Knowledge

Electron configuration

Source 📝

762:«…The problem of the structure of atoms has been attacked mainly by physicists who have given little consideration to the chemical properties which must ultimately be explained by a theory of atomic structure. The vast store of knowledge of chemical properties and relationships, such as is summarized by the Periodic Table, should serve as a better foundation for a theory of atomic structure than the relatively meager experimental data along purely physical lines... These electrons arrange themselves in a series of concentric shells, the first shell containing two electrons, while all other shells tend to 1005: 48: 1181:. The first electrons to be ionized come not from the 3d-orbital, as one would expect if it were "higher in energy", but from the 4s-orbital. This interchange of electrons between 4s and 3d is found for all atoms of the first series of transition metals. The configurations of the neutral atoms (K, Ca, Sc, Ti, V, Cr, ...) usually follow the order 1s, 2s, 2p, 3s, 3p, 4s, 3d, ...; however the successive stages of ionization of a given atom (such as Fe, Fe, Fe, Fe, Fe) usually follow the order 1s, 2s, 2p, 3s, 3p, 3d, 4s, ... 303: 296: 275: 317: 310: 843:, published in 1926, gave three of the four quantum numbers as a direct consequence of its solution for the hydrogen atom: this solution yields the atomic orbitals that are shown today in textbooks of chemistry (and above). The examination of atomic spectra allowed the electron configurations of atoms to be determined experimentally, and led to an empirical rule (known as Madelung's rule (1936), see below) for the order in which atomic orbitals are filled with electrons. 885: 31: 536:, whose configuration is 1s 2s 2p, only by the presence of a third shell. The portion of its configuration that is equivalent to neon is abbreviated as , allowing the configuration of phosphorus to be written as  3s 3p rather than writing out the details of the configuration of neon explicitly. This convention is useful as it is the electrons in the outermost shell that most determine the chemistry of the element. 1202:
described by either an  3d 4s or an  3d 4s configuration, but is rather well described as a 90% contribution of the first and a 10% contribution of the second. Indeed, visible light is already enough to excite electrons in most transition metals, and they often continuously "flow" through different configurations when that happens (copper and its group are an exception).
1064:
no more. However, the energy of an electron "in" an atomic orbital depends on the energies of all the other electrons of the atom (or ion, or molecule, etc.). There are no "one-electron solutions" for systems of more than one electron, only a set of many-electron solutions that cannot be calculated exactly (although there are mathematical approximations available, such as the
1228:. The electron configuration of the central chromium atom is described as 3d with the six electrons filling the three lower-energy d orbitals between the ligands. The other two d orbitals are at higher energy due to the crystal field of the ligands. This picture is consistent with the experimental fact that the complex is 809:"). Pauli hypothesized successfully that the Zeeman effect can be explained as depending only on the response of the outermost (i.e., valence) electrons of the atom. Pauli was able to reproduce Stoner's shell structure, but with the correct structure of subshells, by his inclusion of a fourth quantum number and his 3736:, a fact that is sometimes referred to as "indistinguishability of electrons". A one-electron solution to a many-electron system would imply that the electrons could be distinguished from one another, and there is strong experimental evidence that they can't be. The exact solution of a many-electron system is a 1063:
The aufbau principle rests on a fundamental postulate that the order of orbital energies is fixed, both for a given element and between different elements; in both cases this is only approximately true. It considers atomic orbitals as "boxes" of fixed energy into which can be placed two electrons and
1201:
In chemical environments, configurations can change even more: Th as a bare ion has a configuration of  5f, yet in most Th compounds the thorium atom has a 6d configuration instead. Mostly, what is present is rather a superposition of various configurations. For instance, copper metal is poorly
1248:
among the heavier elements, and as atomic number increases it becomes more and more difficult to find simple explanations such as the stability of half-filled subshells. It is possible to predict most of the exceptions by Hartree–Fock calculations, which are an approximate method for taking account
1184:
This phenomenon is only paradoxical if it is assumed that the energy order of atomic orbitals is fixed and unaffected by the nuclear charge or by the presence of electrons in other orbitals. If that were the case, the 3d-orbital would have the same energy as the 3p-orbital, as it does in hydrogen,
1276:
atom has 4s lower in energy than 3d, but a Ca cation has 3d lower in energy than 4s. In practice the configurations predicted by the Madelung rule are at least close to the ground state even in these anomalous cases. The empty f orbitals in lanthanum, actinium, and thorium contribute to chemical
1267:
The table below shows the configurations of the f-block (green) and d-block (blue) atoms. It shows the ground state configuration in terms of orbital occupancy, but it does not show the ground state in terms of the sequence of orbital energies as determined spectroscopically. For example, in the
1161:
have electron configurations  3d 4s and  3d 4s respectively, i.e. one electron has passed from the 4s-orbital to a 3d-orbital to generate a half-filled or filled subshell. In this case, the usual explanation is that "half-filled or completely filled subshells are particularly
674:
atom is 1s 2s 2p 3s, as deduced from the Aufbau principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p subshell, to obtain the 1s 2s 2p 3p configuration, abbreviated as the 3p level. Atoms can move from one configuration to
658:
The energy associated to an electron is that of its orbital. The energy of a configuration is often approximated as the sum of the energy of each electron, neglecting the electron-electron interactions. The configuration that corresponds to the lowest electronic energy is called the
1260:. In general, these relativistic effects tend to decrease the energy of the s-orbitals in relation to the other atomic orbitals. This is the reason why the 6d elements are predicted to have no Madelung anomalies apart from lawrencium (for which relativistic effects stabilise the p 3286:(He) with two electrons in its valence shell. Similarly, neutral atomic oxygen has six electrons in its valence shell, and acquires a share of two electrons from the two hydrogen atoms, so that its configuration is similar to that of its nearest noble gas 400:
electrons. For example, the first shell can accommodate two electrons, the second shell eight electrons, the third shell eighteen, and so on. The factor of two arises because the number of allowed states doubles with each successive shell due to
1197:
of atomic structure calculation. More recently Scerri has argued that contrary to what is stated in the vast majority of sources including the title of his previous article on the subject, 3d orbitals rather than 4s are in fact preferentially occupied.
1112:
appear in the periodic table before the transition metals, and have electron configurations  4s and  4s respectively, i.e. the 4s-orbital is filled before the 3d-orbital. This is in line with Madelung's rule, as the 4s-orbital has
551:
together, corresponding to the "spectroscopic" order of orbital energies that is the reverse of the order in which electrons are removed from a given atom to form positive ions; 3d is filled before 4s in the sequence Ti, Ti, Ti, Ti, Ti.
2859:
orbitals. That said, the filling sequence 8s, 5g, 6f, 7d, 8p is predicted to hold approximately, with perturbations due to the huge spin-orbit splitting of the 8p and 9p shells, and the huge relativistic stabilisation of the 9s shell.
3550:
and such a picture is no longer exact. A very large number of electronic configurations are needed to exactly describe any multi-electron system, and no energy can be associated with one single configuration. However, the electronic
3574:
configuration listed in tables, although not all the energy levels are observed in practice. It is through the analysis of atomic spectra that the ground-state electron configurations of the elements were experimentally determined.
559:
may be written as either  3s 3p or  3s 3p. In atoms where a subshell is unoccupied despite higher subshells being occupied (as is the case in some ions, as well as certain neutral atoms shown to deviate from the
1076:, which only has one electron, the s-orbital and the p-orbitals of the same shell have exactly the same energy, to a very good approximation in the absence of external electromagnetic fields. (However, in a real hydrogen atom, the 2855:, having a p rather than a g electron. Electron configurations beyond this are tentative and predictions differ between models, but Madelung's rule is expected to break down due to the closeness in energy of the 5g, 6f, 7d, and 8p 1071:
The fact that the aufbau principle is based on an approximation can be seen from the fact that there is an almost-fixed filling order at all, that, within a given shell, the s-orbital is always filled before the p-orbitals. In a
3257:
Every system has the tendency to acquire the state of stability or a state of minimum energy, and so chemical elements take part in chemical reactions to acquire a stable electronic configuration similar to that of its nearest
1249:
of the effect of the other electrons on orbital energies. Qualitatively, for example, the 4d elements have the greatest concentration of Madelung anomalies, because the 4d–5s gap is larger than the 3d–4s and 5d–6s gaps.
1288:
5s) may be occupied and bonding in chemical compounds. (The same is also true for the p-orbitals, which are not explicitly shown because they are only actually occupied for lawrencium in gas-phase ground states.)
785:
third quantum number into the description of electron shells, and correctly predicted the shell structure of sulfur to be 2.8.6. However neither Bohr's system nor Stoner's could correctly describe the changes in
728:'s chemical bonding theory, he outlined his "concentric theory of atomic structure". Langmuir had developed his work on electron atomic structure from other chemists as is shown in the development of the 892:
The principle works very well (for the ground states of the atoms) for the known 118 elements, although it is sometimes slightly wrong. The modern form of the aufbau principle describes an order of
4454: 539:
For a given configuration, the order of writing the orbitals is not completely fixed since only the orbital occupancies have physical significance. For example, the electron configuration of the
1044:
in the p-block due to its chemical inertness, a consequence of its full outer shell (though there is discussion in the contemporary literature on whether this exception should be retained).
2821:
The various anomalies describe the free atoms and do not necessarily predict chemical behavior. Thus for example neodymium typically forms the +3 oxidation state, despite its configuration
1036:
is due to the number of electrons (2, 6, 10, and 14) needed to fill s, p, d, and f subshells. These blocks appear as the rectangular sections of the periodic table. The single exception is
879:
a maximum of two electrons are put into orbitals in the order of increasing orbital energy: the lowest-energy subshells are filled before electrons are placed in higher-energy orbitals.
1280:
Vacant s, d, and f orbitals have been shown explicitly, as is occasionally done, to emphasise the filling order and to clarify that even orbitals unoccupied in the ground state (e.g.
888:
The approximate order of filling of atomic orbitals, following the arrows from 1s to 7p. (After 7p the order includes subshells outside the range of the diagram, starting with 8s.)
1268:
transition metals, the 4s orbital is of a higher energy than the 3d orbitals; and in the lanthanides, the 6s is higher than the 4f and 5d. The ground states can be seen in the
464:+ 1). This gives two electrons in an s subshell, six electrons in a p subshell, ten electrons in a d subshell and fourteen electrons in an f subshell. 489:
Physicists and chemists use a standard notation to indicate the electron configurations of atoms and molecules. For atoms, the notation consists of a sequence of atomic
750:
of the atom, in which the electron shells were orbits at a fixed distance from the nucleus. Bohr's original configurations would seem strange to a present-day chemist:
144:
is associated with each electron configuration. In certain conditions, electrons are able to move from one configuration to another by the emission or absorption of a
679:
for example, sodium atoms are excited to the 3p level by an electrical discharge, and return to the ground state by emitting yellow light of wavelength 589 nm.
