Knowledge

Grassmannian

Source 📝

2413: 11736: 13944: 19616: 2233: 18116: 4783: 15114: 4462: 5955: 11591: 10122: 5633: 11067: 12552: 8617: 17392: 9638: 17923: 11892: 11434: 14277: 16156: 10335: 9872: 19002: 16163:
Using the natural isomorphism of a finite-dimensional vector space with its double dual shows that taking the dual again recovers the original short exact sequence. Consequently there is a one-to-one correspondence between
9399: 3938: 16348: 15479: 6312: 13783: 2408:{\displaystyle {\begin{bmatrix}1\\&1\\&&\ddots \\&&&1\\a_{1,1}&\cdots &\cdots &a_{1,k}\\\vdots &&&\vdots \\a_{n-k,1}&\cdots &\cdots &a_{n-k,k}\end{bmatrix}}} 19491: 15965: 1170:, the Grassmannian is the space of all 2-dimensional planes containing the origin. In Euclidean 3-space, a plane containing the origin is completely characterized by the one and only line through the origin that is 10570: 19815: 18029: 14573:
gives rise to multiplication of the Plücker coordinates by a nonzero constant (the determinant of the change of basis matrix), these are only defined up to projective equivalence, and hence determine a point in
12768: 4881: 11288: 19980:, which is the enumerative geometry involved in calculating the number of points, lines, planes, etc. in a projective space that intersect a given set of points, lines, etc., using the intersection theory of 19480: 4583: 5167: 4166: 17038: 16789: 11513: 15196: 10217: 9734: 6448: 17153: 16903: 14764: 14690: 8106: 7540: 6706: 15577: 15671: 12420: 12103: 17689: 16975: 14925: 7226: 19274: 17765: 14007: 11803: 8768: 7310: 2890: 2650: 17561: 11164: 19421: 18179: 17611: 17494: 11215: 10666: 4282: 950: 419: 19114: 12248: 12032: 11731:{\displaystyle \mathbf {P} ({\mathcal {G}})\to \mathbf {P} \left({\mathcal {E}}_{\mathbf {Gr} (k,{\mathcal {E}})}\right)=\mathbf {P} ({\mathcal {E}})\times _{S}\mathbf {Gr} (k,{\mathcal {E}}).} 5819: 7836: 7474: 7024: 6128: 6079: 18339:
These generators are subject to a set of relations, which defines the ring. The defining relations are easy to express for a larger set of generators, which consists of the Chern classes of
12349: 11577: 10737: 5016: 19933: 9947: 19953:. Under the Cartan embedding, their connected components are equivariantly diffeomorphic to the projectivized minimal spinor orbit, under the spin representation, the so-called projective 18897: 18588: 5259: 15726: 14874: 3364: 15767: 14613: 13366: 19736: 5534: 18850: 17200: 14328: 7970: 7402: 3535: 2990: 1825: 1591: 7122: 6928: 6224: 6189: 16839: 13654: 8299: 5725: 16554: 14080: 12435: 8478: 7609: 6749: 5069: 4573: 4520: 4272: 4219: 4074: 3755: 3698: 3645: 3588: 3300: 3209: 3089: 2943: 2729: 15248: 14531: 14380: 13596: 13458: 12940: 8387: 8022: 7888: 7367: 2781: 20604:
Date, Etsuro; Jimbo, Michio; Kashiwara, Masaki; Miwa, Tetsuji (1981). "Operator Approach to the Kadomtsev-Petviashvili Equation–Transformation Groups for Soliton Equations III–".
18740: 16720: 16507: 14915: 13753: 13325: 5472: 5378: 5208: 4021: 3416: 1540: 1465: 1378: 1255: 556: 475: 214: 72: 19205: 13263: 6975: 16419: 12612: 11959: 10913: 10160: 9677: 9225: 8697: 6490: 6359: 6030: 5995: 5769: 1151: 1077:
to show this. We then find that the properties of our vector bundles are related to the properties of the corresponding maps. In particular we find that vector bundles inducing
596: 515: 7794: 6614: 20015:. A similar construction holds for solutions of the BKP integrable hierarchy, in terms of abelian group flows on an infinite dimensional maximal isotropic Grassmann manifold. 19371: 17247: 9018: 8941: 8876: 8654: 8154: 7171: 7073: 872: 843: 764: 12305: 1868: 268: 20007:. These can be expressed in terms of abelian group flows on an infinite-dimensional Grassmann manifold. The KP equations, expressed in Hirota bilinear form in terms of the 12175: 11458: 11352: 10968: 10829: 10765: 10409: 9435: 9278: 8233: 7728: 19307: 17971: 15338: 14479: 12665: 9490: 3813: 3247: 2456: 9087: 9065: 9043: 8842: 8820: 2179: 1917: 1778: 1729: 20114: 20104: 19940: 18767: 18481: 17444: 13059: 20004: 19861: 17775: 16379: 15821: 13504: 12799: 8439: 8344: 5524: 5408: 1424: 19154: 17237: 17084: 16019: 15379: 15308: 14429: 14106: 13187: 12989: 12888: 7566: 6640: 6154: 4907: 3969: 3442: 3036: 2676: 2091: 1996: 1950: 1617: 2512: 10958: 7669: 6868: 6809: 20377:
Harnad, J.; Shnider, S. (1992). "Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions".
13217: 13138: 9939: 9165: 976: 790: 358: 18282: 16653: 16601: 16466: 16261: 16234: 16073: 16046: 15853: 15275: 13681: 11928: 9462: 8470: 7915: 4954: 3136: 1691: 1326: 19036: 18803: 11818: 11357: 11320: 15884: 15405: 14816: 14790: 12274: 12131: 18651: 18624: 19835: 19684: 19664: 19644: 19342: 18699: 18679: 18421: 18401: 18377: 18357: 18334: 18302: 18242: 18219: 18199: 18015: 17991: 17709: 17524: 16621: 16574: 16439: 16202: 16182: 15904: 15795: 14571: 14551: 14449: 14400: 14027: 13773: 13701: 13544: 13524: 13478: 13406: 13386: 13158: 13110: 12960: 12859: 12839: 12819: 12685: 12632: 12195: 12151: 12052: 11979: 11533: 11112: 11092: 10933: 10873: 10849: 10805: 10785: 10693: 10615: 10595: 10493: 10473: 10453: 10433: 9901: 9754: 9482: 9245: 9185: 9127: 9107: 8980: 8907: 8795: 8407: 8253: 8200: 8180: 7935: 7750: 7691: 7632: 7422: 7142: 7044: 6890: 6831: 6772: 6542: 6510: 5809: 5789: 5678: 5658: 5497: 5428: 5339: 5319: 5299: 5279: 4927: 3775: 3462: 3156: 3109: 3010: 2829: 2801: 2592: 2572: 2552: 2532: 2476: 2223: 2203: 2135: 2111: 2036: 2016: 1970: 1749: 1664: 1644: 1485: 1398: 1299: 1279: 1067: 1047: 1016: 996: 896: 814: 735: 715: 656: 636: 616: 308: 288: 234: 173: 150: 127: 100: 19313:
with respect to the metric space topology and is uniform in the sense that every ball of the same radius (with respect to this metric) is of the same measure.
14177: 14172: 13087: 3488: 2062: 16082: 10225: 9762: 18907: 20034: 15407:(the simplest Grassmannian that is not a projective space), the above reduces to a single equation. Denoting the homogeneous coordinates of the image 9286: 3823: 16271: 15410: 13939:{\displaystyle W^{T}=={\begin{bmatrix}w_{11}&\cdots &w_{1n}\\\vdots &\ddots &\vdots \\w_{k1}&\cdots &w_{kn}\end{bmatrix}},} 6232: 19999:
A further application is to the solution of hierarchies of classical completely integrable systems of partial differential equations, such as the
19988:
can also be used to parametrize simultaneous eigenvectors of complete sets of commuting operators in quantum integrable spin systems, such as the
19611:{\displaystyle {\widetilde {\mathbf {Gr} }}_{k}(\mathbf {R} ^{n})=\operatorname {SO} (n)/(\operatorname {SO} (k)\times \operatorname {SO} (n-k)).} 18111:{\displaystyle \chi _{k,n}={\begin{pmatrix}\left\lfloor {\frac {n}{2}}\right\rfloor \\\left\lfloor {\frac {k}{2}}\right\rfloor \end{pmatrix}}} 15918: 21002: 10507: 20250: 20220: 19741: 21032: 4778:{\displaystyle {\hat {A}}^{j_{1},\dots ,j_{k}}={\hat {A}}^{i_{1},\dots ,i_{k}}({\hat {A}}_{j_{1},\dots ,j_{k}}^{i_{1},\dots ,i_{k}})^{-1},} 16603:
is equivalent to the choice of an inner product, so with respect to the chosen inner product, this isomorphism of Grassmannians sends any
12695: 6547:
For the case of real or complex Grassmannians, the following is an equivalent way to express the above construction in terms of matrices.
4793: 11220: 19426: 5074: 4079: 16988: 16729: 11463: 20094:
are generalizations of Grassmannians whose elements, viewed geometrically, are nested sequences of subspaces of specified dimensions.
15124: 10165: 9682: 17089: 16850: 14695: 14621: 8032: 7479: 6645: 20912: 15484: 15587: 15109:{\displaystyle \sum _{l=1}^{k+1}(-1)^{\ell }w_{i_{1},\dots ,i_{k-1},j_{l}}w_{j_{1},\dots ,{\widehat {j_{l}}},\dots j_{k+1}}=0,} 12359: 12057: 8948: 21340: 21311: 21243: 21214: 20998: 20353: 20234: 19973:
A key application of Grassmannians is as the "universal" embedding space for bundles with connections on compact manifolds.
17632: 16916: 7176: 4457:{\displaystyle {\hat {A}}^{i_{1},\dots ,i_{k}}W_{i_{1},\dots ,i_{k}}={\hat {A}}^{j_{1},\dots ,j_{k}}W_{j_{1},\dots ,j_{k}},} 20740:"Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifolds (Random Systems and Dynamical Systems)" 20048:
tasks of video-based face recognition and shape recognition, and are used in the data-visualization technique known as the
19210: 17714: 13954: 11755: 8705: 7236: 5950:{\displaystyle \mathbf {Gr} (k,V)\sim \left\{P\in \mathrm {End} (V)\mid P=P^{2}=P^{\dagger },\,\mathrm {tr} (P)=k\right\}.} 2837: 2597: 17529: 11117: 6373: 20000: 19376: 18134: 17566: 17449: 11169: 10740: 10620: 905: 374: 20813:
Chakravarty, S.; Kodama, Y. (July 2009). "Soliton Solutions of the KP Equation and Application to Shallow Water Waves".
