p. 239. 3836: 3794: 3780: 2467:on calcified relative to naked 2210:, the biological production of 1791:microbial calcite precipitation 1233:Viral infection and coevolution 1116:agricultural processes lead to 7585:10.1016/j.marmicro.2012.05.003 5797:"Virus Taxonomy: 2014 Release" 4858:10.1016/j.marmicro.2008.01.005 4264:Marine Ecology Progress Series 3699:Marine Ecology Progress Series 3406: 3045:are produced from calcium and 2327:, and/or lower their internal 2323:more frequently, adjust their 2102: 1215: 412:base of a large proportion of 13: 1: 7857:High lipid content microalgae 7795:– podcast on coccolithophores 7368:10.1016/s1096-4959(03)00180-5 6992:10.1016/S0967-0645(02)00329-6 6745:Tortell, Philippe D. (2000). 6448:10.1016/j.tplants.2012.06.009 5293:10.1016/s0377-8398(00)00016-5 4844:(1–2). Elsevier BV: 143–154. 3915:: CS1 maint: date and year ( 3774:10.1016/S0304-4203(98)00079-6 3339: 3238:Protists in the fossil record 2868:Great Atlantic Sargassum Belt 2396:elements, which are organic ( 2314:(stemming from the use of HCO 2119:Coccoliths are produced by a 1751:marine biogenic calcification 1331:innovations and morphogroups. 1281:, which is a sister clade to 1192:, however several species of 1175:Lackey. Members of the genus 1075:has one of the largest known 7828: 7711:Global Biogeochemical Cycles 7531:10.1371/journal.pbio.1001085 7339:10.1016/0304-4203(95)00068-2 7244:10.1371/journal.pbio.1001087 7144:Journal of Plankton Research 7032:10.1016/j.pocean.2018.02.024 6713:10.1371/journal.pone.0065987 6662:10.1016/j.pocean.2015.04.012 6615:10.1016/j.palaeo.2005.09.013 6402:10.1371/journal.pbio.1001085 6314:10.1016/j.pocean.2017.10.007 6252:10.1371/journal.pone.0013436 5913:Journal of Plankton Research 5600:Global Biogeochemical Cycles 5256:10.1016/0011-7471(73)90059-4 4779:Aloisi, G. (6 August 2015). 4752:Journal of Plankton Research 4668:10.1016/j.pocean.2018.02.024 4145:10.1016/j.pocean.2007.11.003 4079:Global Biogeochemical Cycles 3973:10.1007/978-3-662-06278-4_19 3940:10.1007/978-3-662-06278-4_18 3843:Schaechter, Moselio (2012). 3232:Impact on microfossil record 3109:Research also suggests that 2140:crystals and complex acidic 2114: 995:particulate inorganic carbon 595: 432:as a means to estimate past 336:. However, the reasons they 7: 8456:Fish diseases and parasites 7967:Photosynthetic picoplankton 7061:Frontiers in Marine Science 5863:10.1007/978-3-662-06278-4_5 5817:Largest known viral genomes 4899:10.1016/j.algal.2012.06.002 4561:Frontiers in Marine Science 4392:Frontiers in Marine Science 4217:10.1007/978-3-662-06278-4_5 3830:10.2113/gsmicropal.51.4.267 3423:10.1007/978-3-662-06278-4_5 3368:Frontiers in Marine Science 3302: 2597:Photosynthetic picoplankton 2218:), is a key process in the 2157: 1980:Biomineralising polychaetes 1746:amorphous calcium carbonate 1432:Part of a series related to 1343:Coccolithophore diversity. 1161: 771:K or r- selected strategies 489:, which are also important 454:Five kingdom classification 439: 10: 9854: 8446:Dimethylsulfoniopropionate 7947:Heterotrophic picoplankton 7186:Limnology and Oceanography 6751:Limnology and Oceanography 5318:10.1038/s41598-019-38661-0 4590:Limnology and Oceanography 4504:Environmental Microbiology 4386:Müller, Marius N. (2019). 4164:Limnology and Oceanography 4019:10.1016/j.dsr2.2006.12.003 3655:Limnology and Oceanography 3598:10.1016/j.ecss.2007.03.030 3319:Dimethylsulfoniopropionate 3283: 3235: 3035:dissolved inorganic carbon 3025:Impact on the carbon cycle 2566:Heterotrophic picoplankton 2071: 2012:Burgess Shale preservation 1396:Umbellosphaera irregularis 1153:Predator-prey interactions 1136:, and 2) there is induced 1062:Emiliania huxleyi virus 86 970: 804:and circulation patterns. 714:(asexual) life cycle, (b) 689: 428:that are commonly used by 9622: 9564: 9536: 9507: 9469: 9462: 9425: 9409: 9366: 9357: 9326: 9306: 9290: 9281: 9272: 9223: 9197: 9179: 9166: 9148: 9139: 9097: 9059: 9050: 9016: 8978: 8940: 8931: 8909: 8891: 8882: 8873: 8829: 8785: 8776: 8749: 8732: 8723: 8714: 8598: 8501:Marine primary production 8398: 8346: 8283: 8274: 8217: 8172: 8077: 8068: 7990: 7934: 7923: 7836: 7297:10.1080/01490451003703014 7104:Aquatic Microbial Ecology 7074:10.3389/fmars.2020.569896 6948:10.1017/S0025315402005593 6801:10.1016/j.hal.2007.05.006 6772:10.4319/lo.2000.45.3.0744 6533:10.1026/1612-5010/a000109 6356:10.5194/essd-10-1859-2018 6335:Earth System Science Data 5822:. Accessed: 11 June 2020. 5197:10.1016/j.dsr.2005.11.006 5062:Aquatic Microbial Ecology 4610:10.4319/lo.2004.49.1.0051 4574:10.3389/fmars.2020.530757 4185:10.4319/lo.1994.39.2.0458 3676:10.4319/lo.2008.53.3.1181 3381:10.3389/fmars.2021.664269 3294:(DMS) into the air whose 2923:Marine primary production 2408:Defence against predation 1974:Cupriavidus metallidurans 1417:. Scale bar is 5 μm. 1363:Braarudosphaera bigelowii 832:and different species of 728:haplodiplontic life cycle 408:an important part of the 357:marine primary production 208: 203: 138:Scientific classification 136: 126: 117: 34: 8421:Algal nutrient solutions 8163:Thalassiosira pseudonana 8035:Flavobacterium columnare 8022:Enteric redmouth disease 7682:Lovelock, James (2007). 7569:Marine Micropaleontology 7011:Progress in Oceanography 6641:Progress in Oceanography 6293:Progress in Oceanography 5273:Marine Micropaleontology 4838:Marine Micropaleontology 4647:Progress in Oceanography 4405:10.3389/fmars.2019.00049 4125:Progress in Oceanography 3194:(scale bar is 1 μm) 2132:formation begins in the 1695:Teeth, scales, tusks etc 1400:Gladiolithus flabellatus 1065:(arrowed), infecting an 522:. Many species are also 434:sea surface temperatures 8441:Diel vertical migration 7957:Microphyte (microalgae) 7942:Eukaryotic picoplankton 7887:Paradox of the plankton 7277:Geomicrobiology Journal 6436:Trends in Plant Science 6008:10.1073/pnas.0807707105 5717:10.1126/science.1097403 5483:10.5194/bg-14-4905-2017 5408:10.5194/bg-11-6915-2014 5154:10.1023/A:1018383817777 5023:10.1073/pnas.1208895109 4806:10.5194/bg-12-4665-2015 4524:10.1111/1462-2920.14362 3542:10.1073/pnas.1117508109 3476:10.5194/bg-18-1161-2021 3208:Rhabdosphaera clavigera 3119:evolutionary adaptation 2944:Paradox of the plankton 2913:Diel vertical migration 2170: 1756:calcareous nannofossils 1552:Choanoflagellate lorica 1387:Rhabdosphaera clavigera 1273:Evolution and diversity 1180:coccolithophore genera 1091:Dependence on nutrients 926:Scyphosphaera apsteinii 857:Scyphosphaera apsteinii 840:is greatly affected by 545:into the deep ocean by 384:, belongs to the order 250:single-celled organisms 8303:Gelatinous zooplankton 6487:10.1098/rstb.2013.0049 4355:10.1126/sciadv.1501822 3374:. Frontiers Media SA. 3333:Pleurochrysis carterae 2791:Gelatinous zooplankton 2385: 2299: 2204: 1945:Magnetotactic bacteria 1770:oolitic aragonite sand 1628:scaly-foot snail shell 1425:Coccolithophore shells 1358:Calcidiscus leptoporus 1239:DNA-containing viruses 1208:Community interactions 1080: 1071:coccolithophore. This 1048: 968: 896:Calcidiscus leptoporus 865: 787: 723: 613: 563:biological carbon pump 533:communities since the 252:which are part of the 238: 8496:Marine microorganisms 8266:Velvet (fish disease) 8001:Aeromonas salmonicida 7867:Marine microorganisms 7153:10.1093/plankt/fbv081 5926:10.1093/plankt/fbh079 5422:Nature communications 5095:Encyclopedia of Earth 4765:10.1093/plankt/fbq114 3255:white cliffs of Dover 3224:Discosphaera tubifera 3191:Gephyrocapsa oceanica 2379: 2297: 2198: 2181:White Cliffs of Dover 1415:Helicosphaera carteri 1404:Florisphaera profunda 1392:Calciosolenia murrayi 1381:Discosphaera tubifera 1369:Gephyrocapsa oceanica 1263:programmed cell death 1109:competitive dominance 1054: 1038: 967:in the Southern Ocean 962: 911:Coccolithus braarudii 854: 830:Umbellosphaera tenuis 819:Florisphaera profunda 785: 702: 695:Life history strategy 671:and formation of the 661:endoplasmic reticulum 603: 233: 9445:Chrysochromulinaceae 8248:Pfiesteria piscicida 8048:Marine bacteriophage 7952:Marine microplankton 7731:10.1029/2004GB002333 7455:10.1029/1998jc900052 6576:10.1029/2003PA000884 6216:Ecological Bulletins 6168:Journal of Phycology 5674:10.1029/2011JC006941 5620:10.1029/2003GB002134 5534:10.1029/2004JC002560 5347:Journal of Phycology 4426:. pp. 311–332. 4100:10.1029/2001GB001765 4059:10.1029/2009PA001731 3967:. pp. 509–528. 