Knowledge

Chern class

Source 📝

16144: 15927: 16165: 16133: 16202: 16175: 16155: 8355: 8050: 4300: 3829: 12319: 15544: 13917: 4546: 13141: 1873: 95:
associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different.
4118: 3620: 12042: 6442: 15288: 2130: 7977: 2994: 6632: 13648: 8350:{\displaystyle {\begin{aligned}c_{t}(\operatorname {Sym} ^{p}E)&=\prod _{i_{1}\leq \cdots \leq i_{p}}(1+(\alpha _{i_{1}}+\cdots +\alpha _{i_{p}})t),\\c_{t}(\wedge ^{p}E)&=\prod _{i_{1}<\cdots <i_{p}}(1+(\alpha _{i_{1}}+\cdots +\alpha _{i_{p}})t).\end{aligned}}} 11617: 5981: 14493:. The formal properties of the Chern classes remain the same, with one crucial difference: the rule which computes the first Chern class of a tensor product of line bundles in terms of first Chern classes of the factors is not (ordinary) addition, but rather a 13657: 12827: 6248: 14950: 4367: 249:
vector bundle (the "hairs" on a ball are actually copies of the real line), there are generalizations in which the hairs are complex (see the example of the complex hairy ball theorem below), or for 1-dimensional projective spaces over many other fields.
12700: 11804: 12832: 13370: 8831: 7263: 2800: 6261: 14193: 14120: 12006: 3266: 1747: 3477: 7720: 702: 8636: 9041: 2863: 10748: 6460: 1955: 13488: 7643: 4113: 211:
Chern's approach used differential geometry, via the curvature approach described predominantly in this article. He showed that the earlier definition was in fact equivalent to his. The resulting theory is known as the
4889: 9750: 2606: 14543:) reducing degrees by 1. This corresponds to the fact that the Chow groups are a sort of analog of homology groups, and elements of cohomology groups can be thought of as homomorphisms of homology groups using the 12479: 4295:{\displaystyle T\mathbb {C} \mathbb {P} ^{n}\oplus {\mathcal {O}}=\operatorname {Hom} ({\mathcal {O}}(-1),\eta )\oplus \operatorname {Hom} ({\mathcal {O}}(-1),{\mathcal {O}}(-1))={\mathcal {O}}(1)^{\oplus (n+1)}.} 3824:{\displaystyle 0\to \Omega _{\mathbb {C} \mathbb {P} ^{n}}|_{U}{\overset {dz_{i}\mapsto e_{i}}{\to }}\oplus _{1}^{n+1}{\mathcal {O}}(-1)|_{U}{\overset {e_{i}\mapsto z_{i}}{\to }}{\mathcal {O}}_{U}\to 0,\,i\geq 0,} 11507: 6068: 10451: 5812: 12314:{\displaystyle {\begin{aligned}c({\mathcal {T}}_{X})&={\frac {1+5h+10h^{2}+10h^{3}}{1+5h}}\\&=\left(1+5h+10h^{2}+10h^{3}\right)\left(1-5h+25h^{2}-125h^{3}\right)\\&=1+10h^{2}-40h^{3}\end{aligned}}} 4665: 1501:
is connected. Hence, one simply defines the top Chern class of the bundle to be its Euler class (the Euler class of the underlying real vector bundle) and handles lower Chern classes in an inductive fashion.
6852: 4608: 459: 5653: 9859: 5280: 4039: 2361: 15539:{\displaystyle {\begin{aligned}c(V)&=c(L_{1}\oplus \cdots \oplus L_{n})\\&=\prod _{i=1}^{n}c(L_{i})\\&=\prod _{i=1}^{n}(1+x_{i})\\&=\sum _{i=0}^{n}e_{i}(x_{1},\ldots ,x_{n})\end{aligned}}} 8944: 5024: 3533: 2504: 12705: 5442: 234:) over any nonsingular variety. Algebro-geometric Chern classes do not require the underlying field to have any special properties. In particular, the vector bundles need not necessarily be complex. 7039: 114:
Chern classes are also feasible to calculate in practice. In differential geometry (and some types of algebraic geometry), the Chern classes can be expressed as polynomials in the coefficients of the
9317: 6964: 6077: 3329: 14802: 11212: 9937: 12598: 11702: 10010: 7367: 3089: 1499: 15208: 15293: 12837: 12047: 8055: 1049: 3037: 1742: 976: 13424: 5332: 468:
In algebraic geometry, this classification of (isomorphism classes of) complex line bundles by the first Chern class is a crude approximation to the classification of (isomorphism classes of)
7715: 6925: 5172: 11278: 822: 15283: 13242: 8025: 11459: 11156: 9634: 8426: 7509: 3982: 1440: 14033: 3937: 9505: 7104: 10080: 9096: 12573: 12368: 11502: 2682: 10582: 9321:
Since the values are in integral cohomology groups, rather than cohomology with real coefficients, these Chern classes are slightly more refined than those in the Riemannian example.
9202: 4362: 10502: 7086: 4733: 11697: 11358: 11064: 5507: 2278: 360: 14124: 10977: 2244: 1587: 14051: 13483: 11867: 10347: 10118: 3193: 3155: 1915: 3899: 3564: 3335: 2850: 1623: 9788: 8882: 2184: 1535: 13912:{\displaystyle \operatorname {ch} (V)=\operatorname {rk} (V)+c_{1}(V)+{\frac {1}{2}}(c_{1}(V)^{2}-2c_{2}(V))+{\frac {1}{6}}(c_{1}(V)^{3}-3c_{1}(V)c_{2}(V)+3c_{3}(V))+\cdots .} 12037: 11657: 10309: 6716: 2405: 11862: 10244: 10164: 8669: 8477: 3615: 11395: 2675: 606: 15069: 14396: 11321: 11022: 10812: 9372: 4541:{\displaystyle c(\mathbb {C} \mathbb {P} ^{n}){\overset {\mathrm {def} }{=}}c(T\mathbb {CP} ^{n})=c({\mathcal {O}}_{\mathbb {C} \mathbb {P} ^{n}}(1))^{n+1}=(1+a)^{n+1},} 169:
can therefore be defined as the pullback of the Chern classes of the universal bundle. In turn, these universal Chern classes can be explicitly written down in terms of
14359: 9566: 1950: 730: 14046:
The Chern character is useful in part because it facilitates the computation of the Chern class of a tensor product. Specifically, it obeys the following identities:
10863: 10132:
that the total Chern class of an arbitrary finite rank complex vector bundle can be defined in terms of the first Chern class of a tautologically-defined line bundle.
9411: 5749: 5543: 5079: 1091: 564: 10617: 4793: 1680: 761: 595: 10919: 10612: 10206: 9537: 15121: 15042: 14505:
In algebraic geometry there is a similar theory of Chern classes of vector bundles. There are several variations depending on what groups the Chern classes lie in:
14423: 13136:{\displaystyle {\begin{aligned}c({\mathcal {T}}_{X})&={\frac {(1+)^{4}}{(1+d)}}\\&=(1+4+6^{2})(1-d+d^{2}^{2})\\&=1+(4-d)+(6-4d+d^{2})^{2}\end{aligned}}} 12506: 10264: 7405: 4760: 3857: 15547: 13187: 8664: 8506: 7521: 6071: 3198: 14446: 14299: 14276: 13210: 4798: 14470: 14319: 13161: 12593: 12530: 11826: 11469:
Computing the characteristic classes for projective space forms the basis for many characteristic class computations since for any smooth projective subvariety
11084: 9639: 8045: 7425: 2511: 14475:
The Chern numbers of the tangent bundle of a complex (or almost complex) manifold are called the Chern numbers of the manifold, and are important invariants.
12377: 10752:
One then may check that this alternative definition coincides with whatever other definition one may favor, or use the previous axiomatic characterization.
8511: 3859:
are the basis of the middle term. The same sequence is clearly then exact on the whole projective space and the dual of it is the aforementioned sequence.
10359: 8949: 6437:{\displaystyle \operatorname {ch} (E)=\operatorname {rk} +c_{1}+{\frac {1}{2}}(c_{1}^{2}-2c_{2})+{\frac {1}{6}}(c_{1}^{3}-3c_{1}c_{2}+3c_{3})+\cdots .} 16205: 6749: 5556: 1868:{\displaystyle \cdots \to \operatorname {H} ^{k}(B;\mathbb {Z} ){\overset {\pi |_{B'}^{*}}{\to }}\operatorname {H} ^{k}(B';\mathbb {Z} )\to \cdots ,} 3990: 2304: 4044: 4921: 2415: 7972:{\displaystyle c_{1}(E)+rc_{1}(L),\dots ,\sum _{j=0}^{i}{\binom {r-i+j}{j}}c_{i-j}(E)c_{1}(L)^{j},\dots ,\sum _{j=0}^{r}c_{r-j}(E)c_{1}(L)^{j}.} 5337: 1449:
One can define a Chern class in terms of an Euler class. This is the approach in the book by Milnor and Stasheff, and emphasizes the role of an
9218: 4898:
A Chern polynomial is a convenient way to handle Chern classes and related notions systematically. By definition, for a complex vector bundle
365: 14197:
As stated above, using the Grothendieck additivity axiom for Chern classes, the first of these identities can be generalized to state that
5986: 5189: 2989:{\displaystyle 0\to {\mathcal {O}}_{\mathbb {CP} ^{n}}\to {\mathcal {O}}_{\mathbb {CP} ^{n}}(1)^{\oplus (n+1)}\to T\mathbb {CP} ^{n}\to 0} 6627:{\displaystyle \operatorname {td} (E)=\prod _{1}^{n}{a_{i} \over 1-e^{-a_{i}}}=1+{1 \over 2}c_{1}+{1 \over 12}(c_{1}^{2}+c_{2})+\cdots .} 4613: 2125:{\displaystyle c_{k}(E)={\begin{cases}{\pi |_{B'}^{*}}^{-1}c_{k}(E')&k<n\\e(E_{\mathbb {R} })&k=n\\0&k>n\end{cases}}} 13643:{\displaystyle \operatorname {ch} (V)=e^{x_{1}}+\cdots +e^{x_{n}}:=\sum _{m=0}^{\infty }{\frac {1}{m!}}(x_{1}^{m}+\cdots +x_{n}^{m}).} 6857: 4555: 16231: 770: 15213: 9808: 12010:
Since the Chow ring of a hypersurface is difficult to compute, we will consider this sequence as a sequence of coherent sheaves in
9571: 8887: 1098: 362:, which associates to a line bundle its first Chern class. Moreover, this bijection is a group homomorphism (thus an isomorphism): 13943: 6639:: The observation that a Chern class is essentially an elementary symmetric polynomial can be used to "define" Chern classes. Let 14329:
of the vector bundle. For example, if the manifold has dimension 6, there are three linearly independent Chern numbers, given by
14240: 3485: 6985: 10891:
There is another construction of Chern classes which take values in the algebrogeometric analogue of the cohomology ring, the
6935: 3271: 15783: 15765: 15716: 15690: 15624: 11612:{\displaystyle 0\to {\mathcal {T}}_{X}\to {\mathcal {T}}_{\mathbb {P} ^{n}}|_{X}\to {\mathcal {N}}_{X/\mathbb {P} ^{n}}\to 0} 9157: 5976:{\displaystyle t_{1}^{k}+\cdots +t_{n}^{k}=s_{k}(\sigma _{1}(t_{1},\ldots ,t_{n}),\ldots ,\sigma _{k}(t_{1},\ldots ,t_{n}))} 10349:
to minus the (Poincaré-dual) class of the hyperplane, that spans the cohomology of the fiber, in view of the cohomology of
7283: 3042: 1463: 15126: 981: 2999: 908: 126:
There are various ways of approaching the subject, each of which focuses on a slightly different flavor of Chern class.
15839: 13377: 10895:. It can be shown that there is a unique theory of Chern classes such that if you are given an algebraic vector bundle 5285: 295:. Then the only nontrivial Chern class is the first Chern class, which is an element of the second cohomology group of 28: 10269: 7648: 6675: 5092: 2368: 16193: 16188: 15740: 14729: 15730: 7984: 15093: 12822:{\displaystyle c({\mathcal {T}}_{X})={\frac {c({\mathcal {T}}_{\mathbb {P} ^{3}|_{X}})}{c({\mathcal {O}}_{X}(d))}}} 11400: 11093: 8360: 7430: 5662: 3950: 2679:
We must show that this cohomology class is non-zero. It suffices to compute its integral over the Riemann sphere:
3908: 2613: 16226: 16183: 10453:
therefore form a family of ambient cohomology classes restricting to a basis of the cohomology of the fiber. The
9432: 6243:{\displaystyle \operatorname {ch} (E)=e^{a_{1}(E)}+\cdots +e^{a_{n}(E)}=\sum s_{k}(c_{1}(E),\ldots ,c_{n}(E))/k!} 108: 14945:{\displaystyle H^{2*}(M,\mathbb {Z} )\to \oplus _{k}^{\infty }\eta (H^{2*}(M,\mathbb {Z} )),x\mapsto xt^{|x|/2}} 10026: 9046: 237:
Regardless of the particular paradigm, the intuitive meaning of the Chern class concerns 'required zeroes' of a
12695:{\displaystyle 0\to {\mathcal {T}}_{X}\to {\mathcal {T}}_{\mathbb {P} ^{3}}|_{X}\to {\mathcal {O}}_{X}(d)\to 0} 12543: 12326: 11799:{\displaystyle 0\to {\mathcal {T}}_{X}\to {\mathcal {T}}_{\mathbb {P} ^{4}}|_{X}\to {\mathcal {O}}_{X}(5)\to 0} 11472: 9414: 1450: 898:. It can be shown that the cohomology classes of the Chern forms do not depend on the choice of connection in 11163: 10526: 9888: 1693: 1592: 16085: 14484: 9946: 4309: 230:. The generalized Chern classes in algebraic geometry can be defined for vector bundles (or more precisely, 103:
sections a vector bundle has. The Chern classes offer some information about this through, for instance, the
10460: 7044: 4670: 1505:
The precise construction is as follows. The idea is to do base change to get a bundle of one-less rank. Let
11662: 11326: 11029: 9540: 5447: 2249: 477: 321: 14952:
where the left is the cohomology ring of even terms, η is a ring homomorphism that disregards grading and
10924: 2365:
This is evinced by the fact that a trivial bundle always admits a flat connection. So, we shall show that
2208: 483:
For complex vector bundles of dimension greater than one, the Chern classes are not a complete invariant.
13429: 10314: 10085: 6731:
is exactly the ring of symmetric polynomials, which are polynomials in elementary symmetric polynomials σ
3160: 3114: 3869: 3538: 2820: 16093: 14489: 14483:
There is a generalization of the theory of Chern classes, where ordinary cohomology is replaced with a
14322: 13365:{\displaystyle \operatorname {ch} (L)=\exp(c_{1}(L)):=\sum _{m=0}^{\infty }{\frac {c_{1}(L)^{m}}{m!}}.} 9761: 8855: 8826:{\displaystyle c(\operatorname {Sym} ^{2}E)=1+4c_{1}+5c_{1}^{2}+5c_{2}+2c_{1}^{3}+11c_{1}c_{2}+7c_{3}.} 2157: 1508: 307: 266: 15760:, Annals of Mathematics Studies, vol. 76, Princeton University Press; University of Tokyo Press, 12013: 11633: 11217: 14672: 11831: 10218: 10138: 3092: 1555: 571: 238: 14512:
For varieties over general fields, the Chern classes can take values in cohomology theories such as
8433: 7258:{\displaystyle \operatorname {Nat} (,H^{*}(-,\mathbb {Z} ))=H^{*}(G_{n},\mathbb {Z} )=\mathbb {Z} .} 3569: 1986: 1878: 99:
In topology, differential geometry, and algebraic geometry, it is often important to count how many
15892: 11365: 10760:
In fact, these properties uniquely characterize the Chern classes. They imply, among other things:
10454: 10350: 10129: 9755: 2191: 853: 104: 63: 50:. They have since become fundamental concepts in many branches of mathematics and physics, such as 2795:{\displaystyle \int c_{1}={\frac {i}{\pi }}\int {\frac {dz\wedge d{\bar {z}}}{(1+|z|^{2})^{2}}}=2} 16178: 16164: 15047: 14561: 8852:
We can use these abstract properties to compute the rest of the chern classes of line bundles on
887: 469: 254: 55: 14364: 12532:
by using the definition of the Euler characteristic and using the Lefschetz hyperplane theorem.
12512:). The Euler characteristic can then be used to compute the Betti numbers for the cohomology of 11284: 10985: 10775: 9335: 2134:
It then takes some work to check the axioms of Chern classes are satisfied for this definition.
16113: 16034: 15911: 15899: 15872: 15832: 15634: 14332: 9871: 9545: 2301:
For this, we need the following fact: the first Chern class of a trivial bundle is zero, i.e.,
1920: 709: 220: 129:
The original approach to Chern classes was via algebraic topology: the Chern classes arise via
16108: 14642:
vector bundles, by the intermediation of compatible almost complex structures. In particular,
12509: 10832: 9384: 5718: 5512: 5048: 1058: 533: 15955: 15882: 15577: 14697: 14224:. The second identity establishes the fact that this homomorphism also respects products in 14188:{\displaystyle \operatorname {ch} (V\otimes W)=\operatorname {ch} (V)\operatorname {ch} (W).} 13937: 9107: 6649: 4772: 1457: 746: 580: 497: 213: 92: 44: 14115:{\displaystyle \operatorname {ch} (V\oplus W)=\operatorname {ch} (V)+\operatorname {ch} (W)} 12001:{\displaystyle c({\mathcal {T}}_{X})c({\mathcal {O}}_{X}(5))=(1+h)^{5}=1+5h+10h^{2}+10h^{3}} 10898: 10587: 10185: 9516: 6932:: Any characteristic class is a polynomial in Chern classes, for the reason as follows. Let 3261:{\displaystyle \pi \colon \mathbb {C} ^{n+1}\setminus \{0\}\to \mathbb {C} \mathbb {P} ^{n}} 2138: 16103: 16055: 16029: 15877: 15672: 15099: 15020: 14401: 13936:
If a connection is used to define the Chern classes when the base is a manifold (i.e., the
13230: 12484: 10249: 7383: 6979: 5690: 4738: 3835: 3472:{\displaystyle \pi ^{*}d(z_{i}/z_{0})={z_{0}dz_{i}-z_{i}dz_{0} \over z_{0}^{2}},\,i\geq 1.} 2199: 231: 100: 88: 40: 8: 15950: 14692: 14643: 14639: 14509:
For complex varieties the Chern classes can take values in ordinary cohomology, as above.
14252: 13922: 13166: 8643: 8485: 5712: 3902: 857: 833: 310:
with which to classify complex line bundles, topologically speaking. That is, there is a
16154: 15798: 14428: 14281: 14258: 13192: 9799: 5755:
need not be a direct sum of line bundles in the preceding discussion. The conclusion is
1660: 277: 16148: 16118: 16098: 16019: 16009: 15887: 15867: 15602: 14455: 14304: 13146: 12578: 12515: 11811: 11069: 8030: 7410: 6719: 2807: 2290: 895: 473: 242: 227: 32: 24: 5334:
is a direct sum of (complex) line bundles, then it follows from the sum formula that:
16143: 16136: 16002: 15960: 15825: 15779: 15761: 15736: 15712: 15686: 15660: 15638: 15620: 15594: 15572: 14725: 14687: 14655: 14604: 14517: 14449: 11627: 9114: 7089: 7088:
Characteristic classes form a ring because of the ring structure of cohomology ring.
6657: 3096: 2803: 1538: 697:{\displaystyle \det \left({\frac {it\Omega }{2\pi }}+I\right)=\sum _{k}c_{k}(V)t^{k}} 241:
of a vector bundle: for example the theorem saying one can't comb a hairy ball flat (
134: 67: 16168: 14623:â€Č is another almost complex manifold of the same dimension, then it is cobordant to 8631:{\displaystyle c(\operatorname {Sym} ^{2}E)=1+3c_{1}+2c_{1}^{2}+4c_{2}+4c_{1}c_{2},} 465:
of complex line bundles corresponds to the addition in the second cohomology group.
15916: 15862: 15808: 15650: 15586: 14749: 14667: 14513: 14494: 9036:{\displaystyle c_{1}({\mathcal {O}}(1))=1\in H^{2}(\mathbb {CP} ^{1};\mathbb {Z} )} 8840: 5177:
The Whitney sum formula, one of the axioms of Chern classes (see below), says that
891: 736:
with coefficients in the commutative algebra of even complex differential forms on
503: 14765:
Editorial note: Our notation differs from Milnor−Stasheff, but seems more natural.
2410: 15975: 15970: 15708: 15680: 15668: 15614: 11087: 9510: 9422: 3480: 872: 825: 520: 130: 16158: 10743:{\displaystyle -a^{n}=c_{1}(E)\cdot a^{n-1}+\cdots +c_{n-1}(E)\cdot a+c_{n}(E).} 16065: 15997: 14775: 14572: 14527:
over general fields the Chern classes can also take values in homomorphisms of
14040: 9940: 2285: 2187: 1687: 741: 575: 462: 170: 115: 15700: 15017:
Use, for example, WolframAlpha to expand the polynomial and then use the fact
4610:; i.e., the negative of the first Chern class of the tautological line bundle 16220: 16075: 15985: 15965: 15802: 15664: 15598: 14745: 14588: 14206: 13233:
of a space to (the completion of) its rational cohomology. For a line bundle
13213: 3100: 1052: 513: 506: 165:, of a universal bundle over the classifying space, and the Chern classes of 51: 47: 15812: 7638:{\displaystyle c_{t}(E\otimes L)=\sum _{i=0}^{r}c_{i}(E)c_{t}(L)^{r-i}t^{i}} 4108:{\displaystyle {\mathcal {O}}(-1)\oplus \eta ={\mathcal {O}}^{\oplus (n+1)}} 16060: 15980: 15926: 15753: 15726: 14202: 7092:
says this ring of characteristic classes is exactly the cohomology ring of
6970:, assigns the set of isomorphism classes of complex vector bundles of rank 4884:{\displaystyle c_{k}(\mathbb {C} \mathbb {P} ^{n})={\binom {n+1}{k}}a^{k}.} 138: 14531:
CH(V): for example, the first Chern class of a line bundle over a variety
9745:{\displaystyle c_{k}(E\oplus F)=\sum _{i=0}^{k}c_{i}(E)\smile c_{k-i}(F).} 15749: 14682: 14677: 14544: 12371: 10874: 10121: 10020: 7378: 2601:{\displaystyle \Omega ={\frac {2dz\wedge d{\bar {z}}}{(1+|z|^{2})^{2}}}.} 841: 837: 300: 292: 59: 20: 14301:(i.e., the sum of indices of the Chern classes in the product should be 13229:
Chern classes can be used to construct a homomorphism of rings from the
16014: 15945: 15904: 15655: 15606: 14717: 14528: 12474:{\displaystyle \int _{}c_{3}({\mathcal {T}}_{X})=\int _{}-40h^{3}=-200} 9803: 9125: 9043:. Then using tensor powers, we can relate them to the chern classes of 6450: 3985: 2811: 281: 12370:
to compute the Euler characteristic. Traditionally this is called the
10246:
is equipped with its tautological complex line bundle, that we denote
223:
showing that axiomatically one need only define the line bundle case.
16039: 14557: 14487:. The theories for which such generalization is possible are called 10892: 311: 15590: 14583:
are thus defined to be the Chern classes of its tangent bundle. If
14448:, the number of possible independent Chern numbers is the number of 6063:{\displaystyle s_{1}=\sigma _{1},s_{2}=\sigma _{1}^{2}-2\sigma _{2}} 5751:
factorizes into linear factors after enlarging the cohomology ring;
16024: 15992: 15941: 15848: 14799:
In a ring-theoretic term, there is an isomorphism of graded rings:
14596: 14210: 10446:{\displaystyle 1,a,a^{2},\ldots ,a^{n-1}\in H^{*}(\mathbb {P} (E))} 2202: 2149: 9209: 4660:{\displaystyle {\mathcal {O}}_{\mathbb {C} \mathbb {P} ^{n}}(-1)} 14724:(Corr. 3. print. ed.). New York : Springer. p. 267ff. 10921:
over a quasi-projective variety there are a sequence of classes
9539:
is another complex vector bundle, then the Chern classes of the
6847:{\displaystyle f_{E}^{*}:\mathbb {Z} \to H^{*}(X,\mathbb {Z} ).} 4603:{\displaystyle H^{2}(\mathbb {C} \mathbb {P} ^{n},\mathbb {Z} )} 192:, the maps must be homotopic. Therefore, the pullback by either 14649: 5648:{\displaystyle c_{k}(E)=\sigma _{k}(a_{1}(E),\ldots ,a_{n}(E))} 15722:(Provides a very short, introductory review of Chern classes). 9854:{\displaystyle \mathbb {CP} ^{k-1}\subseteq \mathbb {CP} ^{k}} 4034:{\displaystyle \operatorname {Hom} ({\mathcal {O}}(-1),\eta )} 2356:{\displaystyle c_{1}(\mathbb {CP} ^{1}\times \mathbb {C} )=0.} 204:
must be the same class. This shows that the Chern classes of
133:
which provides a mapping associated with a vector bundle to a
8939:{\displaystyle {\mathcal {O}}(-1)^{*}\cong {\mathcal {O}}(1)} 883: 188:
to the classifying space whose pullbacks are the same bundle
15817: 5019:{\displaystyle c_{t}(E)=1+c_{1}(E)t+\cdots +c_{n}(E)t^{n}.} 3528:{\displaystyle \Omega _{\mathbb {C} \mathbb {P} ^{n}}|_{U}} 2499:{\displaystyle h={\frac {dzd{\bar {z}}}{(1+|z|^{2})^{2}}}.} 2118: 14325:(or "integrated over the manifold") to give an integer, a 13426:
is a direct sum of line bundles, with first Chern classes
12323:
Using the Gauss-Bonnet theorem we can integrate the class
10504:
can be written uniquely as a linear combination of the 1,
5702:'s is a polynomial in elementary symmetric polynomials in 5437:{\displaystyle c_{t}(E)=(1+a_{1}(E)t)\cdots (1+a_{n}(E)t)} 2814:
would integrate to 0, so the cohomology class is nonzero.