3523:
as the starting point. The last step in such a calculation is the assignment of electrons among the molecular orbitals according to the aufbau principle. Not all
547:
for the configurations of neutral atoms; 4s is filled before 3d in the sequence Ar, K, Ca, Sc, Ti. The second notation groups all orbitals with the same value of
5056: 3555:
is usually dominated by a very small number of configurations and therefore the notion of electronic configuration remains essential for multi-electron systems.
505:
has two electrons in the 1s-subshell and one in the (higher-energy) 2s-subshell, so its configuration is written 1s 2s (pronounced "one-s-two, two-s-one").
4327: 3282:, and on formation of water it acquires a share of a second electron coming from oxygen, so that its configuration is similar to that of its nearest noble gas 4764:
Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).
702:
photons. This would be the case for example to excite a 2p electron of sodium to the 3s level and form the excited 1s 2s 2p 3s configuration.
516:
For atoms with many electrons, this notation can become lengthy and so an abbreviated notation is used. The electron configuration can be visualized as the
5163: 3594: 1269: 854: 4480: 3773:
The labels are written in lowercase to indicate that they correspond to one-electron functions. They are numbered consecutively for each symmetry type (
532:: each element in a period differs only by the last few subshells. Phosphorus, for instance, is in the third period. It differs from the second-period 4569: 4171: 3836: 3807: 588: 4502:
Meek, Terry L.; Allen, Leland C. (2002). "Configuration irregularities: deviations from the Madelung rule and inversion of orbital energy levels".
2825:
that if interpreted naïvely would suggest a more stable +2 oxidation state corresponding to losing only the 6s electrons. Contrariwise, uranium as
758:'s 1893 paper. In fact, the chemists accepted the concept of atoms long before the physicists. Langmuir began his paper referenced above by saying, 1264:
orbital as well and cause its occupancy in the ground state), as relativity intervenes to make the 7s orbitals lower in energy than the 6d ones.
1185:
yet it clearly does not. There is no special reason why the Fe ion should have the same electron configuration as the chromium atom, given that
705:
The remainder of this article deals only with the ground-state configuration, often referred to as "the" configuration of an atom or molecule.
4418:
Wickleder, Mathias S.; Fourest, Blandine; Dorhout, Peter K. (2006). "Thorium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.).
4970:"Laboratory for Theoretical Studies of Electronic Structure and Spectroscopy of Open-Shell and Electronically Excited Species – iOpenShell" 4675:
Xu, Wei; Ji, Wen-Xin; Qiu, Yi-Xiang; Schwarz, W. H. Eugen; Wang, Shu-Guang (2013). "On structure and bonding of lanthanoid trifluorides LnF
3456:, the electron states become very numerous. They cease to be discrete, and effectively blend into continuous ranges of possible states (an 746:
in the properties of the elements might be explained by the electronic structure of the atom. His proposals were based on the then current
5049: 4419: 467:
The numbers of electrons that can occupy each shell and each subshell arise from the equations of quantum mechanics, in particular the
5158: 3625: 591:(IUPAC) recommends a normal typeface (as used here). The choice of letters originates from a now-obsolete system of categorizing 587:
It is quite common to see the letters of the orbital labels (s, p, d, f) written in an italic or slanting typeface, although the
5184: 5042: 2931: 1055:. The similarities in the chemical properties were remarked on more than a century before the idea of electron configuration. 1032:
configuration), and have notable similarities in their chemical properties. The periodicity of the periodic table in terms of
543:
ground state can be written as either  4s 3d or  3d 4s. The first notation follows the order based on the
497:
the sequence 1s, 2s, 2p, 3s, 3p) with the number of electrons assigned to each subshell placed as a superscript. For example,
4843: 4810: 4777: 3921: 3875: 3512: 1193:
have analyzed the changes of orbital energy with orbital occupations in terms of the two-electron repulsion integrals of the
1189:
has two more protons in its nucleus than chromium, and that the chemistry of the two species is very different. Melrose and
4925: 716:
was the first to propose in his 1919 article "The Arrangement of Electrons in Atoms and Molecules" in which, building on
4906: 3584: 5091: 5015: 4995: 3508: 137: 4313: 4769: 1236:, the d-like orbitals occupied by the six electrons are no longer identical with the d orbitals of the free atom. 1245: 898: 603: 561: 544: 4453:
Ferrão, Luiz; Machado, Francisco Bolivar Correto; Cunha, Leonardo dos Anjos; Fernandes, Gabriel Freire Sanzovo.
2836:
has not yet been empirically verified, but they are expected to follow Madelung's rule without exceptions until
1170:(Nb) has an anomalous d s configuration that does not give it a half-filled or completely filled subshell. 5303: 3036: 1253: 955:
In this list the subshells in parentheses are not occupied in the ground state of the heaviest atom now known (
3406: 2935: 729: 3720: 5283: 5029: 1020:
is closely related to the atomic electron configuration for each element. For example, all the elements of
452: = 0, 1, 2, 3 correspond to the s, p, d, and f labels, respectively. For example, the 3d subshell has 155:
Knowledge of the electron configuration of different atoms is useful in understanding the structure of the
130: 17: 1256:
on the energies of the atomic orbitals, as the inner-shell electrons are moving at speeds approaching the
564:), the empty subshell is either denoted with a superscript 0 or left out altogether. For example, neutral 4826:
Jørgensen, Christian K. (1988). "Influence of rare earths on chemical understanding and classification".
3524: 405:—each atomic orbital admits up to two otherwise identical electrons with opposite spin, one with a spin + 951:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, (8s, 5g, 6f, 7d, 8p, and 9s)
754:
was given as 2.4.4.6 instead of 1s 2s 2p 3s 3p (2.8.6). Bohr used 4 and 6 following
5298: 5293: 4323: 3774: 75: 5179: 4081:(1925). "Über den Einfluss der Geschwindigkeitsabhändigkeit der elektronmasse auf den Zeemaneffekt". 3528: 810: 468: 3436:
The electronic configuration of polyatomic molecules can change without absorption or emission of a
5288: 5120: 5111: 4504: 4349:
Langeslay, Ryan R.; Fieser, Megan E.; Ziller, Joseph W.; Furche, Philip; Evans, William J. (2015).
3485: 3430: 3414: 3402: 2930:
implementations of molecular orbital theory, open-shell molecules have to be handled by either the
1233: 1206: 632: 433: 361: 4628: 3570:
available to an atom. Term symbols can be calculated for any electron configuration, not just the
381: 5278: 5129: 4721: 3599: 3504: 2927: 1194: 1065: 894: 817:
It should be forbidden for more than one electron with the same value of the main quantum number
525: 4802: 3683: 840: 460: = 2. The maximum number of electrons that can be placed in a subshell is given by 2(2 4640:
Glotzel, D. (1978). "Ground-state properties of f band metals: lanthanum, cerium and thorium".
4318: 3892: 3764:
There are some cases in the second and third series where the electron remains in an s-orbital.
3605: 1081: 1009: 999: 4436: 3911: 2593: 4048: 3748: 3615: 3516: 1218: 1145: = 2). After calcium, most neutral atoms in the first series of transition metals ( 778: 4274:
Melrose, Melvyn P.; Scerri, Eric R. (1996). "Why the 4s Orbital is Occupied before the 3d".
4118: 4872: 4688: 4649: 4513: 4283: 4210: 4090: 3983: 3547: 3024: 1232:, meaning that it has no unpaired electrons. However, in a more accurate description using 1210: 1033: 1021: 639:, of 0, 1, 2 or 3 respectively. After f, the sequence continues alphabetically g, h, i... ( 471:, which states that no two electrons in the same atom can have the same values of the four 3562:. In this case, it is necessary to supplement the electron configuration with one or more 501:
has one electron in the s-orbital of the first shell, so its configuration is written 1s.
8: 5138: 3691: 3630: 3489: 3477: 3032: 1004: 979: 917: 490: 429: 402: 126: 107: 4876: 4692: 4653: 4517: 4287: 4214: 4094: 4019:"Die Valenz und das periodische System. Versuch einer Theorie der Molekularverbindungen" 3987: 3472:
The most widespread application of electron configurations is in the rationalization of
47: 4860: 4795: 4472: 4395: 4351:"Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C 4350: 4256: 4106: 4021:[Valency and the periodic system. Attempt at a theory of molecular compounds]. 3999: 3733: 3687: 3314: 2980: 1073: 806: 643: = 4, 5, 6...), skipping j, although orbitals of these types are rarely required. 617: 168: 4835: 4525: 3747: ≥ 3 (the nucleus counts as one of the "bodies"): such problems have evaded 5241: 5210: 5086: 5011: 4991: 4839: 4806: 4773: 4704: 4579: 4476: 4427:. Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 52–160. 4400: 4260: 4181: 4110: 4003: 3917: 3871: 3846: 3635: 3559: 3481: 3473: 3441: 3310: 3306: 2972: 2968: 2939: 2923: 2919: 2904: 2785: 1052: 987: 910: 787: 782: 676: 647: 353: 338: 95: 67: 41: 4661: 3817: 801:
Bohr was well aware of this shortcoming (and others), and had written to his friend
5255: 5226: 5189: 4880: 4831: 4696: 4657: 4610: 4601: 4583: 4574: 4540: 4521: 4464: 4455:"The Chemical Bond Across the Periodic Table: Part 1 – First Row and Simple Metals" 4428: 4390: 4382: 4291: 4248: 4218: 4185: 4176: 4133: 4098: 4060: 4030: 3991: 3953: 3850: 3841: 3821: 3812: 3703:
The similarities in chemical properties and the numerical relationship between the
3589: 3279: 3028: 2992: 2988: 1162:
stable arrangements of electrons". However, this is not supported by the facts, as
1101: 1048: 860: 717: 683: 660: 646:
The electron configurations of molecules are written in a similar way, except that
529: 164: 4733: 4914:. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. 3937: 3778: 3558:
A fundamental application of electron configurations is in the interpretation of
3422: 3410: 2938:
method. Conversely a closed-shell configuration corresponds to a state where all
1222: 1214: 983: 864: 713: 118: 3511:
of chemical properties. For many years, most such calculations relied upon the "
555:
The superscript 1 for a singly occupied subshell is not compulsory; for example
302: 295: 274: 5103: 5081: 5076: 4468: 4252: 4154: 4078: 3752: 3737: 3663: 3520: 3318: 2976: 2912: 2911:
is obtained with a completely filled valence shell. This configuration is very
2876: 1257: 1017: 975: 906: 805:
in 1923 to ask for his help in saving quantum theory (the system now known as "
802: 791: 743: 725: 628: 610: 592: 484: 472: 377: 349: 334: 188: 176: 156: 122: 114: 113:
Electronic configurations describe each electron as moving independently in an
91: 63: 37: 4951: 4929: 4064: 1040:, which despite being an s-block atom is conventionally placed with the other 5272: 5231: 5205: 4587: 4578:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 4189: 4180:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 4034: 3854: 3845:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 3816:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 3704: 3640: 3552: 3493: 3460:). The notion of electron configuration ceases to be relevant, and yields to 3457: 3326: 2892: 2884: 2183: 902: 795: 771: 755: 695: 664: 517: 510: 357: 316: 309: 171:. In bulk materials, this same idea helps explain the peculiar properties of 160: 125:
and all the other electrons. Mathematically, configurations are described by
4432: 4137: 3825: 3785:
for the molecule), starting from the orbital of lowest energy for that type.