3934:. pp. 481–508. 3883:Journal of Phycology 3280:Impact on the oceans 2848:Cyanobacterial bloom 2612:Marine microplankton 2384:chemistry conditions 2269:and geometry of CaCO 1285:, which are both in 1085:primary productivity 1031:Role in the food web 963:Yearly cycle of the 324:calcifying organisms 9494:Reticulosphaeraceae 9381:Calyptrosphaeraceae 9376:Braarudosphaeraceae 8831:Katablepharidophyta 8491:Ocean acidification 8426:Artificial seawater 8193:Coscinodiscophyceae 8059:Streptococcus iniae 8042:Pelagibacter ubique 7723:2005GBioC..19.1014L 7685:The Revenge of Gaia 7653:1987Natur.326..655C 7611:2011GSLSP.358..167L 7577:2012MarMP..92...61S 7447:1999JGR...104.3223T 7405:10.1038/nature10295 7331:1996MarCh..51..347B 7289:2010GmbJ...27..585M 7198:2018LimOc..63..617S 7023:2019PrOce.17701928M 6984:2002DSRII..49.5969O 6940:2002JMBUK..82..359F 6828:2011ARMS....3..291R 6763:2000LimOc..45..744T 6704:2013PLoSO...865987V 6653:2015PrOce.135..125B 6607:2006PPP...232..237E 6567:2004PalOc..19.1008E 6347:2018ESSD...10.1859D 6305:2017PrOce.159..276K 6243:2010PLoSO...513436I 6066:2017ARMS....9..283T 5999:2008PNAS..10515944F 5993:(41): 15944–15949, 5953:2007EcolL..10.1170L 5709:2004Sci...305..367S 5666:2011JGRC..116.0F06B 5612:2004GBioC..18.3003S 5562:1998Natur.393..245S 5525:2005JGRC..110.7001B 5474:2017BGeo...14.4905S 5434:10.1038/ncomms10543 5285:2000MarMP..39...87K 5248:1973DSRA...20..355O 5189:2006DSRI...53.1073B 5014:2012PNAS..10919327V 5008:(47): 19327–19332, 4850:2008MarMP..67..143H 4797:2015BGeo...12.4665A 4659:2019PrOce.17701928M 4602:2004LimOc..49...51C 4516:2019EnvMi..21.1896J 4347:2016SciA....2E1822M 4276:2012MEPS..470..137R 4211:. pp. 99–125. 4176:1994LimOc..39..458F 4137:2008PrOce..76..217H 4091:2002GBioC..16.1116K 4050:2009PalOc..24.3205B 4011:2007DSRII..54..538P 3846:Eukaryotic Microbes 3822:2005MiPal..51..267Y 3741:www.hup.harvard.edu 3711:1992MEPS...83..281E 3667:2008LimOc..53.1181B 3636:Acta Protozoologica 3590:2007ECSS...74...63Y 3533:2012PNAS..109.8845S 3467:2021BGeo...18.1161D 3111:ocean acidification 2932:Ocean fertilization 2853:Harmful algal bloom 2771:Freshwater plankton 2483:Part of a series on 2402:species composition 2308:ocean acidification 2259:Metabolic processes 2220:marine carbon cycle 1672:Vertebrate skeleton 1462:Mineralized tissues 1021:ocean acidification 873:, frontal systems, 778:Global distribution 760:reproduce asexually 624:which surround the 559:marine carbon cycle 506:that produce small 404:oceans. This makes 274:five-kingdom system 9499:Pleurochrysidaceae 9463:Calcihaptophycidae 9401:Umbellosphaeraceae 6878:10.7717/PEERJ.4608 5306:Scientific Reports 3720:10.3354/meps083281 3642:(2): 111–136, 2005 2873:Great Calcite Belt 2464:Amphidinium longum 2386: 2325:membrane potential 2300: 2205: 1836:diatomaceous earth 1802:Great Calcite Belt 1719:Scale microfossils 1712:otolithic membrane 1623:small shelly fauna 1596:echinoderm stereom 1472:Biocrystallization 1081: 1073:giant marine virus 1049: 979:Great Calcite Belt 973:Great Calcite Belt 969: 965:Great Calcite Belt 946:Great Calcite Belt 866: 788: 724: 718:tend to utilize a 710:tend to utilize a 614: 239: 9805: 9804: 9767:Open Tree of Life 9616:Taxon identifiers 9607: 9606: 9603: 9602: 9599: 9598: 9595: 9594: 9591: 9590: 9572:Helicosphaeraceae 9556:Syracosphaeraceae 9551:Rhabdosphaeraceae 9546:Calciosoleniaceae 9458: 9457: 9440:Chrysoculteraceae 9426:Prymnesiophycidae 9353: 9352: 9322: 9321: 9268: 9267: 9264: 9263: 9135: 9134: 9131: 9130: 9127: 9126: 9093: 9092: 9089: 9088: 9046: 9045: 9042: 9041: 9038: 9037: 9034: 9033: 8970:Pleuromastigaceae 8927: 8926: 8869: 8868: 8865: 8864: 8825: 8824: 8821: 8820: 8772: 8771: 8745: 8744: 8554: 8553: 8394: 8393: 8381:Siphonostomatoida 8376:Poecilostomatoida 8328:Crustacean larvae 8232:Choanoflagellates 8213: 8212: 8203:Bacillariophyceae 8198:Fragilariophyceae 8117:Emiliania huxleyi 7962:Nanophytoplankton 7882:Milky seas effect 7771:Emiliania huxleyi 7695:978-0-14-102597-1 7647:(6114): 655–661. 7473:Independent.co.uk 7441:(C2): 3223–3241, 7207:10.1002/lno.10655 7117:10.3354/ame010307 6978:(26): 5969–5990. 5983:Emiliania huxleyi 5947:(12): 1170–1181, 5872:978-3-642-06016-8 5752:www.csmonitor.com 5703:(5682): 367–371. 5556:(6682): 245–249. 5468:(21): 4905–4925. 5402:(23): 6915–6925. 5388:Emiliania huxleyi 5075:10.3354/ame044291 4285:10.3354/meps09993 4226:978-3-642-06016-8 3982:978-3-642-06016-8 3949:978-3-642-06016-8 3895:10.1111/jpy.12997 3856:978-0-12-383876-6 3810:Micropaleontology 3527:(23): 8845–8849, 3432:978-3-642-06016-8 3325:Emiliania huxleyi 3096:in atmospheric CO 3039:Calcium carbonate 3022: 3021: 2878:Milky seas effect 2585:Nanophytoplankton 2416:Emiliania huxleyi 2286:in noncalcifying 2212:calcium carbonate 2126:calcium signaling 2121:biomineralization 2070: 2069: 2000:permineralization 1985:Mineral nutrients 1910:Mineral evolution 1579:foraminifera test 1438:Biomineralization 1402:, (K and L)  1375:Emiliania huxleyi 1346:Emiliania huxleyi 1329:biomineralization 1261:and induction of 1146:radiative forcing 1068:Emiliania huxleyi 960: 936:Emiliania huxleyi 862:Emiliania huxleyi 838:species abundance 758:Coccolithophores 508:calcium carbonate 481:calcium carbonate 477:Coccolithophyceae 392:. It is found in 381:Emiliania huxleyi 328:calcium carbonate 297:Coccolithophyceae 246:coccolithophorids 228: 227: 112: 40:grouping of algae 16:(Redirected from 9845: 9798: 9797: 9785: 9784: 9775: 9774: 9762: 9761: 9749: 9748: 9746:NHMSYS0000547765 9736: 9735: 9723: 9722: 9710: 9709: 9697: 9696: 9684: 9683: 9671: 9670: 9658: 9657: 9656: 9643: 9642: 9641: 9611: 9610: 9577:Pontosphaeraceae 9538:Syracosphaerales 9522:Noelaerhabdaceae 9489:Hymenomonadaceae 9467: 9466: 9430: 9429: 9396:Papposphaeraceae 9391:coccolithophores 9364: 9363: 9359:Prymnesiophyceae 9333: 9332: 9288: 9287: 9279: 9278: 9256:Raphidiophryidae 9164: 9163: 9155: 9154: 9146: 9145: 9109: 9108: 9102: 9101: 9071: 9070: 9064: 9063: 9057: 9056: 9026:Tetragonidiaceae 9008:Pyrenomonadaceae 8960:Cyathomonadaceae 8955:Cryptomonadaceae 8950:Butschliellaceae 8938: 8937: 8889: 8888: 8880: 8879: 8845: 8844: 8836: 8835: 8813:Palpitomonadidae 8801: 8800: 8792: 8791: 8783: 8782: 8764:Microheliellidae 8754: 8753: 8730: 8729: 8721: 8720: 8627: 8607: 8581: 8574: 8567: 8558: 8557: 8308:Hunting copepods 8281: 8280: 8106:Chaetocerotaceae 8075: 8074: 7992:Bacterioplankton 7929: 7823: 7816: 7809: 7800: 7799: 7743: 7742: 7706: 7700: 7699: 7679: 7673: 7672: 7661:10.1038/326655a0 7636: 7630: 7629: 7619:10.1144/sp358.11 7594: 7588: 7587: 7571:, 92–93: 61–80, 7560: 7554: 7553: 7543: 7533: 7509: 7503: 7502: 7500: 7499: 7490:. Archived from 7484: 7478: 7477: 7476:. 22 April 2008. 7464: 7458: 7457: 7430: 7424: 7423: 7388: 7379: 7378: 7351: 7342: 7341: 7319:Marine Chemistry 7314: 7308: 7307: 7283:(6–7): 585–595, 7272: 7266: 7265: 7256: 7246: 7226: 7220: 7219: 7209: 7177: 7168: 7167: 7165: 7155: 7131: 7122: 7121: 7119: 7095: 7089: 7088: 7086: 7076: 7051: 7045: 7044: 7034: 7002: 6996: 6995: 6966: 6960: 6959: 6923: 6917: 6916: 6898: 6880: 6854: 6848: 6847: 6811: 6805: 6804: 6783: 6777: 6776: 6774: 6742: 6736: 6735: 6725: 6715: 6683: 6677: 6671: 6666: 6664: 6632: 6619: 6618: 6601:(2–4): 237–250. 6590: 6581: 6580: 6578: 6555:Paleoceanography 6546: 6537: 6536: 6515: 6509: 6508: 6498: 6466: 6460: 6459: 6431: 6425: 6424: 6414: 6404: 6380: 6371: 6365: 6360: 6358: 6341:(4): 1859–1876. 6325: 6319: 6318: 6316: 6285:Kleypas, Joan A. 6280: 6274: 6273: 6264: 6254: 6226: 6220: 6219: 6211: 6205: 6204: 6203:. 2 August 2016. 6197: 6191: 6190: 6163: 6157: 6156: 6138: 6132: 6131: 6107: 6101: 6100: 6098: 6045: 6036: 6030: 6029: 6020: 6010: 5978: 5972: 5971: 5936: 5930: 5929: 5928: 5908: 5899: 5898: 5890: 5884: 5883: 5881: 5856: 5841:Coccolithophores 5838: 5829: 5823: 5820:Giantviruses.org 5814: 5808: 5807: 5805: 5803: 5792: 5786: 5785: 5783: 5781: 5770: 5764: 5763: 5761: 5759: 5743: 5737: 5736: 5694: 5684: 5678: 5677: 5648: 5642: 5641: 5631: 5597: 5588: 5582: 5581: 5545: 5539: 5538: 5536: 5504: 5498: 5492: 5487: 5485: 5453: 5447: 5441: 5417: 5411: 5384: 5378: 5377: 5342: 5331: 5325: 5302: 5296: 5295: 5268: 5259: 5258: 5231: 5220: 5219: 5211: 5200: 5199: 5183:(6): 1073–1099, 5171: 5165: 5164: 5137: 5128: 5126: 5108: 5099: 5098: 5090: 5079: 5078: 5077: 5056: 5045: 5044: 5035: 5025: 4997: 4988: 4987: 4975: 4966: 4965: 4940: 4931: 4929: 4911: 4902: 4901: 4879: 4870: 4869: 4833: 4827: 4826: 4808: 4776: 4770: 4769: 4767: 4743: 4737: 4736: 4700: 4694: 4691:Coccolithophores 4687: 4681: 4680: 4670: 4638: 4632: 4631: 4621: 4585: 4579: 4578: 4576: 4552: 4546: 4545: 4535: 4510:(6): 1896–1915. 