245:). Although that is strictly speaking a question about a 15575:(1946), "Characteristic classes of Hermitian Manifolds", 13143:
Giving the total chern class. In particular, we can find
7034:{\displaystyle \operatorname {Vect} _{n}^{\mathbb {C} }=} 2246:
be the bundle of complex tangent vectors having the form
9878:) replaced these with a slightly smaller set of axioms: 9312:{\displaystyle c(E)=c_{0}(E)+c_{1}(E)+c_{2}(E)+\cdots .} 6959:{\displaystyle \operatorname {Vect} _{n}^{\mathbb {C} }} 3324:{\displaystyle U=\mathbb {CP} ^{n}\setminus \{z_{0}=0\}} 3039:
is the structure sheaf (i.e., the trivial line bundle),
2610:
Furthermore, by the definition of the first Chern class
2508:
One readily shows that the curvature 2-form is given by
1460:
comes with a canonical orientation, ultimately because
1093:, we get the following expression for the Chern forms: 12595:
smooth hypersurface, we have the short exact sequence
5553:, determine the coefficients of the polynomial: i.e., 454:{\displaystyle c_{1}(L\otimes L')=c_{1}(L)+c_{1}(L');} 200:
of any universal Chern class to a cohomology class of
15291: 15216: 15129: 15102: 15050: 15023: 14805: 14458: 14431: 14404: 14367: 14335: 14307: 14284: 14261: 14127: 14054: 13946: 13660: 13491: 13432: 13380: 13245: 13195: 13169: 13149: 12835: 12708: 12601: 12581: 12546: 12518: 12487: 12380: 12329: 12045: 12016: 11870: 11834: 11814: 11705: 11665: 11636: 11510: 11475: 11403: 11368: 11329: 11287: 11220: 11166: 11096: 11072: 11032: 10988: 10927: 10901: 10835: 10778: 10620: 10590: 10529: 10463: 10362: 10317: 10272: 10252: 10221: 10188: 10141: 10088: 10029: 9949: 9891: 9811: 9764: 9642: 9574: 9548: 9519: 9435: 9387: 9338: 9329:
The Chern classes satisfy the following four axioms:
9221: 9160: 9049: 8952: 8890: 8858: 8672: 8646: 8514: 8488: 8436: 8363: 8053: 8033: 7987: 7723: 7651: 7524: 7433: 7413: 7386: 7362:{\displaystyle c_{t}(E)=\sum _{i=0}^{r}c_{i}(E)t^{i}} 7286: 7107: 7047: 6988: 6938: 6860: 6752: 6678: 6463: 6264: 6080: 5989: 5815: 5721: 5559: 5515: 5450: 5340: 5288: 5192: 5095: 5051: 4924: 4801: 4775: 4741: 4673: 4616: 4558: 4370: 4312: 4121: 4047: 3993: 3953: 3911: 3901:
that passes through the origin. It is an exercise in
3872: 3838: 3623: 3572: 3541: 3488: 3338: 3274: 3201: 3163: 3117: 3084:{\displaystyle {\mathcal {O}}_{\mathbb {CP} ^{n}}(1)} 3045: 3002: 2866: 2823: 2685: 2616: 2514: 2418: 2371: 2307: 2252: 2211: 2160: 1958: 1923: 1881: 1750: 1696: 1663: 1595: 1558: 1511: 1494:{\displaystyle \operatorname {GL} _{n}(\mathbb {C} )} 1466: 1101: 1061: 984: 911: 882:
of the Chern class indicates that 'class' here means
773: 749: 712: 609: 583: 536: 526:, representatives of each Chern class (also called a 368: 324: 314:
between the isomorphism classes of line bundles over
15203:{\displaystyle c_{i}(V)=e_{i}(x_{1},\ldots ,x_{n}).} 14278:, then any product of Chern classes of total degree 13940:), then the explicit form of the Chern character is 5275:{\displaystyle c_{t}(E\oplus E')=c_{t}(E)c_{t}(E').} 10519:In particular, one may define the Chern classes of 6966:be the contravariant functor that, to a CW complex 4552:is the canonical generator of the cohomology group 1044:{\displaystyle \det(X)=\exp(\mathrm {tr} (\ln(X)))} 15805:. Contains a chapter about characteristic classes. 15538: 15277: 15202: 15115: 15063: 15036: 14944: 14478: 14464: 14440: 14417: 14390: 14353: 14313: 14293: 14270: 14187: 14114: 14027: 13911: 13642: 13477: 13418: 13364: 13204: 13181: 13155: 13135: 12821: 12694: 12587: 12567: 12524: 12500: 12473: 12362: 12313: 12031: 12000: 11856: 11820: 11798: 11691: 11651: 11611: 11496: 11453: 11389: 11352: 11315: 11272: 11206: 11150: 11078: 11058: 11016: 10971: 10913: 10857: 10806: 10742: 10606: 10576: 10496: 10445: 10341: 10303: 10258: 10238: 10200: 10158: 10112: 10074: 10004: 9931: 9865: 9853: 9782: 9744: 9628: 9560: 9531: 9499: 9405: 9366: 9311: 9196: 9090: 9035: 8938: 8876: 8825: 8658: 8630: 8500: 8471: 8420: 8349: 8039: 8019: 7971: 7709: 7637: 7503: 7419: 7399: 7361: 7257: 7080: 7033: 6958: 6919: 6846: 6710: 6626: 6436: 6242: 6062: 5975: 5743: 5647: 5537: 5501: 5436: 5326: 5274: 5166: 5073: 5018: 4883: 4787: 4754: 4727: 4659: 4602: 4540: 4356: 4294: 4107: 4033: 3976: 3931: 3893: 3851: 3823: 3609: 3558: 3527: 3471: 3323: 3260: 3187: 3149: 3083: 3032:{\displaystyle {\mathcal {O}}_{\mathbb {CP} ^{n}}} 3031: 2988: 2844: 2794: 2669: 2600: 2498: 2399: 2355: 2272: 2238: 2178: 2124: 1944: 1909: 1867: 1736: 1674: 1617: 1581: 1529: 1493: 1434: 1085: 1043: 971:{\displaystyle \mathrm {tr} (\ln(X))=\ln(\det(X))} 970: 816: 755: 724: 696: 589: 558: 453: 354: 260: 13419:{\displaystyle V=L_{1}\oplus \cdots \oplus L_{n}} 9324: 7828: 7801: 6660:in the sense that, given a complex vector bundle 5327:{\displaystyle E=L_{1}\oplus \cdots \oplus L_{n}} 5028:This is not a new invariant: the formal variable 4862: 4841: 16218: 15554:) above solely in terms of the Chern classes of 13921:This last expression, justified by invoking the 13189:is even, so every smooth hypersurface of degree 7710:{\displaystyle c_{i}(E\otimes L),i=1,2,\dots ,r} 6920:{\displaystyle c_{k}(E)=f_{E}^{*}(\sigma _{k}).} 5167:{\displaystyle c(E)=1+c_{1}(E)+\cdots +c_{n}(E)} 2150:The complex tangent bundle of the Riemann sphere 1625:such that each fiber is the quotient of a fiber 985: 953: 610: 15550:may be used to re-express the power sums in ch( 15088:is a sum of line bundles, the Chern classes of 2860:There is an exact sequence of sheaves/bundles: 817:{\displaystyle \Omega =d\omega +{\frac {1}{2}}} 15748: 15278:{\displaystyle c(V):=\sum _{i=0}^{n}c_{i}(V),} 8020:{\displaystyle \alpha _{1},\dots ,\alpha _{r}} 6978:and, to a map, its pullback. By definition, a 3106:There are two ways to get the above sequence: 299:. As it is the top Chern class, it equals the 157:to the classifying space such that the bundle 15833: 15643:Bulletin de la SociĂ©tĂ© MathĂ©matique de France 14425:. In general, if the manifold has dimension 11864:. Then the Whitney sum formula gives us that 11454:{\displaystyle c:K_{0}(X)\to A^{\bullet }(X)} 11151:{\displaystyle c_{1}({\mathcal {O}}_{X}(D))=} 9629:{\displaystyle c(E\oplus F)=c(E)\smile c(F);} 8421:{\displaystyle c_{1}(\wedge ^{r}E)=c_{1}(E).} 7504:{\displaystyle c_{i}(E^{*})=(-1)^{i}c_{i}(E)} 3977:{\displaystyle T\mathbb {C} \mathbb {P} ^{n}} 1435:{\displaystyle \sum _{k}c_{k}(V)t^{k}=\left.} 836:, or via the same expression in which ω is a 141:in this case). For any complex vector bundle 15633: 14650:Arithmetic schemes and Diophantine equations 14603:in the Chern classes can be paired with the 14028:{\displaystyle \operatorname {ch} (V)=\left} 9875: 9754:Normalization: The total Chern class of the 6656:-dimensional complex vector spaces. It is a 3947:to its complement. Thus, the tangent bundle 3932:{\displaystyle \mathbb {C} \mathbb {P} ^{n}} 3318: 3299: 3235: 3229: 2298:has no section which is everywhere nonzero. 491: 82: 14551: 9500:{\displaystyle c_{k}(f^{*}E)=f^{*}c_{k}(E)} 8847: 5758:"One can evaluate any symmetric polynomial 2855: 16201: 16174: 15840: 15826: 15705:Riemannian Geometry and Geometric Analysis 14556:The theory of Chern classes gives rise to 13485:the Chern character is defined additively 11160:Given an exact sequence of vector bundles 10516:with classes on the base as coefficients. 10075:{\displaystyle c(E)=1+e(E_{\mathbb {R} })} 9091:{\displaystyle c_{1}({\mathcal {O}}(n))=n} 5693:is that any symmetric polynomial in, say, 732:matrices whose entries are polynomials in 15685:. Springer Science & Business Media. 15654: 15619:. Springer Science & Business Media. 14883: 14829: 12755: 12636: 12568:{\displaystyle X\subset \mathbb {P} ^{3}} 12555: 12535: 12363:{\displaystyle c_{3}({\mathcal {T}}_{X})} 12019: 11740: 11639: 11591: 11545: 11497:{\displaystyle X\subset \mathbb {P} ^{n}} 11484: 10478: 10427: 10319: 10223: 10143: 10135:Namely, introducing the projectivization 10101: 10063: 9841: 9838: 9817: 9814: 9770: 9767: 9184: 9026: 9012: 9009: 8864: 8861: 7213: 7202: 7162: 7068: 7000: 6950: 6834: 6772: 4822: 4816: 4633: 4627: 4593: 4579: 4573: 4467: 4461: 4429: 4426: 4384: 4378: 4132: 4126: 3964: 3958: 3943:is naturally the set of linear maps from 3919: 3913: 3905:to see that the complex tangent space to 3875: 3808: 3642: 3636: 3501: 3495: 3459: 3286: 3283: 3248: 3242: 3210: 3166: 3060: 3057: 3017: 3014: 2970: 2967: 2916: 2913: 2887: 2884: 2832: 2829: 2340: 2326: 2323: 2226: 2223: 2166: 2163: 2077: 1849: 1780: 1484: 345: 15776:Algebraic Geometry, a concise dictionary 15044:are elementary symmetric polynomials in 14722:Differential forms in algebraic topology 14571:is an almost complex manifold, then its 11207:{\displaystyle 0\to E'\to E\to E''\to 0} 10886: 10881: 10822:. Thus the total Chern class terminates. 10577:{\displaystyle c_{1}(E),\ldots c_{n}(E)} 9932:{\displaystyle 0\to E'\to E\to E''\to 0} 5715:or by ring theory, any Chern polynomial 1737:{\displaystyle \pi |_{B'}\colon B'\to B} 1633:by the line spanned by a nonzero vector 306:The first Chern class turns out to be a 16:Characteristic classes of vector bundles 13237:, the Chern character ch is defined by 10005:{\displaystyle c(E)=c(E')\smile c(E'')} 9212:coefficients. One can also define the 9197:{\displaystyle H^{2k}(X;\mathbb {Z} ),} 7267: 5509:are the first Chern classes. The roots 4357:{\displaystyle c=1+c_{1}+c_{2}+\cdots } 4306:By the additivity of total Chern class 4041:where η is the vector bundle such that 2288:. We prove the complex version of the 265:For a sheaf theoretic description, see 16219: 15732:A Concise Course in Algebraic Topology 15678: 14787: 14716: 13224: 12508:can be represented by five points (by 11626:For example, consider the nonsingular 10755: 10523:in the sense of Grothendieck, denoted 10497:{\displaystyle H^{*}(\mathbb {P} (E))} 7081:{\displaystyle H^{*}(-,\mathbb {Z} ).} 6254:, whose first few terms are: (we drop 4728:{\displaystyle c_{1}(E^{*})=-c_{1}(E)} 878:To say that the expression given is a 287:An important special case occurs when 176:It can be shown that for any two maps 15821: 15801:– A downloadable book-in-progress by 15773: 15571: 15081: 14774:The sequence is sometimes called the 14500: 11699:and we have the short exact sequence 11692:{\displaystyle {\mathcal {O}}_{X}(5)} 11659:. Then the normal bundle is given by 11353:{\displaystyle i>{\text{rank}}(E)} 11059:{\displaystyle {\mathcal {O}}_{X}(D)} 10877:of the underlying real vector bundle. 10208:is the projective space of the fiber 10124:of the underlying real vector bundle. 7370: 5502:{\displaystyle a_{i}(E)=c_{1}(L_{i})} 3268:be the canonical projection, and let 2273:{\displaystyle a\partial /\partial z} 1444: 905:If follows from the matrix identity 570:are given as the coefficients of the 355:{\displaystyle H^{2}(X;\mathbb {Z} )} 77: 71: 15813:Chern numbers of algebraic varieties 15699: 14627:if and only if the Chern numbers of 13219: 11621: 10972:{\displaystyle c_{i}(E)\in A^{i}(X)} 5032:simply keeps track of the degree of 2239:{\displaystyle V=T\mathbb {CP} ^{1}} 706:The determinant is over the ring of 96:The converse, however, is not true. 15725: 14744: 14239:The Chern character is used in the 13478:{\displaystyle x_{i}=c_{1}(L_{i}),} 10342:{\displaystyle \mathbb {P} (E_{b})} 10113:{\displaystyle e(E_{\mathbb {R} })} 4893: 3188:{\displaystyle \mathbb {C} ^{n+1},} 3150:{\displaystyle z_{0},\ldots ,z_{n}} 3099:) and the last nonzero term is the 66:. Chern classes were introduced by 13: 15679:Hartshorne, Robin (29 June 2013). 15612: 15005: 14993: 14981: 14969: 14849: 14220:) into the rational cohomology of 13997: 13572: 13314: 12849: 12793: 12747: 12718: 12666: 12628: 12611: 12413: 12346: 12059: 11903: 11880: 11770: 11732: 11715: 11669: 11575: 11537: 11520: 11504:there is the short exact sequence 11464: 11113: 11036: 9124:are a sequence of elements of the 9065: 8968: 8922: 8893: 7805: 4845: 4620: 4454: 4409: 4406: 4403: 4253: 4228: 4206: 4166: 4147: 4079: 4050: 4005: 3894:{\displaystyle \mathbb {C} ^{n+1}} 3788: 3724: 3631: 3559:{\displaystyle {\mathcal {O}}_{U}} 3545: 3490: 3049: 3006: 2905: 2876: 2845:{\displaystyle T\mathbb {CP} ^{1}} 2656: 2515: 2264: 2256: 1822: 1758: 1589:and define the new vector bundle: 1537:be a complex vector bundle over a 1377: 1370: 1367: 1357: 1350: 1347: 1334: 1326: 1323: 1304: 1296: 1293: 1236: 1229: 1226: 1210: 1202: 1199: 1172: 1165: 1162: 1013: 1010: 916: 913: 860:the sum from the determinant, and 774: 750: 627: 584: 276:be a topological space having the 14: 16243: 15792: 15639:"La thĂ©orie des classes de Chern" 14646:have a well-defined Chern class. 14575:is a complex vector bundle. The 10215:. The total space of this bundle 9783:{\displaystyle \mathbb {CP} ^{k}} 8877:{\displaystyle \mathbb {CP} ^{1}} 6982:is a natural transformation from 6250:is called the Chern character of 4364:(i.e., the Whitney sum formula), 3296: 3226: 2179:{\displaystyle \mathbb {CP} ^{1}} 1573: 1530:{\displaystyle \pi \colon E\to B} 226:Chern classes arise naturally in 16232:Chinese mathematical discoveries 16200: 16173: 16163: 16153: 16142: 16132: 16131: 15925: 15094:elementary symmetric polynomials 14638:The theory also extends to real 14246: 12032:{\displaystyle \mathbb {P} ^{4}} 11652:{\displaystyle \mathbb {P} ^{4}} 11273:{\displaystyle c(E)=c(E')c(E'')} 10584:by expanding this way the class 10304:{\displaystyle c_{1}(\tau )=:-a} 6711:{\displaystyle f_{E}:X\to G_{n}} 5663:elementary symmetric polynomials 5081:is completely determined by the 2852:is not a trivial vector bundle. 2400:{\displaystyle c_{1}(V)\not =0.} 1456:The basic observation is that a 486: 15735:, University of Chicago Press, 15210:In particular, on the one hand 15074: 15011: 14999: 14956:is homogeneous and has degree | 14479:Generalized cohomology theories 14241:Hirzebruch–Riemann–Roch theorem 11857:{\displaystyle A^{\bullet }(X)} 11828:denote the hyperplane class in 11214:the Whitney sum formula holds: 10239:{\displaystyle \mathbb {P} (E)} 10159:{\displaystyle \mathbb {P} (E)} 9866:Grothendieck axiomatic approach 3617:, fits into the exact sequence 1682:has rank one less than that of 1582:{\displaystyle B'=E\setminus B} 261:The Chern class of line bundles 121: 15529: 15497: 15453: 15434: 15400: 15387: 15350: 15318: 15305: 15299: 15269: 15263: 15226: 15220: 15194: 15162: 15146: 15140: 14987: 14975: 14963: 14928: 14920: 14908: 14899: 14893: 14890: 14887: 14873: 14857: 14836: 14833: 14819: 14793: 14781: 14768: 14759: 14738: 14710: 14179: 14173: 14164: 14158: 14146: 14134: 14109: 14103: 14091: 14085: 14073: 14061: 13959: 13953: 13897: 13894: 13888: 13869: 13863: 13850: 13844: 13819: 13812: 13799: 13783: 13780: 13774: 13749: 13742: 13729: 13713: 13707: 13691: 13685: 13673: 13667: 13634: 13592: 13504: 13498: 13469: 13456: 13339: 13332: 13292: 13289: 13283: 13270: 13258: 13252: 13120: 13113: 13110: 13082: 13076: 13070: 13067: 13055: 13036: 13027: 13020: 13004: 12998: 12986: 12983: 12974: 12967: 12958: 12952: 12940: 12924: 12921: 12915: 12903: 12892: 12888: 12882: 12873: 12860: 12843: 12829:we can then calculate this as 12813: 12810: 12804: 12787: 12779: 12767: 12741: 12729: 12712: 12686: 12683: 12677: 12660: 12650: 12622: 12605: 12441: 12435: 12424: 12407: 12392: 12386: 12357: 12340: 12070: 12053: 11942: 11929: 11923: 11920: 11914: 11897: 11891: 11874: 11851: 11845: 11790: 11787: 11781: 11764: 11754: 11726: 11709: 11686: 11680: 11603: 11569: 11559: 11531: 11514: 11448: 11442: 11429: 11426: 11420: 11384: 11378: 11372: 11347: 11341: 11304: 11298: 11267: 11256: 11250: 11239: 11230: 11224: 11198: 11187: 11181: 11170: 11145: 11139: 11133: 11130: 11124: 11107: 11053: 11047: 11005: 10999: 10966: 10960: 10944: 10938: 10905: 10852: 10846: 10795: 10789: 10734: 10728: 10706: 10700: 10653: 10647: 10571: 10565: 10546: 10540: 10491: 10488: 10482: 10474: 10457:then states that any class in 10440: 10437: 10431: 10423: 10336: 10323: 10289: 10283: 10233: 10227: 10153: 10147: 10107: 10092: 10069: 10054: 10039: 10033: 9999: 9988: 9979: 9968: 9959: 9953: 9923: 9912: 9906: 9895: 9736: 9730: 9708: 9702: 9665: 9653: 9620: 9614: 9605: 9599: 9590: 9578: 9523: 9494: 9488: 9462: 9446: 9397: 9355: 9349: 9325:Classical axiomatic definition 9297: 9291: 9275: 9269: 9253: 9247: 9231: 9225: 9188: 9174: 9079: 9076: 9070: 9060: 9030: 9004: 8982: 8979: 8973: 8963: 8933: 8927: 8908: 8898: 8695: 8676: 8537: 8518: 8472:{\displaystyle c_{i}=c_{i}(E)} 8466: 8460: 8412: 8406: 8390: 8374: 8337: 8331: 8285: 8276: 8230: 8214: 8194: 8188: 8142: 8133: 8087: 8068: 7957: 7950: 7937: 7931: 7876: 7869: 7856: 7850: 7765: 7759: 7740: 7734: 7674: 7662: 7610: 7603: 7590: 7584: 7547: 7535: 7498: 7492: 7473: 7463: 7457: 7444: 7346: 7340: 7303: 7297: 7249: 7217: 7206: 7185: 7169: 7166: 7152: 7136: 7117: 7114: 7072: 7058: 7028: 7009: 6911: 6898: 6877: 6871: 6838: 6824: 6811: 6808: 6776: 6695: 6612: 6581: 6476: 6470: 6422: 6362: 6346: 6312: 6277: 6271: 6226: 6223: 6217: 6195: 6189: 6176: 6155: 6149: 6120: 6114: 6093: 6087: 5970: 5967: 5935: 5913: 5881: 5868: 5738: 5732: 5665:. In other words, thinking of 5642: 5639: 5633: 5611: 5605: 5592: 5576: 5570: 5532: 5526: 5496: 5483: 5467: 5461: 5431: 5425: 5419: 5400: 5394: 5388: 5382: 5363: 5357: 5351: 5266: 5255: 5242: 5236: 5220: 5203: 5161: 5155: 5133: 5127: 5105: 5099: 5068: 5062: 5000: 4994: 4969: 4963: 4941: 4935: 4832: 4812: 4722: 4716: 4697: 4684: 4654: 4645: 4597: 4569: 4520: 4507: 4489: 4485: 4479: 4448: 4439: 4418: 4394: 4374: 4284: 4272: 4265: 4258: 4245: 4242: 4233: 4220: 4211: 4201: 4189: 4180: 4171: 4161: 4100: 4088: 4064: 4055: 4028: 4019: 4010: 4000: 3799: 3769: 3755: 3743: 3738: 3729: 3685: 3668: 3656: 3627: 3610:{\displaystyle d(z_{i}/z_{0})} 3604: 3576: 3515: 3380: 3352: 3238: 3078: 3072: 2980: 2959: 2954: 2942: 2935: 2928: 2899: 2870: 2774: 2763: 2754: 2744: 2736: 2583: 2572: 2563: 2553: 2545: 2481: 2470: 2461: 2451: 2443: 2388: 2382: 2344: 2318: 2083: 2068: 2047: 2036: 1996: 1975: 1969: 1910:{\displaystyle \pi |_{B'}^{*}} 1887: 1856: 1853: 1834: 1798: 1789: 1784: 1770: 1754: 1728: 1702: 1604: 1521: 1488: 1480: 1451:orientation of a vector bundle 1381: 1374: 1360: 1354: 1343: 1330: 1313: 1300: 1240: 1233: 1219: 1206: 1175: 1169: 1128: 1122: 1080: 1068: 1038: 1035: 1032: 1026: 1017: 1006: 994: 988: 965: 962: 956: 950: 938: 935: 929: 920: 811: 799: 681: 675: 553: 547: 445: 434: 418: 412: 396: 379: 349: 335: 1: 15799:Vector Bundles & K-Theory 15565: 15558:, giving the claimed formula. 