3429:). The explanation of the paramagnetism of dioxygen was a major success for 4708: 4404: 3571: 3567: 3426: 3418: 2829:
is not very stable in the +3 oxidation state either, preferring +4 and +6.
2648: 1506: 1488: 1153:) have configurations with two 4s electrons, but there are two exceptions. 1077: 721: 698:
is possible, but requires much higher energies, generally corresponding to
596: 369: 141: 3484:. In effect, electron configurations, along with some simplified forms of 3330: 1166:(W) has a Madelung-following d s configuration and not d s, and 5034: 4884: 4309: 3782: 3563: 3461: 2803: 2732: 1991: 1897: 1850: 1229: 1190: 691: 4614: 3957: 5250: 4700: 4386: 4239:
Scerri, Eric (2019). "Five ideas in chemical education that must die".
4102: 3995: 3971: 3620: 2984: 2869: 2837: 2553: 2369: 2334: 2295: 2109: 1832: 1732: 1588: 1085: 871: 763: 747: 739: 733: 506: 494: 326: 52: 4599:
Pyykkö, Pekka (1988). "Relativistic effects in structural chemistry".
4295: 4222: 2946:). Open shell molecules are more difficult to study computationally. 2926:
theory, this leads to molecular orbitals that are singly occupied. In
1252:
For the heavier elements, it is also necessary to take account of the
4543:[D. I. Mendeleev's periodic system of the chemical elements] 4201:
Wong, D. Pan (1979). "Theoretical justification of Madelung's rule".
3712: 3610: 3259: 3226: 2996: 2964: 2955: 2943: 2841: 2602: 2440: 2351: 2147: 2020: 1803: 1703: 1656: 1606: 1538: 1382: 1285: 1281: 1105: 1041: 1029: 956: 884: 577: 565: 556: 521: 4018: 3974:(1923). "Über die Anwendung der Quantumtheorie auf den Atombau. I". 3941: 2868:
This section is about the concept in physics. For the software, see
1096:
The naïve application of the aufbau principle leads to a well-known
1080:
are slightly split by the magnetic field of the nucleus, and by the
1024:(the table's second column) have an electron configuration of   30: 4459: 4119:"The Electron Configuration Model, Quantum Mechanics and Reduction" 3543: 3539: 3531:(DFT) is an important example of a method that discards the model. 3398: 3302: 3263: 2900: 2888: 2623: 2316: 2274: 2239: 2200: 2129: 2091: 2055: 2038: 1685: 1638: 1403: 1163: 1154: 1146: 540: 498: 342: 87: 79: 34: 3301:
is more complex than the electron configuration of atoms, as each
3708: 3139: 3012: 2833: 2776: 2767: 2695: 2611: 2535: 2523: 2514: 2479: 2449: 2405: 2387: 2378: 2304: 2257: 2227: 2218: 2165: 2156: 2082: 2073: 1973: 1944: 1879: 1785: 1556: 1456: 1273: 1167: 1109: 1097: 971: 874:
original concept of electron configuration. It may be stated as:
502: 145: 56: 1221:
can be described as a chromium atom (not ion) surrounded by six
966:
The aufbau principle can be applied, in a modified form, to the
3716: 3682:
arise from the fact that the solutions to the time-independent
3437: 3283: 3267: 3061: 3000: 2686: 2665: 2570: 2496: 2461: 1926: 1753: 1435: 1225: 1158: 1037: 967: 751: 687: 671: 385: 172: 149: 27:
Mode of arrangement of electrons in different shells of an atom
4371:
Th} anion containing thorium in the formal +2 oxidation state"
3515:" (LCAO) approximation, using an ever-larger and more complex 650:
labels are used instead of atomic orbital labels (see below).
4969: 4541:"Периодическая система химических элементов Д. И. Менделеева" 4051:(1924). "The distribution of electrons among atomic levels". 3453: 3271: 3196: 3167: 3112: 3020: 3016: 3008: 2812: 2794: 2758: 2741: 2716: 2674: 2657: 2632: 2585: 2579: 2562: 2544: 2505: 2488: 2470: 2431: 2414: 2396: 2360: 2343: 2325: 2283: 2266: 2248: 2209: 2192: 2174: 2138: 2118: 2100: 2064: 2047: 2029: 2000: 1982: 1953: 1935: 1906: 1888: 1859: 1841: 1812: 1794: 1762: 1741: 1712: 1694: 1665: 1647: 1615: 1597: 1565: 1547: 1515: 1497: 1465: 1444: 1412: 1391: 699: 1293:
Electron shells filled in violation of Madelung's rule (red)
848: 653: 4348: 3535: 3497: 3322: 3287: 3086: 3004: 2896: 2891:
or that has not given all of its valence electrons through
2749: 2707: 2422: 1186: 1150: 821:
to have the same value for the other three quantum numbers
686:(such as 3s for sodium) involves energies corresponding to 533: 330: 110:
are occupied by two, two, and six electrons, respectively.
99: 83: 1277:
bonding, as do the empty p orbitals in transition metals.
3910:
Ebbing, Darrell D.; Gammon, Steven D. (12 January 2007).
1178: 947:
This gives the following order for filling the orbitals:
415:(usually denoted by an up-arrow) and one with a spin of − 4766:
The Chemistry of the Actinide and Transactinide Elements
4421:
The Chemistry of the Actinide and Transactinide Elements
909:
in 1936, and later given a theoretical justification by
870:, "building up, construction") was an important part of 392:= 1, and the orbital contains two electrons). An atom's 4452: 1058: 513:
15) is as follows: 1s 2s 2p 3s 3p.
4273: 3293: 1239: 1091: 3942:"The Arrangement of Electrons in Atoms and Molecules" 3031:
because they already have a noble gas configuration.
2918:
For molecules, "open shell" signifies that there are
670:
As an example, the ground state configuration of the
325:
Electron configuration was first conceived under the
4828:
Handbook on the Physics and Chemistry of Rare Earths
4501: 3865: 3278:
O). Neutral atomic hydrogen has one electron in its
2832:
The electron-shell configuration of elements beyond
1205:
Similar ion-like 3d 4s configurations occur in
1100:(or apparent paradox) in the basic chemistry of the 770:
The valence electrons in the atom were described by
5164:
Electron configurations of the elements (data page)
3870:(6 ed.). Macmillan Education. pp. 13–15. 3595:
Electron configurations of the elements (data page)
3447: 1270:
Electron configurations of the elements (data page)
855:
Electron configurations of the elements (data page)
163:that hold atoms together, and in understanding the 4861:"Electronic Configurations of Superheavy Elements" 4797:The periodic table: its story and its significance 4794: 4763: 3602: – discusses the limits of the periodic table 4126:The British Journal for the Philosophy of Science 589:International Union of Pure and Applied Chemistry 98:. For example, the electron configuration of the 5270: 5030:What does an atom look like? Configuration in 3D 631:: their modern usage indicates orbitals with an 4792: 1173:The apparent paradox arises when electrons are 4674: 742:(1923) incorporated Langmuir's model that the 675:another by absorbing or emitting energy. In a 5050: 1272:. However this also depends on the charge: a 337:despite the advances in understanding of the 4858: 4768:(3rd ed.). Dordrecht, The Netherlands: 4745: 3909: 3866:Rayner-Canham, Geoff; Overton, Tina (2014). 3658: 3656: 4149: 4147: 3492:concept, describing the number and type of 3488:, have become the modern equivalent of the 3329:; hence, the electron configuration of the 3290:with eight electrons in its valence shell. 931:Where two subshells have the same value of 388:'s electron configuration is 1s, therefore 5064: 5057: 5043: 4908:Is the Periodic Table all right ("PT OK")? 4750:(2nd ed.). Prentice-Hall. p. 38. 4234: 4232: 2949: 4859:Umemoto, Koichiro; Saito, Susumu (1996). 4825: 4819: 4394: 3890: 3653: 2863: 1129: = 0) while the 3d-orbital has 939:, they are filled in order of increasing 849:Atoms: Aufbau principle and Madelung rule 654:Energy of ground state and excited states 432:is the set of states defined by a common 5159:Periodic table (electron configurations) 4865:Journal of the Physical Society of Japan 4759: 4757: 4532: 4153: 4144: 3946:Journal of the American Chemical Society 3936: 3803: 3801: 3626:Periodic table (electron configurations) 2844:should have the anomalous configuration 1177:from the transition metal atoms to form 1003: 883: 46: 29: 4952:"Chapter 11. Configuration Interaction" 4639: 4633: 4314:"The trouble with the aufbau principle" 4229: 4159:Mathematische Hilfsmittel des Physikers 2942:are either doubly occupied or empty (a 899:Madelung's rule (or Klechkowski's rule) 182: 14: 5271: 4904: 4598: 4538: 4308: 4238: 4116: 4047: 920:are filled in the order of increasing 5038: 4754: 4746:Miessler, G. L.; Tarr, D. A. (1999). 