19046: 12200: 11984: 20414:"Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces" 10117:{\displaystyle \mathbf {Gr} (k,V)=U(V,h)/\left(U(w_{0},h|_{w_{0}})\times U(w_{0}^{\perp }|,h_{w_{0}^{\perp }})\right),} 7807: 7430: 6980: 6084: 6035: 21275: 21195: 21173: 21113: 20789: 20714: 20283: 20008: 12310: 11538: 10698: 4959: 19871: 21295: 21235: 18855: 18504: 6524:. The exact inner product used does not matter, because a different inner product will give an equivalent norm on 5628:{\displaystyle P_{w}(v)={\begin{cases}v\quad {\text{ if }}v\in w\\0\quad {\text{ if }}v\in w^{\perp }.\end{cases}}} 5232: 15681: 14829: 3305: 20049: 15731: 14577: 13330: 12994: 19689: 21330: 18808: 17158: 14286: 12547:{\displaystyle \left\{(x,v)\in \mathbf {P} (V)(K)\times \mathbf {Gr} (k,{\mathcal {E}})(K)\mid x\in v\right\}.} 8612:{\displaystyle H:=\mathrm {stab} (w_{0}):=\{h\in \mathrm {GL} (V)\,|\,h(w_{0})=w_{0}\}\subset \mathrm {GL} (V)} 7940: 7372: 5218:
An alternative way to define a real or complex Grassmannian as a manifold is to view it as a set of orthogonal
3493: 2948: 1783: 1549: 18496:. The generators are identical to those of the classical cohomology ring, but the top relation is changed to 7078: 6895: 6194: 6159: 21231: 16794: 13601: 8258: 5683: 20: 16512: 14823: 14819: 14032: 13281: 7571: 6711: 5021: 4525: 4472: 4224: 4171: 4026: 3707: 3650: 3597: 3540: 3252: 3161: 3041: 2895: 2681: 21335: 18380: 15201: 14484: 14333: 13549: 13411: 12893: 8352: 7975: 7841: 7320: 2734: 361: 18704: 16684: 16471: 14879: 13706: 13289: 5438: 5344: 5172: 3974: 3369: 1493: 1429: 1331: 1219: 520: 439: 178: 36: 21345: 20858:
Kodama, Yuji; Williams, Lauren (December 2014). "KP solitons and total positivity for the Grassmannian".
19159: 17387:{\displaystyle X_{\lambda }(k,n)=\{W\in \mathbf {Gr} _{k}(V)\,|\,\dim(W\cap V_{n-k+j-\lambda _{j}})=j\}.} 13227: 6937: 5219: 18336:. In particular, all of the integral cohomology is at even degree as in the case of a projective space. 16384: 13408:
and give another method for constructing the Grassmannian. To state the Plücker relations, fix a basis
12577: 11933: 10878: 10130: 9647: 9190: 8662: 6324: 6000: 5965: 5734: 1121: 561: 480: 21097: 20267: 20133: 11062:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}})\times _{S}S'\simeq \mathbf {Gr} (k,{\mathcal {E}}_{S'})} 8959: 7755: 6582: 19347: 13775:-component column vectors forming the transpose of the corresponding homogeneous coordinate matrix: 13112:
will give a different wedge product, but the two will differ only by a non-zero scalar multiple (the
9633:{\displaystyle \mathbf {Gr} (k,V)=O(V,q)/\left(O(w,q|_{w})\times O(w^{\perp },q|_{w^{\perp }})\right)} 8989: 8912: 8847: 8625: 8125: 7147: 7049: 848: 819: 740: 17203: 12279: 1835: 242: 12156: 11439: 11333: 10810: 10746: 10390: 9408: 9250: 8205: 7700: 5565: 20103:
Given a distinguished class of subspaces, one can define Grassmannians of these subspaces, such as
19279: 17937: 17918:{\displaystyle \chi _{k,n}=\chi _{k-1,n-1}+(-1)^{k}\chi _{k,n-1},\qquad \chi _{0,n}=\chi _{n,n}=1.} 15313: 14454: 12640: 6458: 3780: 3214: 2423: 103: 12635: 9070: 9048: 9026: 8825: 8803: 8442: 2140: 1878: 1754: 1696: 20119: 20108: 18745: 18439: 17416: 1543: 79: 20085: 19840: 16358: 15800: 13483: 12778: 8412: 8307: 5502: 5387: 1403: 20587:
M. Sato, "Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds",
20216: 19124: 17209: 17050: 15983: 15346: 15284: 14405: 14085: 13163: 12965: 12864: 7545: 6619: 6133: 4886: 3948: 3421: 3015: 2655: 2070: 1975: 1929: 1596: 1258: 875: 21024: 20012: 2481: 422: 20776:. Cambridge Monographs on Mathematical Physics. Cambridge, U.K.: Cambridge University Press. 20701:. Cambridge Monographs on Mathematical Physics. Cambridge, U.K.: Cambridge University Press. 20067: 16723: 16656: 15977: 15856: 14818:
positive integers, respectively, the following homogeneous quadratic equations, known as the
11887:{\displaystyle \mathbf {P} ({\mathcal {G}}_{T})\to \mathbf {P} ({\mathcal {E}})\times _{S}T.} 11429:{\displaystyle \mathbf {Gr} \left(k,{\mathcal {E}}_{\mathbf {Gr} (k,{\mathcal {E}})}\right),} 10376: 7641: 6840: 6781: 683: 671: 371:, who studied the set of projective lines in real projective 3-space, which is equivalent to 20991:
Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision
13196: 13123: 9909: 9135: 955: 769: 328: 21289: 21123: 21105: 21061: 20956: 20877: 20613: 20425: 20386: 20363: 20293: 20275: 20026: 20022:
solutions of KP equations which are nonsingular for real values of the KP flow parameters.
18596: 18255: 18018: 17994: 17411: 16678: 16626: 16579: 16444: 16239: 16207: 16051: 16024: 15907: 15826: 15253: 13659: 11906: 10412: 10372: 9440: 8448: 7893: 4932: 3114: 1920: 1669: 1624: 1487: 1304: 21168:. Annals of Mathematics Studies. Vol. 76. Princeton, NJ: Princeton University Press. 21143: 21131: 21006: 20993:, CVPR 23–28 June 2008, IEEE Conference on Computer Vision and Pattern Recognition, 2008, 20301: 20081: 19012: 18779: 13277: 12571: 12565: 11296: 8955: 1085:. Here the definition of homotopy relies on a notion of continuity, and hence a topology. 8: 20542: 20151: 20077: 18245: 17931: 15861: 15384: 14795: 14769: 14272:{\displaystyle \{w_{i_{1},\dots ,i_{k}}\,\vert \,1\leq i_{1}<\cdots <i_{k}\leq n\}} 12253: 12110: 7635: 6775: 5381: 153: 20960: 20881: 20617: 20429: 20390: 18633: 18606: 15281:, but they are not algebraically independent. They are equivalent to the statement that 10938: 8118:
The quickest way of giving the Grassmannian a geometric structure is to express it as a
21065: 21020: 20972: 20946: 20893: 20867: 20840: 20822: 20795: 20720: 20558: 20523: 20488: 20480: 20345: 20315: 20145: 20037:
may be calculated in the planar limit via a positive Grassmannian construct called the
20030: 19981: 19820: 19669: 19649: 19629: 19327: 18684: 18664: 18489: 18406: 18386: 18362: 18342: 18319: 18309: 18287: 18227: 18204: 18184: 18000: 17976: 17694: 17509: 16606: 16559: 16424: 16187: 16167: 15889: 15780: 15278: 14556: 14536: 14434: 14385: 14012: 13758: 13686: 13529: 13509: 13463: 13391: 13371: 13143: 13140:
is well-defined. To see that it is an embedding, notice that it is possible to recover
13095: 12945: 12844: 12824: 12804: 12670: 12617: 12180: 12136: 12037: 11964: 11518: 11097: 11077: 10918: 10858: 10834: 10790: 10770: 10678: 10600: 10580: 10478: 10458: 10438: 10418: 10368: 9886: 9739: 9467: 9230: 9170: 9112: 9092: 8965: 8892: 8780: 8392: 8238: 8185: 8165: 7920: 7801: 7735: 7676: 7617: 7407: 7127: 7029: 6875: 6816: 6757: 6527: 6495: 5794: 5774: 5663: 5643: 5482: 5413: 5324: 5304: 5284: 5264: 4912: 3760: 3447: 3141: 3094: 2995: 2814: 2786: 2577: 2557: 2537: 2517: 2461: 2208: 2188: 2120: 2096: 2021: 2001: 1955: 1734: 1649: 1629: 1470: 1383: 1284: 1264: 1074: 1052: 1032: 1001: 981: 881: 799: 720: 700: 641: 621: 601: 293: 273: 219: 158: 135: 112: 85: 20314:
Witten, Edward (1993). "The Verlinde algebra and the cohomology of the Grassmannian".
18284:-dimensional orthogonal complements of these planes yield an orthogonal vector bundle 16151:{\displaystyle 0\rightarrow (V/W)^{*}\rightarrow V^{*}\rightarrow W^{*}\rightarrow 0.} 14111: 13064: 11330:
Since the Grassmannian scheme represents a functor, it comes with a universal object,
10330:{\displaystyle \mathbf {Gr} (k,\mathbf {C} ^{n})=U(n)/\left(U(k)\times U(n-k)\right).} 9867:{\displaystyle \mathbf {Gr} (k,\mathbf {R} ^{n})=O(n)/\left(O(k)\times O(n-k)\right).} 3467: 2041: 21307: 21271: 21249: 21239: 21210: 21191: 21169: 21109: 21093: 21049: 20994: 20836: 20799: 20785: 20724: 20710: 20673: 20629: 20492: 20349: 20279: 20263: 20230: 20125: 20071: 20061: 19985: 19977: 19958: 17404: 16842: 16672: 9067:
it also becomes possible to use smaller groups in this construction. To do this over
8951: 8159: 8119: 5728: 2114: 1924: 1731:. Since the choice of basis is arbitrary, two such maximal rank rectangular matrices 430: 75: 21069: 20897: 20844: 10915:. By construction, the Grassmannian scheme is compatible with base changes: for any 6550: 368: 21299: 21285: 21127: 21041: 20976: 20964: 20885: 20832: 20777: 20751: 20702: 20663: 20621: 20568: 20515: 20470: 20462: 20433: 20394: 20297: 20156: 20097: 18997:{\displaystyle \gamma _{k,n}(A)=\theta _{n}\{g\in \operatorname {O} (n):gw\in A\}.} 18774: 18249: 17400: 9130: 7694: 6834: 4168:
between any two such coordinate neighborhoods, the affine coordinate matrix values
1620: 1195: 1116: 237: 20573: 20546: 21265: 21185: 21119: 21057: 20359: 20339: 20289: 20226: 20161: 20141: 20045: 13117: 10496: 8944: 8883: 6318: 2808: 2804: 694: 322: 106: 20968: 20506:
Narasimhan, M. S.; Ramanan, S. (1963). "Existence of Universal Connections II".