4495: 4489: 4488: 4452: 4446: 4445: 4419: 4410: 4409: 4407: 4383: 4377: 4376: 4366: 4335:Science Advances 4325: 4300: 4299: 4297: 4287: 4255: 4249: 4246: 4240: 4237: 4231: 4230: 4209:Coccolithophores 4204: 4198: 4197: 4187: 4155: 4149: 4148: 4119: 4113: 4112: 4102: 4070: 4064: 4063: 4061: 4038:Paleoceanography 4029: 4023: 4022: 4005:(5–7): 538–557. 3993: 3987: 3986: 3965:Coccolithophores 3960: 3954: 3953: 3932:Coccolithophores 3927: 3921: 3920: 3914: 3906: 3889:(4): 1103–1108. 3874: 3868: 3867: 3865: 3863: 3840: 3834: 3833: 3807: 3798: 3792: 3791: 3784: 3778: 3776: 3762:Marine Chemistry 3757: 3751: 3750: 3748: 3747: 3733: 3724: 3723: 3722: 3694: 3688: 3687: 3678: 3661:(3): 1181–1185, 3650: 3644: 3643: 3631: 3625: 3623: 3610: 3601: 3600: 3573: 3564: 3563: 3554: 3544: 3516: 3507: 3501: 3496: 3478: 3446: 3437: 3436: 3415:Coccolithophores 3410: 3404: 3398: 3393: 3383: 3359: 3314:Dimethyl sulfide 3292:dimethyl sulfide 3270:rock record bias 3219: 3203: 3186: 3156: 3155: 3154: 3151: 3076: 3062: 3061: 3058: 3014: 3007: 3000: 2987: 2982: 2981: 2643:coccolithophores 2580:Microzooplankton 2539:Bacterioplankton 2499: 2480: 2479: 2185:calcareous oozes 2062: 2055: 2048: 2035: 2030: 2029: 1950:Magnetoreception 1930:Ballast minerals 1525:Cephalopod shell 1520:Brachiopod shell 1467:Remineralisation 1448: 1429: 1428: 1340: 1324: 1173:Chrysochromulina 961: 922: 906: 892: 575:microzooplankton 473:Prymnesiophyceae 450:Robert Whittaker 430:earth scientists 414:marine food webs 390:Noëlaerhabdaceae 342:microzooplankton 293:Prymnesiophyceae 270:Robert Whittaker 242:Coccolithophores 204:Groups included 198:Prymnesiophyceae 146: 145: 122: 111: 48: 44:Temporal range: 43: 32: 31: 21: 18:Coccolithophores 9853: 9852: 9848: 9847: 9846: 9844: 9843: 9842: 9808: 9807: 9806: 9801: 9793: 9788: 9780: 9778: 9770: 9765: 9757: 9752: 9744: 9739: 9731: 9726: 9718: 9713: 9705: 9700: 9692: 9687: 9679: 9674: 9666: 9661: 9654:Coccosphaerales 9652: 9651: 9646: 9637: 9636: 9631: 9624:Coccosphaerales 9618: 9608: 9587: 9560: 9532: 9517:Isochrysidaceae 9503: 9454: 9421: 9405: 9386:Ceratolithaceae 9349: 9318: 9314:Rappemonadaceae 9302: 9298:Pavlomulinaceae 9260: 9219: 9215:Raphidocystidae 9205:Acanthocystidae 9193: 9175: 9171:Spiculophryidae 9123: 9085: 9030: 9018:Tetragonidiales 9012: 8998:Falcomonadaceae 8993:Chroomonadaceae 8980:Pyrenomonadales 8974: 8942:Cryptomonadales 8923: 8905: 8861: 8857:Katablepharidae 8840:Katablepharidea 8817: 8805:Palpitomonadida 8768: 8750:Microheliellida 8741: 8710: 8709: 8625: 8603: 8594: 8585: 8555: 8550: 8481:Marine mucilage 8436:Biological pump 8390: 8342: 8313:Ichthyoplankton 8270: 8237:Dinoflagellates 8209: 8168: 8139:Nannochloropsis 8123:Eustigmatophyte 8111:Coccolithophore 8064: 7986: 7930: 7921: 7852:CLAW hypothesis 7832: 7827: 7752: 7747: 7746: 7707: 7703: 7696: 7680: 7676: 7637: 7633: 7595: 7591: 7561: 7557: 7524:(6): e1001085. 7510: 7506: 7497: 7495: 7486: 7485: 7481: 7466: 7465: 7461: 7431: 7427: 7389: 7382: 7352: 7345: 7315: 7311: 7273: 7269: 7237:(6): e1001087, 7227: 7223: 7178: 7171: 7132: 7125: 7096: 7092: 7052: 7048: 7003: 6999: 6967: 6963: 6924: 6920: 6855: 6851: 6812: 6808: 6784: 6780: 6743: 6739: 6684: 6680: 6633: 6622: 6591: 6584: 6547: 6540: 6516: 6512: 6467: 6463: 6442:(11): 675–684. 6432: 6428: 6395:(6): e1001085. 6381: 6374: 6326: 6322: 6281: 6277: 6227: 6223: 6212: 6208: 6199: 6198: 6194: 6164: 6160: 6153: 6139: 6135: 6108: 6104: 6096: 6043: 6037: 6033: 5979: 5975: 5941:Ecology Letters 5937: 5933: 5909: 5902: 5891: 5887: 5879: 5873: 5854:10.1.1.455.2864 5836: 5830: 5826: 5815: 5811: 5801: 5799: 5793: 5789: 5779: 5777: 5772: 5771: 5767: 5757: 5755: 5744: 5740: 5692: 5685: 5681: 5649: 5645: 5595: 5589: 5585: 5546: 5542: 5505: 5501: 5454: 5450: 5418: 5414: 5385: 5381: 5343: 5334: 5303: 5299: 5279:(1–4): 87–112, 5269: 5262: 5232: 5223: 5212: 5203: 5172: 5168: 5138: 5131: 5123: 5109: 5102: 5091: 5082: 5057: 5048: 4998: 4991: 4976: 4969: 4963: 4941: 4934: 4926: 4912: 4905: 4880: 4873: 4834: 4830: 4777: 4773: 4744: 4740: 4701: 4697: 4688: 4684: 4639: 4635: 4586: 4582: 4553: 4549: 4496: 4492: 4453: 4449: 4442: 4420: 4413: 4384: 4380: 4341:(7): e1501822. 4326: 4303: 4256: 4252: 4247: 4243: 4238: 4234: 4227: 4205: 4201: 4156: 4152: 4120: 4116: 4071: 4067: 4030: 4026: 3994: 3990: 3983: 3961: 3957: 3950: 3928: 3924: 3908: 3907: 3875: 3871: 3861: 3859: 3857: 3841: 3837: 3805: 3799: 3795: 3786: 3785: 3781: 3758: 3754: 3745: 3743: 3735: 3734: 3727: 3695: 3691: 3651: 3647: 3633: 3632: 3628: 3611: 3604: 3574: 3567: 3517: 3510: 3447: 3440: 3433: 3411: 3407: 3360: 3347: 3342: 3309:CLAW hypothesis 3305: 3288: 3286:CLAW hypothesis 3282: 3267: 3240: 3234: 3227: 3220: 3211: 3204: 3195: 3187: 3171: 3152: 3149: 3148: 3146: 3144: 3140: 3116: 3107: 3099: 3094: 3083: 3074: 3070: 3066: 3059: 3056: 3055: 3053: 3027: 3018: 2977: 2970: 2969: 2968: 2927: 2903:CLAW hypothesis 2892: 2884: 2883: 2882: 2832: 2822: 2821: 2820: 2801:Ichthyoplankton 2785: 2777: 2776: 2775: 2766: 2750:Marine plankton 2745: 2730: 2722: 2721: 2720: 2711: 2702: 2686: 2666: 2654: 2648:dinoflagellates 2639: 2626: 2618: 2617: 2616: 2570: 2560: 2550: 2549: 2548: 2524: 2509: 2478: 2430:Oxyrrhis marina 2410: 2371: 2366:carbon fixation 2362:RuBisCO enzymes 2359: 2353:dinoflagellates 2338: 2321:proton channels 2317: 2276: 2272: 2247: 2242: 2235: 2225: 2217: 2173: 2160: 2142:polysaccharides 2139: 2117: 2105: 2080: 2066: 2025: 2018: 2017: 2016: 1904: 1896: 1895: 1894: 1850: 1842: 1841: 1840: 1826:biogenic silica 1820: 1810: 1809: 1808: 1793: 1781: 1760: 1740: 1730: 1729: 1728: 1696: 1688: 1687: 1686: 1666: 1651: 1650: 1649: 1616:gastropod shell 1584:testate amoebae 1574:diatom frustule 1499: 1488: 1487: 1486: 1456: 1427: 1422: 1421: 1420: 1419: 1418: 1413:, and (N)  1341: 1333: 1332: 1325: 1299:Late Cretaceous 1275: 1235: 1218: 1210: 1164: 1155: 1138:photoinhibition 1126: 1093: 1057:coccolithovirus 1033: 1026: 1016: 1009: 975: 950: 948: 943: 942: 941: 940: 930: 929: 928: 923: 915: 914: 907: 899: 898: 893: 780: 764:binary fission. 708:dinoflagellates 705: 697: 692: 657:golgi apparatus 598: 583:dinoflagellates 568: 556: 544: 540: 531:marine plankton 513: 448:, according to 442: 349:biological pump 330:shell called a 268:, according to 140: 113: 110: 109: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 54: 47:Rhaetian–Recent 46: 45: 41: 35:Coccolithophore 28: 23: 22: 15: 12: 11: 5: 9851: 9841: 9840: 9835: 9830: 9825: 9820: 9803: 9802: 9800: 9799: 9786: 9776: 9763: 9750: 9737: 9724: 9711: 9698: 9685: 9672: 9659: 9644: 9628: 9626: 9620: 9619: 9605: 9604: 9601: 9600: 9597: 9596: 9593: 9592: 9589: 9588: 9586: 9585: 9579: 9574: 9568: 9566: 9562: 9561: 9559: 9558: 9553: 9548: 9542: 9540: 9534: 9533: 9531: 9530: 9524: 9519: 9513: 9511: 9509:Isochrysidales 9505: 9504: 9502: 9501: 9496: 9491: 9486: 9484:Coccolithaceae 9481: 9479:Calcidiscaceae 9475: 9473: 9464: 9460: 9459: 9456: 9455: 9453: 9452: 9447: 9442: 9436: 9434: 9427: 9423: 9422: 9420: 9419: 9417:Phaeocystaceae 9413: 9411: 9407: 9406: 9404: 9403: 9398: 9393: 9388: 9383: 9378: 9373: 9371:Alisphaeraceae 9367: 9361: 9355: 9354: 9351: 9350: 9348: 9347: 9341: 9339: 9330: 9328:Pavlovophyceae 9324: 9323: 9320: 9319: 9317: 9316: 9310: 9308: 9307:Rappemonadales 9304: 9303: 9301: 9300: 9294: 9292: 9291:Pavlomulinales 9285: 9276: 9270: 9269: 9266: 9265: 9262: 9261: 9259: 9258: 9253: 9248: 9243: 9241:Heterophryidae 9238: 9233: 9231:Choanocystidae 9227: 9225: 9221: 9220: 9218: 9217: 9212: 9207: 9201: 9199: 9198:Acanthocystida 9195: 9194: 9192: 9191: 9189:Yogsothothidae 9185: 9183: 9177: 9176: 9174: 9173: 9167: 9161: 9152: 9150:Centroheliozoa 9143: 9137: 9136: 9133: 9132: 9129: 9128: 9125: 9124: 9122: 9121: 9115: 9113: 9106: 9099: 9095: 9094: 9091: 9090: 9087: 9086: 9084: 9083: 9081:Ancoracystidae 9077: 9075: 9068: 9061: 9054: 9048: 9047: 9044: 9043: 9040: 9039: 9036: 9035: 9032: 9031: 9029: 9028: 9022: 9020: 9014: 9013: 9011: 9010: 9005: 9003:Geminigeraceae 9000: 8995: 8990: 8988:Baffinellaceae 8984: 8982: 8976: 8975: 8973: 8972: 8967: 8962: 8957: 8952: 8946: 8944: 8935: 8929: 8928: 8925: 8924: 8922: 8921: 