4417: 4077: 4016: 3798: 3513:linear combination of atomic orbitals 3262:. An example of this tendency is two 1244:There are several more exceptions to 1008:Electron configuration table showing 368:, that electrons may occupy. In each 333:, and it is still common to speak of 5010:(2nd ed., Prentice Hall 1999) p.118 4990:(4th ed., Prentice Hall 1991) p.376 4801:. Oxford University Press. pp.  4668: 4330:from the original on 21 January 2018 4200: 3970: 2887:which is not completely filled with 1059:Shortcomings of the aufbau principle 4681:Physical Chemistry Chemical Physics 4642:Journal of Physics F: Metal Physics 4023:Zeitschrift für Anorganische Chemie 3964: 3507:, which typically attempts to make 3299:Electron configuration in molecules 3294:Electron configuration in molecules 1240:Other exceptions to Madelung's rule 1092:Ionization of the transition metals 396:th electron shell can accommodate 2 24: 4830:. Vol. 11. pp. 197–292. 4736:by A. V. Kulsha and T. A. Kolevich 4734:this Russian periodic table poster 4575:Compendium of Chemical Terminology 4177:Compendium of Chemical Terminology 3842:Compendium of Chemical Terminology 3813:Compendium of Chemical Terminology 3525:methods in computational chemistry 3503:This approach is taken further in 2932:restricted open-shell Hartree–Fock 106:, meaning that the 1s, 2s, and 2p 25: 5315: 5092:Introduction to quantum mechanics 5023: 2963:is the electron configuration of 1295:Predictions for elements 109–112 1051:largely determine each element's 993: 90:(or other physical structure) in 3527:rely on electron configuration: 3448:Electron configuration in solids 3413:, these electrons have parallel 3313:are labelled according to their 901:. This rule was first stated by 663:. Any other configuration is an 315: 308: 301: 294: 273: 5000: 4980: 4962: 4944: 4918: 4898: 4852: 4786: 4770:Springer Science+Business Media 4739: 4726: 4715: 4621: 4592: 4563: 4495: 4446: 4411: 4342: 4302: 4267: 4194: 4165: 4071: 4041: 3868:Descriptive Inorganic Chemistry 3767: 3758: 3726: 3697: 3566:, which describe the different 3467: 2747: 2663: 2568: 2494: 2420: 2349: 2272: 2198: 2127: 2053: 2006: 1959: 1912: 1865: 1818: 1771: 1718: 1671: 1624: 1574: 1524: 1474: 1421: 1368: 627:ine"), based on their observed 440:, within a shell. The value of 4010: 3930: 3903: 3884: 3859: 3830: 3585:Born–Oppenheimer approximation 3546:, the motion of electrons are 372:of an electron configuration, 192: 13: 1: 4836:10.1016/S0168-1273(88)11007-6 4526:10.1016/S0009-2614(02)00919-3 4276:Journal of Chemical Education 4203:Journal of Chemical Education 3792: 1254:effects of special relativity 730:History of the periodic table 580:ion may be written as either 131:configuration state functions 5006:Miessler G.L. and Tarr D.A. 4322:. Vol. 50, no. 6. 3421:, and so dioxygen has a net 3266:(H) atoms reacting with one 286: 265: 148:of energy, in the form of a 7: 5152:Ground-state configurations 3891:Weisstein, Eric W. (2007). 3751:since at least the time of 3578: 3035:to be more reactive due to 1209:as described by the simple 682:Usually, the excitation of 478: 448: − 1. The values 10: 5320: 5121:Azimuthal quantum number ( 5112:Principal quantum number ( 4469:10.26434/chemrxiv.11860941 4324:Royal Society of Chemistry 4253:10.1007/s10698-018-09327-y 3818:configuration (electronic) 3775:irreducible representation 3721:Johann Wolfgang Döbereiner 2953: 2867: 1207:transition metal complexes 997: 852: 708: 482: 444:is in the range from 0 to 186: 157:periodic table of elements 5240: 5219: 5198: 5180:Pauli exclusion principle 5172: 5151: 5130:Magnetic quantum number ( 5102: 5072: 4662:10.1088/0305-4608/8/7/004 4115:English translation from 4065:10.1080/14786442408634535 3847:Pauli exclusion principle 3529:density functional theory 3500:can be expected to form. 3052: 2936:unrestricted Hartree–Fock 2013: 2007: 1966: 1960: 1919: 1913: 1872: 1866: 1825: 1819: 1778: 1772: 1725: 1719: 1678: 1672: 1631: 1625: 1581: 1575: 1531: 1525: 1481: 1475: 1428: 1422: 1375: 1369: 1317: 1311: 1305: 1299: 1049:valence (outermost) shell 905:in 1929, rediscovered by 694:light. The excitation of 568:may be written as either 469:Pauli exclusion principle 227: 204: 136:According to the laws of 4793:Scerri, Eric R. (2007). 4588:10.1351/goldbook.RT07093 4505:Chemical Physics Letters 4241:Foundations of Chemistry 4190:10.1351/goldbook.AT06996 4117:Scerri, Eric R. (1991). 4035:10.1002/zaac.19040390125 3855:10.1351/goldbook.PT07089 3646: 3486:molecular orbital theory 3431:molecular orbital theory 1234:molecular orbital theory 1213:, even if the metal has 633:azimuthal quantum number 434:azimuthal quantum number 362:principal quantum number 4539:Kulsha, Andrey (2004). 4433:10.1007/1-4020-3598-5_3 3826:10.1351/goldbook.C01248 3600:Extended periodic table 3505:computational chemistry 2961:Noble gas configuration 2950:Noble gas configuration 2928:computational chemistry 1365:Electron Configuration 169:geometries of molecules 5066:Electron configuration 4905:Pyykkö, Pekka (2016). 4319:Education in Chemistry 4083:Zeitschrift für Physik 4053:Philosophical Magazine 3976:Zeitschrift für Physik 3606:Group (periodic table) 3509:quantitative estimates 3033:Oganesson is predicted 2864:Open and closed shells 1353:Electron Configuration 1341:Electron Configuration 1329:Electron Configuration 1217: 0. For example, 1082:quantum electrodynamic 1013: 1000:Block (periodic table) 889: 837: 779:E. C. Stoner 768: 72:electron configuration 59: 44: 5304:Theoretical chemistry 5220:Bonding participation 5139:Spin quantum number ( 4138:10.1093/bjps/42.3.309 3662:In formal terms, the 3616:Molecular term symbol 2954:Further information: 1219:chromium hexacarbonyl 1047:The electrons in the 1034:periodic table blocks 1007: 887: 815: 760: 425:(with a down-arrow). 167:of compounds and the 159:, for describing the 50: 33: 4885:10.1143/JPSJ.65.3175 4722:Example for platinum 4580:relativistic effects 3684:Schrödinger equation 3365:, or equivalently 1σ 3037:relativistic effects 1211:crystal field theory 841:Schrödinger equation 520:, equivalent to the 360:that share the same 335:shells and subshells 183:Shells and subshells 5284:Chemical properties 5008:Inorganic Chemistry 4877:1996JPSJ...65.3175U 4748:Inorganic Chemistry 4693:2013PCCP...15.7839X 4654:1978JPhF....8L.163G 4615:10.1021/cr00085a006 4518:2002CPL...362..362M 4312:(7 November 2013). 4288:1996JChEd..73..498M 4215:1979JChEd..56..714W 4161:. Berlin: Springer. 4095:1925ZPhy...31..373P 3988:1923ZPhy...13..117B 3958:10.1021/ja02227a002 3749:analytical solution 3734:identical particles 3719:was first noted by 3692:spherical harmonics 3688:hydrogen-like atoms 3631:Spherical harmonics 3542:with more than one 3474:chemical properties 3397:represents the two 2991:generally obey the 2983:generally obey the 2971:is the tendency of 2967:. The basis of all 1296: 1195:Hartree–Fock method 1066:Hartree–Fock method 1053:chemical properties 963: = 118). 811:exclusion principle 456: = 3 and 380:that precedes each 127:Slater determinants 4974:iopenshell.usc.edu 4932:on 3 November 2007 4701:10.1039/C3CP50717C 4679:(Ln = La to Lu)". 4483:on 1 December 2020 4387:10.1039/C4SC03033H 4326:. pp. 24–26. 4103:10.1007/BF02980592 4017:Abegg, R. (1904). 