14750:"Vector Bundles and K-theory" 14485:generalized cohomology theory 13929:for arbitrary vector bundles 13925:, is taken as the definition 11390:{\displaystyle E\mapsto c(E)} 9101: 6672:, there is a continuous map 890:. That is, Chern classes are 219:There is also an approach of 161:is equal to the pullback, by 15847: 14236:is a homomorphism of rings. 10266:, and the first Chern class 9882:Naturality: (Same as above) 6722:says the cohomology ring of 2670:{\displaystyle c_{1}=\left.} 2205:for the Riemann sphere. Let 7: 15613:Fulton, W. (29 June 2013). 15064:{\displaystyle \alpha _{i}} 14661: 11397:extends to a ring morphism 9143:, which is usually denoted 7276:be a vector bundle of rank 5762:at a complex vector bundle 3984:can be identified with the 2144: 109:Atiyah–Singer index theorem 10: 16248: 16094:Banach fixed-point theorem 14535:is a homomorphism from CH( 14391:{\displaystyle c_{1}c_{2}} 14323:orientation homology class 13652:This can be rewritten as: 11316:{\displaystyle c_{i}(E)=0} 11017:{\displaystyle c_{0}(E)=1} 10807:{\displaystyle c_{k}(V)=0} 9872:Alexander Grothendieck 9367:{\displaystyle c_{0}(E)=1} 7041:to the cohomology functor 5186:is additive in the sense: 495: 267:Exponential sheaf sequence 264: 16127: 16084: 16048: 15934: 15923: 15855: 14631:â€Č coincide with those of 14354:{\displaystyle c_{1}^{3}} 14321:) can be paired with the 10873:) is always equal to the 10351:complex projective spaces 10182:whose fiber at any point 9561:{\displaystyle E\oplus F} 1945:{\displaystyle k<2n-1} 1552:as the zero section, let 725:{\displaystyle n\times n} 572:characteristic polynomial 492:Via the Chern–Weil theory 83:Basic idea and motivation 15285:while on the other hand 14703: 14562:almost complex manifolds 14552:Manifolds with structure 13163:is a spin 4-manifold if 11026:For an invertible sheaf 10858:{\displaystyle c_{n}(V)} 10311:restricts on each fiber 9943:of vector bundles, then 9756:tautological line bundle 9406:{\displaystyle f:Y\to X} 8848:Applications of formulae 5744:{\displaystyle c_{t}(E)} 5538:{\displaystyle a_{i}(E)} 5074:{\displaystyle c_{t}(E)} 2856:Complex projective space 2192:complex projective space 1653:and a nonzero vector on 1645:is specified by a fiber 1618:{\displaystyle E'\to B'} 1086:{\displaystyle \ln(X+I)} 852:is used here only as an 559:{\displaystyle c_{k}(V)} 470:holomorphic line bundles 64:Gromov–Witten invariants 15635:Grothendieck, Alexander 15082:§ Chern polynomial 14790:, Ch. II. Theorem 8.13. 14611:, giving an integer, a 10825:The top Chern class of 10768:is the complex rank of 10178:as the fiber bundle on 9120:, the Chern classes of 7518:is a line bundle, then 6718:unique up to homotopy. 4788:{\displaystyle k\geq 0} 4769:In particular, for any 888:exact differential form 756:{\displaystyle \Omega } 590:{\displaystyle \Omega } 16227:Characteristic classes 16149:Mathematics portal 16049:Metrics and properties 16035:Second-countable space 15758:Characteristic classes 15540: 15486: 15433: 15383: 15279: 15252: 15204: 15117: 15065: 15038: 14946: 14466: 14442: 14419: 14392: 14355: 14315: 14295: 14272: 14189: 14116: 14029: 13913: 13644: 13576: 13479: 13420: 13366: 13318: 13206: 13183: 13157: 13137: 12823: 12696: 12589: 12569: 12536:Degree d hypersurfaces 12526: 12502: 12475: 12364: 12315: 12033: 12002: 11858: 11822: 11800: 11693: 11653: 11613: 11498: 11455: 11391: 11354: 11317: 11274: 11208: 11152: 11080: 11060: 11018: 10973: 10915: 10914:{\displaystyle E\to X} 10859: 10808: 10744: 10608: 10607:{\displaystyle -a^{n}} 10578: 10498: 10447: 10343: 10305: 10260: 10240: 10202: 10201:{\displaystyle b\in B} 10170:complex vector bundle 10160: 10114: 10076: 10006: 9933: 9855: 9784: 9746: 9691: 9630: 9562: 9533: 9532:{\displaystyle F\to X} 9501: 9423:vector bundle pullback 9407: 9368: 9313: 9198: 9092: 9037: 8940: 8878: 8827: 8660: 8632: 8502: 8473: 8422: 8351: 8041: 8021: 7973: 7914: 7797: 7711: 7639: 7573: 7505: 7421: 7401: 7363: 7329: 7259: 7082: 7035: 6960: 6921: 6848: 6737:; so, the pullback of 6712: 6628: 6496: 6438: 6244: 6064: 5977: 5801:: We have polynomials 5745: 5649: 5539: 5503: 5438: 5328: 5276: 5168: 5075: 5020: 4885: 4789: 4756: 4729: 4661: 4604: 4542: 4358: 4296: 4109: 4035: 3978: 3933: 3895: 3853: 3825: 3611: 3560: 3529: 3473: 3325: 3262: 3189: 3157:be the coordinates of 3151: 3093:Serre's twisting sheaf 3085: 3033: 2990: 2846: 2796: 2671: 2602: 2500: 2401: 2357: 2274: 2240: 2180: 2126: 1946: 1917:is an isomorphism for 1911: 1869: 1738: 1676: 1619: 1583: 1531: 1495: 1436: 1087: 1045: 972: 818: 757: 726: 698: 591: 560: 455: 356: 221:Alexander Grothendieck 93:topological invariants 89:characteristic classes 41:characteristic classes 15778:, Walter De Gruyter, 15774:Rubei, Elena (2014), 15578:Annals of Mathematics 15541: 15466: 15413: 15363: 15280: 15232: 15205: 15118: 15116:{\displaystyle x_{i}} 15084:.) Observe that when 15066: 15039: 15037:{\displaystyle c_{i}} 14947: 14720:; Tu, Loring (1995). 14698:Localized Chern class 14673:Stiefel–Whitney class 14467: 14443: 14420: 14418:{\displaystyle c_{3}} 14393: 14356: 14316: 14296: 14273: 14190: 14117: 14030: 13914: 13645: 13556: 13480: 13421: 13367: 13298: 13207: 13184: 13158: 13138: 12824: 12697: 12590: 12570: 12527: 12503: 12501:{\displaystyle h^{3}} 12476: 12365: 12316: 12039:. This gives us that 12034: 12003: 11859: 11823: 11801: 11694: 11654: 11614: 11499: 11456: 11392: 11355: 11318: 11275: 11209: 11153: 11081: 11061: 11019: 10974: 10916: 10887:Axiomatic description 10882:In algebraic geometry 10860: 10809: 10745: 10614:, with the relation: 10609: 10579: 10499: 10448: 10344: 10306: 10261: 10259:{\displaystyle \tau } 10241: 10203: 10161: 10115: 10077: 10007: 9934: 9856: 9785: 9747: 9671: 9631: 9563: 9534: 9502: 9408: 9369: 9314: 9199: 9108:complex vector bundle 9093: 9038: 8941: 8879: 8841:Segre class#Example 2 8828: 8661: 8633: 8503: 8474: 8423: 8352: 8042: 8022: 7974: 7894: 7777: 7712: 7640: 7553: 7506: 7422: 7402: 7400:{\displaystyle E^{*}} 7364: 7309: 7260: 7083: 7036: 6961: 6922: 6849: 6713: 6650:infinite Grassmannian 6629: 6482: 6439: 6245: 6065: 5978: 5746: 5691:symmetric polynomials 5674:as formal variables, 5650: 5540: 5504: 5439: 5329: 5277: 5169: 5076: 5021: 4886: 4790: 4757: 4755:{\displaystyle E^{*}} 4730: 4662: 4605: 4543: 4359: 4297: 4110: 4036: 3979: 3934: 3896: 3854: 3852:{\displaystyle e_{i}} 3826: 3612: 3561: 3530: 3474: 3326: 3263: 3190: 3152: 3086: 3034: 2991: 2847: 2797: 2672: 2603: 2501: 2402: 2358: 2280:at each point, where 2275: 2241: 2181: 2127: 1947: 1912: 1870: 1739: 1690:for the fiber bundle 1677: 1620: 1584: 1548:as being embedded in 1532: 1496: 1458:complex vector bundle 1437: 1088: 1046: 973: 819: 758: 727: 699: 592: 561: 456: 357: 257:for more discussion. 149:, there exists a map 68:Shiing-Shen Chern 29:differential geometry 16104:Invariance of domain 16056:Euler characteristic 16030:Bundle (mathematics) 15750:Milnor, John Willard 15289: 15214: 15127: 15100: 15092:can be expressed as 15048: 15021: 14803: 14644:symplectic manifolds 14456: 14429: 14402: 14365: 14333: 14305: 14282: 14259: 14125: 14052: 13944: 13658: 13489: 13430: 13378: 13243: 13231:topological K-theory 13193: 13167: 13147: 12833: 12706: 12702:giving the relation 12599: 12579: 12544: 12516: 12485: 12378: 12327: 12043: 12014: 11868: 11832: 11812: 11703: 11663: 11634: 11508: 11473: 11401: 11366: 11327: 11285: 11218: 11164: 11094: 11070: 11030: 10986: 10925: 10899: 10833: 10776: 10618: 10588: 10527: 10461: 10455:Leray–Hirsch theorem 10360: 10315: 10270: 10250: 10219: 10186: 10139: 10130:Leray–Hirsch theorem 10086: 10027: 9947: 9889: 9809: 9762: 9640: 9572: 9546: 9517: 9433: 9385: 9336: 9219: 9158: 9154:), is an element of 9047: 8950: 8888: 8856: 8670: 8644: 8512: 8486: 8434: 8361: 8051: 8031: 7985: 7981:For the Chern roots 7721: 7649: 7522: 7431: 7411: 7384: 7284: 7268:Computation formulae 7105: 7045: 6986: 6980:characteristic class 6936: 6858: 6750: 6676: 6461: 6262: 6078: 5987: 5813: 5776:and then replacing σ 5770:as a polynomial in σ 5719: 5557: 5513: 5448: 5338: 5286: 5190: 5093: 5049: 4922: 4799: 4773: 4739: 4671: 4614: 4556: 4368: 4310: 4119: 4045: 3991: 3951: 3909: 3870: 3836: 3621: 3570: 3539: 3486: 3479:In other words, the 3336: 3272: 3199: 3161: 3115: 3043: 3000: 2864: 2821: 2683: 2614: 2512: 2416: 2369: 2305: 2250: 2209: 2158: 2139:The Thom isomorphism 1956: 1921: 1879: 1748: 1694: 1661: 1593: 1556: 1509: 1464: 1099: 1059: 1051:. Now applying the 982: 909: 771: 747: 710: 607: 581: 534: 366: 322: 318:and the elements of 232:locally free sheaves 105:Riemann–Roch theorem 101:linearly independent 16114:Tychonoff's theorem 16109:PoincarĂ© conjecture 15863:General (point-set) 15616:Intersection Theory 15548:Newton's identities 15008:, Remark 3.2.3. (c) 14984:, Remark 3.2.3. (b) 14972:, Remark 3.2.3. (a) 14853: 14755:. Proposition 3.10. 14693:Quantum Hall effect 14350: 14043:of the connection. 13923:splitting principle 13633: 13609: 13374:More generally, if 13225:The Chern character 13182:{\displaystyle 4-d} 12481:since the class of 10756:The top Chern class 10128:He shows using the 10015:Normalization: If 8777: 8740: 8659:{\displaystyle r=3} 8582: 8501:{\displaystyle r=2} 7005: 6955: 6897: 6767: 6598: 6379: 6329: 6072:Newton's identities 6043: 5854: 5830: 5713:splitting principle 3903:elementary geometry 3721: 3566:-module with basis 3453: 2802:after switching to 2015: 1906: 1817: 834:exterior derivative 255:Chern–Simons theory 56:Chern–Simons theory 23:, in particular in 16099:De Rham cohomology 16020:Polyhedral complex 16010:Simplicial complex 15754:Stasheff, James D. 15682:Algebraic Geometry 15656:10.24033/bsmf.1501 15573:Chern, Shiing-Shen 15536: 15534: 15275: 15200: 15113: 15061: 15034: 14942: 14839: 14591:and of dimension 2 14501:Algebraic geometry 14490:complex orientable 14462: 14441:{\displaystyle 2n} 14438: 14415: 14388: 14351: 14336: 14311: 14294:{\displaystyle 2n} 14291: 14271:{\displaystyle 2n} 14268: 14185: 14112: 14025: 13909: 13640: 13619: 13595: 13475: 13416: 13362: 13205:{\displaystyle 2k} 13202: 13179: 13153: 13133: 13131: 12819: 12692: 12585: 12565: 12522: 12498: 12471: 12360: 12311: 12309: 12029: 11998: 11854: 11818: 11796: 11689: 11649: 11609: 11494: 11451: 11387: 11350: 11313: 11270: 11204: 11148: 11076: 11056: 11014: 10969: 10911: 10855: 10804: 10740: 10604: 10574: 10494: 10443: 10339: 10301: 10256: 10236: 10198: 10156: 10110: 10072: 10002: 9929: 9851: 9780: 9742: 9626: 9558: 9529: 9497: 9403: 9364: 9309: 9204:the cohomology of 9194: 9088: 9033: 8936: 8874: 8823: 8763: 8726: 8656: 8628: 8568: 8498: 8469: 8418: 8347: 8345: 8275: 8132: 8037: 8017: 7969: 7707: 7635: 7501: 7417: 7397: 7359: 7255: 7078: 7031: 6989: 6956: 6939: 6917: 6883: 6844: 6753: 6708: 6624: 6584: 6434: 6365: 6315: 6240: 6060: 6029: 5973: 5840: 5816: 5741: 5689:. A basic fact on 5645: 5535: 5499: 5434: 5324: 5272: 5164: 5071: 5045:). In particular, 5016: 4881: 4785: 4752: 4725: 4657: 4600: 4538: 4354: 4292: 4105: 4031: 3974: 3929: 3891: 3849: 3821: 3701: 3607: 3556: 3535:, which is a free 3525: 3469: 3439: 3321: 3258: 3185: 3147: 3081: 3029: 2986: 2842: 2792: 2667: 2598: 2496: 2397: 2353: 2291:hairy ball theorem 2270: 2236: 2176: 2122: 2117: 1994: 1942: 1907: 1885: 1865: 1796: 1734: 1675:{\displaystyle E'} 1672: 1615: 1579: 1527: 1491: 1445:Via an Euler class 1432: 1111: 1083: 1041: 968: 896:de Rham cohomology 892:cohomology classes 814: 753: 722: 694: 664: 587: 556: 474:linear equivalence 451: 352: 308:complete invariant 243:hairy ball theorem 228:algebraic geometry 208:are well-defined. 87:Chern classes are 78:Geometric approach 33:algebraic geometry 25:algebraic topology 16214: 16213: 16003:fundamental group 15785:978-3-11-031622-3 15767:978-0-691-08122-9 15718:978-3-540-25907-7 15692:978-1-4757-3849-0 15626:978-3-662-02421-8 15581:, Second Series, 14688:Schubert calculus 14656:Arakelov geometry 14605:fundamental class 14599:of total degree 2 14518:l-adic cohomology 14465:{\displaystyle n} 14314:{\displaystyle n} 14253:oriented manifold 14251:If we work on an 14009: 13938:Chern–Weil theory 13797: 13727: 13590: 13357: 13220:Proximate notions 13156:{\displaystyle X} 12928: 12817: 12588:{\displaystyle d} 12525:{\displaystyle X} 12142: 11821:{\displaystyle h} 11628:quintic threefold 11622:Quintic threefold 11339: 11079:{\displaystyle D} 9214:total Chern class 9115:topological space 9098:for any integer. 8430:For example, for 8240: 8097: 8040:{\displaystyle E} 7826: 7420:{\displaystyle E} 6658:classifying space 6579: 6556: 6537: 6360: 6310: 5083:total Chern class 4860: 4413: 3783: 3699: 3454: 3097:hyperplane bundle 2817:This proves that 2804:polar coordinates 2784: 2739: 2710: 2648: 2593: 2548: 2491: 2446: 1819: 1539:paracompact space 1406: 1265: 1187: 1102: 797: 655: 639: 498:Chern–Weil theory 214:Chern–Weil theory 135:classifying space 16239: 16204: 16203: 16177: 16176: 16167: 16157: 16147: 16146: 16135: 16134: 15929: 15842: 15835: 15828: 15819: 15818: 15809:Dieter Kotschick 15788: 15770: 15745: 15721: 15707:(4th ed.), 15696: 15675: 15658: 15630: 15609: 15559: 15545: 15543: 15542: 15537: 15535: 15528: 15527: 15509: 15508: 15496: 15495: 15485: 15480: 15459: 15452: 15451: 15432: 15427: 15406: 15399: 15398: 15382: 15377: 15356: 15349: 15348: 15330: 15329: 15284: 15282: 15281: 15276: 15262: 15261: 15251: 15246: 15209: 15207: 15206: 15201: 15193: 15192: 15174: 15173: 15161: 15160: 15139: 15138: 15122: 15120: 15119: 15114: 15112: 15111: 15078: 15072: 15070: 15068: 15067: 15062: 15060: 15059: 15043: 15041: 15040: 15035: 15033: 15032: 15015: 15009: 15003: 14997: 14996:, Example 3.2.2. 