8915: 8913: 8907: 8906: 8904: 8903: 8901:Goniomonadidae 8897: 8895: 8886: 8877: 8871: 8870: 8867: 8866: 8863: 8862: 8860: 8859: 8853: 8851: 8849:Katablepharida 8842: 8833: 8827: 8826: 8823: 8822: 8819: 8818: 8816: 8815: 8809: 8807: 8798: 8789: 8780: 8774: 8773: 8770: 8769: 8767: 8766: 8760: 8758: 8751: 8747: 8746: 8743: 8742: 8740: 8739: 8733: 8727: 8718: 8712: 8711: 8708: 8707: 8706: 8705: 8704: 8703: 8700:Mesomycetozoea 8697: 8692: 8682: 8672: 8671: 8670: 8665: 8660: 8655: 8650: 8649: 8648: 8636:Diaphoretickes 8633: 8628: 8623: 8618: 8613: 8608: 8600: 8599: 8596: 8595: 8584: 8583: 8576: 8569: 8561: 8552: 8551: 8549: 8548: 8543: 8538: 8533: 8528: 8523: 8518: 8513: 8508: 8506:Pseudoplankton 8503: 8498: 8493: 8488: 8483: 8478: 8473: 8468: 8463: 8458: 8453: 8448: 8443: 8438: 8433: 8428: 8423: 8418: 8413: 8408: 8402: 8400: 8399:Related topics 8396: 8395: 8392: 8391: 8389: 8388: 8383: 8378: 8373: 8368: 8363: 8358: 8352: 8350: 8348:Copepod orders 8344: 8343: 8341: 8340: 8335: 8330: 8325: 8320: 8315: 8310: 8305: 8300: 8295: 8290: 8284: 8278: 8272: 8271: 8269: 8268: 8263: 8256: 8251: 8244: 8239: 8234: 8229: 8223: 8221: 8215: 8214: 8211: 8210: 8208: 8207: 8206: 8205: 8200: 8195: 8184: 8178: 8176: 8170: 8169: 8167: 8166: 8159: 8154: 8152:Prasinophyceae 8149: 8142: 8135: 8130: 8125: 8120: 8113: 8108: 8103: 8096: 8089: 8084: 8078: 8072: 8066: 8065: 8063: 8062: 8055: 8050: 8045: 8038: 8031: 8028:Flavobacterium 8024: 8019: 8014: 8009: 8004: 7996: 7994: 7988: 7987: 7985: 7984: 7979: 7974: 7969: 7964: 7959: 7954: 7949: 7944: 7938: 7936: 7932: 7931: 7924: 7922: 7920: 7919: 7914: 7909: 7904: 7899: 7894: 7889: 7884: 7879: 7874: 7869: 7864: 7859: 7854: 7849: 7843: 7841: 7834: 7833: 7826: 7825: 7818: 7811: 7803: 7797: 7796: 7790: 7785: 7776: 7775: 7767: 7762: 7751: 7750:External links 7748: 7745: 7744: 7701: 7694: 7674: 7631: 7605:(1): 167–177, 7589: 7555: 7504: 7479: 7459: 7425: 7399:(7358): 80–3, 7380: 7362:(4): 743–754, 7343: 7325:(4): 347–358, 7309: 7267: 7221: 7192:(2): 617–627. 7169: 7123: 7090: 7046: 6997: 6961: 6934:(3): 359–368. 6918: 6849: 6806: 6778: 6757:(3): 744–750. 6737: 6678: 6620: 6582: 6538: 6510: 6461: 6426: 6372: 6320: 6275: 6237:(10): e13436, 6221: 6206: 6192: 6158: 6151: 6133: 6122:(4): 507–523. 6102: 6058:Annual Reviews 6031: 5973: 5931: 5919:(8): 875–883, 5900: 5885: 5871: 5824: 5809: 5787: 5765: 5738: 5679: 5660:(C4): C00F06. 5643: 5583: 5540: 5519:(C7): C07001. 5499: 5462:Biogeosciences 5448: 5412: 5396:Biogeosciences 5379: 5353:(1): 213–226, 5332: 5297: 5260: 5242:(4): 355–374, 5221: 5201: 5166: 5148:(1): 131–152, 5129: 5121: 5100: 5080: 5046: 4989: 4967: 4962:978-0470016176 4961: 4932: 4924: 4903: 4893:(2): 120–133, 4886:Algal Research 4871: 4828: 4785:Biogeosciences 4771: 4758:(4): 629–639. 4738: 4711:(2): 156–168. 4695: 4682: 4633: 4580: 4547: 4490: 4463:(2): 125–138. 4447: 4440: 4411: 4378: 4301: 4250: 4241: 4232: 4225: 4199: 4170:(2): 458–462. 4150: 4131:(3): 217–285. 4114: 4065: 4024: 3988: 3981: 3955: 3948: 3922: 3869: 3855: 3835: 3816:(4): 267–288. 3793: 3779: 3768:(4): 301–313, 3752: 3725: 3705:(2): 281–289, 3689: 3645: 3626: 3602: 3584:(1–2): 63–67, 3565: 3508: 3455:Biogeosciences 3438: 3431: 3405: 3344: 3343: 3341: 3338: 3337: 3336: 3329: 3321: 3316: 3311: 3304: 3301: 3281: 3278: 3265: 3233: 3230: 3229: 3228: 3221: 3214: 3212: 3205: 3198: 3196: 3188: 3181: 3169: 3142: 3138: 3114: 3106: 3103: 3097: 3092: 3086:photosynthesis 3081: 3078: 3077: 3072: 3068: 3064: 3043:carbon dioxide 3026: 3023: 3020: 3019: 3017: 3016: 3009: 3002: 2994: 2991: 2990: 2989: 2988: 2972: 2971: 2967: 2966: 2961: 2956: 2951: 2946: 2941: 2940: 2939: 2928: 2926: 2925: 2920: 2915: 2910: 2905: 2900: 2894: 2893: 2891:Related topics 2890: 2889: 2886: 2885: 2881: 2880: 2875: 2870: 2865: 2863:Eutrophication 2860: 2855: 2850: 2845: 2843:Critical depth 2840: 2834: 2833: 2828: 2827: 2824: 2823: 2819: 2818: 2813: 2811:Pseudoplankton 2808: 2803: 2798: 2793: 2787: 2786: 2783: 2782: 2779: 2778: 2774: 2773: 2767: 2765: 2764: 2763: 2762: 2757: 2746: 2744: 2743: 2738: 2732: 2731: 2728: 2727: 2724: 2723: 2719: 2718: 2712: 2710: 2709: 2703: 2701: 2700: 2699: 2698: 2687: 2685: 2684: 2683: 2682: 2677: 2672: 2670:foraminiferans 2667: 2655: 2653: 2652: 2651: 2650: 2645: 2640: 2628: 2627: 2624: 2623: 2620: 2619: 2615: 2614: 2609: 2604: 2599: 2594: 2593: 2592: 2582: 2577: 2571: 2569: 2568: 2562: 2561: 2556: 2555: 2552: 2551: 2547: 2546: 2541: 2536: 2531: 2525: 2523: 2522: 2517: 2511: 2510: 2505: 2504: 2501: 2500: 2492: 2491: 2485: 2484: 2477: 2474: 2409: 2406: 2369: 2357: 2336: 2333:photosynthesis 2315: 2292: 2291: 2279: 2278: 2274: 2270: 2254: 2253: 2245: 2240: 2233: 2223: 2215: 2201:photosynthetic 2172: 2169: 2159: 2156: 2137: 2116: 2113: 2104: 2101: 2085: 2084: 2068: 2067: 2065: 2064: 2057: 2050: 2042: 2039: 2038: 2037: 2036: 2020: 2019: 2015: 2014: 2009: 2008: 2007: 2002: 1992: 1987: 1982: 1977: 1970: 1965: 1957: 1952: 1947: 1942: 1937: 1932: 1927: 1926: 1925: 1923:immobilization 1920: 1918:mineralization 1912: 1906: 1905: 1902: 1901: 1898: 1897: 1893: 1892: 1887: 1886: 1885: 1875: 1874: 1873: 1868: 1858: 1852: 1851: 1848: 1847: 1844: 1843: 1839: 1838: 1833: 1831:siliceous ooze 1828: 1822: 1821: 1818:Silicification 1816: 1815: 1812: 1811: 1807: 1806: 1805: 1804: 1799: 1794: 1782: 1780: 1779: 1778: 1777: 1772: 1761: 1759: 1758: 1753: 1748: 1742: 1741: 1736: 1735: 1732: 1731: 1727: 1726: 1721: 1716: 1715: 1714: 1704: 1698: 1697: 1694: 1693: 1690: 1689: 1685: 1684: 1679: 1674: 1668: 1667: 1657: 1656: 1653: 1652: 1648: 1647: 1642: 1640:Sponge spicule 1637: 1636: 1635: 1633:estuary shells 1630: 1625: 1620: 1619: 1618: 1613: 1608: 1598: 1588: 1587: 1586: 1581: 1576: 1571: 1566: 1556: 1555: 1554: 1544: 1543: 1542: 1537: 1532: 1522: 1517: 1516: 1515: 1510: 1501: 1500: 1494: 1493: 1490: 1489: 1485: 1484: 1479: 1474: 1469: 1464: 1458: 1457: 1454: 1453: 1450: 1449: 1441: 1440: 1434: 1433: 1426: 1423: 1342: 1335: 1334: 1326: 1319: 1318: 1317: 1316: 1315: 1274: 1271: 1267:coevolutionary 1234: 1231: 1217: 1214: 1209: 1206: 1163: 1160: 1154: 1151: 1142:stratification 1125: 1122: 1118:eutrophication 1092: 1089: 1032: 1029: 1024: 1015: 1012: 1007: 983:Southern Ocean 971:Main article: 947: 944: 932: 931: 924: 917: 916: 908: 901: 900: 894: 887: 886: 885: 884: 883: 823:Umbellosphaera 779: 776: 753:biotic factors 703: 696: 693: 691: 688: 597: 594: 566: 554: 542: 538: 511: 441: 438: 386:Isochrysidales 373:eutrophication 361:climate change 305:photosynthetic 226: 225: 224: 223: 216: 213:Isochrysidales 206: 205: 201: 200: 195: 191: 190: 185: 181: 180: 175: 171: 170: 168:Diaphoretickes 165: 158: 157: 152: 148: 147: 134: 133: 124: 123: 115: 114: 105: 100: 95: 90: 85: 80: 75: 70: 65: 60: 55: 50: 42: 36: 26: 9: 6: 4: 3: 2: 9850: 9839: 9838:Sedimentology 9836: 9834: 9831: 9829: 9826: 9824: 9821: 9819: 9816: 9815: 9813: 9796: 9791: 9787: 9783: 9777: 9773: 9768: 9764: 9760: 9755: 9751: 9747: 9742: 9738: 9734: 9729: 9725: 9721: 9716: 9712: 9708: 9703: 9699: 9695: 9690: 9686: 9682: 9677: 9673: 9669: 9664: 9660: 9655: 9649: 9645: 9640: 9634: 9630: 9629: 9627: 9625: 9621: 9617: 9612: 9584: 9583:Zygodiscaceae 9580: 9578: 9575: 9573: 9570: 9569: 9567: 9563: 9557: 9554: 9552: 9549: 9547: 9544: 9543: 9541: 9539: 9535: 9529: 9525: 9523: 9520: 9518: 9515: 9514: 9512: 9510: 9506: 9500: 9497: 9495: 9492: 9490: 9487: 9485: 9482: 9480: 9477: 9476: 9474: 9472: 9471:Coccolithales 9468: 9465: 9461: 9451: 9450:Prymnesiaceae 9448: 9446: 9443: 9441: 9438: 9437: 9435: 9431: 9428: 9424: 9418: 9415: 9414: 9412: 9410:Phaeocystales 9408: 9402: 9399: 9397: 9394: 9392: 9389: 9387: 9384: 9382: 9379: 9377: 9374: 9372: 9369: 9368: 9365: 9362: 9360: 9356: 9346: 9343: 9342: 9340: 9338: 9334: 9331: 9329: 9325: 9315: 9312: 9311: 9309: 9305: 9299: 9296: 9295: 9293: 9289: 9286: 9284: 9280: 9277: 9275: 9271: 9257: 9254: 9252: 9251:Pterocystidae 9249: 9247: 9244: 9242: 9239: 9237: 9234: 9232: 9229: 9228: 9226: 9222: 9216: 9213: 9211: 9208: 9206: 9203: 9202: 9200: 9196: 9190: 9187: 9186: 9184: 9182: 9178: 9172: 9169: 9168: 9165: 9162: 9160: 9156: 9153: 9151: 9147: 9144: 9142: 9138: 9120: 9117: 9116: 9114: 9110: 9107: 9103: 9100: 9096: 9082: 9079: 9078: 9076: 9072: 9069: 9065: 9062: 9058: 9055: 9053: 9049: 9027: 9024: 9023: 9021: 9019: 9015: 9009: 9006: 9004: 9001: 8999: 8996: 8994: 8991: 8989: 8986: 8985: 8983: 8981: 8977: 8971: 8968: 8966: 8963: 8961: 