13327:
embeds as a nonsingular projective algebraic subvariety of the projectivization
21261: 20668: 20651: 9394:{\displaystyle O(w_{0},q|_{w_{0}})\times O(w_{0}^{\perp },q|_{w_{0}^{\perp }})} 8983: 3933:{\displaystyle {\hat {A}}^{i_{1},\dots ,i_{k}}:=W(W_{i_{1},\dots ,i_{k}})^{-1}} 3701: 690: 315: 21303: 20889: 20475: 19944: 16343:{\displaystyle \mathbf {Gr} _{k}(V)\leftrightarrow \mathbf {Gr} {(n-k},V^{*})} 15474:{\displaystyle \iota (\mathbf {Gr} _{2}(V)\subset \mathbf {P} (\Lambda ^{2}V)} 5727:
as its image. Since the rank of an orthogonal projection operator equals its
21324: 21253: 21139: 21053: 20677: 20633: 20453:
Narasimhan, M. S.; Ramanan, S. (1961). "Existence of Universal Connections".
20091: 20038: 19310: 18493: 18222: 17044: 13280:
of the Grassmannian satisfies a set of simple quadratic relations called the
11291: 10341: 9904: 6521: 6315: 6307:{\displaystyle \{X\in \mathrm {End} (V)\mid \mathrm {tr} (XX^{\dagger })=k\}} 5227: 1171: 1026: 793: 319: 13120:
matrix). Since the right-hand side takes values in the projectivized space,
5018:. The transition functions are therefore rational in the matrix elements of 21161: 19993: 19989: 18770: 16668: 11580: 8887: 8156: 6362: 2182: 130: 20781: 20706: 21223: 21157: 20769: 20694: 20625: 19954: 19943:
with respect to a real or complex scalar product are closely related to
18428: 18313: 13190: 13113: 6032:
this gives completely explicit equations for embedding the Grassmannians
667: 311: 27: 18630:
which violates the degree of the cohomology corresponding to a state by
18221:-space. Fibering these planes over the Grassmannian one arrives at the 17410:
As an example of the technique, consider the problem of determining the
15960:{\displaystyle 0\rightarrow W\rightarrow V\rightarrow V/W\rightarrow 0.} 8774: 21045: 20755: 20527: 20484: 20320: 20018:
Finite dimensional positive Grassmann manifolds can be used to express
18305: 15973: 11900: 10852: 10565:{\displaystyle {\mathcal {E}}_{T}:={\mathcal {E}}\otimes _{O_{S}}O_{T}} 1082: 952:. (In order to do this, we have to translate the tangent space at each 679: 19810:{\displaystyle \mathbf {Gr} _{k}^{0}(V,Q)\subset \mathbf {Gr} _{k}(V)} 16667:
The detailed study of Grassmannians makes use of a decomposition into
12991:
be the projectivization of the wedge product of these basis elements:
5213: 20438: 20413: 20398: 18627: 18600: 8879: 6229:
Since this defines the Grassmannian as a closed subset of the sphere
5226:
problem 5-C). For this, choose a positive definite real or Hermitian
1078: 1019: 20913:"A Mathematician's Unanticipated Journey Through the Physical World" 20739: 20519: 20466: 20185: 16263:. In terms of the Grassmannian, this gives a canonical isomorphism 12763:\iota :\mathbf {Gr} (k,V)\to \mathbf {P} \left(\Lambda ^{k}V\right). 4876:{\displaystyle {\hat {A}}_{j_{1},\dots ,j_{k}}^{i_{1},\dots ,i_{k}}} 3945:
the homogeneous coordinate matrix having the identity matrix as the
20547:"Schubert Calculus and representations of the general linear group" 20129: 14451:
under the Plücker map, relative to the basis of the exterior power
11283:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}}\otimes _{O_{S}}K(s))} 675: 20951: 20872: 20827: 20563: 19475:{\displaystyle {\widetilde {\mathbf {Gr} }}_{k}(\mathbf {R} ^{n})} 2807:. We may apply column operations to reduce this submatrix to the 1069:
to a suitably generalised Grassmannian—although various embedding
682:
collections of subspaces. Giving them the further structure of a
20937:
Arkani-Hamed, Nima; Trnka, Jaroslav (2013). "The Amplituhedron".
20019: 18701:-dimensional Euclidean space, we may define a uniform measure on 18424: 10672: 7890:
are orthonomal. The formula for the orthogonal projection matrix
5162:{\displaystyle \{U_{i_{1},\dots ,i_{k}},A^{i_{1},\dots ,i_{k}}\}} 4161:{\displaystyle U_{i_{1},\dots ,i_{k}}\cap U_{j_{1},\dots ,j_{k}}} 1070: 20656:
Publications of the Research Institute for Mathematical Sciences
17033:{\displaystyle \lambda _{1}\geq \cdots \geq \lambda _{k}\geq 0,} 16784:{\displaystyle V_{1}\subset V_{2}\subset \cdots \subset V_{n}=V} 15310:
is the projectivization of a completely decomposable element of
11508:{\displaystyle {\mathcal {E}}_{\mathbf {Gr} (k,{\mathcal {E}})}} 1211: 20662:(3). European Mathematical Society Publishing House: 943–1001. 19961:, is cut out as the intersection of a number of quadrics, the 19948: 15678:
In general, many more equations are needed to define the image
15191:{\displaystyle j_{1},\ldots ,{\widehat {j_{l}}},\ldots j_{k+1}} 5210:
as a differentiable manifold and also as an algebraic variety.
1018:-dimensional vector subspace. This idea is very similar to the 19626:
Given a real or complex nondegenerate symmetric bilinear form
18126: 10212:{\displaystyle w_{0}=\mathbf {C} ^{k}\subset \mathbf {C} ^{n}} 9729:{\displaystyle w_{0}=\mathbf {R} ^{k}\subset \mathbf {R} ^{n}} 7427:
An analogous construction applies to the complex Grassmannian
1049:, so that every vector bundle generates a continuous map from 436:
Notations for Grassmannians vary between authors, and include
426: 19686:(i.e., a scalar product), the totally isotropic Grassmannian 17148:{\displaystyle X_{\lambda }(k,n)\subset \mathbf {Gr} _{k}(V)} 20173: 16898:{\displaystyle \lambda =(\lambda _{1},\cdots ,\lambda _{k})} 14759:{\displaystyle 1\leq j_{1}<j_{2}\cdots <j_{k+1}\leq n} 14685:{\displaystyle 1\leq i_{1}<i_{2}\cdots <i_{k-1}\leq n} 13271: 8101:{\displaystyle P_{w}:=\sum _{i=1}^{k}w_{i}w_{i}^{\dagger }.} 7535:{\displaystyle P(k,n,\mathbf {C} )\subset M(n,\mathbf {C} )} 7173:
spanned by its columns and, conversely, sending any element
6701:{\displaystyle P(k,n,\mathbf {R} )\subset M(n,\mathbf {R} )} 1201:
The simplest Grassmannian that is not a projective space is
16468:
therefore determines a (non-canonical) isomorphism between
15572:{\displaystyle (w_{12},w_{13},w_{14},w_{23},w_{24},w_{34})} 12250:
correspond to the projective linear subspaces of dimension
5621: 3537:
does not affect the values of the affine coordinate matrix
2992:
for which, for any choice of homogeneous coordinate matrix
8409:
is determined only up to right multiplication by elements
8113: 1257:
with the structure of a differentiable manifold, choose a
367:
The earliest work on a non-trivial Grassmannian is due to
19009:
This measure is invariant under the action of the group
15666:{\displaystyle w_{12}w_{34}-w_{13}w_{24}+w_{14}w_{23}=0.} 15277:
omitted. These are consistent, determining a nonsingular
12415:\mathbf {P} (V)\times _{K}\mathbf {Gr} (k,{\mathcal {E}}) 12098:{\displaystyle \mathbf {P} ({\mathcal {E}})\times _{S}T.} 9484:. This gives an identification as the homogeneous space 8947:, and this construction shows that the Grassmannian is a 3418:, written in the same order. The choice of homogeneous 17399:
These are affine spaces, and their closures (within the
2225:
are linearly independent, the result will have the form
816:
can be considered as a subspace of the tangent space of
666:
By giving a collection of subspaces of a vector space a
21207:
Differential geometry, Lie groups, and symmetric spaces
17684:{\displaystyle \mathbf {Gr} _{k-1}(\mathbf {R} ^{n-1})} 11583:
induces a closed immersion from the projective bundle:
360:. In general they have the structure of a nonsingular 20603: 20540: 18057: 16982:
consisting of weakly decreasing non-negative integers
16970:{\displaystyle |\lambda |=\sum _{i=1}^{k}\lambda _{i}} 13838: 7221:{\displaystyle w\in \mathbf {Gr} (k,\mathbf {R} ^{n})} 6321:
space. This construction also turns the Grassmannian
4076:
in the consecutive complementary rows. On the overlap
2242: 20699:
Tau functions and Their Applications, Chapts. 4 and 5