14991: 14985: 14979: 14973: 14967: 14961: 14951: 14949: 14948: 14943: 14941: 14940: 14936: 14931: 14923: 14886: 14872: 14871: 14852: 14847: 14832: 14818: 14817: 14797: 14791: 14785: 14779: 14772: 14766: 14763: 14757: 14756: 14754: 14742: 14736: 14735: 14714: 14668:Pontryagin class 14514:etale cohomology 14495:formal group law 14471: 14469: 14468: 14463: 14447: 14445: 14444: 14439: 14424: 14422: 14421: 14416: 14414: 14413: 14397: 14395: 14394: 14389: 14387: 14386: 14377: 14376: 14360: 14358: 14357: 14352: 14349: 14344: 14320: 14318: 14317: 14312: 14300: 14298: 14297: 14292: 14277: 14275: 14274: 14269: 14194: 14192: 14191: 14186: 14121: 14119: 14118: 14113: 14038: 14034: 14032: 14031: 14026: 14024: 14020: 14019: 14015: 14014: 14010: 14008: 14000: 13992: 13918: 13916: 13915: 13910: 13887: 13886: 13862: 13861: 13843: 13842: 13827: 13826: 13811: 13810: 13798: 13790: 13773: 13772: 13757: 13756: 13741: 13740: 13728: 13720: 13706: 13705: 13649: 13647: 13646: 13641: 13632: 13627: 13608: 13603: 13591: 13589: 13578: 13575: 13570: 13552: 13551: 13550: 13549: 13526: 13525: 13524: 13523: 13484: 13482: 13481: 13476: 13468: 13467: 13455: 13454: 13442: 13441: 13425: 13423: 13422: 13417: 13415: 13414: 13396: 13395: 13371: 13369: 13368: 13363: 13358: 13356: 13348: 13347: 13346: 13331: 13330: 13320: 13317: 13312: 13282: 13281: 13211: 13209: 13208: 13203: 13188: 13186: 13185: 13180: 13162: 13160: 13159: 13154: 13142: 13140: 13139: 13134: 13132: 13128: 13127: 13109: 13108: 13042: 13035: 13034: 13019: 13018: 12982: 12981: 12933: 12929: 12927: 12901: 12900: 12899: 12871: 12859: 12858: 12853: 12852: 12828: 12826: 12825: 12820: 12818: 12816: 12803: 12802: 12797: 12796: 12782: 12778: 12777: 12776: 12775: 12770: 12764: 12763: 12758: 12751: 12750: 12736: 12728: 12727: 12722: 12721: 12701: 12699: 12698: 12693: 12676: 12675: 12670: 12669: 12659: 12658: 12653: 12647: 12646: 12645: 12644: 12639: 12632: 12631: 12621: 12620: 12615: 12614: 12594: 12592: 12591: 12586: 12574: 12572: 12571: 12566: 12564: 12563: 12558: 12531: 12529: 12528: 12523: 12510:BĂ©zout's theorem 12507: 12505: 12504: 12499: 12497: 12496: 12480: 12478: 12477: 12472: 12461: 12460: 12445: 12444: 12423: 12422: 12417: 12416: 12406: 12405: 12396: 12395: 12369: 12367: 12366: 12361: 12356: 12355: 12350: 12349: 12339: 12338: 12320: 12318: 12317: 12312: 12310: 12306: 12305: 12290: 12289: 12265: 12261: 12257: 12256: 12255: 12240: 12239: 12207: 12203: 12202: 12201: 12186: 12185: 12147: 12143: 12141: 12127: 12126: 12125: 12110: 12109: 12081: 12069: 12068: 12063: 12062: 12038: 12036: 12035: 12030: 12028: 12027: 12022: 12007: 12005: 12004: 11999: 11997: 11996: 11981: 11980: 11950: 11949: 11913: 11912: 11907: 11906: 11890: 11889: 11884: 11883: 11863: 11861: 11860: 11855: 11844: 11843: 11827: 11825: 11824: 11819: 11805: 11803: 11802: 11797: 11780: 11779: 11774: 11773: 11763: 11762: 11757: 11751: 11750: 11749: 11748: 11743: 11736: 11735: 11725: 11724: 11719: 11718: 11698: 11696: 11695: 11690: 11679: 11678: 11673: 11672: 11658: 11656: 11655: 11650: 11648: 11647: 11642: 11618: 11616: 11615: 11610: 11602: 11601: 11600: 11599: 11594: 11588: 11579: 11578: 11568: 11567: 11562: 11556: 11555: 11554: 11553: 11548: 11541: 11540: 11530: 11529: 11524: 11523: 11503: 11501: 11500: 11495: 11493: 11492: 11487: 11460: 11458: 11457: 11452: 11441: 11440: 11419: 11418: 11396: 11394: 11393: 11388: 11359: 11357: 11356: 11351: 11340: 11337: 11322: 11320: 11319: 11314: 11297: 11296: 11279: 11277: 11276: 11271: 11266: 11249: 11213: 11211: 11210: 11205: 11197: 11180: 11157: 11155: 11154: 11149: 11123: 11122: 11117: 11116: 11106: 11105: 11085: 11083: 11082: 11077: 11065: 11063: 11062: 11057: 11046: 11045: 11040: 11039: 11023: 11021: 11020: 11015: 10998: 10997: 10978: 10976: 10975: 10970: 10959: 10958: 10937: 10936: 10920: 10918: 10917: 10912: 10864: 10862: 10861: 10856: 10845: 10844: 10813: 10811: 10810: 10805: 10788: 10787: 10749: 10747: 10746: 10741: 10727: 10726: 10699: 10698: 10674: 10673: 10646: 10645: 10633: 10632: 10613: 10611: 10610: 10605: 10603: 10602: 10583: 10581: 10580: 10575: 10564: 10563: 10539: 10538: 10503: 10501: 10500: 10495: 10481: 10473: 10472: 10452: 10450: 10449: 10444: 10430: 10422: 10421: 10409: 10408: 10384: 10383: 10348: 10346: 10345: 10340: 10335: 10334: 10322: 10310: 10308: 10307: 10302: 10282: 10281: 10265: 10263: 10262: 10257: 10245: 10243: 10242: 10237: 10226: 10207: 10205: 10204: 10199: 10165: 10163: 10162: 10157: 10146: 10119: 10117: 10116: 10111: 10106: 10105: 10104: 10081: 10079: 10078: 10073: 10068: 10067: 10066: 10011: 10009: 10008: 10003: 9998: 9978: 9938: 9936: 9935: 9930: 9922: 9905: 9860: 9858: 9857: 9852: 9850: 9849: 9844: 9832: 9831: 9820: 9789: 9787: 9786: 9781: 9779: 9778: 9773: 9751: 9749: 9748: 9743: 9729: 9728: 9701: 9700: 9690: 9685: 9652: 9651: 9635: 9633: 9632: 9627: 9567: 9565: 9564: 9559: 9538: 9536: 9535: 9530: 9513:sum formula: If 9506: 9504: 9503: 9498: 9487: 9486: 9477: 9476: 9458: 9457: 9445: 9444: 9412: 9410: 9409: 9404: 9373: 9371: 9370: 9365: 9348: 9347: 9318: 9316: 9315: 9310: 9290: 9289: 9268: 9267: 9246: 9245: 9203: 9201: 9200: 9195: 9187: 9173: 9172: 9097: 9095: 9094: 9089: 9069: 9068: 9059: 9058: 9042: 9040: 9039: 9034: 9029: 9021: 9020: 9015: 9003: 9002: 8972: 8971: 8962: 8961: 8945: 8943: 8942: 8937: 8926: 8925: 8916: 8915: 8897: 8896: 8883: 8881: 8880: 8875: 8873: 8872: 8867: 8832: 8830: 8829: 8824: 8819: 8818: 8803: 8802: 8793: 8792: 8776: 8771: 8756: 8755: 8739: 8734: 8719: 8718: 8688: 8687: 8665: 8663: 8662: 8657: 8637: 8635: 8634: 8629: 8624: 8623: 8614: 8613: 8598: 8597: 8581: 8576: 8561: 8560: 8530: 8529: 8507: 8505: 8504: 8499: 8478: 8476: 8475: 8470: 8459: 8458: 8446: 8445: 8427: 8425: 8424: 8419: 8405: 8404: 8386: 8385: 8373: 8372: 8356: 8354: 8353: 8348: 8346: 8330: 8329: 8328: 8327: 8304: 8303: 8302: 8301: 8274: 8273: 8272: 8254: 8253: 8226: 8225: 8213: 8212: 8187: 8186: 8185: 8184: 8161: 8160: 8159: 8158: 8131: 8130: 8129: 8111: 8110: 8080: 8079: 8067: 8066: 8046: 8044: 8043: 8038: 8026: 8024: 8023: 8018: 8016: 8015: 7997: 7996: 7978: 7976: 7975: 7970: 7965: 7964: 7949: 7948: 7930: 7929: 7913: 7908: 7884: 7883: 7868: 7867: 7849: 7848: 7833: 7832: 7831: 7822: 7804: 7796: 7791: 7758: 7757: 7733: 7732: 7716: 7714: 7713: 7708: 7661: 7660: 7644: 7642: 7641: 7636: 7634: 7633: 7624: 7623: 7602: 7601: 7583: 7582: 7572: 7567: 7534: 7533: 7510: 7508: 7507: 7502: 7491: 7490: 7481: 7480: 7456: 7455: 7443: 7442: 7426: 7424: 7423: 7418: 7406: 7404: 7403: 7398: 7396: 7395: 7371:Chern polynomial 7368: 7366: 7365: 7360: 7358: 7357: 7339: 7338: 7328: 7323: 7296: 7295: 7264: 7262: 7261: 7256: 7248: 7247: 7229: 7228: 7216: 7205: 7197: 7196: 7184: 7183: 7165: 7151: 7150: 7135: 7134: 7087: 7085: 7084: 7079: 7071: 7057: 7056: 7040: 7038: 7037: 7032: 7027: 7026: 7004: 7003: 6997: 6965: 6963: 6962: 6957: 6954: 6953: 6947: 6926: 6924: 6923: 6918: 6910: 6909: 6896: 6891: 6870: 6869: 6853: 6851: 6850: 6845: 6837: 6823: 6822: 6807: 6806: 6788: 6787: 6775: 6766: 6761: 6717: 6715: 6714: 6709: 6707: 6706: 6688: 6687: 6633: 6631: 6630: 6625: 6611: 6610: 6597: 6592: 6580: 6572: 6567: 6566: 6557: 6549: 6538: 6536: 6535: 6534: 6533: 6532: 6508: 6507: 6498: 6495: 6490: 6443: 6441: 6440: 6435: 6421: 6420: 6405: 6404: 6395: 6394: 6378: 6373: 6361: 6353: 6345: 6344: 6328: 6323: 6311: 6303: 6298: 6297: 6249: 6247: 6246: 6241: 6233: 6216: 6215: 6188: 6187: 6175: 6174: 6159: 6158: 6148: 6147: 6124: 6123: 6113: 6112: 6069: 6067: 6066: 6061: 6059: 6058: 6042: 6037: 6025: 6024: 6012: 6011: 5999: 5998: 5982: 5980: 5979: 5974: 5966: 5965: 5947: 5946: 5934: 5933: 5912: 5911: 5893: 5892: 5880: 5879: 5867: 5866: 5853: 5848: 5829: 5824: 5750: 5748: 5747: 5742: 5731: 5730: 5654: 5652: 5651: 5646: 5632: 5631: 5604: 5603: 5591: 5590: 5569: 5568: 5544: 5542: 5541: 5536: 5525: 5524: 5508: 5506: 5505: 5500: 5495: 5494: 5482: 5481: 5460: 5459: 5443: 5441: 5440: 5435: 5418: 5417: 5381: 5380: 5350: 5349: 5333: 5331: 5330: 5325: 5323: 5322: 5304: 5303: 5281: 5279: 5278: 5273: 5265: 5254: 5253: 5235: 5234: 5219: 5202: 5201: 5174:and conversely. 5173: 5171: 5170: 5165: 5154: 5153: 5126: 5125: 5080: 5078: 5077: 5072: 5061: 5060: 5025: 5023: 5022: 5017: 5012: 5011: 4993: 4992: 4962: 4961: 4934: 4933: 4904:Chern polynomial 4894:Chern polynomial 4890: 4888: 4887: 4882: 4877: 4876: 4867: 4866: 4865: 4856: 4844: 4831: 4830: 4825: 4819: 4811: 4810: 4794: 4792: 4791: 4786: 4761: 4759: 4758: 4753: 4751: 4750: 4734: 4732: 4731: 4726: 4715: 4714: 4696: 4695: 4683: 4682: 4666: 4664: 4663: 4658: 4644: 4643: 4642: 4641: 4636: 4630: 4624: 4623: 4609: 4607: 4606: 4601: 4596: 4588: 4587: 4582: 4576: 4568: 4567: 4547: 4545: 4544: 4539: 4534: 4533: 4503: 4502: 4478: 4477: 4476: 4475: 4470: 4464: 4458: 4457: 4438: 4437: 4432: 4414: 4412: 4398: 4393: 4392: 4387: 4381: 4363: 4361: 4360: 4355: 4347: 4346: 4334: 4333: 4301: 4299: 4298: 4293: 4288: 4287: 4257: 4256: 4232: 4231: 4210: 4209: 4170: 4169: 4151: 4150: 4141: 4140: 4135: 4129: 4114: 4112: 4111: 4106: 4104: 4103: 4083: 4082: 4054: 4053: 4040: 4038: 4037: 4032: 4009: 4008: 3983: 3981: 3980: 3975: 3973: 3972: 3967: 3961: 3938: 3936: 3935: 3930: 3928: 3927: 3922: 3916: 3900: 3898: 3897: 3892: 3890: 3889: 3878: 3858: 3856: 3855: 3850: 3848: 3847: 3830: 3828: 3827: 3822: 3798: 3797: 3792: 3791: 3784: 3782: 3781: 3780: 3768: 3767: 3754: 3752: 3751: 3746: 3728: 3727: 3720: 3709: 3700: 3698: 3697: 3696: 3684: 3683: 3667: 3665: 3664: 3659: 3653: 3652: 3651: 3650: 3645: 3639: 3616: 3614: 3613: 3608: 3603: 3602: 3593: 3588: 3587: 3565: 3563: 3562: 3557: 3555: 3554: 3549: 3548: 3534: 3532: 3531: 3526: 3524: 3523: 3518: 3512: 3511: 3510: 3509: 3504: 3498: 3478: 3476: 3475: 3470: 3455: 3452: 3447: 3438: 3437: 3436: 3424: 3423: 3411: 3410: 3398: 3397: 3387: 3379: 3378: 3369: 3364: 3363: 3348: 3347: 3331:. Then we have: 3330: 3328: 3327: 3322: 3311: 3310: 3295: 3294: 3289: 3267: 3265: 3264: 3259: 3257: 3256: 3251: 3245: 3225: 3224: 3213: 3194: 3192: 3191: 3186: 3181: 3180: 3169: 3156: 3154: 3153: 3148: 3146: 3145: 3127: 3126: 3090: 3088: 3087: 3082: 3071: 3070: 3069: 3068: 3063: 3053: 3052: 3038: 3036: 3035: 3030: 3028: 3027: 3026: 3025: 3020: 3010: 3009: 2995: 2993: 2992: 2987: 2979: 2978: 2973: 2958: 2957: 2927: 2926: 2925: 2924: 2919: 2909: 2908: 2898: 2897: 2896: 2895: 2890: 2880: 2879: 2851: 2849: 2848: 2843: 2841: 2840: 2835: 2801: 2799: 2798: 2793: 2785: 2783: 2782: 2781: 2772: 2771: 2766: 2757: 2742: 2741: 2740: 2732: 2716: 2711: 2703: 2698: 2697: 2676: 2674: 2673: 2668: 2663: 2659: 2649: 2647: 2636: 2626: 2625: 2607: 2605: 2604: 2599: 2594: 2592: 2591: 2590: 2581: 2580: 2575: 2566: 2551: 2550: 2549: 2541: 2522: 2505: 2503: 2502: 2497: 2492: 2490: 2489: 2488: 2479: 2478: 2473: 2464: 2449: 2448: 2447: 2439: 2426: 2406: 2404: 2403: 2398: 2381: 2380: 2362: 2360: 2359: 2354: 2343: 2335: 2334: 2329: 2317: 2316: 2279: 2277: 2276: 2271: 2263: 2245: 2243: 2242: 2237: 2235: 2234: 2229: 2203:local coordinate 2190:: 1-dimensional 2185: 2183: 2182: 2177: 2175: 2174: 2169: 2131: 2129: 2128: 2123: 2121: 2120: 2082: 2081: 2080: 2046: 2035: 2034: 2025: 2024: 2016: 2014: 2009: 2008: 1999: 1968: 1967: 1951: 1949: 1948: 1943: 1916: 1914: 1913: 1908: 1905: 1900: 1899: 1890: 1874: 1872: 1871: 1866: 1852: 1844: 1830: 1829: 1820: 1818: 1816: 1811: 1810: 1801: 1788: 1783: 1766: 1765: 1743: 1741: 1740: 1735: 1727: 1716: 1715: 1714: 1705: 1681: 1679: 1678: 1673: 1671: 1624: 1622: 1621: 1616: 1614: 1603: 1588: 1586: 1585: 1580: 1566: 1536: 1534: 1533: 1528: 1500: 1498: 1497: 1492: 1487: 1476: 1475: 1441: 1439: 1438: 1433: 1428: 1424: 1417: 1416: 1407: 1405: 1404: 1403: 1390: 1389: 1388: 1373: 1353: 1342: 1341: 1329: 1312: 1311: 1299: 1284: 1276: 1275: 1266: 1264: 1263: 1262: 1249: 1248: 1247: 1232: 1218: 1217: 1205: 1196: 1188: 1186: 1178: 1168: 1159: 1140: 1139: 1121: 1120: 1110: 1092: 1090: 1089: 1084: 1053:Maclaurin series 1050: 1048: 1047: 1042: 1016: 977: 975: 974: 969: 919: 894:in the sense of 823: 821: 820: 815: 798: 790: 762: 760: 759: 754: 731: 729: 728: 723: 703: 701: 700: 695: 693: 692: 674: 673: 663: 651: 647: 640: 638: 630: 619: 596: 594: 593: 588: 565: 563: 562: 557: 546: 545: 502:Given a complex 460: 458: 457: 452: 444: 433: 432: 411: 410: 395: 378: 377: 361: 359: 358: 353: 348: 334: 333: 145:over a manifold 43:associated with 16247: 16246: 16242: 16241: 16240: 16238: 16237: 16236: 16217: 16216: 16215: 16210: 16141: 16123: 16119:Urysohn's lemma 16080: 16044: 15930: 15921: 15893:low-dimensional 15851: 15846: 15795: 15786: 15768: 15743: 15719: 15709:Springer-Verlag 15693: 15627: 15591:10.2307/1969037 15568: 15563: 15562: 15533: 15532: 15523: 15519: 15504: 15500: 15491: 15487: 15481: 15470: 15457: 15456: 15447: 15443: 15428: 15417: 15404: 15403: 15394: 15390: 15378: 15367: 15354: 15353: 15344: 15340: 15325: 15321: 15308: 15292: 15290: 15287: 15286: 15257: 15253: 15247: 15236: 15215: 15212: 15211: 15188: 15184: 15169: 15165: 15156: 15152: 15134: 15130: 15128: 15125: 15124: 15107: 15103: 15101: 15098: 15097: 15079: 15075: 15055: 15051: 15049: 15046: 15045: 15028: 15024: 15022: 15019: 15018: 15016: 15012: 15004: 15000: 14992: 14988: 14980: 14976: 14968: 14964: 14932: 14927: 14919: 14918: 14914: 14882: 14864: 14860: 14848: 14843: 14828: 14810: 14806: 14804: 14801: 14800: 14798: 14794: 14786: 14782: 14773: 14769: 14764: 14760: 14752: 14743: 14739: 14732: 14715: 14711: 14706: 14664: 14652: 14560:invariants for 14554: 14503: 14481: 14457: 14454: 14453: 14430: 14427: 14426: 14409: 14405: 14403: 14400: 14399: 14382: 14378: 14372: 14368: 14366: 14363: 14362: 14345: 14340: 14334: 14331: 14330: 14306: 14303: 14302: 14283: 14280: 14279: 14260: 14257: 14256: 14249: 14126: 14123: 14122: 14053: 14050: 14049: 14036: 14001: 13993: 13991: 13987: 13980: 13976: 13969: 13965: 13945: 13942: 13941: 13882: 13878: 13857: 13853: 13838: 13834: 13822: 13818: 13806: 13802: 13789: 13768: 13764: 13752: 13748: 13736: 13732: 13719: 13701: 13697: 13659: 13656: 13655: 13628: 13623: 13604: 13599: 13582: 13577: 13571: 13560: 13545: 13541: 13540: 13536: 13519: 13515: 13514: 13510: 13490: 13487: 13486: 13463: 13459: 13450: 13446: 13437: 13433: 13431: 13428: 13427: 13410: 13406: 13391: 13387: 13379: 13376: 13375: 13349: 13342: 13338: 13326: 13322: 13321: 13319: 13313: 13302: 13277: 13273: 13244: 13241: 13240: 13227: 13222: 13194: 13191: 13190: 13168: 13165: 13164: 13148: 13145: 13144: 13130: 13129: 13123: 13119: 13104: 13100: 13040: 13039: 13030: 13026: 13014: 13010: 12977: 12973: 12931: 12930: 12902: 12895: 12891: 12872: 12870: 12863: 12854: 12848: 12847: 12846: 12836: 12834: 12831: 12830: 12798: 12792: 12791: 12790: 12783: 12771: 12766: 12765: 12759: 12754: 12753: 12752: 12746: 12745: 12744: 12737: 12735: 12723: 12717: 12716: 12715: 12707: 12704: 12703: 12671: 12665: 12664: 12663: 12654: 12649: 12648: 12640: 12635: 12634: 12633: 12627: 12626: 12625: 12616: 12610: 12609: 12608: 12600: 12597: 12596: 12580: 12577: 12576: 12559: 12554: 12553: 12545: 12542: 12541: 12538: 12517: 12514: 12513: 12492: 12488: 12486: 12483: 12482: 12456: 12452: 12434: 12430: 12418: 12412: 12411: 12410: 12401: 12397: 12385: 12381: 12379: 12376: 12375: 12351: 12345: 12344: 12343: 12334: 12330: 12328: 12325: 12324: 12308: 12307: 12301: 12297: 12285: 12281: 12263: 12262: 12251: 12247: 12235: 12231: 12212: 12208: 12197: 12193: 12181: 12177: 12158: 12154: 12145: 12144: 12128: 12121: 12117: 12105: 12101: 12082: 12080: 12073: 12064: 12058: 12057: 12056: 12046: 12044: 12041: 12040: 12023: 12018: 12017: 12015: 12012: 12011: 11992: 11988: 11976: 11972: 11945: 11941: 11908: 11902: 11901: 11900: 11885: 11879: 11878: 11877: 11869: 11866: 11865: 11839: 11835: 11833: 11830: 11829: 11813: 11810: 11809: 11775: 11769: 11768: 11767: 11758: 11753: 11752: 11744: 11739: 11738: 11737: 11731: 11730: 11729: 11720: 11714: 11713: 11712: 11704: 11701: 11700: 11674: 11668: 11667: 11666: 11664: 11661: 11660: 11643: 11638: 11637: 11635: 11632: 11631: 11624: 11595: 11590: 11589: 11584: 11580: 11574: 11573: 11572: 11563: 11558: 11557: 11549: 11544: 11543: 11542: 11536: 11535: 11534: 11525: 11519: 11518: 11517: 11509: 11506: 11505: 11488: 11483: 11482: 11474: 11471: 11470: 11467: 11465:Normal sequence 11436: 11432: 11414: 11410: 11402: 11399: 11398: 11367: 11364: 11363: 11336: 11328: 11325: 11324: 11292: 11288: 11286: 11283: 11282: 11259: 11242: 11219: 11216: 11215: 11190: 11173: 11165: 11162: 11161: 11118: 11112: 11111: 11110: 11101: 11097: 11095: 11092: 11091: 11088:Cartier divisor 11071: 11068: 11067: 11041: 11035: 11034: 11033: 11031: 11028: 11027: 10993: 10989: 10987: 10984: 10983: 10954: 10950: 10932: 10928: 10926: 10923: 10922: 10900: 10897: 10896: 10889: 10884: 10869:is the rank of 10840: 10836: 10834: 10831: 10830: 10783: 10779: 10777: 10774: 10773: 10758: 10722: 10718: 10688: 10684: 10663: 10659: 10641: 10637: 10628: 10624: 10619: 10616: 10615: 10598: 10594: 10589: 10586: 10585: 10559: 10555: 10534: 10530: 10528: 10525: 10524: 10477: 10468: 10464: 10462: 10459: 10458: 10426: 10417: 10413: 10398: 10394: 10379: 10375: 10361: 10358: 10357: 10330: 10326: 10318: 10316: 10313: 10312: 10277: 10273: 10271: 10268: 10267: 10251: 10248: 10247: 10222: 10220: 10217: 10216: 10213: 10187: 10184: 10183: 10142: 10140: 10137: 10136: 10100: 10099: 10095: 10087: 10084: 10083: 10062: 10061: 10057: 10028: 10025: 10024: 9991: 9971: 9948: 9945: 9944: 9915: 9898: 9890: 9887: 9886: 9885:Additivity: If 9870:Alternatively, 9868: 9845: 9837: 9836: 9821: 9813: 9812: 9810: 9807: 9806: 9774: 9766: 9765: 9763: 9760: 9759: 9718: 9714: 9696: 9692: 9686: 9675: 9647: 9643: 9641: 9638: 9637: 9573: 9570: 9569: 9547: 9544: 9543: 9518: 9515: 9514: 9482: 9478: 9472: 9468: 9453: 9449: 9440: 9436: 9434: 9431: 9430: 9386: 9383: 9382: 9381:Naturality: If 9343: 9339: 9337: 9334: 9333: 9327: 9285: 9281: 9263: 9259: 9241: 9237: 9220: 9217: 9216: 9183: 9165: 9161: 9159: 9156: 9155: 9148: 9137:-th Chern class 9104: 9064: 9063: 9054: 9050: 9048: 9045: 9044: 9025: 9016: 9008: 9007: 8998: 8994: 8967: 8966: 8957: 8953: 8951: 8948: 8947: 8921: 8920: 8911: 8907: 8892: 8891: 8889: 8886: 8885: 8868: 8860: 8859: 8857: 8854: 8853: 8850: 8814: 8810: 8798: 8794: 8788: 8784: 8772: 8767: 8751: 8747: 8735: 8730: 8714: 8710: 8683: 8679: 8671: 8668: 8667: 8645: 8642: 8641: 8619: 8615: 8609: 8605: 8593: 8589: 8577: 8572: 8556: 8552: 8525: 8521: 8513: 8510: 8509: 8487: 8484: 8483: 8454: 8450: 8441: 8437: 8435: 8432: 8431: 8400: 8396: 8381: 8377: 8368: 8364: 8362: 8359: 8358: 8357:In particular, 8344: 8343: 8323: 8319: 8318: 8314: 8297: 8293: 8292: 8288: 8268: 8264: 8249: 8245: 8244: 8233: 8221: 8217: 8208: 8204: 8201: 8200: 8180: 8176: 8175: 8171: 8154: 8150: 8149: 8145: 8125: 8121: 8106: 8102: 8101: 8090: 8075: 8071: 8062: 8058: 8054: 8052: 8049: 8048: 8032: 8029: 8028: 8011: 8007: 7992: 7988: 7986: 7983: 7982: 7960: 7956: 7944: 7940: 7919: 7915: 7909: 7898: 7879: 7875: 7863: 7859: 7838: 7834: 7827: 7806: 7800: 7799: 7798: 7792: 7781: 7753: 7749: 7728: 7724: 7722: 7719: 7718: 7656: 7652: 7650: 7647: 7646: 7629: 7625: 7613: 7609: 7597: 7593: 7578: 7574: 7568: 7557: 7529: 7525: 7523: 7520: 7519: 7486: 7482: 7476: 7472: 7451: 7447: 7438: 7434: 7432: 7429: 7428: 7412: 7409: 7408: 7391: 7387: 7385: 7382: 7381: 7353: 7349: 7334: 7330: 7324: 7313: 7291: 7287: 7285: 7282: 7281: 7270: 7243: 7239: 7224: 7220: 7212: 7201: 7192: 7188: 7179: 7175: 7161: 7146: 7142: 7130: 7126: 7106: 7103: 7102: 7100: 7067: 7052: 7048: 7046: 7043: 7042: 7022: 7018: 6999: 6998: 6993: 6987: 6984: 6983: 6949: 6948: 6943: 6937: 6934: 6933: 6905: 6901: 6892: 6887: 6865: 6861: 6859: 6856: 6855: 6854:One then puts: 6833: 6818: 6814: 6802: 6798: 6783: 6779: 6771: 6762: 6757: 6751: 6748: 6747: 6745: 6736: 6730: 6720:Borel's theorem 6702: 6698: 6683: 6679: 6677: 6674: 6673: 6647: 6606: 6602: 6593: 6588: 6571: 6562: 6558: 6548: 6528: 6524: 6520: 6516: 6509: 6503: 6499: 6497: 6491: 6486: 6462: 6459: 6458: 6416: 6412: 6400: 6396: 6390: 6386: 6374: 6369: 6352: 6340: 6336: 6324: 6319: 6302: 6293: 6289: 6263: 6260: 6259: 6258:from writing.) 