8958: 8956: 8953: 8951: 8948: 8947: 8945: 8943: 8939: 8936: 8934: 8933:Cryptophyceae 8930: 8920: 8917: 8916: 8914: 8912: 8908: 8902: 8899: 8898: 8896: 8894: 8893:Goniomonadida 8890: 8887: 8885: 8881: 8878: 8876: 8872: 8858: 8855: 8854: 8852: 8850: 8846: 8843: 8841: 8837: 8834: 8832: 8828: 8814: 8811: 8810: 8808: 8806: 8802: 8799: 8797: 8793: 8790: 8788: 8784: 8781: 8779: 8775: 8765: 8762: 8761: 8759: 8755: 8752: 8748: 8738: 8737:Tetraheliidae 8735: 8734: 8731: 8728: 8726: 8722: 8719: 8717: 8713: 8701: 8698: 8696: 8693: 8691: 8688: 8687: 8686: 8683: 8681: 8678: 8677: 8676: 8673: 8669: 8666: 8664: 8663:Stramenopiles 8661: 8659: 8656: 8654: 8651: 8647: 8644: 8643: 8642: 8639: 8638: 8637: 8634: 8632: 8629: 8626:(major groups 8624: 8622: 8619: 8617: 8614: 8612: 8609: 8606: 8602: 8601: 8597: 8593: 8589: 8582: 8577: 8575: 8570: 8568: 8563: 8562: 8559: 8547: 8544: 8542: 8539: 8537: 8534: 8532: 8529: 8527: 8524: 8522: 8519: 8517: 8516:Tychoplankton 8514: 8512: 8509: 8507: 8504: 8502: 8499: 8497: 8494: 8492: 8489: 8487: 8486:Microbial mat 8484: 8482: 8479: 8477: 8474: 8472: 8469: 8467: 8464: 8462: 8459: 8457: 8454: 8452: 8449: 8447: 8444: 8442: 8439: 8437: 8434: 8432: 8429: 8427: 8424: 8422: 8419: 8417: 8414: 8412: 8409: 8407: 8404: 8403: 8401: 8397: 8387: 8384: 8382: 8379: 8377: 8374: 8372: 8371:Monstrilloida 8369: 8367: 8366:Harpacticoida 8364: 8362: 8359: 8357: 8354: 8353: 8351: 8349: 8345: 8339: 8336: 8334: 8331: 8329: 8326: 8324: 8323:Marine larvae 8321: 8319: 8316: 8314: 8311: 8309: 8306: 8304: 8301: 8299: 8296: 8294: 8291: 8289: 8286: 8285: 8282: 8279: 8277: 8273: 8267: 8264: 8262: 8261: 8257: 8255: 8252: 8250: 8249: 8245: 8243: 8240: 8238: 8235: 8233: 8230: 8228: 8225: 8224: 8222: 8220: 8216: 8204: 8201: 8199: 8196: 8194: 8190: 8189: 8188: 8185: 8183: 8180: 8179: 8177: 8175: 8174:Diatom orders 8171: 8165: 8164: 8160: 8158: 8155: 8153: 8150: 8148: 8147: 8143: 8141: 8140: 8136: 8134: 8131: 8129: 8126: 8124: 8121: 8119: 8118: 8114: 8112: 8109: 8107: 8104: 8102: 8101: 8097: 8095: 8094: 8093:Bacteriastrum 8090: 8088: 8085: 8083: 8080: 8079: 8076: 8073: 8071: 8070:Phytoplankton 8067: 8061: 8060: 8056: 8054: 8051: 8049: 8046: 8044: 8043: 8039: 8037: 8036: 8032: 8030: 8029: 8025: 8023: 8020: 8018: 8015: 8013: 8010: 8008: 8007:Cyanobacteria 8005: 8003: 8002: 7998: 7997: 7995: 7993: 7989: 7983: 7980: 7978: 7977:Picoeukaryote 7975: 7973: 7972:Picobiliphyte 7970: 7968: 7965: 7963: 7960: 7958: 7955: 7953: 7950: 7948: 7945: 7943: 7940: 7939: 7937: 7933: 7928: 7918: 7915: 7913: 7910: 7908: 7905: 7903: 7900: 7898: 7895: 7893: 7890: 7888: 7885: 7883: 7880: 7878: 7875: 7873: 7870: 7868: 7865: 7863: 7860: 7858: 7855: 7853: 7850: 7848: 7845: 7844: 7842: 7840: 7835: 7831: 7824: 7819: 7817: 7812: 7810: 7805: 7804: 7801: 7794: 7791: 7789: 7786: 7784: 7781: 7780: 7779: 7774: 7772: 7768: 7766: 7763: 7760: 7757: 7756: 7755: 7740: 7736: 7732: 7728: 7724: 7720: 7717:(1): GB1014. 7716: 7712: 7705: 7697: 7691: 7687: 7686: 7678: 7670: 7666: 7662: 7658: 7654: 7650: 7646: 7642: 7635: 7628: 7624: 7620: 7616: 7612: 7608: 7604: 7600: 7593: 7586: 7582: 7578: 7574: 7570: 7566: 7559: 7551: 7547: 7542: 7537: 7532: 7527: 7523: 7519: 7515: 7508: 7494:on 2020-12-30 7493: 7489: 7483: 7475: 7474: 7469: 7463: 7456: 7452: 7448: 7444: 7440: 7436: 7429: 7422: 7418: 7414: 7410: 7406: 7402: 7398: 7394: 7387: 7385: 7377: 7373: 7369: 7365: 7361: 7357: 7350: 7348: 7340: 7336: 7332: 7328: 7324: 7320: 7313: 7306: 7302: 7298: 7294: 7290: 7286: 7282: 7278: 7271: 7264: 7260: 7255: 7250: 7245: 7240: 7236: 7232: 7225: 7217: 7213: 7208: 7203: 7199: 7195: 7191: 7187: 7183: 7176: 7174: 7164: 7159: 7154: 7149: 7145: 7141: 7139: 7130: 7128: 7118: 7113: 7109: 7105: 7101: 7094: 7085: 7080: 7075: 7070: 7066: 7062: 7058: 7050: 7042: 7038: 7033: 7028: 7024: 7020: 7016: 7012: 7008: 7001: 6993: 6989: 6985: 6981: 6977: 6973: 6965: 6957: 6953: 6949: 6945: 6941: 6937: 6933: 6929: 6922: 6914: 6910: 6906: 6902: 6897: 6892: 6888: 6884: 6879: 6874: 6870: 6866: 6865: 6860: 6853: 6845: 6841: 6837: 6833: 6829: 6825: 6821: 6817: 6810: 6802: 6798: 6794: 6790: 6789:Harmful Algae 6782: 6773: 6768: 6764: 6760: 6756: 6752: 6748: 6741: 6733: 6729: 6724: 6719: 6714: 6709: 6705: 6701: 6698:(6): e65987. 6697: 6693: 6689: 6682: 6675: 6670: 6663: 6658: 6654: 6650: 6646: 6642: 6638: 6631: 6629: 6627: 6625: 6616: 6612: 6608: 6604: 6600: 6596: 6589: 6587: 6577: 6572: 6568: 6564: 6560: 6556: 6552: 6545: 6543: 6534: 6530: 6526: 6522: 6514: 6506: 6502: 6497: 6492: 6488: 6484: 6480: 6476: 6472: 6465: 6457: 6453: 6449: 6445: 6441: 6437: 6430: 6422: 6418: 6413: 6408: 6403: 6398: 6394: 6390: 6386: 6379: 6377: 6369: 6364: 6357: 6352: 6348: 6344: 6340: 6336: 6332: 6324: 6315: 6310: 6306: 6302: 6298: 6294: 6290: 6286: 6279: 6272: 6268: 6263: 6258: 6253: 6248: 6244: 6240: 6236: 6232: 6225: 6217: 6210: 6202: 6196: 6189: 6185: 6181: 6177: 6173: 6169: 6162: 6154: 6152:9780123705181 6148: 6144: 6137: 6129: 6125: 6121: 6117: 6113: 6106: 6095: 6091: 6087: 6083: 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6051: 6050: 6042: 6035: 6028: 6024: 6019: 6014: 6009: 6004: 6000: 5996: 5992: 5988: 5984: 5977: 5970: 5966: 5962: 5958: 5954: 5950: 5946: 5942: 5935: 5927: 5922: 5918: 5914: 5907: 5905: 5897:. p. 67. 5896: 5889: 5878: 5874: 5868: 5864: 5860: 5855: 5850: 5846: 5842: 5835: 5828: 5821: 5818: 5813: 5798: 5791: 5775: 5769: 5753: 5749: 5742: 5734: 5730: 5726: 5722: 5718: 5714: 5710: 5706: 5702: 5698: 5691: 5683: 5675: 5671: 5667: 5663: 5659: 5655: 5647: 5639: 5635: 5630: 5625: 5621: 5617: 5613: 5609: 5605: 5601: 5594: 5587: 5579: 5575: 5571: 5570:10.1038/30455 5567: 5563: 5559: 5555: 5551: 5544: 5535: 5530: 5526: 5522: 5518: 5514: 5510: 5503: 5496: 5491: 5484: 5479: 5475: 5471: 5467: 5463: 5459: 5452: 5445: 5440: 5435: 5431: 5427: 5423: 5416: 5409: 5405: 5401: 5397: 5393: 5389: 5383: 5376: 5372: 5368: 5364: 5360: 5356: 5352: 5348: 5341: 5339: 5337: 5329: 5324: 5319: 5315: 5311: 5307: 5301: 5294: 5290: 5286: 5282: 5278: 5274: 5267: 5265: 5257: 5253: 5249: 5245: 5241: 5237: 5230: 5228: 5226: 5217: 5210: 5208: 5206: 5198: 5194: 5190: 5186: 5182: 5178: 5170: 5163: 5159: 5155: 5151: 5147: 5143: 5136: 5134: 5124: 5122:9783540219286 5118: 5114: 5107: 5105: 5096: 5089: 5087: 5085: 5076: 5071: 5067: 5063: 5055: 5053: 5051: 5043: 5039: 5034: 5029: 5024: 5019: 5015: 5011: 5007: 5003: 4996: 4994: 4985: 4981: 4974: 4972: 4964: 4958: 4954: 4950: 4946: 4939: 4937: 4927: 4925:9783540219286 4921: 4917: 4910: 4908: 4900: 4896: 4892: 4888: 4887: 4878: 4876: 4867: 4863: 4859: 4855: 4851: 4847: 4843: 4839: 4832: 4824: 4820: 4816: 4812: 4807: 4802: 4798: 4794: 4790: 4786: 4782: 4775: 4766: 4761: 4757: 4753: 4749: 4742: 4734: 4730: 4726: 4722: 4718: 4714: 4710: 4706: 4699: 4692: 4686: 4678: 4674: 4669: 4664: 4660: 4656: 4652: 4648: 4644: 4637: 4629: 4625: 4620: 4615: 4611: 4607: 4603: 4599: 4595: 4591: 4584: 4575: 4570: 4566: 4562: 4558: 4551: 4543: 4539: 4534: 4529: 4525: 4521: 4517: 4513: 4509: 4505: 4501: 4494: 4486: 4482: 4478: 4474: 4470: 4466: 4462: 4458: 4451: 4443: 4441:9780123705181 4437: 4433: 4429: 4425: 4418: 4416: 4406: 4401: 4397: 4393: 4389: 4382: 4374: 4370: 4365: 4360: 4356: 4352: 4348: 4344: 4340: 4336: 4332: 4324: 4322: 4320: 4318: 4316: 4314: 4312: 4310: 4308: 4306: 4296: 4291: 4286: 4281: 4277: 4273: 4269: 4265: 4261: 4254: 4245: 4236: 4228: 4222: 4218: 4214: 4210: 4203: 4195: 4191: 4186: 4181: 4177: 4173: 4169: 4165: 4161: 4154: 4146: 4142: 4138: 4134: 4130: 4126: 4118: 4110: 4106: 4101: 4096: 4092: 4088: 4084: 4080: 4076: 4069: 4060: 4055: 4051: 4047: 4043: 4039: 4035: 4028: 4020: 4016: 4012: 4008: 4004: 4000: 3992: 3984: 3978: 3974: 3970: 3966: 3959: 3951: 3945: 3941: 3937: 3933: 3926: 3918: 3912: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3873: 3858: 3852: 3848: 3847: 3839: 3831: 3827: 3823: 3819: 3815: 3811: 3804: 3797: 3789: 3783: 3775: 3771: 3767: 3763: 3756: 3742: 3738: 3732: 3730: 3721: 3716: 3712: 3708: 3704: 3700: 3693: 3686: 3682: 3677: 3672: 3668: 3664: 3660: 3656: 3649: 3641: 3637: 3630: 3621: 3617: 3609: 3607: 3599: 3595: 3591: 3587: 3583: 3579: 3572: 3570: 3562: 3558: 3553: 3548: 3543: 3538: 3534: 3530: 3526: 3522: 3515: 3513: 3505: 3500: 3494: 3490: 3486: 3482: 3477: 3472: 3468: 3464: 3460: 3456: 3452: 3445: 3443: 3434: 3428: 3424: 3420: 3416: 3409: 3402: 3397: 3391: 3387: 3382: 3377: 3373: 3369: 3365: 3358: 3356: 3354: 3352: 3350: 3345: 3335: 3334: 3330: 3328: 3326: 3322: 3320: 3317: 3315: 3312: 3310: 3307: 3306: 3300: 3297: 3293: 3287: 3277: 3275: 3274:fossil record 3271: 3263: 3258: 3256: 3252: 3248: 3245: 3239: 3226: 3225: 3218: 3213: 3210: 3209: 3202: 3197: 3193: 3192: 3185: 3180: 3179: 3178: 3176: 3167: 3163: 3160: 3136: 3132: 3131:feedback loop 3128: 3124: 3120: 3112: 3102: 3089: 3087: 3052: 3051: 3050: 3048: 3044: 3040: 3037:and calcium. 