3996:10.1007/BF01328209 3893:"Electron Orbital" 3442:vibronic couplings 3317:, rather than the 3311:molecular orbitals 2969:chemical reactions 2940:molecular orbitals 2920:unpaired electrons 2875:In the context of 1292: 1074:hydrogen-like atom 1014: 890: 807:old quantum theory 339:quantum-mechanical 96:molecular orbitals 60: 45: 42:molecular orbitals 5299:Quantum chemistry 5294:Molecular physics 5264: 5263: 5242:Electron counting 5211:Unpaired electron 5087:Quantum mechanics 4988:Quantum Chemistry 4845:978-0-444-87080-3 4812:978-0-19-530573-9 4779:978-1-4020-3555-5 4296:10.1021/ed073p498 4223:10.1021/ed056p714 3923:978-0-618-73879-3 3913:General Chemistry 3877:978-1-319-15411-0 3636:Unpaired electron 3482:organic chemistry 3307:orbital structure 3270:(O) atom to form 3253: 3252: 3039:for heavy atoms. 2989:transition metals 2973:chemical elements 2924:molecular orbital 2905:chemical reaction 2819: 2818: 1102:transition metals 988:nuclear chemistry 911:V. M. Klechkowski 684:valence electrons 677:sodium-vapor lamp 648:molecular orbital 530:valence electrons 524:of the preceding 493:labels (e.g. for 323: 322: 165:chemical formulas 138:quantum mechanics 68:quantum chemistry 16:(Redirected from 5311: 5256:18-electron rule 5227:Valence electron 5199:Electron pairing 5190:Aufbau principle 5173:Electron filling 5142: 5133: 5124: 5115: 5059: 5052: 5045: 5036: 5035: 5018: 5004: 4998: 4984: 4978: 4977: 4966: 4960: 4959: 4956:www.semichem.com 4948: 4942: 4941: 4939: 4937: 4928:. Archived from 4926:"Periodic table" 4922: 4916: 4915: 4913: 4902: 4896: 4895: 4893: 4891: 4856: 4850: 4849: 4823: 4817: 4816: 4800: 4790: 4784: 4783: 4761: 4752: 4751: 4743: 4737: 4732:See for example 4730: 4724: 4719: 4713: 4712: 4672: 4666: 4665: 4648:(7): L163–L168. 4637: 4631: 4625: 4619: 4618: 4602:Chemical Reviews 4596: 4590: 4567: 4561: 4560: 4558: 4556: 4546: 4536: 4530: 4529: 4499: 4493: 4492: 4490: 4488: 4479:. Archived from 4450: 4444: 4443: 4442:on 7 March 2016. 4441: 4435:. Archived from 4426: 4415: 4409: 4408: 4398: 4346: 4340: 4339: 4337: 4335: 4306: 4300: 4299: 4271: 4265: 4264: 4236: 4227: 4226: 4198: 4192: 4182:aufbau principle 4169: 4163: 4162: 4151: 4142: 4141: 4123: 4114: 4075: 4069: 4068: 4045: 4039: 4038: 4014: 4008: 4007: 3968: 3962: 3961: 3938:Langmuir, Irving 3934: 3928: 3927: 3907: 3901: 3900: 3888: 3882: 3881: 3863: 3857: 3834: 3828: 3805: 3786: 3771: 3765: 3762: 3756: 3730: 3724: 3701: 3695: 3680: 3672: 3660: 3590:d electron count 3321:labels used for 3305:has a different 3044: 3043: 2993:18-electron rule 2981:Main-group atoms 2854: 2853: 2849: 2828: 2824: 2726: 2722: 2701: 2680: 2642: 2638: 2617: 2591: 2529: 2455: 2310: 2289: 2233: 2124: 1768: 1747: 1621: 1571: 1521: 1471: 1450: 1418: 1397: 1297: 1291: 1144: 1141: = 3, 1137: = 5 ( 1136: 1128: 1125: = 4, 1121: = 4 ( 1120: 1016:The form of the 938: 927: 895:orbital energies 861:aufbau principle 718:Gilbert N. Lewis 642: 638: 583: 575: 571: 463: 459: 451: 443: 439: 424: 423: 419: 414: 413: 409: 378:positive integer 319: 312: 305: 298: 277: 208: 201: 193: 117:, in an average 105: 21: 5319: 5318: 5314: 5313: 5312: 5310: 5309: 5308: 5289:Electron states 5269: 5268: 5265: 5260: 5236: 5215: 5194: 5168: 5147: 5140: 5131: 5122: 5113: 5104:Quantum numbers 5098: 5068: 5063: 5026: 5021: 5005: 5001: 4985: 4981: 4968: 4967: 4963: 4950: 4949: 4945: 4935: 4933: 4924: 4923: 4919: 4911: 4903: 4899: 4889: 4887: 4857: 4853: 4846: 4824: 4820: 4813: 4791: 4787: 4780: 4762: 4755: 4744: 4740: 4731: 4727: 4720: 4716: 4687:(15): 7839–47. 4678: 4673: 4669: 4638: 4634: 4626: 4622: 4597: 4593: 4568: 4564: 4554: 4552: 4544: 4537: 4533: 4512:(5–6): 362–64. 4500: 4496: 4486: 4484: 4451: 4447: 4439: 4424: 4416: 4412: 4370: 4366: 4362: 4358: 4354: 4347: 4343: 4333: 4331: 4307: 4303: 4272: 4268: 4237: 4230: 4199: 4195: 4170: 4166: 4155:Madelung, Erwin 4152: 4145: 4121: 4079:Pauli, Wolfgang 4076: 4072: 4059:(286): 719–36. 4046: 4042: 4015: 4011: 3969: 3965: 3935: 3931: 3924: 3916:. p. 284. 3908: 3904: 3889: 3885: 3878: 3864: 3860: 3835: 3831: 3806: 3799: 3795: 3790: 3789: 3779:character table 3772: 3768: 3763: 3759: 3731: 3727: 3702: 3698: 3681: 3678: 3670: 3664:quantum numbers 3661: 3654: 3649: 3581: 3521:atomic orbitals 3470: 3450: 3423:magnetic moment 3396: 3392: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3348: 3344: 3340: 3337:, is written 1σ 3336: 3296: 3277: 2958: 2952: 2907:. Conversely a 2877:atomic orbitals 2873: 2866: 2858: 2851: 2847: 2845: 2826: 2822: 2815:] 7s 5f 6d 2744:] 7s 5f 6d 2724: 2720: 2699: 2678: 2660:] 7s 5f 6d 2640: 2636: 2615: 2589: 2583: 2582:] 4s 3d or 2565:] 7s 5f 6d 2527: 2491:] 7s 5f 6d 2453: 2417:] 7s 5f 6d 2346:] 7s 5f 6d 2308: 2287: 2269:] 7s 5f 6d 2231: 2195:] 7s 5f 6d 2122: 2050:] 7s 5f 6d 2003:] 7s 5f 6d 1956:] 7s 5f 6d 1909:] 7s 5f 6d 1862:] 7s 5f 6d 1815:] 7s 5f 6d 1766: 1745: 1715:] 7s 5f 6d 1668:] 7s 5f 6d 1619: 1569: 1519: 1469: 1448: 1416: 1395: 1294: 1263: 1246:Madelung's rule 1242: 1223:carbon monoxide 1215:oxidation state 1142: 1134: 1126: 1118: 1094: 1084:effects of the 1061: 1028:s (where is a 1002: 996: 984:nuclear physics 936: 925: 857: 851: 714:Irving Langmuir 711: 656: 640: 636: 581: 573: 569: 487: 481: 473:quantum numbers 461: 457: 449: 441: 437: 421: 417: 416: 411: 407: 406: 262: 254: 246: 206: 199: 191: 185: 142:level of energy 121:created by the 103: 28: 23: 22: 15: 12: 11: 5: 5317: 5307: 5306: 5301: 5296: 5291: 5286: 5281: 5279:Atomic physics 5262: 5261: 5259: 5258: 5253: 5247: 5245: 5238: 5237: 5235: 5234: 5229: 5223: 5221: 5217: 5216: 5214: 5213: 5208: 5202: 5200: 5196: 5195: 5193: 5192: 5187: 5182: 5176: 5174: 5170: 5169: 5167: 5166: 5161: 5155: 5153: 5149: 5148: 5146: 5145: 5136: 5127: 5118: 5108: 5106: 5100: 5099: 5097: 5096: 5095: 5094: 5084: 5082:Atomic orbital 5079: 5077:Electron shell 5073: 5070: 5069: 5062: 5061: 5054: 5047: 5039: 5033: 5032: 5025: 5024:External links 5022: 5020: 5019: 4999: 4979: 4961: 4943: 4917: 4897: 4871:(10): 3175–9. 4851: 4844: 4818: 4811: 4785: 4778: 4753: 4738: 4725: 4714: 4676: 4667: 4632: 4620: 4591: 4562: 4531: 4494: 4445: 4410: 4381:(1): 517–521. 4368: 4364: 4360: 4356: 4352: 4341: 4301: 4282:(6): 498–503. 4266: 4228: 4209:(11): 714–18. 4193: 4164: 4143: 4070: 4055:. 6th Series. 4040: 4029:(1): 330–380. 4009: 3963: 3952:(6): 868–934. 3929: 3922: 3902: 3883: 3876: 3858: 3829: 3796: 3794: 3791: 3788: 3787: 3766: 3757: 3732:Electrons are 3725: 3705:atomic weights 3696: 3677: 3651: 3650: 3648: 3645: 3644: 3643: 3638: 3633: 3628: 3623: 3618: 3613: 3608: 3603: 3597: 3592: 3587: 3580: 3577: 3560:atomic spectra 3494:chemical bonds 3469: 3466: 3449: 3446: 3394: 3390: 3386: 3382: 3378: 3374: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3338: 3334: 3327:monatomic ions 3319:atomic orbital 3295: 3292: 3275: 3255: 3254: 3251: 3250: 3247: 3244: 3241: 3238: 3235: 3232: 3229: 3224: 3220: 3219: 3217: 3214: 3211: 3208: 3205: 3202: 3199: 3194: 3190: 3189: 3187: 3185: 3182: 3179: 3176: 3173: 3170: 3165: 3161: 3160: 3158: 3156: 3154: 3151: 3148: 3145: 3142: 3137: 3133: 3132: 3130: 3128: 3126: 3124: 3121: 3118: 3115: 3110: 3106: 3105: 3103: 3101: 3099: 3097: 3095: 3092: 3089: 3084: 3080: 3079: 3077: 3075: 3073: 3071: 3069: 3067: 3064: 3059: 3055: 3054: 3053:Configuration 3051: 3048: 2951: 2948: 2934:method or the 2893:chemical bonds 2865: 2862: 2856: 2817: 2816: 2809: 2806: 2801: 2798: 2797:] 6s 4f 5d 2791: 2788: 2783: 2780: 2773: 2770: 2765: 2762: 2755: 2752: 2746: 2745: 2738: 2735: 2730: 2727: 2713: 2710: 2705: 2702: 2692: 2689: 2684: 2681: 2671: 2668: 2662: 2661: 2654: 2651: 2646: 2643: 2629: 2626: 2621: 2618: 2608: 2605: 2600: 2597: 2576: 2573: 2567: 2566: 2559: 2556: 2551: 2548: 2547:] 6s 4f 5d 2541: 2538: 2533: 2530: 2520: 2517: 2512: 2509: 2502: 2499: 2493: 2492: 2485: 2482: 2477: 2474: 2473:] 6s 4f 5d 2467: 2464: 2459: 2456: 2446: 2443: 2438: 2435: 