6229: 6211: 6207: 6183: 6179: 6170: 6166: 6143: 6139: 6138: 6134: 6108: 6104: 6103: 6099: 6079: 6076: 6075: 6070:and so on (cf. 6054: 6050: 6038: 6033: 6020: 6016: 6007: 6003: 5994: 5990: 5988: 5985: 5984: 5961: 5957: 5942: 5938: 5929: 5925: 5907: 5903: 5888: 5884: 5875: 5871: 5862: 5858: 5849: 5844: 5825: 5820: 5814: 5811: 5810: 5809: 5796: 5790: 5781: 5775: 5726: 5722: 5720: 5717: 5716: 5710: 5701: 5688: 5682: 5673: 5660: 5627: 5623: 5599: 5595: 5586: 5582: 5564: 5560: 5558: 5555: 5554: 5520: 5516: 5514: 5511: 5510: 5490: 5486: 5477: 5473: 5455: 5451: 5449: 5446: 5445: 5413: 5409: 5376: 5372: 5345: 5341: 5339: 5336: 5335: 5318: 5314: 5299: 5295: 5287: 5284: 5283: 5258: 5249: 5245: 5230: 5226: 5212: 5197: 5193: 5191: 5188: 5187: 5185: 5149: 5145: 5121: 5117: 5094: 5091: 5090: 5056: 5052: 5050: 5047: 5046: 5040: 5007: 5003: 4988: 4984: 4957: 4953: 4929: 4925: 4923: 4920: 4919: 4913: 4896: 4872: 4868: 4861: 4846: 4840: 4839: 4838: 4826: 4821: 4820: 4815: 4806: 4802: 4800: 4797: 4796: 4774: 4771: 4770: 4762:is the dual of 4746: 4742: 4740: 4737: 4736: 4710: 4706: 4691: 4687: 4678: 4674: 4672: 4669: 4668: 4637: 4632: 4631: 4626: 4625: 4619: 4618: 4617: 4615: 4612: 4611: 4592: 4583: 4578: 4577: 4572: 4563: 4559: 4557: 4554: 4553: 4523: 4519: 4492: 4488: 4471: 4466: 4465: 4460: 4459: 4453: 4452: 4451: 4433: 4425: 4424: 4402: 4397: 4388: 4383: 4382: 4377: 4369: 4366: 4365: 4342: 4338: 4329: 4325: 4311: 4308: 4307: 4304: 4268: 4264: 4252: 4251: 4227: 4226: 4205: 4204: 4165: 4164: 4146: 4145: 4136: 4131: 4130: 4125: 4120: 4117: 4116: 4084: 4078: 4077: 4076: 4049: 4048: 4046: 4043: 4042: 4004: 4003: 3992: 3989: 3988: 3968: 3963: 3962: 3957: 3952: 3949: 3948: 3923: 3918: 3917: 3912: 3910: 3907: 3906: 3879: 3874: 3873: 3871: 3868: 3867: 3843: 3839: 3837: 3834: 3833: 3793: 3787: 3786: 3785: 3776: 3772: 3763: 3759: 3758: 3753: 3747: 3742: 3741: 3723: 3722: 3710: 3705: 3692: 3688: 3679: 3675: 3671: 3666: 3660: 3655: 3654: 3646: 3641: 3640: 3635: 3634: 3630: 3622: 3619: 3618: 3598: 3594: 3589: 3583: 3579: 3571: 3568: 3567: 3550: 3544: 3543: 3542: 3540: 3537: 3536: 3519: 3514: 3513: 3505: 3500: 3499: 3494: 3493: 3489: 3487: 3484: 3483: 3481:cotangent sheaf 3448: 3443: 3432: 3428: 3419: 3415: 3406: 3402: 3393: 3389: 3388: 3386: 3374: 3370: 3365: 3359: 3355: 3343: 3339: 3337: 3334: 3333: 3306: 3302: 3290: 3282: 3281: 3273: 3270: 3269: 3252: 3247: 3246: 3241: 3214: 3209: 3208: 3200: 3197: 3196: 3170: 3165: 3164: 3162: 3159: 3158: 3141: 3137: 3122: 3118: 3116: 3113: 3112: 3064: 3056: 3055: 3054: 3048: 3047: 3046: 3044: 3041: 3040: 3021: 3013: 3012: 3011: 3005: 3004: 3003: 3001: 2998: 2997: 2974: 2966: 2965: 2938: 2934: 2920: 2912: 2911: 2910: 2904: 2903: 2902: 2891: 2883: 2882: 2881: 2875: 2874: 2873: 2865: 2862: 2861: 2858: 2836: 2828: 2827: 2822: 2819: 2818: 2808:Stokes' theorem 2777: 2773: 2767: 2762: 2761: 2753: 2743: 2731: 2730: 2717: 2715: 2702: 2693: 2689: 2684: 2681: 2680: 2640: 2635: 2634: 2630: 2621: 2617: 2615: 2612: 2611: 2586: 2582: 2576: 2571: 2570: 2562: 2552: 2540: 2539: 2523: 2521: 2513: 2510: 2509: 2484: 2480: 2474: 2469: 2468: 2460: 2450: 2438: 2437: 2427: 2425: 2417: 2414: 2413: 2376: 2372: 2370: 2367: 2366: 2339: 2330: 2322: 2321: 2312: 2308: 2306: 2303: 2302: 2259: 2251: 2248: 2247: 2230: 2222: 2221: 2210: 2207: 2206: 2194:. Suppose that 2170: 2162: 2161: 2159: 2156: 2155: 2152: 2147: 2116: 2115: 2104: 2098: 2097: 2086: 2076: 2075: 2071: 2062: 2061: 2050: 2039: 2030: 2026: 2017: 2010: 2001: 2000: 1995: 1990: 1989: 1982: 1981: 1963: 1959: 1957: 1954: 1953: 1922: 1919: 1918: 1901: 1892: 1891: 1886: 1880: 1877: 1876: 1848: 1837: 1825: 1821: 1812: 1803: 1802: 1797: 1792: 1787: 1779: 1761: 1757: 1749: 1746: 1745: 1720: 1707: 1706: 1701: 1700: 1695: 1692: 1691: 1664: 1662: 1659: 1658: 1607: 1596: 1594: 1591: 1590: 1559: 1557: 1554: 1553: 1510: 1507: 1506: 1483: 1471: 1467: 1465: 1462: 1461: 1447: 1412: 1408: 1399: 1395: 1391: 1384: 1380: 1366: 1346: 1337: 1333: 1322: 1307: 1303: 1292: 1285: 1283: 1271: 1267: 1258: 1254: 1250: 1243: 1239: 1225: 1213: 1209: 1198: 1197: 1195: 1179: 1161: 1160: 1158: 1148: 1144: 1135: 1131: 1116: 1112: 1106: 1100: 1097: 1096: 1060: 1057: 1056: 1009: 983: 980: 979: 912: 910: 907: 906: 886:addition of an 873:identity matrix 826:connection form 789: 772: 769: 768: 748: 745: 744: 711: 708: 707: 688: 684: 669: 665: 659: 631: 620: 618: 617: 613: 608: 605: 604: 582: 579: 578: 541: 537: 535: 532: 531: 521:smooth manifold 500: 494: 489: 437: 428: 424: 406: 402: 388: 373: 369: 367: 364: 363: 344: 329: 325: 323: 320: 319: 303:of the bundle. 270: 263: 171:Schubert cycles 131:homotopy theory 124: 85: 80: 17: 12: 11: 5: 16245: 16235: 16234: 16229: 16212: 16211: 16209: 16208: 16198: 16197: 16196: 16191: 16186: 16171: 16161: 16151: 16139: 16128: 16125: 16124: 16122: 16121: 16116: 16111: 16106: 16101: 16096: 16090: 16088: 16082: 16081: 16079: 16078: 16073: 16068: 16066:Winding number 16063: 16058: 16052: 16050: 16046: 16045: 16043: 16042: 16037: 16032: 16027: 16022: 16017: 16012: 16007: 16006: 16005: 16000: 15998:homotopy group 15990: 15989: 15988: 15983: 15978: 15973: 15968: 15958: 15953: 15948: 15938: 15936: 15932: 15931: 15924: 15922: 15920: 15919: 15914: 15909: 15908: 15907: 15897: 15896: 15895: 15885: 15880: 15875: 15870: 15865: 15859: 15857: 15853: 15852: 15845: 15844: 15837: 15830: 15822: 15816: 15815: 15806: 15794: 15793:External links 15791: 15790: 15789: 15784: 15771: 15766: 15746: 15741: 15723: 15717: 15697: 15691: 15676: 15631: 15625: 15610: 15567: 15564: 15561: 15560: 15546:Consequently, 15531: 15526: 15522: 15518: 15515: 15512: 15507: 15503: 15499: 15494: 15490: 15484: 15479: 15476: 15473: 15469: 15465: 15462: 15460: 15458: 15455: 15450: 15446: 15442: 15439: 15436: 15431: 15426: 15423: 15420: 15416: 15412: 15409: 15407: 15405: 15402: 15397: 15393: 15389: 15386: 15381: 15376: 15373: 15370: 15366: 15362: 15359: 15357: 15355: 15352: 15347: 15343: 15339: 15336: 15333: 15328: 15324: 15320: 15317: 15314: 15311: 15309: 15307: 15304: 15301: 15298: 15295: 15294: 15274: 15271: 15268: 15265: 15260: 15256: 15250: 15245: 15242: 15239: 15235: 15231: 15228: 15225: 15222: 15219: 15199: 15196: 15191: 15187: 15183: 15180: 15177: 15172: 15168: 15164: 15159: 15155: 15151: 15148: 15145: 15142: 15137: 15133: 15110: 15106: 15073: 15058: 15054: 15031: 15027: 15010: 14998: 14986: 14974: 14962: 14939: 14935: 14930: 14926: 14922: 14917: 14913: 14910: 14907: 14904: 14901: 14898: 14895: 14892: 14889: 14885: 14881: 14878: 14875: 14870: 14867: 14863: 14859: 14856: 14851: 14846: 14842: 14838: 14835: 14831: 14827: 14824: 14821: 14816: 14813: 14809: 14792: 14780: 14776:Euler sequence 14767: 14758: 14746:Hatcher, Allen 14737: 14730: 14708: 14707: 14705: 14702: 14701: 14700: 14695: 14690: 14685: 14680: 14675: 14670: 14663: 14660: 14651: 14648: 14573:tangent bundle 14553: 14550: 14549: 14548: 14523:For varieties 14521: 14510: 14502: 14499: 14480: 14477: 14461: 14437: 14434: 14412: 14408: 14385: 14381: 14375: 14371: 14348: 14343: 14339: 14310: 14290: 14287: 14267: 14264: 14248: 14245: 14207:abelian groups 14184: 14181: 14178: 14175: 14172: 14169: 14166: 14163: 14160: 14157: 14154: 14151: 14148: 14145: 14142: 14139: 14136: 14133: 14130: 14111: 14108: 14105: 14102: 14099: 14096: 14093: 14090: 14087: 14084: 14081: 14078: 14075: 14072: 14069: 14066: 14063: 14060: 14057: 14023: 14018: 14013: 14007: 14004: 13999: 13996: 13990: 13986: 13983: 13979: 13975: 13972: 13968: 13964: 13961: 13958: 13955: 13952: 13949: 13908: 13905: 13902: 13899: 13896: 13893: 13890: 13885: 13881: 13877: 13874: 13871: 13868: 13865: 13860: 13856: 13852: 13849: 13846: 13841: 13837: 13833: 13830: 13825: 13821: 13817: 13814: 13809: 13805: 13801: 13796: 13793: 13788: 13785: 13782: 13779: 13776: 13771: 13767: 13763: 13760: 13755: 13751: 13747: 13744: 13739: 13735: 13731: 13726: 13723: 13718: 13715: 13712: 13709: 13704: 13700: 13696: 13693: 13690: 13687: 13684: 13681: 13678: 13675: 13672: 13669: 13666: 13663: 13639: 13636: 13631: 13626: 13622: 13618: 13615: 13612: 13607: 13602: 13598: 13594: 13588: 13585: 13581: 13574: 13569: 13566: 13563: 13559: 13555: 13548: 13544: 13539: 13535: 13532: 13529: 13522: 13518: 13513: 13509: 13506: 13503: 13500: 13497: 13494: 13474: 13471: 13466: 13462: 13458: 13453: 13449: 13445: 13440: 13436: 13413: 13409: 13405: 13402: 13399: 13394: 13390: 13386: 13383: 13361: 13355: 13352: 13345: 13341: 13337: 13334: 13329: 13325: 13316: 13311: 13308: 13305: 13301: 13297: 13294: 13291: 13288: 13285: 13280: 13276: 13272: 13269: 13266: 13263: 13260: 13257: 13254: 13251: 13248: 13226: 13223: 13221: 13218: 13201: 13198: 13178: 13175: 13172: 13152: 13126: 13122: 13118: 13115: 13112: 13107: 13103: 13099: 13096: 13093: 13090: 13087: 13084: 13081: 13078: 13075: 13072: 13069: 13066: 13063: 13060: 13057: 13054: 13051: 13048: 13045: 13043: 13041: 13038: 13033: 13029: 13025: 13022: 13017: 13013: 13009: 13006: 13003: 13000: 12997: 12994: 12991: 12988: 12985: 12980: 12976: 12972: 12969: 12966: 12963: 12960: 12957: 12954: 12951: 12948: 12945: 12942: 12939: 12936: 12934: 12932: 12926: 12923: 12920: 12917: 12914: 12911: 12908: 12905: 12898: 12894: 12890: 12887: 12884: 12881: 12878: 12875: 12869: 12866: 12864: 12862: 12857: 12851: 12845: 12842: 12839: 12838: 12815: 12812: 12809: 12806: 12801: 12795: 12789: 12786: 12781: 12774: 12769: 12762: 12757: 12749: 12743: 12740: 12734: 12731: 12726: 12720: 12714: 12711: 12691: 12688: 12685: 12682: 12679: 12674: 12668: 12662: 12657: 12652: 12643: 12638: 12630: 12624: 12619: 12613: 12607: 12604: 12584: 12562: 12557: 12552: 12549: 12537: 12534: 12521: 12495: 12491: 12470: 12467: 12464: 12459: 12455: 12451: 12448: 12443: 12440: 12437: 12433: 12429: 12426: 12421: 12415: 12409: 12404: 12400: 12394: 12391: 12388: 12384: 12359: 12354: 12348: 12342: 12337: 12333: 12304: 12300: 12296: 12293: 12288: 12284: 12280: 12277: 12274: 12271: 12268: 12266: 12264: 12260: 12254: 12250: 12246: 12243: 12238: 12234: 12230: 12227: 12224: 12221: 12218: 12215: 12211: 12206: 12200: 12196: 12192: 12189: 12184: 12180: 12176: 12173: 12170: 12167: 12164: 12161: 12157: 12153: 12150: 12148: 12146: 12140: 12137: 12134: 12131: 12124: 12120: 12116: 12113: 12108: 12104: 12100: 12097: 12094: 12091: 12088: 12085: 12079: 12076: 12074: 12072: 12067: 12061: 12055: 12052: 12049: 12048: 12026: 12021: 11995: 11991: 11987: 11984: 11979: 11975: 11971: 11968: 11965: 11962: 11959: 11956: 11953: 11948: 11944: 11940: 11937: 11934: 11931: 11928: 11925: 11922: 11919: 11916: 11911: 11905: 11899: 11896: 11893: 11888: 11882: 11876: 11873: 11853: 11850: 11847: 11842: 11838: 11817: 11795: 11792: 11789: 11786: 11783: 11778: 11772: 11766: 11761: 11756: 11747: 11742: 11734: 11728: 11723: 11717: 11711: 11708: 11688: 11685: 11682: 11677: 11671: 11646: 11641: 11623: 11620: 11608: 11605: 11598: 11593: 11587: 11583: 11577: 11571: 11566: 11561: 11552: 11547: 11539: 11533: 11528: 11522: 11516: 11513: 11491: 11486: 11481: 11478: 11466: 11463: 11462: 11461: 11450: 11447: 11444: 11439: 11435: 11431: 11428: 11425: 11422: 11417: 11413: 11409: 11406: 11386: 11383: 11380: 11377: 11374: 11371: 11360: 11349: 11346: 11343: 11335: 11332: 11312: 11309: 11306: 11303: 11300: 11295: 11291: 11280: 11269: 11265: 11262: 11258: 11255: 11252: 11248: 11245: 11241: 11238: 11235: 11232: 11229: 11226: 11223: 11203: 11200: 11196: 11193: 11189: 11186: 11183: 11179: 11176: 11172: 11169: 11158: 11147: 11144: 11141: 11138: 11135: 11132: 11129: 11126: 11121: 11115: 11109: 11104: 11100: 11075: 11055: 11052: 11049: 11044: 11038: 11024: 11013: 11010: 11007: 11004: 11001: 10996: 10992: 10968: 10965: 10962: 10957: 10953: 10949: 10946: 10943: 10940: 10935: 10931: 10910: 10907: 10904: 10888: 10885: 10883: 10880: 10879: 10878: 10854: 10851: 10848: 10843: 10839: 10823: 10803: 10800: 10797: 10794: 10791: 10786: 10782: 10757: 10754: 10739: 10736: 10733: 10730: 10725: 10721: 10717: 10714: 10711: 10708: 10705: 10702: 10697: 10694: 10691: 10687: 10683: 10680: 10677: 10672: 10669: 10666: 10662: 10658: 10655: 10652: 10649: 10644: 10640: 10636: 10631: 10627: 10623: 10601: 10597: 10593: 10573: 10570: 10567: 10562: 10558: 10554: 10551: 10548: 10545: 10542: 10537: 10533: 10493: 10490: 10487: 10484: 10480: 10476: 10471: 10467: 10442: 10439: 10436: 10433: 10429: 10425: 10420: 10416: 10412: 10407: 10404: 10401: 10397: 10393: 10390: 10387: 10382: 10378: 10374: 10371: 10368: 10365: 10338: 10333: 10329: 10325: 10321: 10300: 10297: 10294: 10291: 10288: 10285: 10280: 10276: 10255: 10235: 10232: 10229: 10225: 10211: 10197: 10194: 10191: 10155: 10152: 10149: 10145: 10126: 10125: 10109: 10103: 10098: 10094: 10091: 10071: 10065: 10060: 10056: 10053: 10050: 10047: 10044: 10041: 10038: 10035: 10032: 10013: 10001: 9997: 9994: 9990: 9987: 9984: 9981: 9977: 9974: 9970: 9967: 9964: 9961: 9958: 9955: 9952: 9941:exact sequence 9928: 9925: 9921: 9918: 9914: 9911: 9908: 9904: 9901: 9897: 9894: 9883: 9867: 9864: 9863: 9862: 9848: 9843: 9840: 9835: 9830: 9827: 9824: 9819: 9816: 9777: 9772: 9769: 9752: 9741: 9738: 9735: 9732: 9727: 9724: 9721: 9717: 9713: 9710: 9707: 9704: 9699: 9695: 9689: 9684: 9681: 9678: 9674: 9670: 9667: 9664: 9661: 9658: 9655: 9650: 9646: 9625: 9622: 9619: 9616: 9613: 9610: 9607: 9604: 9601: 9598: 9595: 9592: 9589: 9586: 9583: 9580: 9577: 9557: 9554: 9551: 9528: 9525: 9522: 9508: 9496: 9493: 9490: 9485: 9481: 9475: 9471: 9467: 9464: 9461: 9456: 9452: 9448: 9443: 9439: 9402: 9399: 9396: 9393: 9390: 9379: 9363: 9360: 9357: 9354: 9351: 9346: 9342: 9326: 9323: 9308: 9305: 9302: 9299: 9296: 9293: 9288: 9284: 9280: 9277: 9274: 9271: 9266: 9262: 9258: 9255: 9252: 9249: 9244: 9240: 9236: 9233: 9230: 9227: 9224: 9193: 9190: 9186: 9182: 9179: 9176: 9171: 9168: 9164: 9146: 9103: 9100: 9087: 9084: 9081: 9078: 9075: 9072: 9067: 9062: 9057: 9053: 9032: 9028: 9024: 9019: 9014: 9011: 9006: 9001: 8997: 8993: 8990: 8987: 8984: 8981: 8978: 8975: 8970: 8965: 8960: 8956: 8935: 8932: 8929: 8924: 8919: 8914: 8910: 8906: 8903: 8900: 8895: 8884:. Recall that 8871: 8866: 8863: 8849: 8846: 8845: 8844: 8836: 8835: 8834: 8833: 8822: 8817: 8813: 8809: 8806: 8801: 8797: 8791: 8787: 8783: 8780: 8775: 8770: 8766: 8762: 8759: 8754: 8750: 8746: 8743: 8738: 8733: 8729: 8725: 8722: 8717: 8713: 8709: 8706: 8703: 8700: 8697: 8694: 8691: 8686: 8682: 8678: 8675: 8655: 8652: 8649: 8638: 8627: 8622: 8618: 8612: 8608: 8604: 8601: 8596: 8592: 8588: 8585: 8580: 8575: 8571: 8567: 8564: 8559: 8555: 8551: 8548: 8545: 8542: 8539: 8536: 8533: 8528: 8524: 8520: 8517: 8497: 8494: 8491: 8468: 8465: 8462: 8457: 8453: 8449: 8444: 8440: 8428: 8417: 8414: 8411: 8408: 8403: 8399: 8395: 8392: 8389: 8384: 8380: 8376: 8371: 8367: 8342: 8339: 8336: 8333: 8326: 8322: 8317: 8313: 8310: 8307: 8300: 8296: 8291: 8287: 8284: 8281: 8278: 8271: 8267: 8263: 8260: 8257: 8252: 8248: 8243: 8239: 8236: 8234: 8232: 8229: 8224: 8220: 8216: 8211: 8207: 8203: 8202: 8199: 8196: 8193: 8190: 8183: 8179: 8174: 8170: 8167: 8164: 8157: 8153: 8148: 8144: 8141: 8138: 8135: 8128: 8124: 8120: 8117: 8114: 8109: 8105: 8100: 8096: 8093: 8091: 8089: 8086: 8083: 8078: 8074: 8070: 8065: 8061: 8057: 8056: 8036: 8014: 8010: 8006: 8003: 8000: 7995: 7991: 7979: 7968: 7963: 7959: 7955: 7952: 7947: 7943: 7939: 7936: 7933: 7928: 7925: 7922: 7918: 7912: 7907: 7904: 7901: 7897: 7893: 7890: 7887: 7882: 7878: 7874: 7871: 7866: 7862: 7858: 7855: 7852: 7847: 7844: 7841: 7837: 7830: 7825: 7821: 7818: 7815: 7812: 7809: 7803: 7795: 7790: 7787: 7784: 7780: 7776: 7773: 7770: 7767: 7764: 7761: 7756: 7752: 7748: 7745: 7742: 7739: 7736: 7731: 7727: 7706: 7703: 7700: 7697: 7694: 7691: 7688: 7685: 7682: 7679: 7676: 7673: 7670: 7667: 7664: 7659: 7655: 7632: 7628: 7622: 7619: 7616: 7612: 7608: 7605: 7600: 7596: 7592: 7589: 7586: 7581: 7577: 7571: 7566: 7563: 7560: 7556: 7552: 7549: 7546: 7543: 7540: 7537: 7532: 7528: 7512: 7500: 7497: 7494: 7489: 7485: 7479: 7475: 7471: 7468: 7465: 7462: 7459: 7454: 7450: 7446: 7441: 7437: 7416: 7394: 7390: 7356: 7352: 7348: 7345: 7342: 7337: 7333: 7327: 7322: 7319: 7316: 7312: 7308: 7305: 7302: 7299: 7294: 7290: 7269: 7266: 7254: 7251: 7246: 7242: 7238: 7235: 7232: 7227: 7223: 7219: 7215: 7211: 7208: 7204: 7200: 7195: 7191: 7187: 7182: 7178: 7174: 7171: 7168: 7164: 7160: 7157: 7154: 7149: 7145: 7141: 7138: 7133: 7129: 7125: 7122: 7119: 7116: 7113: 7110: 7096: 7090:Yoneda's lemma 7077: 7074: 7070: 7066: 7063: 7060: 7055: 7051: 7030: 7025: 7021: 7017: 7014: 7011: 7008: 7002: 6996: 6992: 6952: 6946: 6942: 