19874: 19843: 19823: 19744: 19692: 19672: 19652: 19632: 19621: 19494: 19429: 19379: 19350: 19330: 19282: 19269:{\displaystyle \gamma _{k,n}(\mathbf {Gr} _{k}(V))=1} 19213: 19162: 19127: 19049: 19015: 18910: 18858: 18811: 18782: 18748: 18707: 18687: 18667: 18636: 18609: 18507: 18442: 18409: 18389: 18365: 18345: 18322: 18290: 18258: 18230: 18207: 18187: 18137: 18032: 18003: 17979: 17940: 17778: 17760:{\displaystyle \mathbf {Gr} _{k}(\mathbf {R} ^{n-1})} 17717: 17697: 17635: 17569: 17532: 17512: 17452: 17419: 17250: 17212: 17161: 17092: 17053: 16991: 16919: 16853: 16797: 16732: 16687: 16629: 16609: 16582: 16562: 16515: 16474: 16447: 16427: 16387: 16361: 16274: 16242: 16210: 16190: 16170: 16085: 16054: 16027: 15986: 15921: 15892: 15864: 15829: 15803: 15783: 15734: 15684: 15590: 15487: 15413: 15387: 15349: 15316: 15287: 15256: 15204: 15127: 14928: 14882: 14832: 14798: 14772: 14698: 14624: 14580: 14559: 14539: 14487: 14457: 14437: 14408: 14388: 14336: 14289: 14180: 14114: 14088: 14035: 14015: 14002:{\displaystyle 1\leq i_{1}<\cdots <i_{k}\leq n} 13957: 13786: 13761: 13709: 13689: 13662: 13604: 13552: 13532: 13512: 13486: 13466: 13414: 13394: 13374: 13333: 13292: 13230: 13199: 13166: 13146: 13126: 13098: 13067: 12997: 12968: 12948: 12896: 12867: 12847: 12827: 12807: 12781: 12673: 12643: 12620: 12580: 12438: 12313: 12282: 12256: 12203: 12183: 12159: 12139: 12113: 12060: 12040: 11987: 11967: 11936: 11909: 11821: 11798:{\displaystyle T\to \mathbf {Gr} (k,{\mathcal {E}}),} 11758: 11594: 11541: 11521: 11466: 11442: 11360: 11336: 11299: 11223: 11172: 11120: 11100: 11080: 10971: 10941: 10921: 10881: 10861: 10851:
and we recover the usual Grassmannian variety of the
10837: 10813: 10793: 10773: 10749: 10701: 10681: 10623: 10603: 10583: 10510: 10481: 10461: 10441: 10421: 10393: 10228: 10168: 10133: 9950: 9912: 9889: 9765: 9742: 9685: 9650: 9493: 9470: 9443: 9411: 9289: 9253: 9233: 9193: 9173: 9138: 9115: 9095: 9073: 9051: 9029: 8992: 8968: 8915: 8895: 8886:
under the quotient structure. More generally, over a
8850: 8828: 8806: 8783: 8763:{\displaystyle \mathbf {Gr} (k,V)=\mathrm {GL} (V)/H} 8708: 8665: 8628: 8481: 8451: 8415: 8395: 8355: 8310: 8261: 8241: 8208: 8188: 8168: 8128: 8035: 7978: 7943: 7923: 7896: 7844: 7810: 7758: 7738: 7703: 7679: 7644: 7620: 7574: 7548: 7482: 7433: 7410: 7375: 7323: 7305:{\displaystyle P_{w}:=\sum _{i=1}^{k}w_{i}w_{i}^{T},} 7239: 7179: 7150: 7130: 7081: 7052: 7032: 6983: 6940: 6898: 6878: 6843: 6819: 6784: 6760: 6714: 6648: 6622: 6585: 6530: 6498: 6461: 6376: 6327: 6235: 6197: 6162: 6136: 6087: 6038: 6003: 5968: 5822: 5797: 5777: 5737: 5686: 5666: 5646: 5537: 5505: 5485: 5441: 5416: 5390: 5347: 5327: 5307: 5287: 5267: 5235: 5175: 5077: 5024: 4962: 4935: 4915: 4889: 4796: 4586: 4528: 4475: 4285: 4227: 4174: 4082: 4029: 3977: 3951: 3826: 3783: 3763: 3710: 3653: 3600: 3543: 3496: 3470: 3450: 3424: 3372: 3308: 3255: 3217: 3164: 3144: 3117: 3097: 3044: 3018: 2998: 2951: 2898: 2885:{\displaystyle 1\leq i_{1}<\cdots <i_{k}\leq n} 2840: 2817: 2789: 2737: 2684: 2658: 2645:{\displaystyle 1\leq i_{1}<\cdots <i_{k}\leq n} 2600: 2580: 2560: 2540: 2520: 2484: 2464: 2426: 2236: 2211: 2191: 2143: 2123: 2099: 2073: 2044: 2024: 2004: 1978: 1958: 1932: 1881: 1838: 1786: 1757: 1737: 1699: 1672: 1652: 1632: 1599: 1552: 1496: 1473: 1432: 1406: 1386: 1334: 1307: 1287: 1267: 1222: 1124: 1055: 1035: 1004: 984: 958: 908: 884: 851: 822: 802: 772: 743: 723: 703: 644: 624: 604: 564: 523: 483: 442: 377: 331: 296: 276: 245: 222: 181: 161: 138: 115: 88: 39: 21234:. Vol. 218 (Second ed.). New York London: 20100:
are bundles of orthonormal frames over Grassmanians.
20044:
Grassmann manifolds have also found applications in
17556:{\displaystyle \mathbf {R} \subset \mathbf {R} ^{n}} 11159:{\displaystyle \{s\}={\text{Spec}}K(s)\rightarrow S} 7972:spanned by the orthonormal (unitary) basis vectors 6443:{\displaystyle d(w,w'):=\lVert P_{w}-P_{w'}\rVert ,} 4575:
are invertible. This may equivalently be written as
3158:
is nonsingular. The affine coordinate functions on
21104:. Wiley Classics Library (2nd ed.). New York: 20989:Pavan Turaga, Ashok Veeraraghavan, Rama Chellappa: 20274:, Wiley Classics Library (2nd ed.), New York: 19416:{\displaystyle \mathbf {Gr} _{k}(\mathbf {R} ^{n})} 18174:{\displaystyle \mathbf {Gr} _{k}(\mathbf {C} ^{n})} 17606:{\displaystyle \mathbf {Gr} _{k}(\mathbf {R} ^{n})} 17489:{\displaystyle \mathbf {Gr} _{k}(\mathbf {R} ^{n})} 11899:Conversely, any such closed immersion comes from a 11210:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}})_{s}} 10661:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}}_{T})} 10340:In particular, this shows that the Grassmannian is 5341:determines a unique orthogonal projection operator 5214:
The Grassmannian as a set of orthogonal projections
945:{\displaystyle \mathbf {Gr} _{k}(\mathbf {R} ^{n})} 414:{\displaystyle \mathbf {Gr} _{2}(\mathbf {R} ^{4})} 19927: 19855: 19829: 19809: 19730: 19678: 19658: 19638: 19610: 19474: 19415: 19365: 19336: 19301: 19268: 19199: 19148: 19109:{\displaystyle \gamma _{k,n}(gA)=\gamma _{k,n}(A)} 19108: 19030: 18996: 18891: 18844: 18797: 18761: 18734: 18693: 18673: 18645: 18618: 18582: 18475: 18415: 18395: 18371: 18351: 18328: 18296: 18276: 18236: 18213: 18193: 18173: 18110: 18009: 17985: 17965: 17917: 17759: 17703: 17683: 17605: 17555: 17518: 17488: 17438: 17386: 17231: 17194: 17147: 17078: 17032: 16969: 16897: 16833: 16783: 16714: 16647: 16615: 16595: 16568: 16548: 16501: 16460: 16433: 16413: 16373: 16342: 16255: 16228: 16196: 16176: 16150: 16067: 16040: 16013: 15959: 15898: 15878: 15847: 15815: 15789: 15761: 15720: 15665: 15571: 15473: 15399: 15373: 15332: 15302: 15269: 15242: 15190: 15108: 14909: 14868: 14810: 14784: 14758: 14684: 14607: 14565: 14545: 14525: 14473: 14443: 14423: 14394: 14374: 14322: 14271: 14166: 14100: 14074: 14021: 14001: 13938: 13767: 13747: 13695: 13675: 13648: 13590: 13538: 13518: 13498: 13472: 13452: 13400: 13380: 13360: 13319: 13257: 13211: 13181: 13152: 13132: 13104: 13081: 13053: 12983: 12954: 12934: 12882: 12853: 12833: 12813: 12793: 12762: 12679: 12659: 12626: 12606: 12546: 12414: 12343: 12299: 12268: 12243:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}})(K)} 12242: 12189: 12169: 12145: 12125: 12097: 12046: 12027:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}})(T)} 12026: 11973: 11953: 11922: 11886: 11797: 11730: 11571: 11527: 11507: 11452: 11428: 11346: 11314: 11282: 11209: 11158: 11106: 11086: 11061: 10952: 10927: 10907: 10867: 10843: 10823: 10799: 10779: 10759: 10731: 10687: 10660: 10609: 10589: 10564: 10487: 10467: 10447: 10427: 10403: 10329: 10211: 10154: 10116: 9933: 9895: 9866: 9748: 9728: 9671: 9632: 9476: 9456: 9429: 9393: 9272: 9239: 9219: 9179: 9159: 9121: 9101: 9081: 9059: 9037: 9012: 8974: 8935: 8901: 8870: 8836: 8814: 8789: 8762: 8691: 8648: 8611: 8464: 8433: 8401: 8381: 8338: 8293: 8247: 8227: 8194: 8174: 8148: 8100: 8016: 7964: 7929: 7909: 7882: 7830: 7788: 7744: 7722: 7685: 7663: 7626: 7603: 7560: 7534: 7468: 7416: 7396: 7361: 7304: 7220: 7165: 7136: 7116: 7067: 7038: 7018: 6969: 6922: 6884: 6862: 6825: 6803: 6766: 6743: 6700: 6634: 6608: 6536: 6504: 6484: 6442: 6353: 6314:this is one way to see that the Grassmannian is a 6306: 6218: 6183: 6148: 6122: 6073: 6024: 5989: 5949: 5803: 5783: 5763: 5719: 5672: 5652: 5627: 5518: 5491: 5466: 5422: 5402: 5372: 5333: 5313: 5293: 5273: 5253: 5202: 5161: 5063: 5010: 4948: 4921: 4901: 4875: 4777: 4567: 4514: 4456: 4266: 4213: 4160: 4068: 4015: 3963: 3932: 3807: 3769: 3749: 3692: 3639: 3582: 3529: 3482: 3456: 3436: 3410: 3358: 3294: 3241: 3203: 3150: 3130: 3103: 3083: 3030: 3004: 2984: 2937: 2884: 2823: 2795: 2775: 2723: 2670: 2644: 2586: 2566: 2546: 2526: 2506: 2470: 2450: 2407: 2217: 2197: 2173: 2129: 2105: 2085: 2056: 2030: 2010: 1990: 1964: 1944: 1911: 1862: 1819: 1772: 1743: 1723: 1685: 1658: 1638: 1611: 1585: 1534: 1479: 1459: 1418: 1392: 1372: 1320: 1293: 1273: 1249: 1145: 1061: 1041: 1010: 990: 970: 944: 890: 866: 837: 808: 784: 758: 729: 709: 650: 630: 610: 590: 550: 509: 469: 413: 352: 302: 282: 262: 228: 208: 167: 144: 121: 94: 66: 21267:Geometry of Sets and Measures in Euclidean Spaces 20936: 20812: 20505: 20452: 14402:). These are the linear coordinates of the image 11810:this closed immersion induces a closed immersion 10495:, the Grassmannian functor associates the set of 7831:{\displaystyle \langle \,\cdot ,\cdot \,\rangle } 7469:{\displaystyle \mathbf {Gr} (k,\mathbf {C} ^{n})} 7019:{\displaystyle \mathbf {Gr} (k,\mathbf {R} ^{n})} 6123:{\displaystyle \mathbf {Gr} (k,\mathbf {C} ^{N})} 6074:{\displaystyle \mathbf {Gr} (k,\mathbf {R} ^{N})} 1174:to that plane (and vice versa); hence the spaces 978:so that it passes through the origin rather than 686:, one can talk about smooth choices of subspace. 