2428: 2425: 2419: 2418: 2411: 2408: 2403: 2400: 2399:] 6s 4f 5d 2393: 2390: 2385: 2382: 2375: 2372: 2367: 2364: 2357: 2354: 2348: 2347: 2340: 2337: 2332: 2329: 2328:] 6s 4f 5d 2322: 2319: 2314: 2311: 2301: 2298: 2293: 2290: 2280: 2277: 2271: 2270: 2263: 2260: 2255: 2252: 2251:] 6s 4f 5d 2245: 2242: 2237: 2234: 2224: 2221: 2216: 2213: 2206: 2203: 2197: 2196: 2189: 2186: 2181: 2178: 2177:] 6s 4f 5d 2171: 2168: 2163: 2160: 2153: 2150: 2145: 2142: 2135: 2132: 2126: 2125: 2115: 2112: 2107: 2104: 2103:] 6s 4f 5d 2097: 2094: 2089: 2086: 2079: 2076: 2071: 2068: 2061: 2058: 2052: 2051: 2044: 2041: 2036: 2033: 2032:] 6s 4f 5d 2026: 2023: 2018: 2015: 2012: 2009: 2005: 2004: 1997: 1994: 1989: 1986: 1985:] 6s 4f 5d 1979: 1976: 1971: 1968: 1965: 1962: 1958: 1957: 1950: 1947: 1942: 1939: 1938:] 6s 4f 5d 1932: 1929: 1924: 1921: 1918: 1915: 1911: 1910: 1903: 1900: 1895: 1892: 1891:] 6s 4f 5d 1885: 1882: 1877: 1874: 1871: 1868: 1864: 1863: 1856: 1853: 1848: 1845: 1844:] 6s 4f 5d 1838: 1835: 1830: 1827: 1824: 1821: 1817: 1816: 1809: 1806: 1801: 1798: 1797:] 6s 4f 5d 1791: 1788: 1783: 1780: 1777: 1774: 1770: 1769: 1759: 1756: 1751: 1748: 1738: 1735: 1730: 1727: 1724: 1721: 1717: 1716: 1709: 1706: 1701: 1698: 1697:] 6s 4f 5d 1691: 1688: 1683: 1680: 1677: 1674: 1670: 1669: 1662: 1659: 1654: 1651: 1650:] 6s 4f 5d 1644: 1641: 1636: 1633: 1630: 1627: 1623: 1622: 1612: 1609: 1604: 1601: 1600:] 6s 4f 5d 1594: 1591: 1586: 1583: 1580: 1577: 1573: 1572: 1562: 1559: 1554: 1551: 1550:] 6s 4f 5d 1544: 1541: 1536: 1533: 1530: 1527: 1523: 1522: 1512: 1509: 1504: 1501: 1500:] 6s 4f 5d 1494: 1491: 1486: 1483: 1480: 1477: 1473: 1472: 1462: 1459: 1454: 1451: 1441: 1438: 1433: 1430: 1427: 1424: 1420: 1419: 1409: 1406: 1401: 1398: 1388: 1385: 1380: 1377: 1374: 1371: 1367: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1327: 1324: 1320: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1261: 1258:speed of light 1241: 1238: 1093: 1090: 1060: 1057: 1018:periodic table 998:Main article: 995: 994:Periodic table 992: 976:atomic nucleus 953: 952: 945: 944: 929: 907:Erwin Madelung 882: 881: 850: 847: 803:Wolfgang Pauli 792:magnetic field 788:atomic spectra 726:Walther Kossel 710: 707: 696:core electrons 690:of visible or 655: 652: 629:fine structure 593:spectral lines 578:lanthanum(III) 518:core electrons 485:Atomic orbital 480: 477: 382:orbital letter 358:allowed states 350:electron shell 321: 320: 313: 306: 299: 292: 285: 284: 282: 280: 278: 271: 264: 263: 258: 255: 250: 247: 242: 239: 236: 233: 232: 226: 220: 214: 211: 210: 203: 196: 189:Electron shell 187:Main article: 184: 181: 177:semiconductors 161:chemical bonds 64:atomic physics 26: 9: 6: 4: 3: 2: 5316: 5305: 5302: 5300: 5297: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5276: 5274: 5267: 5257: 5254: 5252: 5249: 5248: 5246: 5243: 5239: 5233: 5232:Core electron 5230: 5228: 5225: 5224: 5222: 5218: 5212: 5209: 5207: 5206:Electron pair 5204: 5203: 5201: 5197: 5191: 5188: 5186: 5183: 5181: 5178: 5177: 5175: 5171: 5165: 5162: 5160: 5157: 5156: 5154: 5150: 5144: 5137: 5135: 5128: 5126: 5119: 5117: 5110: 5109: 5107: 5105: 5101: 5093: 5090: 5089: 5088: 5085: 5083: 5080: 5078: 5075: 5074: 5071: 5067: 5060: 5055: 5053: 5048: 5046: 5041: 5040: 5037: 5031: 5028: 5027: 5017: 5016:0-13-841891-8 5013: 5009: 5003: 4997: 4996:0-205-12770-3 4993: 4989: 4983: 4975: 4971: 4965: 4957: 4953: 4947: 4931: 4927: 4921: 4910: 4909: 4901: 4886: 4882: 4878: 4874: 4870: 4866: 4862: 4855: 4847: 4841: 4837: 4833: 4829: 4822: 4814: 4808: 4804: 4799: 4798: 4789: 4781: 4775: 4771: 4767: 4760: 4758: 4749: 4742: 4735: 4729: 4723: 4718: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4671: 4663: 4659: 4655: 4651: 4647: 4643: 4636: 4630: 4624: 4616: 4612: 4609:(3): 563–94. 4608: 4604: 4603: 4595: 4589: 4585: 4581: 4577: 4576: 4571: 4566: 4550: 4542: 4535: 4527: 4523: 4519: 4515: 4511: 4507: 4506: 4498: 4482: 4478: 4474: 4470: 4466: 4462: 4461: 4456: 4449: 4438: 4434: 4430: 4423: 4422: 4414: 4406: 4402: 4397: 4392: 4388: 4384: 4380: 4376: 4372: 4345: 4329: 4325: 4321: 4320: 4315: 4311: 4305: 4297: 4293: 4289: 4285: 4281: 4277: 4270: 4262: 4258: 4254: 4250: 4246: 4242: 4235: 4233: 4224: 4220: 4216: 4212: 4208: 4204: 4197: 4191: 4187: 4183: 4179: 4178: 4173: 4168: 4160: 4156: 4150: 4148: 4139: 4135: 4132:(3): 309–25. 4131: 4127: 4120: 4112: 4108: 4104: 4100: 4096: 4092: 4088: 4084: 4080: 4074: 4066: 4062: 4058: 4054: 4050: 4044: 4036: 4032: 4028: 4024: 4020: 4013: 4005: 4001: 3997: 3993: 3989: 3985: 3981: 3977: 3973: 3967: 3959: 3955: 3951: 3947: 3943: 3940:(June 1919). 3939: 3933: 3925: 3919: 3915: 3914: 3906: 3898: 3894: 3887: 3879: 3873: 3869: 3862: 3856: 3852: 3848: 3844: 3843: 3838: 3833: 3827: 3823: 3819: 3815: 3814: 3809: 3804: 3802: 3797: 3784: 3780: 3776: 3770: 3761: 3754: 3750: 3746: 3742: 3741:-body problem 3740: 3735: 3729: 3722: 3718: 3714: 3710: 3706: 3700: 3693: 3690:are based on 3689: 3685: 3676: 3668: 3665: 3659: 3657: 3652: 3642: 3641:Valence shell 3639: 3637: 3634: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3583: 3582: 3576: 3573: 3569: 3568:energy levels 3565: 3561: 3556: 3554: 3553:wave function 3549: 3545: 3541: 3537: 3532: 3530: 3526: 3522: 3518: 3514: 3510: 3506: 3501: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3465: 3463: 3459: 3458:electron band 3455: 3445: 3443: 3439: 3434: 3432: 3428: 3424: 3420: 3416: 3412: 3408: 3405:π*-orbitals ( 3404: 3400: 3393:. The term 1π 3332: 3328: 3324: 3320: 3316: 3312: 3308: 3304: 3300: 3291: 3289: 3285: 3281: 3280:valence shell 3273: 3269: 3265: 3261: 3248: 3245: 3242: 3239: 3236: 3233: 3230: 3228: 3225: 3222: 3221: 3218: 3215: 3212: 3209: 3206: 3203: 3200: 3198: 3195: 3192: 3191: 3188: 3186: 3183: 3180: 3177: 3174: 3171: 3169: 3166: 3163: 3162: 3159: 3157: 3155: 3152: 3149: 3146: 3143: 3141: 3138: 3135: 3134: 3131: 3129: 3127: 3125: 3122: 3119: 3116: 3114: 3111: 3108: 3107: 3104: 3102: 3100: 3098: 3096: 3093: 3090: 3088: 3085: 3082: 3081: 3078: 3076: 3074: 3072: 3070: 3068: 3065: 3063: 3060: 3057: 3056: 3049: 3046: 3045: 3042: 3041: 3040: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2957: 2947: 2945: 2944:singlet state 2941: 2937: 2933: 2929: 2925: 2921: 2916: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2886: 2885:valence shell 2882: 2878: 2871: 2861: 2843: 2839: 2835: 2830: 2814: 2810: 2807: 2805: 2802: 2799: 2796: 2792: 2789: 2787: 2784: 2781: 2778: 2774: 2771: 2769: 2766: 2763: 2760: 2756: 2753: 2751: 2748: 2743: 2739: 2736: 2734: 2731: 2728: 2718: 2714: 2711: 2709: 2706: 2703: 2697: 2693: 2690: 2688: 2685: 2682: 2676: 2672: 2669: 2667: 2664: 2659: 2655: 2652: 2650: 2647: 2644: 2634: 2630: 2627: 2625: 2622: 2619: 2613: 2609: 2606: 2604: 2601: 2598: 2595: 2587: 2581: 2577: 2574: 2572: 2569: 2564: 2560: 2557: 2555: 2552: 2549: 2546: 2542: 2539: 2537: 2534: 2531: 2525: 2521: 2518: 2516: 2513: 2510: 2507: 2503: 2500: 2498: 2495: 2490: 2486: 2483: 2481: 2478: 2475: 2472: 2468: 2465: 2463: 2460: 2457: 2451: 2447: 2444: 2442: 2439: 2436: 2433: 2429: 2426: 2424: 2421: 2416: 2412: 2409: 2407: 2404: 2401: 2398: 2394: 2391: 2389: 2386: 2383: 2380: 2376: 2373: 2371: 2368: 2365: 2362: 2358: 2355: 2353: 2350: 2345: 2341: 2338: 2336: 2333: 2330: 2327: 2323: 2320: 2318: 2315: 2312: 2306: 2302: 2299: 2297: 2294: 2291: 2285: 2281: 2278: 2276: 2273: 2268: 2264: 2261: 2259: 2256: 2253: 2250: 2246: 2243: 2241: 2238: 2235: 2229: 2225: 2222: 2220: 2217: 2214: 2211: 2207: 2204: 2202: 2199: 2194: 2190: 2187: 2185: 2184:Rutherfordium 2182: 2179: 2176: 2172: 2169: 2167: 2164: 2161: 2158: 2154: 2151: 2149: 2146: 2143: 2140: 2136: 2133: 2131: 2128: 2120: 2116: 2113: 2111: 2108: 2105: 2102: 2098: 2095: 2093: 2090: 2087: 2084: 2080: 2077: 2075: 2072: 2069: 2066: 2062: 2059: 2057: 2054: 2049: 2045: 2042: 2040: 