6916: 6913: 6908: 6904: 6900: 6895: 6890: 6886: 6882: 6879: 6876: 6873: 6868: 6864: 6843: 6840: 6836: 6832: 6829: 6826: 6821: 6817: 6813: 6810: 6805: 6801: 6797: 6794: 6791: 6786: 6782: 6778: 6774: 6770: 6765: 6760: 6756: 6741: 6732: 6726: 6705: 6701: 6697: 6694: 6691: 6686: 6682: 6643: 6623: 6620: 6617: 6614: 6609: 6605: 6601: 6596: 6591: 6587: 6583: 6578: 6575: 6570: 6565: 6561: 6555: 6552: 6547: 6544: 6541: 6531: 6527: 6523: 6519: 6515: 6512: 6506: 6502: 6494: 6489: 6485: 6481: 6478: 6475: 6472: 6469: 6466: 6433: 6430: 6427: 6424: 6419: 6415: 6411: 6408: 6403: 6399: 6393: 6389: 6385: 6382: 6377: 6372: 6368: 6364: 6359: 6356: 6351: 6348: 6343: 6339: 6335: 6332: 6327: 6322: 6318: 6314: 6309: 6306: 6301: 6296: 6292: 6288: 6285: 6282: 6279: 6276: 6273: 6270: 6267: 6239: 6236: 6232: 6228: 6225: 6222: 6219: 6214: 6210: 6206: 6203: 6200: 6197: 6194: 6191: 6186: 6182: 6178: 6173: 6169: 6165: 6162: 6157: 6154: 6151: 6146: 6142: 6137: 6133: 6130: 6127: 6122: 6119: 6116: 6111: 6107: 6102: 6098: 6095: 6092: 6089: 6086: 6083: 6057: 6053: 6049: 6046: 6041: 6036: 6032: 6028: 6023: 6019: 6015: 6010: 6006: 6002: 5997: 5993: 5972: 5969: 5964: 5960: 5956: 5953: 5950: 5945: 5941: 5937: 5932: 5928: 5924: 5921: 5918: 5915: 5910: 5906: 5902: 5899: 5896: 5891: 5887: 5883: 5878: 5874: 5870: 5865: 5861: 5857: 5852: 5847: 5843: 5839: 5836: 5833: 5828: 5823: 5819: 5805: 5786: 5777: 5771: 5757: 5740: 5737: 5734: 5729: 5725: 5711:'s. Either by 5706: 5697: 5684: 5678: 5669: 5656: 5644: 5641: 5638: 5635: 5630: 5626: 5622: 5619: 5616: 5613: 5610: 5607: 5602: 5598: 5594: 5589: 5585: 5581: 5578: 5575: 5572: 5567: 5563: 5534: 5531: 5528: 5523: 5519: 5498: 5493: 5489: 5485: 5480: 5476: 5472: 5469: 5466: 5463: 5458: 5454: 5433: 5430: 5427: 5424: 5421: 5416: 5412: 5408: 5405: 5402: 5399: 5396: 5393: 5390: 5387: 5384: 5379: 5375: 5371: 5368: 5365: 5362: 5359: 5356: 5353: 5348: 5344: 5321: 5317: 5313: 5310: 5307: 5302: 5298: 5294: 5291: 5271: 5268: 5264: 5261: 5257: 5252: 5248: 5244: 5241: 5238: 5233: 5229: 5225: 5222: 5218: 5215: 5211: 5208: 5205: 5200: 5196: 5181: 5163: 5160: 5157: 5152: 5148: 5144: 5141: 5138: 5135: 5132: 5129: 5124: 5120: 5116: 5113: 5110: 5107: 5104: 5101: 5098: 5070: 5067: 5064: 5059: 5055: 5036: 5015: 5010: 5006: 5002: 4999: 4996: 4991: 4987: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4960: 4956: 4952: 4949: 4946: 4943: 4940: 4937: 4932: 4928: 4909: 4895: 4892: 4880: 4875: 4871: 4864: 4859: 4855: 4852: 4849: 4843: 4837: 4834: 4829: 4824: 4818: 4814: 4809: 4805: 4784: 4781: 4778: 4749: 4745: 4724: 4721: 4718: 4713: 4709: 4705: 4702: 4699: 4694: 4690: 4686: 4681: 4677: 4656: 4653: 4650: 4647: 4640: 4635: 4629: 4622: 4599: 4595: 4591: 4586: 4581: 4575: 4571: 4566: 4562: 4537: 4532: 4529: 4526: 4522: 4518: 4515: 4512: 4509: 4506: 4501: 4498: 4495: 4491: 4487: 4484: 4481: 4474: 4469: 4463: 4456: 4450: 4447: 4444: 4441: 4436: 4431: 4428: 4423: 4420: 4417: 4411: 4408: 4405: 4401: 4396: 4391: 4386: 4380: 4376: 4373: 4353: 4350: 4345: 4341: 4337: 4332: 4328: 4324: 4321: 4318: 4315: 4303: 4302: 4291: 4286: 4283: 4280: 4277: 4274: 4271: 4267: 4263: 4260: 4255: 4250: 4247: 4244: 4241: 4238: 4235: 4230: 4225: 4222: 4219: 4216: 4213: 4208: 4203: 4200: 4197: 4194: 4191: 4188: 4185: 4182: 4179: 4176: 4173: 4168: 4163: 4160: 4157: 4154: 4149: 4144: 4139: 4134: 4128: 4124: 4115:. It follows: 4102: 4099: 4096: 4093: 4090: 4087: 4081: 4075: 4072: 4069: 4066: 4063: 4060: 4057: 4052: 4030: 4027: 4024: 4021: 4018: 4015: 4012: 4007: 4002: 3999: 3996: 3971: 3966: 3960: 3956: 3926: 3921: 3915: 3888: 3885: 3882: 3877: 3860: 3846: 3842: 3820: 3817: 3814: 3811: 3807: 3804: 3801: 3796: 3790: 3779: 3775: 3771: 3766: 3762: 3757: 3750: 3745: 3740: 3737: 3734: 3731: 3726: 3719: 3716: 3713: 3708: 3704: 3695: 3691: 3687: 3682: 3678: 3674: 3670: 3663: 3658: 3649: 3644: 3638: 3633: 3629: 3626: 3606: 3601: 3597: 3592: 3586: 3582: 3578: 3575: 3553: 3547: 3522: 3517: 3508: 3503: 3497: 3492: 3468: 3465: 3462: 3458: 3451: 3446: 3442: 3435: 3431: 3427: 3422: 3418: 3414: 3409: 3405: 3401: 3396: 3392: 3385: 3382: 3377: 3373: 3368: 3362: 3358: 3354: 3351: 3346: 3342: 3320: 3317: 3314: 3309: 3305: 3301: 3298: 3293: 3288: 3285: 3280: 3277: 3255: 3250: 3244: 3240: 3237: 3234: 3231: 3228: 3223: 3220: 3217: 3212: 3207: 3204: 3184: 3179: 3176: 3173: 3168: 3144: 3140: 3136: 3133: 3130: 3125: 3121: 3108: 3080: 3077: 3074: 3067: 3062: 3059: 3051: 3024: 3019: 3016: 3008: 2985: 2982: 2977: 2972: 2969: 2964: 2961: 2956: 2953: 2950: 2947: 2944: 2941: 2937: 2933: 2930: 2923: 2918: 2915: 2907: 2901: 2894: 2889: 2886: 2878: 2872: 2869: 2857: 2854: 2839: 2834: 2831: 2826: 2791: 2788: 2780: 2776: 2770: 2765: 2760: 2756: 2752: 2749: 2746: 2738: 2735: 2729: 2726: 2723: 2720: 2714: 2709: 2706: 2701: 2696: 2692: 2688: 2666: 2662: 2658: 2655: 2652: 2646: 2643: 2639: 2633: 2629: 2624: 2620: 2597: 2589: 2585: 2579: 2574: 2569: 2565: 2561: 2558: 2555: 2547: 2544: 2538: 2535: 2532: 2529: 2526: 2520: 2517: 2495: 2487: 2483: 2477: 2472: 2467: 2463: 2459: 2456: 2453: 2445: 2442: 2436: 2433: 2430: 2424: 2421: 2396: 2393: 2390: 2387: 2384: 2379: 2375: 2352: 2349: 2346: 2342: 2338: 2333: 2328: 2325: 2320: 2315: 2311: 2286:complex number 2269: 2266: 2262: 2258: 2255: 2233: 2228: 2225: 2220: 2217: 2214: 2188:Riemann sphere 2173: 2168: 2165: 2151: 2148: 2146: 2143: 2119: 2114: 2111: 2108: 2105: 2103: 2100: 2099: 2096: 2093: 2090: 2087: 2085: 2079: 2074: 2070: 2067: 2064: 2063: 2060: 2057: 2054: 2051: 2049: 2045: 2042: 2038: 2033: 2029: 2023: 2020: 2013: 2007: 2004: 1998: 1993: 1988: 1987: 1985: 1980: 1977: 1974: 1971: 1966: 1962: 1941: 1938: 1935: 1932: 1929: 1926: 1904: 1898: 1895: 1889: 1884: 1864: 1861: 1858: 1855: 1851: 1847: 1843: 1840: 1836: 1833: 1828: 1824: 1815: 1809: 1806: 1800: 1795: 1791: 1786: 1782: 1778: 1775: 1772: 1769: 1764: 1760: 1756: 1753: 1733: 1730: 1726: 1723: 1719: 1713: 1710: 1704: 1699: 1688:Gysin sequence 1670: 1667: 1613: 1610: 1606: 1602: 1599: 1578: 1575: 1572: 1569: 1565: 1562: 1544:. Thinking of 1526: 1523: 1520: 1517: 1514: 1490: 1486: 1482: 1479: 1474: 1470: 1446: 1443: 1431: 1427: 1423: 1420: 1415: 1411: 1402: 1398: 1394: 1387: 1383: 1379: 1376: 1372: 1369: 1365: 1362: 1359: 1356: 1352: 1349: 1345: 1340: 1336: 1332: 1328: 1325: 1321: 1318: 1315: 1310: 1306: 1302: 1298: 1295: 1291: 1288: 1282: 1279: 1274: 1270: 1261: 1257: 1253: 1246: 1242: 1238: 1235: 1231: 1228: 1224: 1221: 1216: 1212: 1208: 1204: 1201: 1194: 1191: 1185: 1182: 1177: 1174: 1171: 1167: 1164: 1157: 1154: 1151: 1147: 1143: 1138: 1134: 1130: 1127: 1124: 1119: 1115: 1109: 1105: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1015: 1012: 1008: 1005: 1002: 999: 996: 993: 990: 987: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 937: 934: 931: 928: 925: 922: 918: 915: 880:representative 848:. The scalar 813: 810: 807: 804: 801: 796: 793: 788: 785: 782: 779: 776: 767:is defined as 752: 742:curvature form 721: 718: 715: 691: 687: 683: 680: 677: 672: 668: 662: 658: 654: 650: 646: 643: 637: 634: 629: 626: 623: 616: 612: 586: 576:curvature form 555: 552: 549: 544: 540: 496:Main article: 493: 490: 488: 485: 463:tensor product 450: 447: 443: 440: 436: 431: 427: 423: 420: 417: 414: 409: 405: 401: 398: 394: 391: 387: 384: 381: 376: 372: 351: 347: 343: 340: 337: 332: 328: 262: 259: 123: 120: 116:curvature form 84: 81: 79: 76: 48:vector bundles 15: 9: 6: 4: 3: 2: 16244: 16233: 16230: 16228: 16225: 16224: 16222: 16207: 16199: 16195: 16192: 16190: 16187: 16185: 16182: 16181: 16180: 16172: 16170: 16166: 16162: 16160: 16156: 16152: 16150: 16145: 16140: 16138: 16130: 16129: 16126: 16120: 16117: 16115: 16112: 16110: 16107: 16105: 16102: 16100: 16097: 16095: 16092: 16091: 16089: 16087: 16083: 16077: 16076:Orientability 16074: 16072: 16069: 16067: 16064: 16062: 16059: 16057: 16054: 16053: 16051: 16047: 16041: 16038: 16036: 16033: 16031: 16028: 16026: 16023: 16021: 16018: 16016: 16013: 16011: 16008: 16004: 16001: 15999: 15996: 15995: 15994: 15991: 15987: 15984: 15982: 15979: 15977: 15974: 15972: 15969: 15967: 15964: 15963: 15962: 15959: 15957: 15954: 15952: 15949: 15947: 15943: 15940: 15939: 15937: 15933: 15928: 15918: 15915: 15913: 15912:Set-theoretic 15910: 15906: 15903: 15902: 15901: 15898: 15894: 15891: 15890: 15889: 15886: 15884: 15881: 15879: 15876: 15874: 15873:Combinatorial 15871: 15869: 15866: 15864: 15861: 15860: 15858: 15854: 15850: 15843: 15838: 15836: 15831: 15829: 15824: 15823: 15820: 15814: 15810: 15807: 15804: 15803:Allen Hatcher 15800: 15797: 15796: 15787: 15781: 15777: 15772: 15769: 15763: 15759: 15755: 15751: 15747: 15744: 15742:9780226511832 15738: 15734: 15733: 15728: 15727:May, J. Peter 15724: 15720: 15714: 15710: 15706: 15702: 15698: 15694: 15688: 15684: 15683: 15677: 15674: 15670: 15666: 15662: 15657: 15652: 15648: 15644: 15640: 15636: 15632: 15628: 15622: 15618: 15617: 15611: 15608: 15604: 15600: 15596: 15592: 15588: 15585:(1): 85–121, 15584: 15580: 15579: 15574: 15570: 15569: 15557: 15553: 15549: 15524: 15520: 15516: 15513: 15510: 15505: 15501: 15492: 15488: 15482: 15477: 15474: 15471: 15467: 15463: 15461: 15448: 15444: 15440: 15437: 15429: 15424: 15421: 15418: 15414: 15410: 15408: 15395: 15391: 15384: 15379: 15374: 15371: 15368: 15364: 15360: 15358: 15345: 15341: 15337: 15334: 15331: 15326: 15322: 15315: 15312: 15310: 15302: 15296: 15272: 15266: 15258: 15254: 15248: 15243: 15240: 15237: 15233: 15229: 15223: 15217: 15197: 15189: 15185: 15181: 15178: 15175: 15170: 15166: 15157: 15153: 15149: 15143: 15135: 15131: 15108: 15104: 15095: 15091: 15087: 15083: 15077: 15056: 15052: 15029: 15025: 15014: 15007: 15002: 14995: 14990: 14983: 14978: 14971: 14966: 14959: 14955: 14937: 14933: 14924: 14915: 14911: 14905: 14902: 14896: 14879: 14876: 14868: 14865: 14861: 14854: 14844: 14840: 14825: 14822: 14814: 14811: 14807: 14796: 14789: 14784: 14777: 14771: 14762: 14751: 14747: 14741: 14733: 14731:3-540-90613-4 14727: 14723: 14719: 14713: 14709: 14699: 14696: 14694: 14691: 14689: 14686: 14684: 14681: 14679: 14676: 14674: 14671: 14669: 14666: 14665: 14659: 14657: 14647: 14645: 14641: 14636: 14634: 14630: 14626: 14622: 14618: 14614: 14610: 14606: 14602: 14598: 14594: 14590: 14586: 14582: 14578: 14577:Chern classes 14574: 14570: 14565: 14563: 14559: 14546: 14542: 14538: 14534: 14530: 14526: 14522: 14519: 14515: 14511: 14508: 14507: 14506: 14498: 14496: 14492: 14491: 14486: 14476: 14473: 14459: 14451: 14435: 14432: 14410: 14406: 14383: 14379: 14373: 14369: 14346: 14341: 14337: 14328: 14324: 14308: 14288: 14285: 14265: 14262: 14255:of dimension 14254: 14247:Chern numbers 14244: 14242: 14237: 14235: 14231: 14227: 14223: 14219: 14215: 14212: 14208: 14204: 14200: 14195: 14182: 14176: 14170: 14167: 14161: 14155: 14152: 14149: 14143: 14140: 14137: 14131: 14128: 14106: 14100: 14097: 14094: 14088: 14082: 14079: 14076: 14070: 14067: 14064: 14058: 14055: 14047: 14044: 14042: 14021: 14016: 14011: 14005: 14002: 13994: 13988: 13984: 13981: 13977: 13973: 13970: 13966: 13962: 13956: 13950: 13947: 13939: 13934: 13932: 13928: 13924: 13919: 13906: 13903: 13900: 13891: 13883: 13879: 13875: 13872: 13866: 13858: 13854: 13847: 13839: 13835: 13831: 13828: 13823: 13815: 13807: 13803: 13794: 13791: 13786: 13777: 13769: 13765: 13761: 13758: 13753: 13745: 13737: 13733: 13724: 13721: 13716: 13710: 13702: 13698: 13694: 13688: 13682: 13679: 13676: 13670: 13664: 13661: 13653: 13650: 13637: 13629: 13624: 13620: 13616: 13613: 13610: 13605: 13600: 13596: 13586: 13583: 13579: 13567: 13564: 13561: 13557: 13553: 13546: 13542: 13537: 13533: 13530: 13527: 13520: 13516: 13511: 13507: 13501: 13495: 13492: 13472: 13464: 13460: 13451: 13447: 13443: 13438: 13434: 13411: 13407: 13403: 13400: 13397: 13392: 13388: 13384: 13381: 13372: 13359: 13353: 13350: 13343: 13335: 13327: 13323: 13309: 13306: 13303: 13299: 13295: 13286: 13278: 13274: 13267: 13264: 13261: 13255: 13249: 13246: 13238: 13236: 13232: 13217: 13215: 13214:spin manifold 13199: 13196: 13176: 13173: 13170: 13150: 13124: 13116: 13105: 13101: 13097: 13094: 13091: 13088: 13085: 13079: 13073: 13064: 13061: 13058: 13052: 13049: 13046: 13044: 13031: 13023: 13015: 13011: 13007: 13001: 12995: 12992: 12989: 12978: 12970: 12964: 12961: 12955: 12949: 12946: 12943: 12937: 12935: 12918: 12912: 12909: 12906: 12896: 12885: 12879: 12876: 12867: 12865: 12855: 12840: 12807: 12799: 12784: 12772: 12760: 12738: 12732: 12724: 12709: 12689: 12680: 12672: 12655: 12641: 12617: 12602: 12582: 12560: 12550: 12547: 12533: 12519: 12511: 12493: 12489: 12468: 12465: 12462: 12457: 12453: 12449: 12446: 12438: 12431: 12427: 12419: 12402: 12398: 12389: 12382: 12373: 12352: 12335: 12331: 12321: 12302: 12298: 12294: 12291: 12286: 12282: 12278: 12275: 12272: 12269: 12267: 12258: 12252: 12248: 12244: 12241: 12236: 12232: 12228: 12225: 12222: 12219: 12216: 12213: 12209: 12204: 12198: 12194: 12190: 12187: 12182: 12178: 12174: 12171: 12168: 12165: 12162: 12159: 12155: 12151: 12149: 12138: 12135: 12132: 12129: 12122: 12118: 12114: 12111: 12106: 12102: 12098: 12095: 12092: 12089: 12086: 12083: 12077: 12075: 12065: 12050: 12024: 12008: 11993: 11989: 11985: 11982: 11977: 11973: 11969: 11966: 11963: 11960: 11957: 11954: 11951: 11946: 11938: 11935: 11932: 11926: 11917: 11909: 11894: 11886: 11871: 11848: 11840: 11836: 11815: 11806: 11793: 11784: 11776: 11759: 11745: 11721: 11706: 11683: 11675: 11644: 11629: 11619: 11606: 11596: 11585: 11581: 11564: 11550: 11526: 11511: 11489: 11479: 11476: 11445: 11437: 11433: 11423: 11415: 11411: 11407: 11404: 11381: 11375: 11369: 11361: 11344: 11333: 11330: 11310: 11307: 11301: 11293: 11289: 11281: 11263: 11260: 11253: 11246: 11243: 11236: 11233: 11227: 11221: 11201: 11194: 11191: 11184: 11177: 11174: 11167: 11159: 11142: 11136: 11127: 11119: 11102: 11098: 11089: 11073: 11050: 11042: 11025: 11011: 11008: 11002: 10994: 10990: 10982: 10981: 10980: 10963: 10955: 10951: 10947: 10941: 10933: 10929: 10908: 10902: 10894: 10876: 10872: 10868: 10849: 10841: 10837: 10828: 10824: 10821: 10817: 10801: 10798: 10792: 10784: 10780: 10771: 10767: 10763: 10762: 10761: 10753: 10750: 10737: 10731: 10723: 10719: 10715: 10712: 10709: 10703: 10695: 10692: 10689: 10685: 10681: 10678: 10675: 10670: 10667: 10664: 10660: 10656: 10650: 10642: 10638: 10634: 10629: 10625: 10621: 10599: 10595: 10591: 10568: 10560: 10556: 10552: 10549: 10543: 10535: 10531: 10522: 10517: 10515: 10511: 10507: 10485: 10469: 10465: 10456: 10434: 10418: 10414: 10410: 10405: 10402: 10399: 10395: 10391: 10388: 10385: 10380: 10376: 10372: 10369: 10366: 10363: 10354: 10352: 10331: 10327: 10298: 10295: 10292: 10286: 10278: 10274: 10253: 10230: 10214: 10195: 10192: 10189: 10181: 10177: 10173: 10169: 10150: 10133: 10131: 10123: 10096: 10089: 10058: 10051: 10048: 10045: 10042: 10036: 10030: 10022: 10018: 10014: 9995: 9992: 9985: 9982: 9975: 9972: 9965: 9962: 9956: 9950: 9942: 9926: 9919: 9916: 9909: 9902: 9899: 9892: 9884: 9881: 9880: 9879: 9877: 9873: 9846: 9833: 9828: 9825: 9822: 9805: 9801: 9800:PoincarĂ© dual 9797: 9793: 9775: 9757: 9753: 9739: 9733: 9725: 9722: 9719: 9715: 9711: 9705: 9697: 9693: 9687: 9682: 9679: 9676: 9672: 9668: 9662: 9659: 9656: 9648: 9644: 9623: 9617: 9611: 9608: 9602: 9596: 9593: 9587: 9584: 9581: 9575: 9568:are given by 9555: 9552: 9549: 9542: 9526: 9520: 9512: 9509: 9491: 9483: 9479: 9473: 9469: 9465: 9459: 9454: 9450: 9441: 9437: 9428: 9424: 9420: 9416: 9400: 9394: 9391: 9388: 9380: 9377: 9361: 9358: 9352: 9344: 9340: 9332: 9331: 9330: 9322: 9319: 9306: 9303: 9300: 9294: 9286: 9282: 9278: 9272: 9264: 9260: 9256: 9250: 9242: 9238: 9234: 9228: 9222: 9215: 9211: 9207: 9191: 9180: 9177: 9169: 9166: 9162: 9153: 9149: 9142: 9138: 9136: 9131: 9127: 9123: 9119: 9116: 9112: 9109: 9099: 9085: 9082: 9073: 9055: 9051: 9022: 9017: 8999: 8995: 8991: 8988: 8985: 8976: 8958: 8954: 8930: 8917: 8912: 8904: 8901: 8869: 8842: 8838: 8837: 8820: 8815: 8811: 8807: 8804: 8799: 8795: 8789: 8785: 8781: 8778: 8773: 8768: 8764: 8760: 8757: 8752: 8748: 8744: 8741: 8736: 8731: 8727: 8723: 8720: 8715: 8711: 8707: 8704: 8701: 8698: 8692: 8689: 8684: 8680: 8673: 8653: 8650: 8647: 8639: 8625: 8620: 8616: 8610: 8606: 8602: 8599: 8594: 8590: 8586: 8583: 8578: 8573: 8569: 8565: 8562: 8557: 8553: 8549: 8546: 8543: 8540: 8534: 8531: 8526: 8522: 8515: 8495: 8492: 8489: 8481: 8480: 8463: 8455: 8451: 8447: 8442: 8438: 8429: 8415: 8409: 8401: 8397: 8393: 8387: 8382: 8378: 8369: 8365: 8340: 8334: 8324: 8320: 8315: 8311: 8308: 8305: 8298: 8294: 8289: 8282: 8279: 8269: 8265: 8261: 8258: 8255: 8250: 8246: 8241: 8237: 8235: 8227: 8222: 8218: 8209: 8205: 8197: 8191: 8181: 8177: 8172: 8168: 8165: 8162: 8155: 8151: 8146: 8139: 8136: 8126: 8122: 8118: 8115: 8112: 8107: 8103: 8098: 8094: 8092: 8084: 8081: 8076: 8072: 8063: 8059: 8034: 8012: 8008: 8004: 8001: 7998: 7993: 7989: 7980: 7966: 7961: 7953: 7945: 7941: 7934: 7926: 7923: 7920: 7916: 7910: 7905: 7902: 7899: 7895: 7891: 7888: 7885: 7880: 7872: 7864: 7860: 7853: 7845: 7842: 7839: 7835: 7823: 7819: 7816: 7813: 7810: 7807: 7793: 7788: 7785: 7782: 7778: 7774: 7771: 7768: 7762: 7754: 7750: 7746: 7743: 7737: 7729: 7725: 7704: 7701: 7698: 7695: 7692: 7689: 7686: 7683: 7680: 7677: 7671: 7668: 