3036: 3032: 3015: 3010: 3008: 3003: 3001: 2996: 2995: 2993: 2992: 2986: 2976: 2975: 2974: 2973: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2938: 2935: 2934: 2933: 2930: 2929: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2896: 2895: 2888: 2887: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2835: 2831: 2826: 2825: 2817: 2816:Tychoplankton 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2788: 2781: 2780: 2772: 2769: 2768: 2761: 2758: 2756: 2753: 2752: 2751: 2748: 2747: 2742: 2739: 2737: 2734: 2733: 2726: 2725: 2717: 2714: 2713: 2708: 2705: 2704: 2697: 2696:cyanobacteria 2694: 2693: 2692: 2689: 2688: 2681: 2678: 2676: 2673: 2671: 2668: 2665: 2662: 2661: 2660: 2657: 2656: 2649: 2646: 2644: 2641: 2638: 2635: 2634: 2633: 2630: 2629: 2622: 2621: 2613: 2610: 2608: 2605: 2603: 2602:Picoeukaryote 2600: 2598: 2595: 2591: 2588: 2587: 2586: 2583: 2581: 2578: 2576: 2573: 2572: 2567: 2564: 2563: 2559: 2554: 2553: 2545: 2544:Virioplankton 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2526: 2521: 2518: 2516: 2515:Phytoplankton 2513: 2512: 2508: 2503: 2502: 2498: 2494: 2493: 2490: 2487: 2486: 2482: 2481: 2473: 2470: 2466: 2465: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2431: 2426: 2422: 2418: 2417: 2405: 2403: 2399: 2395: 2391: 2383: 2378: 2374: 2367: 2363: 2354: 2350: 2345: 2342: 2334: 2330: 2326: 2322: 2313: 2309: 2304: 2296: 2289: 2285: 2281: 2280: 2268: 2264: 2263:Golgi complex 2260: 2256: 2255: 2251: 2243: 2236: 2229: 2228: 2227: 2221: 2213: 2209: 2208:Calcification 2202: 2197: 2193: 2191: 2186: 2182: 2178: 2168: 2166: 2155: 2152: 2147: 2143: 2135: 2134:golgi complex 2131: 2127: 2124:regulated by 2122: 2112: 2110: 2100: 2098: 2094: 2090: 2082: 2081: 2079: 2075: 2074:Protist shell 2063: 2058: 2056: 2051: 2049: 2044: 2043: 2041: 2040: 2034: 2024: 2023: 2022: 2021: 2013: 2010: 2006: 2003: 2001: 1998: 1997: 1996: 1995:Fossilization 1993: 1991: 1990:Microbial mat 1988: 1986: 1983: 1981: 1978: 1976: 1975: 1971: 1969: 1966: 1964: 1962: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1935:Magnetofossil 1933: 1931: 1928: 1924: 1921: 1919: 1916: 1915: 1913: 1911: 1908: 1907: 1900: 1899: 1891: 1888: 1884: 1881: 1880: 1879: 1876: 1872: 1869: 1867: 1864: 1863: 1862: 1859: 1857: 1854: 1853: 1846: 1845: 1837: 1834: 1832: 1829: 1827: 1824: 1823: 1819: 1814: 1813: 1803: 1800: 1798: 1795: 1792: 1789: 1788: 1787: 1784: 1783: 1776: 1775:aragonite sea 1773: 1771: 1768: 1767: 1766: 1763: 1762: 1757: 1754: 1752: 1749: 1747: 1744: 1743: 1739: 1738:Calcification 1734: 1733: 1725: 1722: 1720: 1717: 1713: 1710: 1709: 1708: 1705: 1703: 1700: 1699: 1692: 1691: 1683: 1680: 1678: 1675: 1673: 1670: 1669: 1664: 1660: 1659:Endoskeletons 1655: 1654: 1646: 1643: 1641: 1638: 1634: 1631: 1629: 1626: 1624: 1621: 1617: 1614: 1612: 1609: 1607: 1604: 1603: 1602: 1601:mollusc shell 1599: 1597: 1594: 1593: 1592: 1589: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1561: 1560: 1559:Protist shell 1557: 1553: 1550: 1549: 1548: 1545: 1541: 1538: 1536: 1533: 1531: 1530:cirrate shell 1528: 1527: 1526: 1523: 1521: 1518: 1514: 1511: 1509: 1506: 1505: 1503: 1502: 1497: 1492: 1491: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1459: 1452: 1451: 1447: 1443: 1442: 1439: 1436: 1435: 1431: 1430: 1416: 1412: 1410: 1409:Syracosphaera 1405: 1401: 1397: 1393: 1389: 1388: 1383: 1382: 1377: 1376: 1371: 1370: 1365: 1364: 1359: 1355: 1353: 1348: 1347: 1339: 1330: 1323: 1314: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1270: 1268: 1264: 1260: 1259:sphingolipids 1256: 1252: 1248: 1244: 1241:are known to 1240: 1230: 1228: 1223: 1222:phytoplankton 1213: 1205: 1203: 1199: 1195: 1194:Pleurochrysis 1191: 1187: 1183: 1178: 1174: 1170: 1159: 1150: 1147: 1143: 1139: 1135: 1131: 1121: 1119: 1114: 1110: 1106: 1102: 1098: 1088: 1086: 1078: 1077:virus genomes 1074: 1070: 1069: 1064: 1063: 1058: 1053: 1046: 1042: 1041:phytoplankton 1037: 1028: 1022: 1011: 1004: 1000: 999:chlorophyll a 996: 991: 988: 984: 980: 974: 966: 938: 937: 927: 921: 913: 912: 905: 897: 891: 882: 878: 876: 872: 864: 863: 858: 853: 849: 847: 843: 839: 835: 831: 827: 824: 820: 816: 815: 809: 805: 803: 797: 794: 784: 775: 772: 768: 765: 761: 756: 754: 750: 745: 741: 737: 733: 729: 721: 717: 713: 709: 701: 687: 685: 681: 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 639:. Two large 638: 634: 629: 627: 623: 619: 611: 607: 602: 593: 591: 588: 587:Heterotrophic 584: 580: 576: 570: 564: 560: 552: 548: 536: 532: 527: 525: 521: 517: 509: 505: 504:phytoplankton 500: 498: 497: 492: 488: 487: 482: 478: 474: 470: 467: 463: 459: 455: 451: 447: 437: 435: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 383: 382: 376: 374: 370: 366: 365:ocean acidity 362: 358: 354: 350: 345: 343: 339: 335: 334: 329: 325: 320: 318: 314: 313:sunlight zone 310: 306: 302: 298: 294: 290: 287: 283: 279: 275: 271: 267: 263: 259: 255: 254:phytoplankton 251: 247: 243: 237: 232: 222: 221: 220:Coccolithales 217: 215: 214: 210: 209: 207: 202: 199: 196: 193: 192: 189: 186: 183: 182: 179: 176: 173: 172: 169: 166: 163: 160: 159: 156: 153: 150: 149: 144: 139: 135: 132: 130: 125: 121: 116: 108: 103: 98: 93: 88: 83: 78: 73: 68: 63: 58: 53: 39: 33: 30: 19: 9823:Microfossils 9623: 9565:Zygodiscales 9433:Prymnesiales 9390: 9283:Rappephyceae 9246:Oxnerellidae 9236:Clypiferidae 9224:Pterocystida 9210:Marophryidae 9112:Nibbleridida 8884:Goniomonadea 8787:Palpitophyta 8716:Cryptobionta 8685:Opisthokonta 8511:Stromatolite 8406:Aeroplankton 8333:Salmon louse 8288:Chaetognatha 8260:Symbiodinium 8258: 8246: 8161: 8157:Raphidophyte 8144: 8137: 8133:Stramenopile 8115: 8110: 8098: 8091: 8057: 8040: 8033: 8026: 7999: 7982:Picoplankton 7907:Spring bloom 7877:Mycoplankton 7872:Meroplankton 7862:Holoplankton 7777: 7770: 7753: 7714: 7710: 7704: 7684: 7677: 7644: 7640: 7634: 7602: 7598: 7592: 7568: 7558: 7521: 7518:PLOS Biology 7517: 7507: 7496:. Retrieved 7492:the original 7482: 7471: 7462: 7438: 7434: 7428: 7396: 7392: 7359: 7355: 7322: 7318: 7312: 7280: 7276: 7270: 7234: 7231:PLOS Biology 7230: 7224: 7189: 7185: 7143: 7137: 7107: 7103: 7093: 7064: 7060: 7049: 7014: 7010: 7000: 6975: 6971: 6964: 6931: 6927: 6921: 6868: 6862: 6852: 6819: 6815: 6809: 6792: 6788: 6781: 6754: 6750: 6740: 6695: 6691: 6681: 6644: 6640: 6598: 6594: 6558: 6554: 6524: 6520: 6513: 6478: 6474: 6464: 6439: 6435: 6429: 6392: 6389:PLOS Biology 6388: 6338: 6334: 6323: 6296: 6292: 6278: 6234: 6230: 6224: 6215: 6209: 6195: 6174:(1): 82–86, 6171: 6167: 6161: 6142: 6136: 6119: 6115: 6105: 6053: 6047: 6034: 5990: 5986: 5982: 5976: 5944: 5940: 5934: 5916: 5912: 5894: 5888: 5844: 5840: 5827: 5819: 5812: 5800:. Retrieved 5790: 5778:. Retrieved 5774:"Viral Zone" 5768: 5756:. Retrieved 5751: 5741: 5700: 5696: 5682: 5657: 5653: 5646: 5603: 5599: 5586: 5553: 5549: 5543: 5516: 5512: 5502: 5465: 5461: 5451: 5425: 5421: 5415: 5399: 5395: 5391: 5387: 5382: 5350: 5346: 5309: 5305: 5300: 5276: 5272: 5239: 5235: 5215: 5180: 5176: 5169: 5145: 5141: 5112: 5094: 5065: 5061: 5005: 5001: 4983: 4944: 4915: 4890: 4884: 4841: 4837: 4831: 4788: 4784: 4774: 4755: 4751: 4741: 4708: 4704: 4698: 4690: 4685: 4650: 4646: 4636: 4619:10261/134985 4596:(1): 51–57. 