21322: 20652:"Solitons and infinite-dimensional Lie algebras" 20225:. Vol. 1 (2nd ed.). Berlin, New York: 2038:, for which the equivalence classes are denoted 427:§ Plücker coordinates and Plücker relations 21092: 20424:(9). American Institute of Physics: 1945–1970. 20385:(9). American Institute of Physics: 3197–3208. 20262: 19485:As a homogeneous space it can be expressed as: 14330:of the Grassmannian (with respect to the basis 12344:{\displaystyle \mathbf {P} ({\mathcal {G}})(K)} 11572:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}})} 10732:{\displaystyle \mathbf {Gr} (k,{\mathcal {E}})} 10362: 8122:. First, recall that the general linear group 7804:is with respect to the Hermitian inner product 5011:{\displaystyle {\hat {A}}^{i_{1},\dots ,i_{k}}} 2811:, and the remaining entries uniquely determine 1972:. This defines an equivalence relation between 21156: 21018: 20857: 20774:Tau functions and Their Applications, Chapt. 7 20203: 20066:For an example of the use of Grassmannians in 19928:{\displaystyle Q(u,v)=0,\,\forall \,u,v\in w.} 18595:reflecting the existence in the corresponding 18131:Every point in the complex Grassmann manifold 12034:are exactly the projective subbundles of rank 8882:, this construction makes the Grassmannian a 5223: 20557:(4). American Mathematical Society: 909–940. 20411: 20376: 19957:variety which, similarly to the image of the 18892:{\displaystyle A\subset \mathbf {Gr} _{k}(V)} 18583:{\displaystyle c_{k}(E)c_{n-k}(F)=(-1)^{n-k}} 7476:, identifying it bijectively with the subset 5254:{\displaystyle \langle \cdot ,\cdot \rangle } 3700:may take arbitrary values, and they define a 1212:The Grassmannian as a differentiable manifold 1025:This can with some effort be extended to all 421:, parameterizing them by what are now called 20768: 20693: 20612:(11). Physical Society of Japan: 3806–3812. 20215: 20144:, the Grassmannian plays a similar role for 18988: 18949: 17378: 17279: 17226: 17213: 15721:{\displaystyle \iota (\mathbf {Gr} _{k}(V))} 14869:{\displaystyle \iota (\mathbf {Gr} _{k}(V))} 14266: 14221: 14181: 11127: 11121: 8586: 8521: 8428: 8416: 7825: 7811: 6934:There is a bijective correspondence between 6434: 6403: 6301: 6236: 5248: 5236: 5156: 5078: 3359:{\displaystyle WW_{i_{1},\dots ,i_{k}}^{-1}} 1111:is the space of lines through the origin in 216:is the space of lines through the origin in 21284: 20191: 18379:. Then the relations merely state that the 18127:Cohomology ring of the complex Grassmannian 15976:to each of these three spaces and the dual 15762:{\displaystyle \mathbf {P} (\Lambda ^{k}V)} 14608:{\displaystyle \mathbf {P} (\Lambda ^{k}V)} 13361:{\displaystyle \mathbf {P} (\Lambda ^{k}V)} 12574:is a natural embedding of the Grassmannian 10371:, the Grassmannian can be constructed as a 9941:acts transitively, and we find analogously 2831:. Hence we have the following definition: 2594:, there exists an ordered set of integers 2067:We now define a coordinate atlas. For any 19731:{\displaystyle \mathbf {Gr} _{k}^{0}(V,Q)} 13089:denotes the projective equivalence class. 9883:, if we choose an Hermitian inner product 1380:, viewed as column vectors. Then for any 670:structure, it is possible to talk about a 20950: 20871: 20826: 20667: 20649: 20572: 20562: 20474: 20437: 20319: 19906: 19902: 18845:{\displaystyle w\in \mathbf {Gr} _{k}(V)} 17318: 17312: 17195:{\displaystyle W\in \mathbf {Gr} _{k}(V)} 14323:{\displaystyle w\in \mathbf {Gr} _{k}(V)} 14224: 14220: 13813: 13272:Plücker coordinates and Plücker relations 13075: 13071: 8553: 8547: 7965:{\displaystyle w\subset \mathbf {C} ^{n}} 7824: 7814: 7397:{\displaystyle w\subset \mathbf {R} ^{n}} 5915: 5731:, we can identify the Grassmann manifold 4274:are related by the transition relations 3530:{\displaystyle w\in \mathbf {Gr} _{k}(V)} 2985:{\displaystyle w\in \mathbf {Gr} _{k}(V)} 1820:{\displaystyle w\in \mathbf {Gr} _{k}(V)} 1586:{\displaystyle w\in \mathbf {Gr} _{k}(V)} 1198:) may all be identified with each other. 433:later introduced the concept in general. 21270:. New York: Cambridge University Press. 21204: 20910: 20645: 20643: 20606:Journal of the Physical Society of Japan 20599: 20597: 19316: 18308:of the Grassmannians is generated, as a 12559: 10382: 8962:as an algebraic variety. In particular, 7117:{\displaystyle P\in P(k,n,\mathbf {R} )} 6923:{\displaystyle \operatorname {tr} (P)=k} 6219:{\displaystyle \mathbf {C} ^{n\times n}} 6184:{\displaystyle \mathbf {R} ^{n\times n}} 3211:are then defined as the entries of the 2554:rows need not be independent, but since 1022:for surfaces in a 3-dimensional space.) 21260: 21138: 19321:This is the manifold consisting of all 16834:{\displaystyle \mathrm {dim} (V_{i})=i} 13649:{\displaystyle (w_{i1},\cdots ,w_{in})} 8954:. It follows from the existence of the 8294:{\displaystyle w\in \mathbf {Gr} (k,V)} 8114:The Grassmannian as a homogeneous space 5720:{\displaystyle w_{P}:=\mathrm {Im} (P)} 21323: 21183: 20689: 20687: 20337: 20313: 16549:{\displaystyle \mathbf {Gr} _{n-k}(V)} 14075:{\displaystyle w_{i_{1},\dots ,i_{k}}} 11166:induces an isomorphism from the fiber 8202:. Therefore, if we choose a subspace 7604:{\displaystyle P\in M(n,\mathbf {C} )} 6744:{\displaystyle P\in M(n,\mathbf {R} )} 5640:Conversely, every projection operator 5064:{\displaystyle A^{i_{1},\dots ,i_{k}}} 4568:{\displaystyle W_{j_{1},\dots ,j_{k}}} 4515:{\displaystyle W_{i_{1},\dots ,i_{k}}} 4267:{\displaystyle A^{j_{1},\dots ,j_{k}}} 4214:{\displaystyle A^{i_{1},\dots ,i_{k}}} 4069:{\displaystyle A^{i_{1},\dots ,i_{k}}} 3750:{\displaystyle U_{i_{1},\dots ,i_{k}}} 3693:{\displaystyle A^{i_{1},\dots ,i_{k}}} 3640:{\displaystyle U_{i_{1},\dots ,i_{k}}} 3583:{\displaystyle A^{i_{1},\dots ,i_{k}}} 3295:{\displaystyle A^{i_{1},\dots ,i_{k}}} 3204:{\displaystyle U_{i_{1},\dots ,i_{k}}} 3084:{\displaystyle W_{i_{1},\dots ,i_{k}}} 2938:{\displaystyle U_{i_{1},\dots ,i_{k}}} 2724:{\displaystyle W_{i_{1},\dots ,i_{k}}} 1467:, we may choose a basis consisting of 20650:Jimbo, Michio; Miwa, Tetsuji (1983). 20640: 20594: 18656: 18431:allows one to write this relation as 17629:and those that do not. The former is 16722:are defined in terms of a specified 15243:{\displaystyle j_{1},\ldots ,j_{k+1}} 14526:{\displaystyle (e_{1},\cdots ,e_{n})} 14375:{\displaystyle (e_{1},\cdots ,e_{n})} 13591:{\displaystyle (w_{1},\cdots ,w_{k})} 13453:{\displaystyle (e_{1},\cdots ,e_{n})} 12935:{\displaystyle (w_{1},\cdots ,w_{k})} 10344:, and of (real or complex) dimension 8382:{\displaystyle g\in \mathrm {GL} (V)} 8017:{\displaystyle (w_{1},\cdots ,w_{k})} 7883:{\displaystyle (e_{1},\cdots ,e_{n})} 7362:{\displaystyle (w_{1},\cdots ,w_{k})} 3647:. Moreover, the coordinate matrices 2776:{\displaystyle (i_{1},\ldots ,i_{k})} 898:its tangent space defines a map from 21080:, see section 4.3., pp. 137–140 21033:Publications Mathématiques de l'IHÉS 20911:Hartnett, Kevin (16 December 2020). 