7665: 7657: 7653: 7630: 7626: 7620: 7617: 7614: 7606: 7598: 7594: 7587: 7579: 7575: 7569: 7564: 7561: 7558: 7554: 7550: 7544: 7541: 7538: 7530: 7526: 7517: 7513: 7495: 7487: 7483: 7477: 7469: 7466: 7460: 7452: 7448: 7439: 7435: 7414: 7392: 7388: 7380: 7376: 7375: 7374: 7372: 7354: 7350: 7343: 7335: 7331: 7325: 7320: 7317: 7314: 7310: 7306: 7300: 7292: 7288: 7279: 7275: 7265: 7252: 7244: 7240: 7236: 7233: 7230: 7225: 7221: 7209: 7198: 7193: 7189: 7180: 7176: 7172: 7158: 7155: 7147: 7143: 7139: 7131: 7127: 7123: 7120: 7111: 7108: 7099: 7095: 7091: 7075: 7064: 7061: 7053: 7049: 7023: 7019: 7015: 7012: 7006: 6994: 6990: 6981: 6977: 6973: 6969: 6944: 6940: 6931: 6927: 6914: 6906: 6902: 6893: 6888: 6884: 6880: 6874: 6866: 6862: 6841: 6830: 6827: 6819: 6815: 6803: 6799: 6795: 6792: 6789: 6784: 6780: 6768: 6763: 6758: 6754: 6744: 6740: 6735: 6729: 6725: 6721: 6703: 6699: 6692: 6689: 6684: 6680: 6671: 6667: 6663: 6659: 6655: 6651: 6646: 6642: 6638: 6634: 6621: 6618: 6615: 6607: 6603: 6599: 6594: 6589: 6585: 6576: 6573: 6568: 6563: 6559: 6553: 6550: 6545: 6542: 6539: 6529: 6525: 6521: 6517: 6513: 6510: 6504: 6500: 6492: 6487: 6483: 6479: 6473: 6467: 6464: 6457:is given by: 6456: 6452: 6448: 6444: 6431: 6428: 6425: 6417: 6413: 6409: 6406: 6401: 6397: 6391: 6387: 6383: 6380: 6375: 6370: 6366: 6357: 6354: 6349: 6341: 6337: 6333: 6330: 6325: 6320: 6316: 6307: 6304: 6299: 6294: 6290: 6286: 6283: 6280: 6274: 6268: 6265: 6257: 6253: 6237: 6234: 6230: 6220: 6212: 6208: 6204: 6201: 6198: 6192: 6184: 6180: 6171: 6167: 6163: 6160: 6152: 6144: 6140: 6135: 6131: 6128: 6125: 6117: 6109: 6105: 6100: 6096: 6090: 6084: 6081: 6073: 6055: 6051: 6047: 6044: 6039: 6034: 6030: 6026: 6021: 6017: 6013: 6008: 6004: 6000: 5995: 5991: 5962: 5958: 5954: 5951: 5948: 5943: 5939: 5930: 5926: 5922: 5919: 5916: 5908: 5904: 5900: 5897: 5894: 5889: 5885: 5876: 5872: 5863: 5859: 5855: 5850: 5845: 5841: 5837: 5834: 5831: 5826: 5821: 5817: 5808: 5804: 5800: 5794: 5789: 5785: 5780: 5774: 5769: 5765: 5761: 5756: 5754: 5735: 5727: 5723: 5714: 5709: 5705: 5700: 5696: 5692: 5687: 5681: 5677: 5672: 5668: 5664: 5659: 5636: 5628: 5624: 5620: 5617: 5614: 5608: 5600: 5596: 5587: 5583: 5579: 5573: 5565: 5561: 5552: 5548: 5545:, called the 5529: 5521: 5517: 5491: 5487: 5478: 5474: 5470: 5464: 5456: 5452: 5428: 5422: 5414: 5410: 5406: 5403: 5397: 5391: 5385: 5377: 5373: 5369: 5366: 5360: 5354: 5346: 5342: 5319: 5315: 5311: 5308: 5305: 5300: 5296: 5292: 5289: 5269: 5262: 5259: 5250: 5246: 5239: 5231: 5227: 5223: 5216: 5213: 5209: 5206: 5198: 5194: 5184: 5180: 5175: 5158: 5150: 5146: 5142: 5139: 5136: 5130: 5122: 5118: 5114: 5111: 5108: 5102: 5096: 5088: 5084: 5065: 5057: 5053: 5044: 5039: 5035: 5031: 5026: 5013: 5008: 5004: 4997: 4989: 4985: 4981: 4978: 4975: 4972: 4966: 4958: 4954: 4950: 4947: 4944: 4938: 4930: 4926: 4918:is given by: 4917: 4912: 4908: 4905: 4901: 4891: 4878: 4873: 4869: 4857: 4853: 4850: 4847: 4835: 4827: 4807: 4803: 4782: 4779: 4776: 4767: 4765: 4747: 4743: 4719: 4711: 4707: 4703: 4700: 4692: 4688: 4679: 4675: 4651: 4648: 4638: 4589: 4584: 4564: 4560: 4551: 4535: 4530: 4527: 4524: 4516: 4513: 4510: 4504: 4499: 4496: 4493: 4482: 4472: 4445: 4442: 4434: 4421: 4415: 4399: 4389: 4371: 4351: 4348: 4343: 4339: 4335: 4330: 4326: 4322: 4319: 4316: 4313: 4289: 4281: 4278: 4275: 4269: 4261: 4248: 4239: 4236: 4223: 4217: 4214: 4198: 4195: 4192: 4186: 4183: 4177: 4174: 4158: 4155: 4152: 4142: 4137: 4122: 4097: 4094: 4091: 4085: 4073: 4070: 4067: 4061: 4058: 4025: 4022: 4016: 4013: 3997: 3994: 3987: 3969: 3954: 3946: 3942: 3939:at the point 3924: 3904: 3886: 3883: 3880: 3866:be a line in 3865: 3861: 3844: 3840: 3831: 3818: 3815: 3812: 3809: 3805: 3802: 3794: 3777: 3773: 3764: 3760: 3748: 3735: 3732: 3717: 3714: 3711: 3706: 3702: 3693: 3689: 3680: 3676: 3672: 3661: 3647: 3624: 3599: 3595: 3590: 3584: 3580: 3573: 3551: 3520: 3506: 3482: 3466: 3463: 3460: 3456: 3449: 3444: 3440: 3433: 3429: 3425: 3420: 3416: 3412: 3407: 3403: 3399: 3394: 3390: 3383: 3375: 3371: 3366: 3360: 3356: 3349: 3344: 3340: 3315: 3312: 3307: 3303: 3291: 3278: 3275: 3253: 3232: 3221: 3218: 3215: 3205: 3202: 3182: 3177: 3174: 3171: 3142: 3138: 3134: 3131: 3128: 3123: 3119: 3110: 3109: 3107: 3104: 3102: 3101:tangent sheaf 3098: 3094: 3075: 3065: 3022: 2983: 2975: 2962: 2951: 2948: 2945: 2939: 2931: 2921: 2892: 2867: 2853: 2837: 2824: 2815: 2813: 2809: 2805: 2789: 2786: 2778: 2768: 2758: 2750: 2747: 2733: 2727: 2724: 2721: 2718: 2712: 2707: 2704: 2699: 2694: 2690: 2686: 2677: 2664: 2660: 2653: 2650: 2644: 2641: 2637: 2631: 2627: 2622: 2618: 2608: 2595: 2587: 2577: 2567: 2559: 2556: 2542: 2536: 2533: 2530: 2527: 2524: 2518: 2506: 2493: 2485: 2475: 2465: 2457: 2454: 2440: 2434: 2431: 2428: 2422: 2419: 2412: 2411:KĂ€hler metric 2409:Consider the 2407: 2394: 2391: 2385: 2377: 2373: 2363: 2350: 2347: 2336: 2331: 2313: 2309: 2299: 2297: 2293: 2292: 2287: 2283: 2267: 2260: 2253: 2231: 2218: 2215: 2212: 2204: 2201: 2197: 2193: 2189: 2171: 2142: 2140: 2135: 2132: 2112: 2109: 2106: 2101: 2094: 2091: 2088: 2072: 2065: 2058: 2055: 2052: 2043: 2040: 2031: 2027: 2021: 2018: 2011: 2005: 2002: 1991: 1983: 1978: 1972: 1964: 1960: 1939: 1936: 1933: 1930: 1927: 1924: 1902: 1896: 1893: 1882: 1862: 1859: 1845: 1841: 1838: 1831: 1826: 1813: 1807: 1804: 1793: 1776: 1773: 1767: 1762: 1751: 1731: 1724: 1721: 1717: 1711: 1708: 1697: 1689: 1685: 1668: 1665: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1611: 1608: 1600: 1597: 1576: 1570: 1567: 1563: 1560: 1551: 1547: 1543: 1540: 1524: 1518: 1515: 1512: 1503: 1477: 1472: 1468: 1459: 1454: 1452: 1442: 1429: 1425: 1421: 1418: 1413: 1409: 1400: 1396: 1392: 1385: 1363: 1338: 1319: 1316: 1308: 1289: 1286: 1280: 1277: 1272: 1268: 1259: 1255: 1251: 1244: 1222: 1214: 1192: 1189: 1183: 1180: 1155: 1152: 1149: 1145: 1141: 1136: 1132: 1125: 1117: 1113: 1107: 1103: 1094: 1077: 1074: 1071: 1065: 1062: 1054: 1029: 1023: 1020: 1003: 1000: 997: 991: 959: 947: 944: 941: 932: 926: 923: 903: 901: 897: 893: 889: 885: 881: 876: 874: 871: 867: 863: 859: 855: 854:indeterminate 851: 847: 843: 839: 835: 831: 827: 808: 805: 802: 794: 791: 786: 783: 780: 777: 766: 743: 739: 735: 719: 716: 713: 704: 689: 685: 678: 670: 666: 660: 656: 652: 648: 644: 641: 635: 632: 624: 621: 614: 602: 600: 577: 573: 569: 550: 542: 538: 529: 525: 522: 518: 515: 511: 508: 507:vector bundle 505: 499: 487:Constructions 484: 481: 479: 475: 471: 466: 464: 448: 441: 438: 429: 425: 421: 415: 407: 403: 399: 392: 389: 385: 382: 374: 370: 341: 338: 330: 326: 317: 313: 309: 304: 302: 298: 294: 290: 285: 283: 279: 278:homotopy type 275: 268: 258: 256: 251: 248: 244: 240: 235: 233: 229: 224: 222: 217: 215: 209: 207: 203: 199: 195: 191: 187: 183: 179: 174: 172: 168: 164: 160: 156: 152: 148: 144: 140: 137:(an infinite 136: 132: 127: 119: 117: 112: 110: 106: 102: 97: 94: 90: 75: 73: 69: 65: 61: 57: 53: 52:string theory 49: 46: 42: 38: 37:Chern classes 34: 30: 26: 22: 16206:Publications 16071:Chern number 16070: 16061:Betti number 15944: / 15935:Key concepts 15883:Differential 15775: 15757: 15731: 15704: 15701:Jost, JĂŒrgen 15681: 15646: 15642: 15615: 15582: 15576: 15555: 15551: 15089: 15085: 15076: 15013: 15001: 14989: 14977: 14965: 14957: 14953: 14795: 14783: 14770: 14761: 14740: 14721: 14712: 14653: 14637: 14632: 14628: 14624: 14620: 14616: 14613:Chern number 14612: 14608: 14600: 14595:, then each 14592: 14584: 14580: 14576: 14568: 14566: 14555: 14540: 14536: 14532: 14524: 14504: 14488: 14482: 14474: 14327:Chern number 14326: 14250: 14238: 14233: 14229: 14225: 14221: 14217: 14213: 14203:homomorphism 14198: 14196: 14048: 14045: 13935: 13930: 13926: 13920: 13654: 13651: 13373: 13239: 13234: 13228: 12575:is a degree 12539: 12322: 12009: 11807: 11625: 11468: 10890: 10870: 10866: 10826: 10819: 10815: 10769: 10765: 10759: 10751: 10520: 10518: 10513: 10509: 10505: 10356:The classes 10355: 10209: 10179: 10175: 10171: 10167: 10166:of the rank 10134: 10127: 10016: 9869: 9795: 9791: 9426: 9418: 9375: 9328: 9320: 9213: 9205: 9151: 9144: 9140: 9134: 9133: 9129: 9121: 9117: 9110: 9105: 8851: 7515: 7277: 7273: 7271: 7097: 7093: 6975: 6971: 6967: 6929: 6928: 6742: 6738: 6733: 6727: 6723: 6669: 6665: 6661: 6653: 6644: 6640: 6636: 6635: 6454: 6446: 6445: 6255: 6251: 5806: 5802: 5798: 5797: 5792: 5787: 5783: 5778: 5772: 5767: 5763: 5759: 5752: 5707: 5703: 5698: 5694: 5685: 5679: 5675: 5670: 5666: 5657: 5550: 5546: 5182: 5178: 5176: 5086: 5082: 5042: 5037: 5033: 5029: 5027: 4915: 4910: 4906: 4903: 4899: 4897: 4768: 4763: 4549: 4305: 3944: 3940: 3863: 3332: 3105: 2859: 2816: 2678: 2609: 2507: 2408: 2364: 2300: 2295: 2289: 2281: 2195: 2153: 2136: 2133: 1875:we see that 1683: 1654: 1650: 1646: 1642: 1641:(a point of 1638: 1634: 1630: 1626: 1549: 1545: 1541: 1504: 1455: 1448: 1095: 904: 899: 879: 877: 869: 865: 864:denotes the 861: 849: 845: 829: 764: 737: 733: 705: 603: 598: 567: 527: 523: 516: 514:complex rank 509: 501: 482: 467: 315: 305: 296: 288: 286: 273: 271: 252: 246: 236: 225: 218: 210: 205: 201: 197: 193: 189: 185: 181: 177: 175: 166: 162: 158: 154: 150: 146: 142: 139:Grassmannian 128: 125: 122:Construction 113: 98: 86: 36: 18: 16169:Wikiversity 16086:Key results 15649:: 137–154, 14718:Bott, Raoul 14683:Segre class 14678:Euler class 14545:cap product 14529:Chow groups 12372:Euler class 10875:Euler class 10122:Euler class 10021:line bundle 7379:dual bundle 6074:). The sum 5766:by writing 5547:Chern roots 3095:(i.e., the 2200:holomorphic 1686:. From the 842:gauge group 838:gauge field 824:with ω the 476:classes of 301:Euler class 293:line bundle 91:. They are 60:knot theory 21:mathematics 16221:Categories 16015:CW complex 15956:Continuity 15946:Closed set 15905:cohomology 15566:References 15080:(See also 14788:Hartshorne 14640:symplectic 14450:partitions 14232:), and so 12374:. This is 10979:such that 9804:hyperplane 9541:direct sum 9415:continuous 9126:cohomology 9102:Properties 6451:Todd class 3986:hom bundle 2812:exact form 2137:See also: 528:Chern form 282:CW complex 16194:geometric 16189:algebraic 16040:Cobordism 15976:Hausdorff 15971:connected 15888:Geometric 15878:Continuum 15868:Algebraic 15665:0037-9484 15599:0003-486X 15514:… 15468:∑ 15415:∏ 15365:∏ 15338:⊕ 15335:⋯ 15332:⊕ 15234:∑ 15179:… 15053:α 14909:↦ 14869:∗ 14855:η 14850:∞ 14841:⊕ 14837:→ 14815:∗ 14558:cobordism 14209:from the 14171:⁡ 14156:⁡ 14141:⊗ 14132:⁡ 14101:⁡ 14083:⁡ 14068:⊕ 14059:⁡ 14041:curvature 14006:π 13998:Ω 13985:⁡ 13974:⁡ 13951:⁡ 13904:⋯ 13829:− 13759:− 13683:⁡ 13665:⁡ 13614:⋯ 13573:∞ 13558:∑ 13531:⋯ 13496:⁡ 13404:⊕ 13401:⋯ 13398:⊕ 13315:∞ 13300:∑ 13268:⁡ 13250:⁡ 13174:− 13089:− 13062:− 12993:− 12687:→ 12661:→ 12623:→ 12606:→ 12551:⊂ 12466:− 12447:− 12432:∫ 12383:∫ 12292:− 12242:− 12217:− 11841:∙ 11791:→ 11765:→ 11727:→ 11710:→ 11604:→ 11570:→ 11532:→ 11515:→ 11480:⊂ 11438:∙ 11430:→ 11373:↦ 11199:→ 11188:→ 11182:→ 11171:→ 11066:(so that 10948:∈ 10906:→ 10893:Chow ring 10829:(meaning 10710:⋅ 10693:− 10679:⋯ 10668:− 10657:⋅ 10622:− 10592:− 10553:… 10470:∗ 10419:∗ 10411:∈ 10403:− 10389:… 10296:− 10287:τ 10254:τ 10193:∈ 9983:⌣ 9924:→ 9913:→ 9907:→ 9896:→ 9834:⊆ 9826:− 9723:− 9712:⌣ 9673:∑ 9660:⊕ 9636:that is, 9609:⌣ 9585:⊕ 9553:⊕ 9524:→ 9474:∗ 9455:∗ 9398:→ 9304:⋯ 8992:∈ 8918:≅ 8913:∗ 8902:− 8690:⁡ 8532:⁡ 8379:∧ 8316:α 8309:⋯ 8290:α 8259:⋯ 8242:∏ 8219:∧ 8173:α 8166:⋯ 8147:α 8119:≤ 8116:⋯ 8113:≤ 8099:∏ 8082:⁡ 8009:α 8002:… 7990:α 7924:− 7896:∑ 7889:… 7843:− 7811:− 7779:∑ 7772:… 7699:… 7669:⊗ 7618:− 7555:∑ 7542:⊗ 7467:− 7453:∗ 7393:∗ 7311:∑ 7241:σ 7234:… 7222:σ 7181:∗ 7156:− 7148:∗ 7121:− 7112:⁡ 7062:− 7054:∗ 7013:− 6903:σ 6894:∗ 6820:∗ 6812:→ 6800:σ 6793:… 6781:σ 6764:∗ 6696:→ 6619:⋯ 6522:− 6514:− 6484:∏ 6468:⁡ 6429:⋯ 6381:− 6331:− 6269:⁡ 6202:… 6164:∑ 6129:⋯ 6085:⁡ 6052:σ 6045:− 6031:σ 6005:σ 5952:… 5927:σ 5920:… 5898:… 5873:σ 5835:⋯ 5618:… 5584:σ 5398:⋯ 5312:⊕ 5309:⋯ 5306:⊕ 5210:⊕ 5140:⋯ 4979:⋯ 4780:≥ 4748:∗ 4704:− 4693:∗ 4649:− 4352:⋯ 4270:⊕ 4237:− 4215:− 4199:⁡ 4193:⊕ 4187:η 4175:− 4159:⁡ 4143:⊕ 4086:⊕ 4071:η 4068:⊕ 4059:− 4026:η 4014:− 3998:⁡ 3813:≥ 3800:→ 3770:↦ 3756:→ 3733:− 3703:⊕ 3686:↦ 3669:→ 3632:Ω 3628:→ 3491:Ω 3464:≥ 3413:− 3345:∗ 3341:π 3297:∖ 3239:→ 3227:∖ 3206:: 3203:π 3132:… 3103:/bundle. 2981:→ 2960:→ 2940:⊕ 2900:→ 2871:→ 2737:¯ 2725:∧ 2713:∫ 2708:π 2687:∫ 2657:Ω 2654:⁡ 2645:π 2546:¯ 2534:∧ 2516:Ω 2444:¯ 2337:× 2265:∂ 2257:∂ 2019:− 2012:∗ 1992:π 1937:− 1903:∗ 1883:π 1860:⋯ 1857:→ 1832:⁡ 1814:∗ 1794:π 1790:→ 1768:⁡ 1755:→ 1752:⋯ 1729:→ 1718:: 1698:π 1605:→ 1574:∖ 1522:→ 1516:: 1513:π 1478:⁡ 1422:⋯ 1397:π 1378:Ω 1364:− 1358:Ω 1335:Ω 1305:Ω 1287:− 1256:π 1237:Ω 1223:− 1211:Ω 1184:π 1173:Ω 1104:∑ 1066:⁡ 1024:⁡ 1004:⁡ 948:⁡ 927:⁡ 809:ω 803:ω 784:ω 775:Ω 751:Ω 717:× 657:∑ 636:π 628:Ω 585:Ω 504:hermitian 386:⊗ 312:bijection 16159:Wikibook 16137:Category 16025:Manifold 15993:Homotopy 15951:Interior 15942:Open set 15900:Homology 15849:Topology 15756:(1974), 15729:(1999), 15703:(2005), 15637:(1958), 14662:See also 14597:monomial 14587:is also 14539:) to CH( 14211:K-theory 11362:The map 11264:″ 11247:′ 11195:″ 11178:′ 10865:, where 10814:for all 9996:″ 9976:′ 9920:″ 9903:′ 9794:, where 9374:for all 9106:Given a 8946:showing 7377:For the 6664:of rank 5282:Now, if 5263:′ 5217:′ 2392:≠ 2145:Examples 2044:′ 2006:′ 1897:′ 1842:′ 1808:′ 1725:′ 1712:′ 1669:′ 1657:.) Then 1612:′ 1601:′ 1564:′ 858:generate 840:for the 478:divisors 442:′ 393:′ 107:and the 16184:general 15986:uniform 15966:compact 15917:Digital 15673:0116023 15607:1969037 15096:in the 14589:compact 14039:is the 10772:, then 10512:, ..., 10120:is the 10023:, then 9874: ( 9802:to the 9511:Whitney 9429:, then 9421:is the 9210:integer 9113:over a 7645:and so 7373:of it. 6746:reads: 6648:be the 6447:Example 5799:Example 5683:"are" σ 5655:where σ 4667:(note: 2186:be the 740:. The 574:of the 519:over a 239:section 70: ( 45:complex 16179:Topics 15981:metric 15856:Fields 15782:  15764:  15739:  15715:  15689:  15671:  15663:  15623:  15605:  15597:  15006:Fulton 14994:Fulton 14982:Fulton 14970:Fulton 14728:  14398:, and 14035:where 10082:where 9939:is an 9132:. The 6930:Remark 6637:Remark 6449:: The 5444:where 4902:, the 4548:where 3832:where 2996:where 1952:. Let 35:, the 15961:Space 15603:JSTOR 14753:(PDF) 14704:Notes 14654:(See 14619:. If 14201:is a 13927:ch(V) 13212:is a 11086:is a 10818:> 10019:is a 9790:is 1− 9758:over 9208:with 8839:(cf. 8640:when 8482:when 6974:over 6668:over 5983:with 4735:when 2810:, an 2806:. By 2284:is a 2198:is a 978:that 884:up to 291:is a 280:of a 272:(Let 184:from 153:from 15780:ISBN 15762:ISBN 15737:ISBN 15713:ISBN 15687:ISBN 15661:ISSN 15621:ISBN 15595:ISSN 14726:ISBN 11808:Let 11338:rank 11334:> 11323:for 9876:1958 9417:and 8262:< 8256:< 7717:are 7369:the 7280:and 7272:Let 6991:Vect 6941:Vect 5661:are 3862:Let 3195:let 3111:Let 2154:Let 2110:> 2056:< 1928:< 1055:for 832:the 828:and 461:the 253:See 247:real 72:1946 39:are 31:and 15651:doi 15587:doi 15071:'s. 14615:of 14607:of 14579:of 14567:If 14516:or 14452:of 14205:of 13982:exp 13265:exp 12540:If 12469:200 12245:125 11630:in 11090:), 10764:If 9798:is 9425:of 9419:f*E 9413:is 9139:of 9128:of 8681:Sym 8523:Sym 8073:Sym 8027:of 7514:If 7407:of 7109:Nat 6652:of 6453:of 5795:)." 5782:by 5549:of 5085:of 4914:of 4766:.) 4196:Hom 4156:Hom 3995:Hom 3091:is 2294:: 1649:of 1637:in 1629:of 1001:exp 986:det 954:det 856:to 844:of 763:of 611:det 597:of 566:of 512:of 472:by 284:.) 196:or 74:). 19:In 16223:: 15811:, 15752:; 15711:, 15669:MR 15667:, 15659:, 15647:86 15645:, 15641:, 15601:, 15593:, 15583:47 15230::= 15123:, 14960:|. 14748:. 14658:) 14635:. 14564:. 14497:. 14472:. 14361:, 14243:. 14234:ch 14199:ch 14168:ch 14153:ch 14129:ch 14098:ch 14080:ch 14056:ch 13971:tr 13948:ch 13933:. 13680:rk 13662:ch 13554::= 13493:ch 13296::= 13247:ch 13216:. 12450:40 12295:40 12279:10 12229:25 12191:10 12175:10 12115:10 12099:10 11986:10 11970:10 10508:, 10353:. 10293:=: 10174:→ 8843:.) 8782:11 8666:, 8508:, 8479:, 8047:, 7427:, 7101:: 6577:12 6465:td 6284:rk 6266:ch 6082:ch 5089:: 4795:, 3467:1. 2651:tr 2395:0. 2351:0. 2141:. 1744:: 1643:Bâ€Č 1469:GL 1453:. 1393:48 1063:ln 1021:ln 945:ln 924:ln 902:. 875:. 868:× 601:. 530:) 480:. 216:. 180:, 173:. 118:. 111:. 62:, 58:, 54:, 27:, 15841:e 15834:t 15827:v 15695:. 15653:: 15629:. 15589:: 15556:V 15552:V 15530:) 15525:n 15521:x 15517:, 15511:, 15506:1 15502:x 15498:( 15493:i 15489:e 15483:n 15478:0 15475:= 15472:i 15464:= 15454:) 15449:i 15445:x 15441:+ 15438:1 15435:( 15430:n 15425:1 15422:= 15419:i 15411:= 15401:) 15396:i 15392:L 15388:( 15385:c 15380:n 15375:1 15372:= 15369:i 15361:= 15351:) 15346:n 15342:L 15327:1 15323:L 15319:( 15316:c 15313:= 15306:) 15303:V 15300:( 15297:c 15273:, 15270:) 15267:V 15264:( 15259:i 15255:c 15249:n 15244:0 15241:= 15238:i 15227:) 15224:V 15221:( 15218:c 15198:. 15195:) 15190:n 15186:x 15182:, 15176:, 15171:1 15167:x 15163:( 15158:i 15154:e 15150:= 15147:) 15144:V 15141:( 15136:i 15132:c 15109:i 15105:x 15090:V 15086:V 15057:i 15030:i 15026:c 14958:x 14954:x 14938:2 14934:/ 14929:| 14925:x 14921:| 14916:t 14912:x 14906:x 14903:, 14900:] 14897:t 14894:[ 14891:) 14888:) 14884:Z 14880:, 14877:M 14874:( 14866:2 14862:H 14858:( 14845:k 14834:) 14830:Z 14826:, 14823:M 14820:( 14812:2 14808:H 14778:. 