4593: 4589: 4583: 4564: 4560: 4550: 4507: 4503: 4493: 4460: 4456: 4450: 4423: 4395: 4391: 4381: 4338: 4334: 4295:10453/114799 4267: 4263: 4253: 4244: 4235: 4208: 4202: 4167: 4163: 4153: 4128: 4124: 4117: 4082: 4078: 4068: 4041: 4037: 4027: 4002: 3998: 3991: 3964: 3958: 3931: 3925: 3911:cite journal 3886: 3882: 3872: 3860:. Retrieved 3845: 3838: 3813: 3809: 3796: 3782: 3765: 3761: 3755: 3744:. Retrieved 3740: 3702: 3698: 3692: 3658: 3654: 3648: 3639: 3635: 3629: 3619: 3615: 3581: 3577: 3524: 3520: 3458: 3454: 3414: 3408: 3371: 3367: 3331: 3324: 3289: 3259: 3251:carbon cycle 3247:microfossils 3241: 3222: 3206: 3189: 3165: 3161: 3158: 3133:. Low ocean 3123:ion channels 3108: 3090: 3079: 3031:carbon cycle 3028: 2858:Spring bloom 2806:Meroplankton 2796:Holoplankton 2736:Aeroplankton 2664:radiolarians 2642: 2607:Picoplankton 2534:Mycoplankton 2529:Mixoplankton 2507:Trophic mode 2468: 2462: 2454: 2450: 2446: 2442: 2438: 2434: 2428: 2424: 2420: 2414: 2411: 2387: 2346: 2305: 2301: 2248:through the 2206: 2190:microfossils 2174: 2161: 2118: 2106: 2096: 2086: 2005:petrifaction 1972: 1960: 1955:Microfossils 1702:Limpet teeth 1682:Ossification 1677:Bone mineral 1611:chiton shell 1496:Exoskeletons 1477:Biointerface 1414: 1407: 1403: 1399: 1395: 1391: 1385: 1379: 1373: 1367: 1361: 1357: 1350: 1344: 1283:Centrohelida 1276: 1246: 1236: 1219: 1211: 1201: 1197: 1193: 1189: 1185: 1181: 1176: 1172: 1171:Massart and 1168: 1165: 1156: 1127: 1094: 1082: 1066: 1060: 1017: 992: 976: 934: 925: 909: 895: 879: 867: 860: 856: 834:Gephyrocapsa 833: 829: 825: 822: 818: 812: 810: 806: 798: 793:oligotrophic 789: 769: 757: 725: 673:cytoskeleton 653:mitochondria 641:chloroplasts 630: 622:chloroplasts 615: 571: 528: 501: 494: 491:microfossils 484: 443: 405: 379: 377: 363:because, as 353:carbon cycle 346: 331: 321: 245: 241: 240: 218: 211: 188:Haptophytina 161: 127: 38:Paraphyletic 29: 9833:Planktology 9818:Haptophytes 9702:iNaturalist 9648:Wikispecies 9528:Prinsiaceae 9345:Pavlovaceae 9159:Centrohelea 9119:Nibbleridae 9105:Nibbleridea 9098:Nibbleridia 8919:Hemiarmidae 8875:Cryptophyta 8757:Microhelida 8725:Axomonadida 8476:Manta trawl 8461:Heterotroph 8411:Algaculture 8276:Zooplankton 8219:Flagellates 8100:Chaetoceros 8053:SAR11 clade 7912:Thin layers 7897:Planktology 7892:Planktivore 7847:Algal bloom 7688:. Penguin. 7488:"cal.mar.o" 7110:: 307–313. 6822:: 291–315. 6647:: 125–138. 6299:: 276–295. 6060:: 283–310. 5758:30 November 5392:Coccolithus 5312:(1): 1–12. 5068:: 291–301, 4270:: 137–166. 4194:2268/246251 4085:(4): 1116. 3159:Calcidiscus 3047:bicarbonate 2959:Thin layers 2954:Planktology 2949:Planktivore 2898:Algaculture 2838:Algal bloom 2784:Other types 2755:prokaryotes 2741:Geoplankton 2625:By taxonomy 2520:Zooplankton 2103:Composition 2097:coccosphere 2093:exoskeleton 1940:Magnetosome 1883:phosphorite 1849:Other forms 1797:calcite sea 1564:coccosphere 1508:exoskeleton 1406:, (M)  1398:, (J)  1394:, (I)  1390:, (H)  1384:, (G)  1378:, (F)  1372:, (E)  1366:, (D)  1360:, (C)  1356:, (B)  1352:Coccolithus 1216:Competition 1198:Jomonlithus 1190:Hymenomonas 1186:Coccolithus 1045:Barents Sea 846:thermocline 826:irregularis 684:haptophytes 643:with brown 610:coccosphere 520:coccosphere 456:, or clade 422:thermocline 398:subtropical 388:and family 369:carbon sink 333:coccosphere 309:mixotrophic 276:, or clade 258:autotrophic 184:Subphylum: 129:Coccolithus 9812:Categories 9337:Pavlovales 9274:Haptophyta 9074:Nebulidida 8965:Hilleaceae 8911:Hemiarmida 8471:Macroalgae 8431:Autotrophs 8361:Cyclopoida 8298:Ctenophora 8227:Brevetoxin 8017:Cyanotoxin 8012:Cyanobiont 7498:2021-04-24 7146:: fbv081. 7084:1912/26802 7017:: 101928. 6561:(1): n/a. 5847:: 99–125, 5606:(3): n/a. 5394:species". 4980:Dove, P.M. 4653:: 101928. 3862:30 January 3746:2018-01-26 3340:References 3284:See also: 3244:calcareous 3236:See also: 3166:E. huxleyi 3162:leptoporus 3135:alkalinity 2729:By habitat 2659:Protozoans 2590:calcareous 2575:Microalgae 2469:E. huxleyi 2455:E. huxleyi 2447:E. huxleyi 2439:E. huxleyi 2435:E. huxleyi 2425:E. huxleyi 2288:haptophyte 2284:exocytosis 2267:nucleation 2089:coccoliths 2072:See also: 1535:cuttlebone 1504:Arthropod 1279:Haptophyta 1247:E. huxleyi 1227:Trade-offs 1177:Prymnesium 1169:Prymnesium 1101:phosphorus 842:nutricline 814:E. huxleyi 637:organelles 618:coccoliths 606:coccoliths 547:ballasting 524:mixotrophs 516:coccoliths 514:) scales ( 496:Prymnesium 486:coccoliths 469:Haptophyta 410:planktonic 406:E. huxleyi 289:Haptophyta 236:coccoliths 9181:Chthonida 9067:Nebulidea 9060:Nebulidia 8778:Cryptista 8680:Amoebozoa 8658:Alveolata 8646:Cryptista 8621:Eukaryota 8588:Eukaryota 8416:Algal mat 8356:Calanoida 8338:Sea louse 8318:Jellyfish 8293:Ciguatera 8254:Saxitoxin 8242:Flagellum 8191:Classes: 8182:Centrales 8082:Auxospore 7773:Home Page 7759:Nannotax3 7739:128504924 7627:129049029 7163:1912/7739 7138:Emiliania 7041:135347218 6913:Q52718666 6887:2167-8359 6871:: e4608. 6795:: 76–90. 6218:: 291–299 6082:1941-1405 5849:CiteSeerX 5629:1912/3392 5428:: 10543. 4866:0377-8398 4815:1726-4189 4677:135347218 3903:0022-3646 3622:: 428–480 3493:233976784 3485:1726-4189 3390:2296-7745 3054:Ca + 2HCO 2459:genotypes 2451:O. marina 2443:O. marina 2404:as well. 2398:cellulose 2382:carbonate 2341:carbonate 2277:crystals. 2250:cytoplasm 2177:the Chalk 2115:Formation 2078:coccolith 1961:engrailed 1878:Phosphate 1871:oil shale 1765:Aragonite 1569:coccolith 1354:pelagicus 1311:Oligocene 1255:Red Queen 1251:arms race 1243:lytically 1043:bloom in 871:upwelling 720:diplontic 712:haplontic 680:haptonema 677:vestigial 665:flagellar 596:Structure 426:alkenones 394:temperate 155:Eukaryota 131:pelagicus 9639:Q1647990 9633:Wikidata 9141:Haptista 8796:Palpitea 8675:Amorphea 8653:Rhizaria 8641:Hacrobia 8631:Excavata 8616:Bacteria 8592:Hacrobia 8187:Pennales 8146:Navicula 8128:Frustule 7902:Red tide 7839:plankton 7830:Plankton 7793:RadioLab 7550:21713028 7413:21814280 7376:14662299 7305:85403507 7263:21713029 7216:90415703 6956:85890446 6909:Wikidata 6905:29666762 6844:21329207 6732:23776586 6692:PLOS ONE 6527:: 1–12. 6505:23980248 6481:(1627). 6456:22819465 6421:21713028 6287:(2017). 6271:20976167 6231:PLOS ONE 6188:84368830 6094:Archived 6090:27814031 6027:18824682 5969:17927770 5877:archived 5776:. ExPASy 5725:15256665 5638:15482539 5375:27901484 5367:27033659 5042:23134731 4733:36526359 4725:15134250 4628:22995996 4542:30043404 4485:21017882 4477:15134247 4373:27453937 4109:34159028 3685:16601834 3561:22615387 3327:virus 86 3303:See also 3127:acidosis 2985:Category 2760:protists 2691:Bacteria 2680:ciliates 2489:Plankton 2390:frustule 2360:-fixing 2312:H efflux 2158:Function 2033:Category 1914:In soil 1866:alginite 1856:Bone bed 1591:Seashell 1498:(shells) 1295:Rhaetian 1287:Haptista 1162:Toxicity 1105:silicate 1097:nitrogen 802:currents 762:through 633:membrane 590:protists 579:ciliates 551:biogenic 535:Jurassic 471:, class 466:division 458:Hacrobia 446:Protista 440:Overview 402:tropical 351:and the 291:, class 286:division 278:Hacrobia 266:Protista 262:plankton 178:Haptista 174:Phylum: 151:Domain: 9052:Provora 8690:Animals 8611:Archaea 8541:MOCNESS 8451:f-ratio 8386:More... 8087:Axodine 7935:By size 7917:More... 7719:Bibcode 7669:4321239 7649:Bibcode 7607:Bibcode 7573:Bibcode 7541:3119654 7443:Bibcode 7421:4417285 7327:Bibcode 7285:Bibcode 7254:3119655 7194:Bibcode 7019:Bibcode 6980:Bibcode 6936:Bibcode 6896:5896503 6824:Bibcode 6759:Bibcode 6723:3679017 6700:Bibcode 6649:Bibcode 6603:Bibcode 6563:Bibcode 6496:3758179 6412:3119654 6343:Bibcode 6301:Bibcode 6262:2955539 6239:Bibcode 6116:Lethaia 6062:Bibcode 6018:2572935 5995:Bibcode 5949:Bibcode 5802:15 June 5780:15 June 5733:5607281 5705:Bibcode 5697:Science 5662:Bibcode 5608:Bibcode 5578:4317429 5558:Bibcode 5521:Bibcode 5470:Bibcode 5281:Bibcode 5244:Bibcode 5185:Bibcode 5162:9564456 5033:3511156 5010:Bibcode 4846:Bibcode 4823:6227548 4793:Bibcode 4655:Bibcode 4598:Bibcode 4533:7379532 4512:Bibcode 4364:4956192 4343:Bibcode 4272:Bibcode 4172:Bibcode 4133:Bibcode 4087:Bibcode 4046:Bibcode 4007:Bibcode 3818:Bibcode 3707:Bibcode 3663:Bibcode 3586:Bibcode 3552:3384182 3529:Bibcode 3463:Bibcode 3175:CALMARO 3063:⇌ CaCO 2918:f-ratio 2716:Viruses 2707:Archaea 2675:amoebae 2637:diatoms 2558:By size 2421:in situ 2349:diatoms 2203:budget. 2151:calcite 2146:vesicle 2130:Calcite 1903:Related 1861:Kerogen 1786:Calcite 1707:Otolith 1540:gladius 1513:cuticle 1482:Biofilm 1455:General 1411:pulchra 1202:Artemia 1130:calcite 1113:diatoms 1003:austral 981:of the 875:benthic 749:abiotic 744:meiosis 740:mitosis 736:diploid 732:haploid 716:diatoms 690:Ecology 669:mitosis 649:nucleus 645:pigment 626:nucleus 338:calcify 315:of the 194:Class: 9795:115059 9782:427610 9779:uBio: 9772:488591 9733:610061 9707:152224 8668:Plants 8605:Domain 8536:AusCPR 8526:C-MORE 7837:About 7737:  7692:  7667:  7641:Nature 7625:  7548:  7538:  7419:  7411:  7393:Nature 7374:  7303:  7261:  7251:  7214:  7039:  6954:  6911:  6903:  6893:  6885:  6842:  6730:  6720:  6503:  6493:  6454:  6419:  6409:  6269:  6259:  6186:  6149:  6088:  6080:  6025:  6015:  5967:  5869:  5851:  5795:ICTV. 5731:  5723:  5636:  5576:  5550:Nature 5373:  5365:  5160:  5119:  5040:  5030:  4959:  4922:  4864:  4821:  4813:  4731:  4723:  4675:  4626:  4540:  4530:  4483:  4475:  4438:  4371:  4361:  4223:  4107:  3979:  3946:  3901:  3853:  3683:  3559:  3549:  3491:  3483:  3429:  3388:  3296:nuclei 2983:  2964:NAAMES 2830:Blooms 2394:thecal 2290:algae. 