2037: 2034: 2031: 2027: 2024: 2022: 2019: 2016: 2010: 2002: 1998: 1995: 1993: 1990: 1987: 1984: 1980: 1977: 1975: 1972: 1969: 1963: 1955: 1951: 1948: 1946: 1943: 1940: 1937: 1933: 1930: 1928: 1925: 1922: 1916: 1908: 1904: 1901: 1899: 1896: 1893: 1890: 1886: 1883: 1881: 1878: 1875: 1869: 1861: 1857: 1854: 1852: 1849: 1846: 1843: 1839: 1836: 1834: 1831: 1828: 1822: 1814: 1810: 1807: 1805: 1802: 1799: 1796: 1792: 1789: 1787: 1784: 1781: 1775: 1764: 1760: 1757: 1755: 1752: 1749: 1743: 1739: 1736: 1734: 1731: 1728: 1722: 1714: 1710: 1707: 1705: 1702: 1699: 1696: 1692: 1689: 1687: 1684: 1681: 1675: 1667: 1663: 1660: 1658: 1655: 1652: 1649: 1645: 1642: 1640: 1637: 1634: 1628: 1617: 1613: 1610: 1608: 1605: 1602: 1599: 1595: 1592: 1590: 1587: 1584: 1578: 1567: 1563: 1560: 1558: 1555: 1552: 1549: 1545: 1542: 1540: 1537: 1534: 1528: 1517: 1513: 1510: 1508: 1505: 1502: 1499: 1495: 1492: 1490: 1487: 1484: 1478: 1467: 1463: 1460: 1458: 1455: 1452: 1446: 1442: 1439: 1437: 1434: 1431: 1425: 1414: 1410: 1407: 1405: 1402: 1399: 1393: 1389: 1386: 1384: 1381: 1378: 1372: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1322: 1321: 1314: 1308: 1302: 1298: 1290: 1287: 1283: 1278: 1275: 1271: 1265: 1259: 1255: 1250: 1247: 1237: 1235: 1231: 1227: 1224: 1220: 1216: 1212: 1208: 1203: 1199: 1196: 1192: 1188: 1182: 1180: 1176: 1171: 1169: 1165: 1160: 1156: 1152: 1148: 1140: 1133: +  1132: 1124: 1117: +  1116: 1111: 1107: 1103: 1099: 1089: 1087: 1083: 1079: 1078:energy levels 1075: 1069: 1067: 1056: 1054: 1050: 1045: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1011: 1006: 1001: 991: 989: 985: 981: 977: 973: 969: 964: 962: 958: 950: 949: 948: 942: 935: +  934: 930: 924: +  923: 919: 916: 915: 914: 912: 908: 904: 903:Charles Janet 900: 896: 886: 880: 877: 876: 875: 873: 869: 866: 862: 856: 846: 844: 842: 836: 835: 832: 828: 824: 820: 814: 812: 808: 804: 799: 797: 796:Zeeman effect 793: 789: 784: 781:incorporated 780: 775: 773: 772:Richard Abegg 767: 765: 759: 757: 756:Alfred Werner 753: 749: 745: 741: 737: 735: 731: 727: 723: 719: 715: 706: 703: 701: 697: 693: 689: 685: 680: 678: 673: 668: 666: 665:excited state 662: 651: 649: 644: 634: 630: 626: 622: 620: 615: 613: 608: 606: 601: 599: 594: 590: 585: 579: 567: 563: 562:Madelung rule 558: 553: 550: 546: 545:Madelung rule 542: 537: 535: 531: 527: 523: 519: 514: 512: 511:atomic number 508: 504: 500: 496: 492: 486: 476: 474: 470: 465: 455: 447: 435: 431: 426: 404: 403:electron spin 399: 395: 391: 387: 383: 379: 375: 371: 367: 363: 359: 355: 351: 346: 344: 340: 336: 332: 328: 318: 314: 311: 307: 304: 300: 297: 293: 290: 287: 283: 281: 279: 276: 272: 269: 266: 261: 256: 253: 248: 245: 240: 237: 235: 234: 230: 224: 221: 218: 215: 213: 212: 197: 195: 194: 190: 180: 178: 174: 170: 166: 162: 158: 153: 151: 147: 143: 139: 134: 132: 128: 124: 120: 116: 111: 109: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 58: 54: 49: 43: 39: 36: 32: 19: 5266: 5065: 5007: 5002: 4987: 4986:Levine I.N. 4982: 4973: 4964: 4955: 4946: 4934:. Retrieved 4930:the original 4920: 4907: 4900: 4888:. Retrieved 4868: 4864: 4854: 4827: 4821: 4796: 4788: 4765: 4747: 4741: 4728: 4717: 4684: 4680: 4670: 4645: 4641: 4635: 4623: 4606: 4600: 4594: 4573: 4565: 4553:. Retrieved 4551:(in Russian) 4548: 4534: 4509: 4503: 4497: 4485:. Retrieved 4481:the original 4458: 4448: 4437:the original 4420: 4413: 4378: 4374: 4344: 4332:. Retrieved 4317: 4310:Scerri, Eric 4304: 4279: 4275: 4269: 4244: 4240: 4206: 4202: 4196: 4175: 4167: 4158: 4129: 4125: 4086: 4082: 4073: 4056: 4052: 4049:Stoner, E.C. 4043: 4026: 4022: 4012: 3979: 3975: 3966: 3949: 3945: 3932: 3912: 3905: 3896: 3886: 3867: 3861: 3840: 3832: 3811: 3769: 3760: 3744: 3738: 3728: 3699: 3674: 3666: 3572:ground-state 3564:term symbols 3557: 3533: 3502: 3471: 3468:Applications 3451: 3435: 3427:paramagnetic 3419:ground state 3411:Hund's rules 3298: 3297: 3256: 3249:7s 5f 6d 7p 2960: 2959: 2917: 2909:closed shell 2908: 2880: 2874: 2831: 2820: 2649:Darmstadtium 2121:] 7s 5f 1507:Protactinium 1489:Praseodymium 1279: 1266: 1251: 1243: 1204: 1200: 1183: 1174: 1172: 1138: 1130: 1122: 1114: 1095: 1070: 1062: 1046: 1042:noble gasses 1025: 1015: 978:, as in the 965: 960: 954: 946: 940: 932: 921: 891: 878: 867: 858: 845: 838: 834: 830: 826: 822: 818: 816: 800: 783:Sommerfeld's 776: 769: 761: 738: 722:cubical atom 712: 704: 681: 669: 661:ground state 657: 645: 624: 618: 611: 604: 597: 586: 584:or simply . 554: 548: 538: 515: 488: 466: 453: 445: 427: 397: 393: 389: 373: 365: 347: 324: 288: 267: 259: 251: 243: 228: 222: 216: 154: 135: 112: 76:distribution 71: 61: 53:Bohr diagram 18:Closed shell 5185:Hund's rule 4629:NIST tables 4549:primefan.ru 3972:Bohr, Niels 3783:point group 3462:band theory 3407:antibonding 3401:in the two 3333:molecule, O 3246:6s 4f 5d 6p 3216:6s 4f 5d 6p 3027:than other 3023:) are less 2997:noble gases 2975:to acquire 2965:noble gases 2895:with other 2842:Element 121 2838:element 120 2804:Copernicium 2779:] 5s 4d 2761:] 4s 3d 2733:Roentgenium 2508:] 4s 3d 2434:] 4s 3d 2381:] 5s 4d 2363:] 4s 3d 2212:] 4s 3d 2159:] 5s 4d 2141:] 4s 3d 2085:] 5s 4d 2067:] 4s 3d 1992:Mendelevium 1898:Einsteinium 1851:Californium 1230:diamagnetic 1191:Eric Scerri 980:shell model 744:periodicity 724:theory and 692:ultraviolet 5273:Categories 5251:Octet rule 4936:1 November 4890:31 January 4089:(1): 373. 3982:(1): 117. 3793:References 3621:Octet rule 3548:correlated 3476:, in both 3403:degenerate 2985:octet rule 2881:open shell 2870:Open Shell 2554:Meitnerium 2370:Technetium 2335:Seaborgium 2296:Molybdenum 2110:Lawrencium 1833:Dysprosium 1733:Gadolinium 1589:Promethium 1086:Lamb shift 863:(from the 853:See also: 764:hold eight 748:Bohr model 740:Niels Bohr 734:Octet rule 621:undamental 576:, and the 572:or simply 528:, and the 507:Phosphorus 495:phosphorus 483:See also: 341:nature of 327:Bohr model 4487:23 August 4477:226121612 4375:Chem. Sci 4261:104311030 4247:: 61–69. 4111:122477612 4004:123582460 3713:strontium 3611:HOMO/LUMO 3540:molecules 3517:basis set 3478:inorganic 3399:electrons 3260:noble gas 2977:stability 2956:Noble gas 2903:during a 2901:molecules 2889:electrons 2603:Palladium 2441:Ruthenium 2352:Manganese 2148:Zirconium 2021:Ytterbium 1804:Berkelium 1765:] 7s 1744:] 6s 1704:Americium 1657:Plutonium 1618:] 7s 1607:Neptunium 1568:] 7s 1539:Neodymium 1518:] 7s 1468:] 7s 1447:] 6s 1415:] 7s 1394:] 6s 1383:Lanthanum 1318:Period 7 1286:palladium 1282:lanthanum 1106:Potassium 1030:noble gas 918:Subshells 897:given by 777:In 1924, 774:in 1904. 566:palladium 557:aluminium 522:noble gas 343:electrons 108:subshells 80:electrons 4709:23598823 4627:See the 4460:ChemRxiv 4405:29560172 4328:Archived 4157:(1936). 3723:in 1817. 3579:See also 3544:electron 3496:that an 3440:through 3409:). From 3389: 1π 3385: 3σ 3381: 1π 3377: 2σ 3373: 2σ 3369: 1σ 3361: 1π 3357: 1π 3353: 3σ 3349: 2σ 3345: 2σ 3341: 1σ 3331:dioxygen 3315:symmetry 3303:molecule 3264:hydrogen 3243:5s 4d 5p 3240:4s 3d 4p 3213:5s 4d 5p 3210:4s 3d 4p 3184:5s 4d 5p 3181:4s 3d 4p 3153:4s 3d 4p 3050:Element 3029:elements 3025:reactive 2987:, while 2827:5f 6d 7s 2823:4f 5d 6s 2624:Platinum 2594:disputed 2317:Tungsten 2275:Chromium 2240:Tantalum 2201:Vanadium 2130:Titanium 2092:Lutetium 2056:Scandium 2039:Nobelium 1686:Europium 1639:Samarium 1404:Actinium 1312:Period 6 1306:Period 5 1300:Period 4 1164:tungsten 1155:Chromium 1149:through 1147:scandium 972:neutrons 813:(1925): 732:and the 607:rincipal 541:titanium 499:hydrogen 491:subshell 479:Notation 430:subshell 104:1s 2s 2p 102:atom is 88:molecule 35:Electron 4873:Bibcode 4689:Bibcode 4650:Bibcode 4514:Bibcode 4396:5811171 4334:12 June 4284:Bibcode 4211:Bibcode 4091:Bibcode 3984:Bibcode 3897:wolfram 3781:of the 3777:in the 3709:calcium 3490:valence 3425:(it is 3417:in the 3047:Period 2834:hassium 2786:Mercury 2768:Cadmium 2536:Iridium 2515:Rhodium 2480:Hassium 2406:Bohrium 2388:Rhenium 2258:Dubnium 2219:Niobium 2166:Hafnium 2074:Yttrium 1974:Thulium 1945:Fermium 1880:Holmium 1786:Terbium 1557:Uranium 1457:Thorium 1359:Element 1347:Element 1335:Element 1323:Element 1274:calcium 1226:ligands 1175:removed 1168:niobium 1110:calcium 1098:paradox 1022:group 2 974:in the 968:protons 709:History 688:photons 623:" (or " 616:" and " 503:Lithium 420:⁄ 410:⁄ 376:is the 352:is the 329:of the 146:quantum 115:orbital 74:is the 57:lithium 5014:  4994:  4842:  4809:  4805:–240. 