14734:. 14633:M 14629:M 14625:M 14621:M 14617:M 14609:M 14601:d 14593:d 14585:M 14581:M 14569:M 14547:. 14541:V 14537:V 14533:V 14525:V 14520:. 14460:n 14436:n 14433:2 14411:3 14407:c 14384:2 14380:c 14374:1 14370:c 14347:3 14342:1 14338:c 14309:n 14289:n 14286:2 14266:n 14263:2 14230:X 14228:( 14226:K 14222:X 14218:X 14216:( 14214:K 14183:. 14180:) 14177:W 14174:( 14165:) 14162:V 14159:( 14150:= 14147:) 14144:W 14138:V 14135:( 14110:) 14107:W 14104:( 14095:+ 14092:) 14089:V 14086:( 14077:= 14074:) 14071:W 14065:V 14062:( 14037:Ω 14022:] 14017:) 14012:) 14003:2 13995:i 13989:( 13978:( 13967:[ 13963:= 13960:) 13957:V 13954:( 13931:V 13907:. 13901:+ 13898:) 13895:) 13892:V 13889:( 13884:3 13880:c 13876:3 13873:+ 13870:) 13867:V 13864:( 13859:2 13855:c 13851:) 13848:V 13845:( 13840:1 13836:c 13832:3 13824:3 13820:) 13816:V 13813:( 13808:1 13804:c 13800:( 13795:6 13792:1 13787:+ 13784:) 13781:) 13778:V 13775:( 13770:2 13766:c 13762:2 13754:2 13750:) 13746:V 13743:( 13738:1 13734:c 13730:( 13725:2 13722:1 13717:+ 13714:) 13711:V 13708:( 13703:1 13699:c 13695:+ 13692:) 13689:V 13686:( 13677:= 13674:) 13671:V 13668:( 13638:. 13635:) 13630:m 13625:n 13621:x 13617:+ 13611:+ 13606:m 13601:1 13597:x 13593:( 13587:! 13584:m 13580:1 13568:0 13565:= 13562:m 13547:n 13543:x 13538:e 13534:+ 13528:+ 13521:1 13517:x 13512:e 13508:= 13505:) 13502:V 13499:( 13473:, 13470:) 13465:i 13461:L 13457:( 13452:1 13448:c 13444:= 13439:i 13435:x 13412:n 13408:L 13393:1 13389:L 13385:= 13382:V 13360:. 13354:! 13351:m 13344:m 13340:) 13336:L 13333:( 13328:1 13324:c 13310:0 13307:= 13304:m 13293:) 13290:) 13287:L 13284:( 13279:1 13275:c 13271:( 13262:= 13259:) 13256:L 13253:( 13235:L 13200:k 13197:2 13177:d 13171:4 13151:X 13125:2 13121:] 13117:H 13114:[ 13111:) 13106:2 13102:d 13098:+ 13095:d 13092:4 13086:6 13083:( 13080:+ 13077:] 13074:H 13071:[ 13068:) 13065:d 13059:4 13056:( 13053:+ 13050:1 13047:= 13037:) 13032:2 13028:] 13024:H 13021:[ 13016:2 13012:d 13008:+ 13005:] 13002:H 12999:[ 12996:d 12990:1 12987:( 12984:) 12979:2 12975:] 12971:H 12968:[ 12965:6 12962:+ 12959:] 12956:H 12953:[ 12950:4 12947:+ 12944:1 12941:( 12938:= 12925:) 12922:] 12919:H 12916:[ 12913:d 12910:+ 12907:1 12904:( 12897:4 12893:) 12889:] 12886:H 12883:[ 12880:+ 12877:1 12874:( 12868:= 12861:) 12856:X 12850:T 12844:( 12841:c 12814:) 12811:) 12808:d 12805:( 12800:X 12794:O 12788:( 12785:c 12780:) 12773:X 12768:| 12761:3 12756:P 12748:T 12742:( 12739:c 12733:= 12730:) 12725:X 12719:T 12713:( 12710:c 12690:0 12684:) 12681:d 12678:( 12673:X 12667:O 12656:X 12651:| 12642:3 12637:P 12629:T 12618:X 12612:T 12603:0 12583:d 12561:3 12556:P 12548:X 12520:X 12494:3 12490:h 12463:= 12458:3 12454:h 12442:] 12439:X 12436:[ 12428:= 12425:) 12420:X 12414:T 12408:( 12403:3 12399:c 12393:] 12390:X 12387:[ 12358:) 12353:X 12347:T 12341:( 12336:3 12332:c 12303:3 12299:h 12287:2 12283:h 12276:+ 12273:1 12270:= 12259:) 12253:3 12249:h 12237:2 12233:h 12226:+ 12223:h 12220:5 12214:1 12210:( 12205:) 12199:3 12195:h 12188:+ 12183:2 12179:h 12172:+ 12169:h 12166:5 12163:+ 12160:1 12156:( 12152:= 12139:h 12136:5 12133:+ 12130:1 12123:3 12119:h 12112:+ 12107:2 12103:h 12096:+ 12093:h 12090:5 12087:+ 12084:1 12078:= 12071:) 12066:X 12060:T 12054:( 12051:c 12025:4 12020:P 11994:3 11990:h 11983:+ 11978:2 11974:h 11967:+ 11964:h 11961:5 11958:+ 11955:1 11952:= 11947:5 11943:) 11939:h 11936:+ 11933:1 11930:( 11927:= 11924:) 11921:) 11918:5 11915:( 11910:X 11904:O 11898:( 11895:c 11892:) 11887:X 11881:T 11875:( 11872:c 11852:) 11849:X 11846:( 11837:A 11816:h 11794:0 11788:) 11785:5 11782:( 11777:X 11771:O 11760:X 11755:| 11746:4 11741:P 11733:T 11722:X 11716:T 11707:0 11687:) 11684:5 11681:( 11676:X 11670:O 11645:4 11640:P 11607:0 11597:n 11592:P 11586:/ 11582:X 11576:N 11565:X 11560:| 11551:n 11546:P 11538:T 11527:X 11521:T 11512:0 11490:n 11485:P 11477:X 11449:) 11446:X 11443:( 11434:A 11427:) 11424:X 11421:( 11416:0 11412:K 11408:: 11405:c 11385:) 11382:E 11379:( 11376:c 11370:E 11348:) 11345:E 11342:( 11331:i 11311:0 11308:= 11305:) 11302:E 11299:( 11294:i 11290:c 11268:) 11261:E 11257:( 11254:c 11251:) 11244:E 11240:( 11237:c 11234:= 11231:) 11228:E 11225:( 11222:c 11202:0 11192:E 11185:E 11175:E 11168:0 11146:] 11143:D 11140:[ 11137:= 11134:) 11131:) 11128:D 11125:( 11120:X 11114:O 11108:( 11103:1 11099:c 11074:D 11054:) 11051:D 11048:( 11043:X 11037:O 11012:1 11009:= 11006:) 11003:E 11000:( 10995:0 10991:c 10967:) 10964:X 10961:( 10956:i 10952:A 10945:) 10942:E 10939:( 10934:i 10930:c 10909:X 10903:E 10871:V 10867:n 10853:) 10850:V 10847:( 10842:n 10838:c 10827:V 10820:n 10816:k 10802:0 10799:= 10796:) 10793:V 10790:( 10785:k 10781:c 10770:V 10766:n 10738:. 10735:) 10732:E 10729:( 10724:n 10720:c 10716:+ 10713:a 10707:) 10704:E 10701:( 10696:1 10690:n 10686:c 10682:+ 10676:+ 10671:1 10665:n 10661:a 10654:) 10651:E 10648:( 10643:1 10639:c 10635:= 10630:n 10626:a 10600:n 10596:a 10572:) 10569:E 10566:( 10561:n 10557:c 10550:, 10547:) 10544:E 10541:( 10536:1 10532:c 10521:E 10514:a 10510:a 10506:a 10492:) 10489:) 10486:E 10483:( 10479:P 10475:( 10466:H 10441:) 10438:) 10435:E 10432:( 10428:P 10424:( 10415:H 10406:1 10400:n 10396:a 10392:, 10386:, 10381:2 10377:a 10373:, 10370:a 10367:, 10364:1 10337:) 10332:b 10328:E 10324:( 10320:P 10299:a 10290:) 10284:( 10279:1 10275:c 10234:) 10231:E 10228:( 10224:P 10212:b 10210:E 10196:B 10190:b 10180:B 10176:B 10172:E 10168:n 10154:) 10151:E 10148:( 10144:P 10108:) 10102:R 10097:E 10093:( 10090:e 10070:) 10064:R 10059:E 10055:( 10052:e 10049:+ 10046:1 10043:= 10040:) 10037:E 10034:( 10031:c 10017:E 10012:. 10000:) 9993:E 9989:( 9986:c 9980:) 9973:E 9969:( 9966:c 9963:= 9960:) 9957:E 9954:( 9951:c 9927:0 9917:E 9910:E 9900:E 9893:0 9861:. 9847:k 9842:P 9839:C 9829:1 9823:k 9818:P 9815:C 9796:H 9792:H 9776:k 9771:P 9768:C 9740:. 9737:) 9734:F 9731:( 9726:i 9720:k 9716:c 9709:) 9706:E 9703:( 9698:i 9694:c 9688:k 9683:0 9680:= 9677:i 9669:= 9666:) 9663:F 9657:E 9654:( 9649:k 9645:c 9624:; 9621:) 9618:F 9615:( 9612:c 9606:) 9603:E 9600:( 9597:c 9594:= 9591:) 9588:F 9582:E 9579:( 9576:c 9556:F 9550:E 9527:X 9521:F 9507:. 9495:) 9492:E 9489:( 9484:k 9480:c 9470:f 9466:= 9463:) 9460:E 9451:f 9447:( 9442:k 9438:c 9427:E 9401:X 9395:Y 9392:: 9389:f 9378:. 9376:E 9362:1 9359:= 9356:) 9353:E 9350:( 9345:0 9341:c 9307:. 9301:+ 9298:) 9295:E 9292:( 9287:2 9283:c 9279:+ 9276:) 9273:E 9270:( 9265:1 9261:c 9257:+ 9254:) 9251:E 9248:( 9243:0 9239:c 9235:= 9232:) 9229:E 9226:( 9223:c 9206:X 9192:, 9189:) 9185:Z 9181:; 9178:X 9175:( 9170:k 9167:2 9163:H 9152:E 9150:( 9147:k 9145:c 9141:E 9135:k 9130:X 9122:E 9118:X 9111:E 9086:n 9083:= 9080:) 9077:) 9074:n 9071:( 9066:O 9061:( 9056:1 9052:c 9031:) 9027:Z 9023:; 9018:1 9013:P 9010:C 9005:( 9000:2 8996:H 8989:1 8986:= 8983:) 8980:) 8977:1 8974:( 8969:O 8964:( 8959:1 8955:c 8934:) 8931:1 8928:( 8923:O 8909:) 8905:1 8899:( 8894:O 8870:1 8865:P 8862:C 8821:. 8816:3 8812:c 8808:7 8805:+ 8800:2 8796:c 8790:1 8786:c 8779:+ 8774:3 8769:1 8765:c 8761:2 8758:+ 8753:2 8749:c 8745:5 8742:+ 8737:2 8732:1 8728:c 8724:5 8721:+ 8716:1 8712:c 8708:4 8705:+ 8702:1 8699:= 8696:) 8693:E 8685:2 8677:( 8674:c 8654:3 8651:= 8648:r 8626:, 8621:2 8617:c 8611:1 8607:c 8603:4 8600:+ 8595:2 8591:c 8587:4 8584:+ 8579:2 8574:1 8570:c 8566:2 8563:+ 8558:1 8554:c 8550:3 8547:+ 8544:1 8541:= 8538:) 8535:E 8527:2 8519:( 8516:c 8496:2 8493:= 8490:r 8467:) 8464:E 8461:( 8456:i 8452:c 8448:= 8443:i 8439:c 8416:. 8413:) 8410:E 8407:( 8402:1 8398:c 8394:= 8391:) 8388:E 8383:r 8375:( 8370:1 8366:c 8341:. 8338:) 8335:t 8332:) 8325:p 8321:i 8312:+ 8306:+ 8299:1 8295:i 8286:( 8283:+ 8280:1 8277:( 8270:p 8266:i 8251:1 8247:i 8238:= 8231:) 8228:E 8223:p 8215:( 8210:t 8206:c 8198:, 8195:) 8192:t 8189:) 8182:p 8178:i 8169:+ 8163:+ 8156:1 8152:i 8143:( 8140:+ 8137:1 8134:( 8127:p 8123:i 8108:1 8104:i 8095:= 8088:) 8085:E 8077:p 8069:( 8064:t 8060:c 8035:E 8013:r 8005:, 7999:, 7994:1 7967:. 7962:j 7958:) 7954:L 7951:( 7946:1 7942:c 7938:) 7935:E 7932:( 7927:j 7921:r 7917:c 7911:r 7906:0 7903:= 7900:j 7892:, 7886:, 7881:j 7877:) 7873:L 7870:( 7865:1 7861:c 7857:) 7854:E 7851:( 7846:j 7840:i 7836:c 7829:) 7824:j 7820:j 7817:+ 7814:i 7808:r 7802:( 7794:i 7789:0 7786:= 7783:j 7775:, 7769:, 7766:) 7763:L 7760:( 7755:1 7751:c 7747:r 7744:+ 7741:) 7738:E 7735:( 7730:1 7726:c 7705:r 7702:, 7696:, 7693:2 7690:, 7687:1 7684:= 7681:i 7678:, 7675:) 7672:L 7666:E 7663:( 7658:i 7654:c 7631:i 7627:t 7621:i 7615:r 7611:) 7607:L 7604:( 7599:t 7595:c 7591:) 7588:E 7585:( 7580:i 7576:c 7570:r 7565:0 7562:= 7559:i 7551:= 7548:) 7545:L 7539:E 7536:( 7531:t 7527:c 7516:L 7511:. 7499:) 7496:E 7493:( 7488:i 7484:c 7478:i 7474:) 7470:1 7464:( 7461:= 7458:) 7449:E 7445:( 7440:i 7436:c 7415:E 7389:E 7355:i 7351:t 7347:) 7344:E 7341:( 7336:i 7332:c 7326:r 7321:0 7318:= 7315:i 7307:= 7304:) 7301:E 7298:( 7293:t 7289:c 7278:r 7274:E 7253:. 7250:] 7245:n 7237:, 7231:, 7226:1 7218:[ 7214:Z 7210:= 7207:) 7203:Z 7199:, 7194:n 7190:G 7186:( 7177:H 7173:= 7170:) 7167:) 7163:Z 7159:, 7153:( 7144:H 7140:, 7137:] 7132:n 7128:G 7124:, 7118:[ 7115:( 7098:n 7094:G 7076:. 7073:) 7069:Z 7065:, 7059:( 7050:H 7029:] 7024:n 7020:G 7016:, 7010:[ 7007:= 7001:C 6995:n 6976:X 6972:n 6968:X 6951:C 6945:n 6915:. 6912:) 6907:k 6899:( 6889:E 6885:f 6881:= 6878:) 6875:E 6872:( 6867:k 6863:c 6842:. 6839:) 6835:Z 6831:, 6828:X 6825:( 6816:H 6809:] 6804:n 6796:, 6790:, 6785:1 6777:[ 6773:Z 6769:: 6759:E 6755:f 6743:E 6739:f 6734:k 6728:n 6724:G 6704:n 6700:G 6693:X 6690:: 6685:E 6681:f 6670:X 6666:n 6662:E 6654:n 6645:n 6641:G 6622:. 6616:+ 6613:) 6608:2 6604:c 6600:+ 6595:2 6590:1 6586:c 6582:( 6574:1 6569:+ 6564:1 6560:c 6554:2 6551:1 6546:+ 6543:1 6540:= 6530:i 6526:a 6518:e 6511:1 6505:i 6501:a 6493:n 6488:1 6480:= 6477:) 6474:E 6471:( 6455:E 6432:. 6426:+ 6423:) 6418:3 6414:c 6410:3 6407:+ 6402:2 6398:c 6392:1 6388:c 6384:3 6376:3 6371:1 6367:c 6363:( 6358:6 6355:1 6350:+ 6347:) 6342:2 6338:c 6334:2 6326:2 6321:1 6317:c 6313:( 6308:2 6305:1 6300:+ 6295:1 6291:c 6287:+ 6281:= 6278:) 6275:E 6272:( 6256:E 6252:E 6238:! 6235:k 6231:/ 6227:) 6224:) 6221:E 6218:( 6213:n 6209:c 6205:, 6199:, 6196:) 6193:E 6190:( 6185:1 6181:c 6177:( 6172:k 6168:s 6161:= 6156:) 6153:E 6150:( 6145:n 6141:a 6136:e 6132:+ 6126:+ 6121:) 6118:E 6115:( 6110:1 6106:a 6101:e 6097:= 6094:) 6091:E 6088:( 6056:2 6048:2 6040:2 6035:1 6027:= 6022:2 6018:s 6014:, 6009:1 6001:= 5996:1 5992:s 5971:) 5968:) 5963:n 5959:t 5955:, 5949:, 5944:1 5940:t 5936:( 5931:k 5923:, 5917:, 5914:) 5909:n 5905:t 5901:, 5895:, 5890:1 5886:t 5882:( 5877:1 5869:( 5864:k 5860:s 5856:= 5851:k 5846:n 5842:t 5838:+ 5832:+ 5827:k 5822:1 5818:t 5807:k 5803:s 5793:E 5791:( 5788:k 5784:c 5779:k 5773:k 5768:f 5764:E 5760:f 5753:E 5739:) 5736:E 5733:( 5728:t 5724:c 5708:i 5704:t 5699:i 5695:t 5686:k 5680:k 5676:c 5671:i 5667:a 5658:k 5643:) 5640:) 5637:E 5634:( 5629:n 5625:a 5621:, 5615:, 5612:) 5609:E 5606:( 5601:1 5597:a 5593:( 5588:k 5580:= 5577:) 5574:E 5571:( 5566:k 5562:c 5551:E 5533:) 5530:E 5527:( 5522:i 5518:a 5497:) 5492:i 5488:L 5484:( 5479:1 5475:c 5471:= 5468:) 5465:E 5462:( 5457:i 5453:a 5432:) 5429:t 5426:) 5423:E 5420:( 5415:n 5411:a 5407:+ 5404:1 5401:( 5395:) 5392:t 5389:) 5386:E 5383:( 5378:1 5374:a 5370:+ 5367:1 5364:( 5361:= 5358:) 5355:E 5352:( 5347:t 5343:c 5320:n 5316:L 5301:1 5297:L 5293:= 5290:E 5270:. 5267:) 5260:E 5256:( 5251:t 5247:c 5243:) 5240:E 5237:( 5232:t 5228:c 5224:= 5221:) 5214:E 5207:E 5204:( 5199:t 5195:c 5183:t 5179:c 5162:) 5159:E 5156:( 5151:n 5147:c 5143:+ 5137:+ 5134:) 5131:E 5128:( 5123:1 5119:c 5115:+ 5112:1 5109:= 5106:) 5103:E 5100:( 5097:c 5087:E 5069:) 5066:E 5063:( 5058:t 5054:c 5043:E 5041:( 5038:k 5034:c 5030:t 5014:. 5009:n 5005:t 5001:) 4998:E 4995:( 4990:n 4986:c 4982:+ 4976:+ 4973:t 4970:) 4967:E 4964:( 4959:1 4955:c 4951:+ 4948:1 4945:= 4942:) 4939:E 4936:( 4931:t 4927:c 4916:E 4911:t 4907:c 4900:E 4879:. 4874:k 4870:a 4863:) 4858:k 4854:1 4851:+ 4848:n 4842:( 4836:= 4833:) 4828:n 4823:P 4817:C 4813:( 4808:k 4804:c 4783:0 4777:k 4764:E 4744:E 4723:) 4720:E 4717:( 4712:1 4708:c 4701:= 4698:) 4689:E 4685:( 4680:1 4676:c 4655:) 4652:1 4646:( 4639:n 4634:P 4628:C 4621:O 4598:) 4594:Z 4590:, 4585:n 4580:P 4574:C 4570:( 4565:2 4561:H 4550:a 4536:, 4531:1 4528:+ 4525:n 4521:) 4517:a 4514:+ 4511:1 4508:( 4505:= 4500:1 4497:+ 4494:n 4490:) 4486:) 4483:1 4480:( 4473:n 4468:P 4462:C 4455:O 4449:( 4446:c 4443:= 4440:) 4435:n 4430:P 4427:C 4422:T 4419:( 4416:c 4410:f 4407:e 4404:d 4400:= 4395:) 4390:n 4385:P 4379:C 4375:( 4372:c 4349:+ 4344:2 4340:c 4336:+ 4331:1 4327:c 4323:+ 4320:1 4317:= 4314:c 4290:. 4285:) 4282:1 4279:+ 4276:n 4273:( 4266:) 4262:1 4259:( 4254:O 4249:= 4246:) 4243:) 4240:1 4234:( 4229:O 4224:, 4221:) 4218:1 4212:( 4207:O 4202:( 4190:) 4184:, 4181:) 4178:1 4172:( 4167:O 4162:( 4153:= 4148:O 4138:n 4133:P 4127:C 4123:T 4101:) 4098:1 4095:+ 4092:n 4089:( 4080:O 4074:= 4065:) 4062:1 4056:( 4051:O 4029:) 4023:, 4020:) 4017:1 4011:( 4006:O 4001:( 3970:n 3965:P 3959:C 3955:T 3945:L 3941:L 3925:n 3920:P 3914:C 3887:1 3884:+ 3881:n 3876:C 3864:L 3845:i 3841:e 3819:, 3816:0 3810:i 3806:, 3803:0 3795:U 3789:O 3778:i 3774:z 3765:i 3761:e 3749:U 3744:| 3739:) 3736:1 3730:( 3725:O 3718:1 3715:+ 3712:n 3707:1 3694:i 3690:e 3681:i 3677:z 3673:d 3662:U 3657:| 3648:n 3643:P 3637:C 3625:0 3605:) 3600:0 3596:z 3591:/ 3585:i 3581:z 3577:( 3574:d 3552:U 3546:O 3521:U 3516:| 3507:n 3502:P 3496:C 3461:i 3457:, 3450:2 3445:0 3441:z 3434:0 3430:z 3426:d 3421:i 3417:z 3408:i 3404:z 3400:d 3395:0 3391:z 3384:= 3381:) 3376:0 3372:z 3367:/ 3361:i 3357:z 3353:( 3350:d 3319:} 3316:0 3313:= 3308:0 3304:z 3300:{ 3292:n 3287:P 3284:C 3279:= 3276:U 3254:n 3249:P 3243:C 3236:} 3233:0 3230:{ 3222:1 3219:+ 3216:n 3211:C 3183:, 3178:1 3175:+ 3172:n 3167:C 3143:n 3139:z 3135:, 3129:, 3124:0 3120:z 3079:) 3076:1 3073:( 3066:n 3061:P 3058:C 3050:O 3023:n 3018:P 3015:C 3007:O 2984:0 2976:n 2971:P 2968:C 2963:T 2955:) 2952:1 2949:+ 2946:n 2943:( 2936:) 2932:1 2929:( 2922:n 2917:P 2914:C 2906:O 2893:n 2888:P 2885:C 2877:O 2868:0 2838:1 2833:P 2830:C 2825:T 2790:2 2787:= 2779:2 2775:) 2769:2 2764:| 2759:z 2755:| 2751:+ 2748:1 2745:( 2734:z 2728:d 2722:z 2719:d 2705:i 2700:= 2695:1 2691:c 2665:. 2661:] 2642:2 2638:i 2632:[ 2628:= 2623:1 2619:c 2596:. 2588:2 2584:) 2578:2 2573:| 2568:z 2564:| 2560:+ 2557:1 2554:( 2543:z 2537:d 2531:z 2528:d 2525:2 2519:= 2494:. 2486:2 2482:) 2476:2 2471:| 2466:z 2462:| 2458:+ 2455:1 2452:( 2441:z 2435:d 2432:z 2429:d 2423:= 2420:h 2389:) 2386:V 2383:( 2378:1 2374:c 2348:= 2345:) 2341:C 2332:1 2327:P 2324:C 2319:( 2314:1 2310:c 2296:V 2282:a 2268:z 2261:/ 2254:a 2232:1 2227:P 2224:C 2219:T 2216:= 2213:V 2196:z 2172:1 2167:P 2164:C 2113:n 2107:k 2102:0 2095:n 2092:= 2089:k 2084:) 2078:R 2073:E 2069:( 2066:e 2059:n 2053:k 2048:) 2041:E 2037:( 2032:k 2028:c 2022:1 2003:B 1997:| 1984:{ 1979:= 1976:) 1973:E 1970:( 1965:k 1961:c 1940:1 1934:n 1931:2 1925:k 1894:B 1888:| 1863:, 1854:) 1850:Z 1846:; 1839:B 1835:( 1827:k 1823:H 1805:B 1799:| 1785:) 1781:Z 1777:; 1774:B 1771:( 1763:k 1759:H 1732:B 1722:B 1709:B 1703:| 1684:E 1666:E 1655:F 1651:E 1647:F 1639:F 1635:v 1631:E 1627:F 1609:B 1598:E 1577:B 1571:E 1568:= 1561:B 1550:E 1546:B 1542:B 1525:B 1519:E 1489:) 1485:C 1481:( 1473:n 1430:. 1426:] 1419:+ 1414:3 1410:t 1401:3 1386:3 1382:) 1375:( 1371:r 1368:t 1361:) 1355:( 1351:r 1348:t 1344:) 1339:2 1331:( 1327:r 1324:t 1320:3 1317:+ 1314:) 1309:3 1301:( 1297:r 1294:t 1290:2 1281:i 1278:+ 1273:2 1269:t 1260:2 1252:8 1245:2 1241:) 1234:( 1230:r 1227:t 1220:) 1215:2 1207:( 1203:r 1200:t 1193:+ 1190:t 1181:2 1176:) 1170:( 1166:r 1163:t 1156:i 1153:+ 1150:I 1146:[ 1142:= 1137:k 1133:t 1129:) 1126:V 1123:( 1118:k 1114:c 1108:k 1081:) 1078:I 1075:+ 1072:X 1069:( 1039:) 1036:) 1033:) 1030:X 1027:( 1018:( 1014:r 1011:t 1007:( 998:= 995:) 992:X 989:( 966:) 963:) 960:X 957:( 951:( 942:= 939:) 936:) 933:X 930:( 921:( 917:r 914:t 900:V 870:n 866:n 862:I 850:t 846:V 830:d 812:] 806:, 800:[ 795:2 792:1 787:+ 781:d 778:= 765:V 738:M 734:t 720:n 714:n 690:k 686:t 682:) 679:V 676:( 671:k 667:c 661:k 653:= 649:) 645:I 642:+ 633:2 625:t 622:i 615:( 599:V 568:V 554:) 551:V 548:( 543:k 539:c 524:M 517:n 510:V 449:; 446:) 439:L 435:( 430:1 426:c 422:+ 419:) 416:L 413:( 408:1 404:c 400:= 397:) 390:L 383:L 380:( 375:1 371:c 350:) 346:Z 342:; 339:X 336:( 331:2 327:H 316:X 297:X 289:V 274:X 269:. 206:V 202:M 198:g 194:f 190:V 186:M 182:g 178:f 167:V 163:f 159:V 155:M 151:f 147:M 143:V

Index

mathematics
algebraic topology
differential geometry
algebraic geometry
characteristic classes
complex
vector bundles
string theory
Chern–Simons theory
knot theory
Gromov–Witten invariants
Shiing-Shen Chern
1946
characteristic classes
topological invariants
linearly independent
Riemann–Roch theorem
Atiyah–Singer index theorem
curvature form
homotopy theory
classifying space
Grassmannian
Schubert cycles
Chern–Weil theory
Alexander Grothendieck
algebraic geometry
locally free sheaves
section
hairy ball theorem
Chern–Simons theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