2031:  1890:Pyrena 1547:Lorica 1291:Norian 1237:Giant 1134:albedo 987:diatom 635:bound 462:phylum 418:blooms 400:, and 303:, are 301:marine 282:phylum 256:, the 248:, are 9790:WoRMS 9759:73027 9720:10278 9715:IRMNG 8695:Fungi 7735:S2CID 7665:S2CID 7623:S2CID 7417:S2CID 7301:S2CID 7212:S2CID 7037:S2CID 6952:S2CID 6864:PeerJ 6184:S2CID 6097:(PDF) 6056:(1). 6044:(PDF) 5880:(PDF) 5837:(PDF) 5729:S2CID 5693:(PDF) 5634:S2CID 5596:(PDF) 5574:S2CID 5371:S2CID 5158:S2CID 4819:S2CID 4729:S2CID 4673:S2CID 4624:S2CID 4481:S2CID 4105:S2CID 4044:(3). 3806:(PDF) 3681:S2CID 3489:S2CID 2632:Algae 2214:(CaCO 2109:chalk 1968:Druse 1663:bones 1606:nacre 1220:Most 577:like 510:(CaCO 317:ocean 244:, or 162:Clade 9754:NCBI 9728:ITIS 9694:1084 9689:GBIF 9681:3375 8546:SCAR 8521:Zoid 8466:HNLC 7690:ISBN 7546:PMID 7409:PMID 7372:PMID 7259:PMID 6901:PMID 6883:ISSN 6840:PMID 6728:PMID 6501:PMID 6452:PMID 6417:PMID 6267:PMID 6147:ISBN 6086:PMID 6078:ISSN 6023:PMID 5965:PMID 5867:ISBN 5804:2015 5782:2015 5760:2015 5721:PMID 5390:and 5363:PMID 5117:ISBN 5038:PMID 4957:ISBN 4920:ISBN 4862:ISSN 4811:ISSN 4721:PMID 4538:PMID 4473:PMID 4436:ISBN 4369:PMID 4221:ISBN 3977:ISBN 3944:ISBN 3917:link 3899:ISSN 3864:2015 3851:ISBN 3557:PMID 3481:ISSN 3427:ISBN 3386:ISSN 3067:+ CO 3041:and 2937:iron 2351:and 2257:(B) 2237:and 2171:Uses 2076:and 1963:gene 1724:Tusk 1645:Test 1196:and 1184:and 1128:The 1103:and 977:The 844:and 817:and 751:and 706:(a) 581:and 475:(or 307:and 295:(or 52:PreꞒ 9741:NBN 9676:EoL 9663:CoL 8531:CPR 7727:doi 7657:doi 7645:326 7615:doi 7603:358 7581:doi 7536:PMC 7526:doi 7451:doi 7439:104 7401:doi 7397:476 7364:doi 7360:136 7335:doi 7293:doi 7249:PMC 7239:doi 7202:doi 7158:hdl 7148:doi 7112:doi 7079:hdl 7069:doi 7027:doi 7015:177 6988:doi 6944:doi 6891:PMC 6873:doi 6832:doi 6797:doi 6767:doi 6718:PMC 6708:doi 6657:doi 6645:135 6611:doi 6599:232 6571:doi 6529:doi 6491:PMC 6483:doi 6479:368 6444:doi 6407:PMC 6397:doi 6351:doi 6309:doi 6297:159 6257:PMC 6247:doi 6176:doi 6124:doi 6070:doi 6013:PMC 6003:doi 5991:105 5957:doi 5921:doi 5859:doi 5713:doi 5701:305 5670:doi 5658:116 5624:hdl 5616:doi 5566:doi 5554:393 5529:doi 5517:110 5478:doi 5430:doi 5404:doi 5355:doi 5314:doi 5289:doi 5252:doi 5193:doi 5150:doi 5070:doi 5028:PMC 5018:doi 5006:109 4949:doi 4945:eLS 4895:doi 4854:doi 4801:doi 4760:doi 4713:doi 4663:doi 4651:177 4614:hdl 4606:doi 4569:doi 4528:PMC 4520:doi 4465:doi 4428:doi 4400:doi 4359:PMC 4351:doi 4290:hdl 4280:doi 4268:470 4213:doi 4190:hdl 4180:doi 4141:doi 4095:doi 4054:doi 4015:doi 3969:doi 3936:doi 3891:doi 3826:doi 3770:doi 3715:doi 3671:doi 3594:doi 3547:PMC 3537:doi 3525:109 3471:doi 3419:doi 3376:doi 3071:+ H 2908:CPR 2239:HCO 2095:or 1006:(CO 1001:in 464:or 452:'s 284:or 272:'s 9814:: 9792:: 9769:: 9756:: 9743:: 9730:: 9717:: 9704:: 9691:: 9678:: 9668:YV 9665:: 9650:: 9635:: 8590:: 7733:. 7725:. 7715:19 7713:. 7663:. 7655:. 7643:. 7621:, 7613:, 7601:, 7579:, 7567:, 7544:. 7534:. 7520:. 7516:. 7470:. 7449:, 7437:, 7415:, 7407:, 7395:, 7383:^ 7370:, 7358:, 7346:^ 7333:, 7323:51 7321:, 7299:, 7291:, 7281:27 7279:, 7257:, 7247:, 7233:, 7210:. 7200:. 7190:63 7188:. 7184:. 7172:^ 7156:. 7142:. 7126:^ 7108:10 7106:. 7102:. 7077:. 7067:. 7063:. 7059:. 7035:. 7025:. 7013:. 7009:. 6986:. 6976:49 6974:. 6950:. 6942:. 6932:82 6930:. 6907:. 6899:. 6889:. 6881:. 6867:. 6861:. 6838:. 6830:. 6818:. 6791:. 6765:. 6755:45 6753:. 6749:. 6726:. 6716:. 6706:. 6694:. 6690:. 6655:. 6643:. 6639:. 6623:^ 6609:. 6597:. 6585:^ 6569:. 6559:19 6557:. 6553:. 6541:^ 6525:21 6523:. 6499:. 6489:. 6477:. 6473:. 6450:. 6440:17 6438:. 6415:. 6405:. 6391:. 6387:. 6375:^ 6349:. 6339:10 6337:. 6333:. 6307:. 6295:. 6291:. 6265:, 6255:, 6245:, 6233:, 6182:, 6172:27 6170:, 6120:45 6118:. 6114:. 6092:. 6084:. 6076:. 6068:. 6052:. 6046:. 6021:, 6011:, 6001:, 5989:, 5963:, 5955:, 5945:10 5943:, 5917:26 5915:, 5903:^ 5875:, 5865:, 5857:, 5843:, 5839:, 5750:. 5727:. 5719:. 5711:. 5699:. 5695:. 5668:. 5656:. 5632:. 5622:. 5614:. 5604:18 5602:. 5598:. 5572:. 5564:. 5552:. 5527:. 5515:. 5511:. 5476:. 5466:14 5464:. 5460:. 5436:. 5424:, 5400:11 5398:, 5369:, 5361:, 5351:45 5349:, 5335:^ 5320:. 5308:, 5287:, 5277:39 5275:, 5263:^ 5250:, 5240:20 5238:, 5224:^ 5204:^ 5191:, 5181:53 5179:, 5156:, 5144:, 5132:^ 5103:^ 5083:^ 5066:44 5064:, 5049:^ 5036:, 5026:, 5016:, 5004:, 4992:^ 4970:^ 4955:, 4947:, 4935:^ 4906:^ 4889:, 4874:^ 4860:. 4852:. 4842:67 4840:. 4817:. 4809:. 4799:. 4789:12 4787:. 4783:. 4756:33 4754:. 4750:. 4727:. 4719:. 4709:51 4707:. 4671:. 4661:. 4649:. 4645:. 4622:. 4612:. 4604:. 4594:49 4592:. 4567:. 4563:. 4559:. 4536:. 4526:. 4518:. 4508:21 4506:. 4502:. 4479:. 4471:. 4461:51 4459:. 4434:. 4414:^ 4398:. 4394:. 4390:. 4367:. 4357:. 4349:. 4337:. 4333:. 4304:^ 4288:. 4278:. 4266:. 4262:. 4219:. 4188:. 4178:. 4168:39 4166:. 4162:. 4139:. 4129:76 4127:. 4103:. 4093:. 4083:16 4081:. 4077:. 4052:. 4042:24 4040:. 4036:. 4013:. 4003:54 4001:. 3975:. 3942:. 3913:}} 3909:{{ 3897:. 3887:56 3885:. 3881:. 3824:. 3814:51 3812:. 3808:. 3766:64 3764:, 3739:. 3728:^ 3713:, 3703:83 3701:, 3679:, 3669:, 3659:53 3657:, 3640:45 3638:, 3620:17 3618:, 3605:^ 3592:, 3582:74 3580:, 3568:^ 3555:, 3545:, 3535:, 3523:, 3511:^ 3487:. 3479:. 3469:. 3459:18 3457:. 3453:. 3441:^ 3425:. 3384:. 3370:. 3366:. 3348:^ 3276:. 3257:. 3150:2− 3147:CO 3088:. 2356:CO 2329:pH 2246:2+ 2234:2+ 2232:Ca 2192:. 2165:pH 2128:. 1204:. 1099:, 1059:, 1055:A 828:, 659:, 655:, 651:, 628:. 569:. 436:. 396:, 319:. 164:: 102:Pg 9581:† 9526:† 8702:) 8580:e 8573:t 8566:v 7822:e 7815:t 7808:v 7741:. 7729:: 7721:: 7698:. 7671:. 7659:: 7651:: 7617:: 7609:: 7583:: 7575:: 7552:. 7528:: 7522:9 7501:. 7453:: 7445:: 7403:: 7366:: 7337:: 7329:: 7295:: 7287:: 7241:: 7235:9 7218:. 7204:: 7196:: 7166:. 7160:: 7150:: 7120:. 7114:: 7087:. 7081:: 7071:: 7065:7 7043:. 7029:: 7021:: 6994:. 6990:: 6982:: 6958:. 6946:: 6938:: 6915:. 6875:: 6869:6 6846:. 6834:: 6826:: 6820:3 6803:. 6799:: 6793:7 6775:. 6769:: 6761:: 6734:. 6710:: 6702:: 6696:8 6676:. 6665:. 6659:: 6651:: 6617:. 6613:: 6605:: 6579:. 6573:: 6565:: 6535:. 6531:: 6507:. 6485:: 6458:. 6446:: 6423:. 6399:: 6393:9 6370:. 6359:. 6353:: 6345:: 6317:. 6311:: 6303:: 6249:: 6241:: 6235:5 6178:: 6155:. 6130:. 6126:: 6072:: 6064:: 6054:9 6005:: 5997:: 5959:: 5951:: 5923:: 5861:: 5845:2 5806:. 5784:. 5762:. 5735:. 5715:: 5707:: 5676:. 5672:: 5664:: 5640:. 5626:: 5618:: 5610:: 5580:. 5568:: 5560:: 5537:. 5531:: 5523:: 5497:. 5486:. 5480:: 5472:: 5446:. 5432:: 5426:7 5410:. 5406:: 5357:: 5330:. 5316:: 5310:9 5291:: 5283:: 5254:: 5246:: 5195:: 5187:: 5152:: 5146:6 5127:. 5125:. 5072:: 5020:: 5012:: 4951:: 4930:. 4928:. 4897:: 4891:1 4868:. 4856:: 4848:: 4825:. 4803:: 4795:: 4768:. 4762:: 4735:. 4715:: 4679:. 4665:: 4657:: 4630:. 4616:: 4608:: 4600:: 4577:. 4571:: 4565:7 4544:. 4522:: 4514:: 4487:. 4467:: 4444:. 4430:: 4408:. 4402:: 4396:6 4375:. 4353:: 4345:: 4339:2 4298:. 4292:: 4282:: 4274:: 4229:. 4215:: 4196:. 4192:: 4182:: 4174:: 4147:. 4143:: 4135:: 4111:. 4097:: 4089:: 4062:. 4056:: 4048:: 4021:. 4017:: 4009:: 3985:. 3971:: 3952:. 3938:: 3919:) 3905:. 3893:: 3866:. 3832:. 3828:: 3820:: 3790:. 3777:. 3772:: 3749:. 3717:: 3709:: 3673:: 3665:: 3624:. 3596:: 3588:: 3539:: 3531:: 3506:. 3495:. 3473:: 3465:: 3435:. 3421:: 3403:. 3392:. 3378:: 3372:8 3266:2 3170:3 3153:3 3143:2 3139:2 3115:2 3098:2 3093:2 3082:2 3075:O 3073:2 3069:2 3065:3 3060:3 3057:− 3013:e 3006:t 2999:v 2370:2 2358:2 2337:2 2316:3 2275:3 2271:3 2241:3 2224:3 2216:3 2138:3 2061:e 2054:t 2047:v 1665:) 1661:( 1293:- 1079:. 1025:2 1008:2 612:. 567:2 555:2 543:2 539:3 512:3 107:N 97:K 92:J 87:T 82:P 77:C 72:D 67:S 62:O 57:Ꞓ 20:)

Index

Coccolithophores
Paraphyletic
PreꞒ

O
S
D
C
P
T
J
K
Pg
N
Coccolithus pelagicus
Coccolithus
Scientific classification
Edit this classification
Eukaryota
Diaphoretickes
Haptista
Haptophytina
Prymnesiophyceae
Isochrysidales
Coccolithales

coccoliths
single-celled organisms
phytoplankton
autotrophic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.