20737: 20581: 20333: 20331: 18735:{\displaystyle \mathbf {Gr} _{k}(V)} 16715:{\displaystyle \mathbf {Gr} _{k}(V)} 16502:{\displaystyle \mathbf {Gr} _{k}(V)} 14910:{\displaystyle \mathbf {Gr} _{k}(V)} 14826:, are valid and determine the image 13748:{\displaystyle (W^{1},\dots ,W^{n})} 13683:with respect to the chosen basis of 13320:{\displaystyle \mathbf {Gr} _{k}(V)} 13286:. These show that the Grassmannian 7838:in which the standard basis vectors 5467:{\displaystyle V=w\oplus w^{\perp }} 5373:{\displaystyle P_{w}:V\rightarrow V} 5203:{\displaystyle \mathbf {Gr} _{k}(V)} 4016:{\displaystyle (i_{1},\dots ,i_{k})} 3411:{\displaystyle (i_{1},\dots ,i_{k})} 1535:{\displaystyle (W_{1},\dots ,W_{k})} 1460:{\displaystyle \mathbf {Gr} _{k}(V)} 1373:{\displaystyle (e_{1},\dots ,e_{n})} 1281:. This is equivalent to identifying 1250:{\displaystyle \mathbf {Gr} _{k}(V)} 551:{\displaystyle \mathbf {Gr} _{k}(n)} 470:{\displaystyle \mathbf {Gr} _{k}(V)} 209:{\displaystyle \mathbf {Gr} _{1}(V)} 67:{\displaystyle \mathbf {Gr} _{k}(V)} 21222: 20762: 20684: 20534: 20405: 20179: 19200:{\displaystyle \theta _{n}(O(n))=1} 13258:{\displaystyle v\wedge \iota (w)=0} 11325: 9756:components) we get the isomorphism 6970:{\displaystyle P(k,n,\mathbf {R} )} 6751:that satisfy the three conditions: 3302:whose rows are those of the matrix 13: 21187:Algebraic Geometry: A First Course 20370: 19903: 19622:Orthogonal isotropic Grassmannians 18958: 16805: 16802: 16799: 16414:{\displaystyle W^{0}\subset V^{*}} 15744: 15579:, this single Plücker relation is 15456: 15318: 14590: 14459: 13343: 12741: 12645: 12607:{\displaystyle \mathbf {Gr} (k,V)} 12507: 12405: 12324: 12223: 12162: 12071: 12007: 11954:{\displaystyle {\mathcal {E}}_{T}} 11940: 11860: 11833: 11784: 11717: 11680: 11653: 11628: 11605: 11561: 11495: 11470: 11445: 11408: 11383: 11339: 11243: 11192: 11040: 10991: 10960:, we have a canonical isomorphism 10908:{\displaystyle \mathbf {Gr} (k,V)} 10816: 10752: 10721: 10644: 10530: 10514: 10396: 10155:{\displaystyle V=\mathbf {C} ^{n}} 9672:{\displaystyle V=\mathbf {R} ^{n}} 9220:{\displaystyle \mathbf {Gr} (k,V)} 8997: 8994: 8920: 8917: 8855: 8852: 8739: 8736: 8692:{\displaystyle \mathbf {Gr} (k,V)} 8633: 8630: 8596: 8593: 8534: 8531: 8498: 8495: 8492: 8489: 8366: 8363: 8133: 8130: 7781: 7772: 7765: 7762: 6544:, and hence an equivalent metric. 6354:{\displaystyle \mathbf {Gr} (k,V)} 6272: 6269: 6252: 6249: 6246: 6025:{\displaystyle V=\mathbf {C} ^{n}} 5990:{\displaystyle V=\mathbf {R} ^{n}} 5920: 5917: 5867: 5864: 5861: 5764:{\displaystyle \mathbf {Gr} (k,V)} 5704: 5701: 1328:, with the standard basis denoted 1146:{\displaystyle \mathbf {P} ^{n-1}} 693:of smooth manifolds embedded in a 591:{\displaystyle \mathbf {Gr} (k,n)} 510:{\displaystyle \mathbf {Gr} (k,V)} 175:. For example, the Grassmannian 82:that parameterizes the set of all 14: 21357: 20328: 20307: 20256: 19976:Another important application is 17767:. This gives recursive formulae: 16662: 16355:that associates to each subspace 14917:under the Plücker map embedding: 12614:into the projectivization of the 11961:to a locally free module of rank 7789:{\displaystyle {\rm {{tr}(P)=k}}} 6609:{\displaystyle M(n,\mathbf {R} )} 4023:and the affine coordinate matrix 2834:For each ordered set of integers 1115:-space, so it is the same as the 1088: 21228:Introduction to Smooth Manifolds 21102:Principles of algebraic geometry 20837:10.1111/j.1467-9590.2009.00448.x 20412:Harnad, J.; Shnider, S. (1995). 20272:Principles of algebraic geometry 20222:Éléments de géométrie algébrique 19788: 19785: 19750: 19747: 19698: 19695: 19524: 19503: 19500: 19459: 19438: 19435: 19400: 19385: 19382: 19366:{\displaystyle \mathbf {R} ^{n}} 19353: 19238: 19235: 18870: 18867: 18823: 18820: 18713: 18710: 18158: 18143: 18140: 17738: 17723: 17720: 17662: 17641: 17638: 17590: 17575: 17572: 17543: 17534: 17473: 17458: 17455: 17293: 17290: 17173: 17170: 17126: 17123: 17047:fits within the rectangular one 16693: 16690: 16521: 16518: 16480: 16477: 16306: 16303: 16280: 16277: 15736: 15696: 15693: 15448: 15425: 15422: 14888: 14885: 14844: 14841: 14582: 14301: 14298: 13335: 13298: 13295: 12731: 12708: 12705: 12585: 12582: 12492: 12489: 12463: 12390: 12387: 12363: 12315: 12284: 12208: 12205: 12107:Under this identification, when 12062: 11992: 11989: 11851: 11823: 11769: 11766: 11702: 11699: 11671: 11638: 11635: 11617: 11596: 11546: 11543: 11480: 11477: 11436:and therefore a quotient module 11393: 11390: 11365: 11362: 11228: 11225: 11177: 11174: 11024: 11021: 10976: 10973: 10886: 10883: 10706: 10703: 10675:is representable by a separated 10628: 10625: 10248: 10233: 10230: 10199: 10184: 10142: 9955: 9952: 9785: 9770: 9767: 9716: 9701: 9659: 9498: 9495: 9437:is the orthogonal complement of 9198: 9195: 9167:acts transitively on the set of 9089:, fix a Euclidean inner product 9075: 9053: 9031: 9013:{\displaystyle \mathrm {GL} (V)} 8936:{\displaystyle \mathrm {GL} (V)} 8871:{\displaystyle \mathrm {GL} (V)} 8830: 8808: 8713: 8710: 8670: 8667: 8649:{\displaystyle \mathrm {GL} (V)} 8272: 8269: 8149:{\displaystyle \mathrm {GL} (V)} 7952: 7594: 7525: 7502: 7453: 7438: 7435: 7384: 7205: 7190: 7187: 7166:{\displaystyle \mathbf {R} ^{n}} 7153: 7107: 7068:{\displaystyle \mathbf {R} ^{n}} 7055: 7003: 6988: 6985: 6960: 6734: 6691: 6668: 6599: 6332: 6329: 6200: 6165: 6130:in the space of real or complex 6107: 6092: 6089: 6058: 6043: 6040: 6012: 5977: 5827: 5824: 5791:orthogonal projection operators 5742: 5739: 5181: 5178: 3594:on the coordinate neighbourhood 3508: 3505: 2963: 2960: 1798: 1795: 1564: 1561: 1438: 1435: 1228: 1225: 1127: 929: 914: 911: 867:{\displaystyle \mathbf {R} ^{n}} 854: 838:{\displaystyle \mathbf {R} ^{n}} 825: 759:{\displaystyle \mathbf {R} ^{n}} 746: 569: 566: 529: 526: 488: 485: 448: 445: 398: 383: 380: 318:vector space, Grassmannians are 247: 187: 184: 45: 42: 21012: 20983: 20930: 20904: 20851: 20806: 20731: 20508:American Journal of Mathematics 20499: 20455:American Journal of Mathematics 20446: 20418:Journal of Mathematical Physics 20379:Journal of Mathematical Physics 20001:Kadomtsev–Petviashvili equation 19968: 19941:Maximal isotropic Grassmannians 17873: 16623:-dimensional subspace into its 12300:{\displaystyle \mathbf {P} (V)} 6575:) as affine algebraic varieties 5593: 5571: 5430:into the orthogonal direct sum 1863:{\displaystyle {\tilde {W}}=Wg} 1593:consist of the elements of the 263:{\displaystyle \mathbf {P} (V)} 21025:"A-homotopy theory of schemes" 20939:Journal of High Energy Physics 20815:Studies in Applied Mathematics 20244: 20209: 20197: 19890: 19878: 19804: 19798: 19777: 19765: 19725: 19713: 19602: 19599: 19587: 19575: 19569: 19560: 19552: 19546: 19534: 19519: 19469: 19454: 19410: 19395: 19257: 19254: 19248: 19230: 19188: 19185: 19179: 19173: 19143: 19137: 19103: 19097: 19075: 19066: 19025: 19019: 18970: 18964: 18933: 18927: 18886: 18880: 18839: 18833: 18792: 18786: 18729: 18723: 18565: 18555: 18549: 18543: 18524: 18518: 18464: 18458: 18452: 18446: 18271: 18259: 18168: 18153: 17839: 17829: 17754: 17733: 17678: 17657: 17600: 17585: 17563:and consider the partition of 17483: 17468: 17369: 17325: 17314: 17309: 17303: 17273: 17261: 17239:have the following dimensions 17189: 17183: 17142: 17136: 17115: 17103: 17067: 17054: 16929: 16921: 16892: 16860: 16822: 16809: 16709: 16703: 16677:, which were first applied in 16642: 16630: 16543: 16537: 16496: 16490: 16337: 16311: 16299: 16296: 16290: 16223: 16211: 16142: 16129: 16116: 16107: 16092: 16089: 16002: 15987: 15951: 15937: 15931: 15925: 15842: 15830: 15756: 15740: 15715: 15712: 15706: 15688: 15566: 15488: 15468: 15452: 15441: 15435: 15417: 15362: 15356: 15297: 15291: 14966: 14956: 14904: 14898: 14863: 14860: 14854: 14836: 14618:For any two ordered sequences 14602: 14586: 14553:. Since a change of basis for 14520: 14488: 14418: 14412: 14369: 14337: 14317: 14311: 14161: 14115: 13827: 13800: 13742: 13710: 13643: 13605: 13585: 13553: 13447: 13415: 13355: 13339: 13314: 13308: 13246: 13240: 13176: 13170: 13076: 13068: 13045: 13013: 13007: 13001: 12978: 12972: 12929: 12897: 12877: 12871: 12727: 12724: 12712: 12601: 12589: 12521: 12515: 12512: 12496: 12482: 12476: 12473: 12467: 12456: 12444: 12410: 12394: 12373: 12367: 12338: 12332: 12329: 12319: 12294: 12288: 12237: 12231: 12228: 12212: 12170:{\displaystyle {\mathcal {E}}} 12076: 12066: 12021: 12015: 12012: 11996: 11865: 11855: 11847: 11844: 11827: 11789: 11773: 11762: 11722: 11706: 11685: 11675: 11658: 11642: 11613: 11610: 11600: 11566: 11550: 11500: 11484: 11453:{\displaystyle {\mathcal {G}}} 11413: 11397: 11347:{\displaystyle {\mathcal {G}}} 11309: 11303: 11277: 11274: 11268: 11232: 11198: 11181: 11150: 11147: 11141: 11056: 11028: 10996: 10980: 10902: 10890: 10824:{\displaystyle {\mathcal {E}}} 10760:{\displaystyle {\mathcal {E}}} 10726: 10710: 10655: 10632: 10404:{\displaystyle {\mathcal {E}}} 10316: 10304: 10295: 10289: 10273: 10267: 10258: 10237: 10103: 10074: 10055: 10046: 10029: 10008: 9992: 9980: 9971: 9959: 9928: 9916: 9853: 9841: 9832: 9826: 9810: 9804: 9795: 9774: 9622: 9605: 9584: 9575: 9565: 9551: 9535: 9523: 9514: 9502: 9430:{\displaystyle w_{0}^{\perp }} 9388: 9366: 9340: 9331: 9314: 9293: 9273:{\displaystyle w_{0}\subset V} 9214: 9202: 9154: 9142: 9007: 9001: 8930: 8924: 8865: 8859: 8749: 8743: 8729: 8717: 8686: 8674: 8643: 8637: 8606: 8600: 8570: 8557: 8549: 8544: 8538: 8515: 8502: 8376: 8370: 8333: 8320: 8288: 8276: 8228:{\displaystyle w_{0}\subset V} 8143: 8137: 8011: 7979: 7877: 7845: 7775: 7769: 7723:{\displaystyle P^{\dagger }=P} 7598: 7584: 7529: 7515: 7506: 7486: 7463: 7442: 7356: 7324: 7215: 7194: 7111: 7091: 7013: 6992: 6964: 6944: 6911: 6905: 6738: 6724: 6695: 6681: 6672: 6652: 6603: 6589: 6512:-dimensional subspaces, where 6397: 6380: 6348: 6336: 6292: 6276: 6262: 6256: 6117: 6096: 6068: 6047: 5930: 5924: 5877: 5871: 5843: 5831: 5758: 5746: 5714: 5708: 5554: 5548: 5499:and its orthogonal complement 5364: 5197: 5191: 4970: 4804: 4760: 4690: 4680: 4642: 4594: 4377: 4293: 4010: 3978: 3918: 3878: 3834: 3796: 3784: 3524: 3518: 3477: 3471: 3405: 3373: 3230: 3218: 2979: 2973: 2770: 2738: 2501: 2485: 2439: 2427: 2168: 2156: 2117:(which amounts to multiplying 2093:homogeneous coordinate matrix 2051: 2045: 1906: 1894: 1845: 1814: 1808: 1764: 1580: 1574: 1529: 1497: 1454: 1448: 1367: 1335: 1244: 1238: 939: 924: 598:to denote the Grassmannian of 585: 573: 545: 539: 504: 492: 464: 458: 408: 393: 347: 335: 257: 251: 203: 197: 61: 55: 1: 21232:Graduate Texts in Mathematics 21145:Vector Bundles & K-Theory 21086: 20574:10.1090/S0894-0347-09-00640-7 19738:is defined as the subvariety 19302:{\displaystyle \gamma _{k,n}} 17966:{\displaystyle \chi _{k,n}=0} 16421:. Choosing an isomorphism of 15769:under the Plücker embedding. 15333:{\displaystyle \Lambda ^{k}V} 14481:space generated by the basis 14474:{\displaystyle \Lambda ^{k}V} 12821:-dimensional subspace of the 12660:{\displaystyle \Lambda ^{k}V} 12197:, the set of rational points 11981:. Therefore, the elements of 11074:In particular, for any point 7369:is any orthonormal basis for 6485:{\displaystyle w,w'\subset V} 3808:{\displaystyle (n-k)\times k} 3242:{\displaystyle (n-k)\times k} 2451:{\displaystyle (n-k)\times k} 1081:maps to the Grassmannian are 697:. Suppose we have a manifold 689:A natural example comes from 661: 618:-dimensional subspaces of an 21:Grassmannian (disambiguation) 21341:Algebraic homogeneous spaces 20738:Sato, Mikio (October 1981). 20589:Kokyuroku, RIMS, Kyoto Univ. 20204:Milnor & Stasheff (1974) 20033:in maximally supersymmetric 15279:projective algebraic variety 10767:is finitely generated. When 10363:The Grassmannian as a scheme 9082:{\displaystyle \mathbf {R} } 9060:{\displaystyle \mathbf {C} } 9038:{\displaystyle \mathbf {R} } 8837:{\displaystyle \mathbf {C} } 8815:{\displaystyle \mathbf {R} } 5224:Milnor & Stasheff (1974) 2174:{\displaystyle g\in GL(k,K)} 2115:elementary column operations 1912:{\displaystyle g\in GL(k,K)} 1773:{\displaystyle {\tilde {W}}} 1724:{\displaystyle i=1,\dots ,k} 362:projective algebraic variety 270:of one dimension lower than 7: 21205:Helgason, Sigurdur (1978), 20194:, p. 42, Example 1.24. 20182:, p. 22, Example 1.36. 20055: 19373:. It is a double cover of 18762:{\displaystyle \theta _{n}} 18476:{\displaystyle c(E)c(F)=1.} 17439:{\displaystyle \chi _{k,n}} 17155:consists of those elements 14824:Plücker-Grassmann relations 13054:{\displaystyle \iota (w)=,} 12177:is given by a vector space 12133:is the spectrum of a field 10831:is given by a vector space 10787:is the spectrum of a field 8800:If the underlying field is 2183:reduced column echelon form 1780:represent the same element 236:, so it is the same as the 10: 21362: 21291:Basic Algebraic Geometry 1 20142:homotopy theory of schemes 19856:{\displaystyle w\subset V} 19344:-dimensional subspaces of 18742:in the following way. Let 17617:-dimensional subspaces of 17500:-dimensional subspaces of 16374:{\displaystyle W\subset V} 16236:-dimensional subspaces of 16184:-dimensional subspaces of 15906:. This gives the natural 15816:{\displaystyle W\subset V} 15772: 14082:be the determinant of the 13499:{\displaystyle w\subset V} 13193:of the set of all vectors 12841:-dimensional vector space 12794:{\displaystyle w\subset V} 12563: 11217:to the usual Grassmannian 8659:We may therefore identify 8434:{\displaystyle \{h\in H\}} 8339:{\displaystyle w=g(w_{0})} 8182:-dimensional subspaces of 7424:component column vectors. 7046:-dimensional subspaces of 5519:{\displaystyle w^{\perp }} 5403:{\displaystyle w\subset V} 2137:by a sequence of elements 1426:, viewed as an element of 1419:{\displaystyle w\subset V} 638:-dimensional vector space 18: 21304:10.1007/978-3-642-37956-7 20890:10.1007/s00222-014-0506-3 20541:Mukhin, E.; Tarasov, V.; 19149:{\displaystyle g\in O(n)} 17691:and the latter is a rank 17232:{\displaystyle \{V_{i}\}} 17079:{\displaystyle (n-k)^{k}} 16681:. The Schubert cells for 16014:{\displaystyle (V/W)^{*}} 15481:under the Plücker map as 15374:{\displaystyle \dim(V)=4} 15303:{\displaystyle \iota (w)} 14424:{\displaystyle \iota (w)} 14101:{\displaystyle k\times k} 13951:For any ordered sequence 13526:-dimensional subspace of 13182:{\displaystyle \iota (w)} 12984:{\displaystyle \iota (w)} 12883:{\displaystyle \iota (w)} 11114:, the canonical morphism 10435:. Fix a positive integer 8958:that the Grassmannian is 7561:{\displaystyle n\times n} 7228:to the projection matrix 7144:-dimensional subspace of 6635:{\displaystyle n\times n} 6616:denote the space of real 6149:{\displaystyle n\times n} 4902:{\displaystyle k\times k} 3964:{\displaystyle k\times k} 3490:representing the element 3437:{\displaystyle n\times k} 3031:{\displaystyle k\times k} 2671:{\displaystyle k\times k} 2534:. In general, the first 2458:affine coordinate matrix 2086:{\displaystyle n\times k} 1991:{\displaystyle n\times k} 1952:matrices with entries in 1945:{\displaystyle k\times k} 1612:{\displaystyle n\times k} 20860:Inventiones Mathematicae 20669:10.2977/prims/1195182017 20167: 20134:classifying space for U( 20109:Lagrangian Grassmannians 11354:, which is an object of 10617:. We denote this set by 9227:and the stabiliser of a 8699:with the quotient space 6642:matrices and the subset 2507:{\displaystyle (a_{ij})} 20969:10.1007/JHEP10(2014)030 20217:Grothendieck, Alexander 20120:Lagrangian Grassmannian 20035:super Yang-Mills theory 19837:-dimensional subspaces 18492:ring was calculated by 15980:yields an inclusion of 15728:of the Grassmannian in 14029:positive integers, let 11515:, locally free of rank 9187:-dimensional subspaces 8349:for some group element 7664:{\displaystyle P^{2}=P} 6863:{\displaystyle P^{T}=P} 6804:{\displaystyle P^{2}=P} 5281:, depending on whether 2945:be the set of elements 1544:homogeneous coordinates 674:choice of subspaces or 80:differentiable manifold 21190:. New York: Springer. 21166:Characteristic classes 20338:Cartan, Élie (1981) . 