4776:  4707:  4555:17 May 4475:  4403:  4393:  4259:  4109:  4002:  3920:  3874:  3717:barium 3438:photon 3309:. The 3284:helium 3268:oxygen 2995:. The 2913:stable 2850:6f 7d 2800:  2782:  2764:  2729:  2719:] 2704:  2698:] 2687:Silver 2683:  2677:] 2666:Copper 2645:  2635:] 2620:  2614:] 2599:  2588:] 2571:Nickel 2550:  2532:  2526:] 2511:  2497:Cobalt 2476:  2462:Osmium 2458:  2454:5s 4d 2452:] 2437:  2402:  2384:  2366:  2331:  2313:  2307:] 2292:  2286:] 2254:  2236:  2230:] 2215:  2180:  2162:  2144:  2106:  2088:  2070:  2035:  2017:  2014:  2011:  2008:  1988:  1970:  1967:  1964:  1961:  1941:  1927:Erbium 1923:  1920:  1917:  1914:  1894:  1876:  1873:  1870:  1867:  1847:  1829:  1826:  1823:  1820:  1800:  1782:  1779:  1776:  1773:  1754:Curium 1750:  1729:  1726:  1723:  1720:  1700:  1682:  1679:  1676:  1673:  1653:  1635:  1632:  1629:  1626:  1603:  1585:  1582:  1579:  1576:  1553:  1535:  1532:  1529:  1526:  1503:  1485:  1482:  1479:  1476:  1453:  1436:Cerium 1432:  1429:  1426:  1423:  1400:  1379:  1376:  1373:  1370:  1356:  1344:  1332:  1315:  1309:  1303:  1284:4f or 1159:copper 1038:helium 1010:blocks 872:Bohr's 868:Aufbau 865:German 752:sulfur 672:sodium 614:iffuse 526:period 386:helium 173:lasers 150:photon 123:nuclei 92:atomic 82:of an 70:, the 38:atomic 5244:rules 4912:(PDF) 4570:IUPAC 4545:(PDF) 4473:S2CID 4440:(PDF) 4425:(PDF) 4367:] 4359:(SiMe 4257:S2CID 4172:IUPAC 4122:(PDF) 4107:S2CID 4000:S2CID 3837:IUPAC 3808:IUPAC 3753:Euler 3743:with 3647:Notes 3536:atoms 3454:solid 3452:In a 3415:spins 3323:atoms 3272:water 3237:3s 3p 3234:2s 2p 3207:3s 3p 3204:2s 2p 3178:3s 3p 3175:2s 2p 3150:3s 3p 3147:2s 2p 3123:3s 3p 3120:2s 2p 3094:2s 2p 2922:. In 2897:atoms 2883:is a 2879:, an 2811:[ 2793:[ 2775:[ 2757:[ 2740:[ 2715:[ 2700:5s 4d 2694:[ 2679:4s 3d 2673:[ 2656:[ 2631:[ 2616:5s 4d 2610:[ 2590:4s 3d 2584:[ 2578:[ 2561:[ 2543:[ 2528:5s 4d 2522:[ 2504:[ 2487:[ 2469:[ 2448:[ 2430:[ 2413:[ 2395:[ 2377:[ 2359:[ 2342:[ 2324:[ 2309:5s 4d 2303:[ 2288:4s 3d 2282:[ 2265:[ 2247:[ 2232:5s 4d 2226:[ 2208:[ 2191:[ 2173:[ 2155:[ 2137:[ 2123:6d 7p 2117:[ 2099:[ 2081:[ 2063:[ 2046:[ 2028:[ 1999:[ 1981:[ 1952:[ 1934:[ 1905:[ 1887:[ 1858:[ 1840:[ 1811:[ 1793:[ 1767:5f 6d 1761:[ 1746:4f 5d 1740:[ 1711:[ 1693:[ 1664:[ 1646:[ 1620:5f 6d 1614:[ 1596:[ 1570:5f 6d 1564:[ 1546:[ 1520:5f 6d 1514:[ 1496:[ 1470:5f 6d 1464:[ 1449:4f 5d 1443:[ 1417:5f 6d 1411:[ 1396:4f 5d 1390:[ 794:(the 790:in a 700:X-ray 570:4d 5s 231:= ±1 209:= 1) 202:= 0) 119:field 5012:ISBN 4992:ISBN 4938:2007 4892:2021 4840:ISBN 4807:ISBN 4774:ISBN 4705:PMID 4685:2013 4557:2020 4489:2020 4401:PMID 4336:2018 3918:ISBN 3872:ISBN 3715:and 3686:for 3673:and 3534:For 3498:atom 3480:and 3325:and 3288:neon 2750:Zinc 2708:Gold 2653:110 2558:109 2423:Iron 1187:iron 1179:ions 1157:and 1151:zinc 1108:and 986:and 970:and 859:The 839:The 829:and 609:", " 602:", " 600:harp 595:as " 534:neon 370:term 331:atom 291:= 2 270:= 1 225:= 0 219:= 0 198:s ( 175:and 140:, a 100:neon 84:atom 66:and 40:and 4881:doi 4832:doi 4803:239 4697:doi 4658:doi 4611:doi 4584:doi 4582:". 4522:doi 4510:362 4465:doi 4429:doi 4391:PMC 4383:doi 4292:doi 4249:doi 4219:doi 4186:doi 4184:". 4134:doi 4099:doi 4061:doi 4031:doi 3992:doi 3954:doi 3851:doi 3849:". 3822:doi 3820:". 3707:of 3538:or 3519:of 2899:or 2857:1/2 2846:8s 2808:112 2737:111 2723:4f 2639:4f 2540:77 2484:108 2410:107 2339:106 2262:105 2188:104 2114:103 2043:102 1996:101 1949:100 1262:1/2 1088:.) 1068:). 982:of 798:). 766:.…» 720:'s 356:of 354:set 348:An 205:p ( 129:or 94:or 86:or 78:of 62:In 55:of 5275:: 4972:. 4954:. 4879:. 4869:65 4867:. 4863:. 4838:. 4772:. 4756:^ 4703:. 4695:. 4683:. 4656:. 4644:. 4607:88 4605:. 4572:, 4547:. 4520:. 4508:. 4471:. 4463:. 4457:. 4399:. 4389:. 4377:. 4373:. 4316:. 4290:. 4280:73 4278:. 4255:. 4245:21 4243:. 4231:^ 4217:. 4207:56 4205:. 4174:, 4146:^ 4130:42 4128:. 4124:. 4105:. 4097:. 4087:31 4085:. 4057:48 4027:39 4025:. 3998:. 3990:. 3980:13 3978:. 3950:41 3948:. 3944:. 3895:. 3839:, 3810:, 3800:^ 3711:, 3669:, 3655:^ 3464:. 3444:. 3433:. 3274:(H 3231:1s 3227:Og 3201:1s 3197:Rn 3172:1s 3168:Xe 3144:1s 3140:Kr 3117:1s 3113:Ar 3091:1s 3087:Ne 3066:1s 3062:He 3021:Rn 3019:, 3017:Xe 3015:, 3013:Kr 3011:, 3009:Ar 3007:, 3005:Ne 3003:, 3001:He 2979:. 2915:. 2852:8p 2848:5g 2840:. 2813:Rn 2795:Xe 2790:80 2777:Kr 2772:48 2759:Ar 2754:30 2742:Rn 2725:5d 2721:6s 2717:Xe 2712:79 2696:Kr 2691:47 2675:Ar 2670:29 2658:Rn 2641:5d 2637:6s 2633:Xe 2628:78 2612:Kr 2607:46 2586:Ar 2580:Ar 2575:28 2563:Rn 2545:Xe 2524:Kr 2519:45 2506:Ar 2501:27 2489:Rn 2471:Xe 2466:76 2450:Kr 2445:44 2432:Ar 2427:26 2415:Rn 2397:Xe 2392:75 2379:Kr 2374:43 2361:Ar 2356:25 2344:Rn 2326:Xe 2321:74 2305:Kr 2300:42 2284:Ar 2279:24 2267:Rn 2249:Xe 2244:73 2228:Kr 2223:41 2210:Ar 2205:23 2193:Rn 2175:Xe 2170:72 2157:Kr 2152:40 2139:Ar 2134:22 2119:Rn 2101:Xe 2096:71 2083:Kr 2078:39 2065:Ar 2060:21 2048:Rn 2030:Xe 2025:70 2001:Rn 1983:Xe 1978:69 1954:Rn 1936:Xe 1931:68 1907:Rn 1902:99 1889:Xe 1884:67 1860:Rn 1855:98 1842:Xe 1837:66 1813:Rn 1808:97 1795:Xe 1790:65 1763:Rn 1758:96 1742:Xe 1737:64 1713:Rn 1708:95 1695:Xe 1690:63 1666:Rn 1661:94 1648:Xe 1643:62 1616:Rn 1611:93 1598:Xe 1593:61 1566:Rn 1561:92 1548:Xe 1543:60 1516:Rn 1511:91 1498:Xe 1493:59 1466:Rn 1461:90 1445:Xe 1440:58 1413:Rn 1408:89 1392:Xe 1387:57 1104:. 990:. 959:, 957:Og 913:: 825:, 736:. 667:. 635:, 582:4f 574:4d 475:. 436:, 428:A 364:, 345:. 238:s 179:. 152:. 133:. 51:A 5143:) 5141:s 5134:) 5132:m 5125:) 5123:ℓ 5116:) 5114:n 5058:e 5051:t 5044:v 4976:. 4958:. 4940:. 4894:. 4883:: 4875:: 4848:. 4834:: 4815:. 4782:. 4711:. 4699:: 4691:: 4677:3 4664:. 4660:: 4652:: 4646:8 4617:. 4613:: 4586:: 4559:. 4528:. 4524:: 4516:: 4491:. 4467:: 4431:: 4407:. 4385:: 4379:6 4369:3 4365:2 4363:) 4361:3 4357:3 4355:H 4353:5 4338:. 4298:. 4294:: 4286:: 4263:. 4251:: 4225:. 4221:: 4213:: 4188:: 4140:. 4136:: 4113:. 4101:: 4093:: 4067:. 4063:: 4037:. 4033:: 4006:. 3994:: 3986:: 3960:. 3956:: 3926:. 3899:. 3880:. 3853:: 3824:: 3755:. 3745:n 3739:n 3694:. 3679:l 3675:m 3671:l 3667:n 3395:g 3391:g 3387:g 3383:u 3379:u 3375:g 3371:u 3367:g 3363:g 3359:u 3355:g 3351:u 3347:g 3343:u 3339:g 3335:2 3276:2 3223:7 3193:6 3164:5 3136:4 3109:3 3083:2 3058:1 2999:( 2872:. 2596:) 2592:( 1362:Z 1350:Z 1338:Z 1326:Z 1143:l 1139:n 1135:l 1131:n 1127:l 1123:n 1119:l 1115:n 1026:n 1012:. 961:Z 943:. 941:n 937:l 933:n 928:. 926:l 922:n 833:. 831:m 827:j 823:k 819:n 641:l 637:l 625:f 619:f 612:d 605:p 598:s 549:n 509:( 462:l 458:l 454:n 450:l 446:n 442:l 438:l 422:2 418:1 412:2 408:1 398:n 394:n 390:n 384:( 374:n 366:n 289:n 268:n 260:y 257:p 252:x 249:p 244:z 241:p 229:m 223:m 217:m 207:l 200:l 20:)

Index

Closed shell

Electron
atomic
molecular orbitals

Bohr diagram
lithium
atomic physics
quantum chemistry
distribution
electrons
atom
molecule
atomic
molecular orbitals
neon
subshells
orbital
field
nuclei
Slater determinants
configuration state functions
quantum mechanics
level of energy
quantum
photon
periodic table of elements
chemical bonds
chemical formulas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.