20124:Grassmannians provide 20105:Isotropic Grassmanians 20011:are equivalent to the 19929: 19857: 19831: 19811: 19732: 19680: 19660: 19640: 19612: 19476: 19417: 19367: 19338: 19303: 19270: 19201: 19150: 19110: 19032: 18998: 18893: 18846: 18799: 18763: 18736: 18695: 18675: 18647: 18620: 18584: 18477: 18417: 18397: 18373: 18353: 18330: 18298: 18278: 18244:which generalizes the 18238: 18215: 18195: 18175: 18112: 18011: 17987: 17967: 17919: 17761: 17705: 17685: 17607: 17557: 17526:-dimensional subspace 17520: 17490: 17440: 17388: 17233: 17196: 17149: 17080: 17034: 16971: 16956: 16899: 16835: 16785: 16716: 16649: 16617: 16597: 16570: 16550: 16503: 16462: 16435: 16415: 16375: 16344: 16257: 16230: 16198: 16178: 16152: 16069: 16042: 16015: 15978:linear transformations 15961: 15900: 15880: 15849: 15817: 15797:-dimensional subspace 15791: 15763: 15722: 15667: 15573: 15475: 15401: 15375: 15334: 15304: 15271: 15244: 15192: 15110: 14955: 14911: 14870: 14812: 14786: 14760: 14686: 14609: 14567: 14547: 14527: 14475: 14445: 14425: 14396: 14376: 14324: 14273: 14168: 14102: 14076: 14023: 14003: 13940: 13769: 13749: 13697: 13677: 13650: 13592: 13540: 13520: 13500: 13474: 13454: 13402: 13382: 13362: 13321: 13259: 13213: 13212:{\displaystyle v\in V} 13183: 13154: 13134: 13133:{\displaystyle \iota } 13106: 13092:A different basis for 13083: 13055: 12985: 12956: 12936: 12884: 12855: 12835: 12815: 12795: 12764: 12681: 12661: 12628: 12608: 12548: 12416: 12345: 12301: 12270: 12244: 12191: 12171: 12147: 12127: 12099: 12048: 12028: 11975: 11955: 11924: 11888: 11799: 11732: 11573: 11529: 11509: 11454: 11430: 11348: 11316: 11284: 11211: 11160: 11108: 11088: 11063: 10954: 10929: 10909: 10869: 10845: 10825: 10801: 10781: 10761: 10733: 10689: 10662: 10611: 10591: 10566: 10489: 10469: 10449: 10429: 10405: 10375:by expressing it as a 10331: 10213: 10156: 10118: 9935: 9934:{\displaystyle U(V,h)} 9897: 9868: 9750: 9730: 9673: 9634: 9478: 9458: 9431: 9395: 9274: 9241: 9221: 9181: 9161: 9160:{\displaystyle O(V,q)} 9123: 9103: 9083: 9061: 9039: 9014: 8976: 8937: 8903: 8872: 8838: 8816: 8791: 8764: 8693: 8650: 8613: 8466: 8435: 8403: 8383: 8340: 8295: 8249: 8229: 8196: 8176: 8150: 8102: 8069: 8018: 7966: 7937:-dimensional subspace 7931: 7911: 7884: 7832: 7790: 7746: 7724: 7687: 7665: 7628: 7605: 7562: 7536: 7470: 7418: 7398: 7363: 7306: 7273: 7222: 7167: 7138: 7118: 7069: 7040: 7020: 6971: 6924: 6886: 6864: 6827: 6805: 6768: 6745: 6702: 6636: 6610: 6538: 6506: 6486: 6444: 6355: 6308: 6220: 6185: 6150: 6124: 6075: 6026: 5991: 5962:In particular, taking 5951: 5805: 5785: 5765: 5721: 5674: 5654: 5629: 5520: 5493: 5468: 5424: 5404: 5374: 5335: 5321:-dimensional subspace 5315: 5301:is real or complex. A 5295: 5275: 5255: 5204: 5163: 5065: 5012: 4950: 4923: 4903: 4877: 4779: 4569: 4516: 4458: 4268: 4215: 4162: 4070: 4017: 3965: 3934: 3809: 3771: 3751: 3694: 3641: 3584: 3531: 3484: 3458: 3438: 3412: 3360: 3296: 3243: 3205: 3152: 3132: 3105: 3085: 3032: 3006: 2986: 2939: 2886: 2825: 2797: 2777: 2725: 2672: 2646: 2588: 2568: 2548: 2528: 2508: 2472: 2452: 2409: 2219: 2199: 2175: 2131: 2107: 2087: 2058: 2032: 2012: 1992: 1966: 1946: 1913: 1864: 1821: 1774: 1745: 1725: 1687: 1660: 1640: 1613: 1587: 1536: 1481: 1461: 1420: 1400:-dimensional subspace 1394: 1374: 1322: 1295: 1275: 1251: 1147: 1063: 1043: 1012: 998:, and hence defines a 992: 972: 971:{\displaystyle x\in M} 946: 892: 868: 839: 810: 786: 785:{\displaystyle x\in M} 760: 731: 711: 652: 632: 612: 592: 552: 511: 471: 415: 354: 353:{\displaystyle k(n-k)} 304: 284: 264: 230: 210: 169: 146: 123: 96: 68: 21331:Differential geometry 21106:John Wiley & Sons 20782:10.1017/9781108610902 20772:; Balogh, F. (2021). 20707:10.1017/9781108610902 20697:; Balogh, F. (2021). 20341:The theory of spinors 20276:John Wiley & Sons 20115:Isotropic Grassmanian 20068:differential geometry 20027:scattering amplitudes 19959:Plücker map embedding 19930: 19858: 19832: 19812: 19733: 19681: 19661: 19641: 19613: 19477: 19418: 19368: 19339: 19317:Oriented Grassmannian 19304: 19271: 19202: 19151: 19111: 19033: 18999: 18894: 18847: 18800: 18764: 18737: 18696: 18676: 18648: 18621: 18585: 18478: 18418: 18398: 18374: 18354: 18331: 18299: 18279: 18277:{\displaystyle (n-k)} 18239: 18216: 18196: 18176: 18113: 18012: 17988: 17968: 17920: 17762: 17706: 17686: 17608: 17558: 17521: 17491: 17441: 17389: 17234: 17197: 17150: 17081: 17035: 16972: 16936: 16900: 16836: 16786: 16717: 16657:orthogonal complement 16650: 16648:{\displaystyle (n-k)} 16618: 16598: 16596:{\displaystyle V^{*}} 16571: 16556:. An isomorphism of 16551: 16504: 16463: 16461:{\displaystyle V^{*}} 16436: 16416: 16376: 16345: 16258: 16256:{\displaystyle V^{*}} 16231: 16229:{\displaystyle (n-k)} 16199: 16179: 16153: 16070: 16068:{\displaystyle W^{*}} 16043: 16041:{\displaystyle V^{*}} 16016: 15962: 15901: 15881: 15850: 15848:{\displaystyle (n-k)} 15818: 15792: 15764: 15723: 15668: 15574: 15476: 15402: 15376: 15335: 15305: 15272: 15270:{\displaystyle j_{l}} 15245: 15198:denotes the sequence 15193: 15111: 14929: 14912: 14871: 14813: 14787: 14761: 14687: 14610: 14568: 14548: 14528: 14476: 14446: 14426: 14397: 14377: 14325: 14274: 14169: 14103: 14077: 14024: 14004: 13941: 13770: 13750: 13698: 13678: 13676:{\displaystyle w_{i}} 13656:be the components of 13651: 13593: 13541: 13521: 13501: 13475: 13455: 13403: 13388:th exterior power of 13383: 13363: 13322: 13260: 13214: 13184: 13155: 13135: 13107: 13084: 13056: 12986: 12957: 12937: 12885: 12856: 12836: 12816: 12796: 12765: 12682: 12662: 12629: 12609: 12560:The Plücker embedding 12549: 12417: 12346: 12302: 12271: 12245: 12192: 12172: 12148: 12128: 12100: 12049: 12029: 11976: 11956: 11925: 11923:{\displaystyle O_{T}} 11889: 11800: 11733: 11574: 11530: 11510: 11455: 11431: 11349: 11317: 11285: 11212: 11161: 11109: 11089: 11064: 10955: 10930: 10910: 10870: 10846: 10826: 10802: 10782: 10762: 10734: 10690: 10663: 10612: 10592: 10577:locally free of rank 10567: 10490: 10470: 10450: 10430: 10406: 10383:Representable functor 10377:representable functor 10332: 10214: 10157: 10119: 9936: 9898: 9869: 9751: 9731: 9674: 9635: 9479: 9459: 9457:{\displaystyle w_{0}} 9432: 9396: 9275: 9242: 9222: 9182: 9162: 9124: 9104: 9084: 9062: 9040: 9015: 8977: 8938: 8904: 8873: 8839: 8817: 8792: 8765: 8694: 8651: 8614: 8467: 8465:{\displaystyle w_{0}} 8436: 8404: 8384: 8341: 8296: 8250: 8230: 8197: 8177: 8151: 8103: 8049: 8019: 7967: 7932: 7912: 7910:{\displaystyle P_{w}} 7885: 7833: 7791: 7747: 7725: 7688: 7666: 7629: 7606: 7563: 7537: 7471: 7419: 7399: 7364: 7307: 7253: 7223: 7168: 7139: 7119: 7070: 7041: 7021: 6977:and the Grassmannian 6972: 6925: 6887: 6865: 6828: 6806: 6769: 6746: 6703: 6637: 6611: 6539: 6507: 6487: 6445: 6356: 6309: 6221: 6186: 6151: 6125: 6076: 6027: 5992: 5952: 5806: 5786: 5771:with the set of rank 5766: 5722: 5675: 5655: 5630: 5521: 5494: 5469: 5425: 5405: 5375: 5336: 5316: 5296: 5276: 5256: 5205: 5164: 5066: 5013: 4951: 4949:{\displaystyle j_{l}} 4924: 4904: 4878: 4780: 4570: 4517: 4459: 4269: 4216: 4163: 4071: 4018: 3966: 3935: 3810: 3772: 3752: 3695: 3642: 3585: 3532: 3485: 3459: 3439: 3413: 3361: 3297: 3244: 3206: 3153: 3133: 3131:{\displaystyle i_{j}} 3106: 3086: 3033: 3007: 2987: 2940: 2887: 2826: 2798: 2778: 2726: 2673: 2647: 2589: 2569: 2549: 2529: 2509: 2473: 2453: 2410: 2220: 2200: 2176: 2132: 2108: 2088: 2059: 2033: 2013: 1993: 1967: 1947: 1914: 1865: 1822: 1775: 1746: 1726: 1688: 1686:{\displaystyle W_{i}} 1666:-th column vector is 1661: 1641: 1614: 1588: 1537: 1482: 1462: 1421: 1395: 1375: 1323: 1321:{\displaystyle K^{n}} 1296: 1276: 1252: 1148: 1064: 1044: 1013: 993: 973: 947: 893: 869: 845:, which is also just 840: 811: 787: 761: 732: 712: 684:differential manifold 653: 633: 613: 593: 553: 512: 472: 416: 355: 305: 285: 265: 231: 211: 170: 147: 124: 97: 69: 21286:Shafarevich, Igor R. 21184:Harris, Joe (1992). 20626:10.1143/jpsj.50.3806 20086:Plücker co-ordinates 19872: 19841: 19821: 19742: 19690: 19670: 19650: 19630: 19492: 19427: 19377: 19348: 19328: 19280: 19211: 19160: 19125: 19047: 19031:{\displaystyle O(n)} 19013: 18908: 18856: 18809: 18798:{\displaystyle O(n)} 18780: 18746: 18705: 18685: 18665: 18634: 18607: 18597:quantum field theory 18505: 18440: 18407: 18387: 18363: 18343: 18320: 18288: 18256: 18228: 18205: 18185: 18135: 18030: 18001: 17977: 17938: 17776: 17715: 17695: 17633: 17567: 17530: 17510: 17450: 17446:of the Grassmannian 17417: 17412:Euler characteristic 17248: 17210: 17159: 17090: 17086:, the Schubert cell 17051: 16989: 16917: 16851: 16795: 16730: 16685: 16679:enumerative geometry 16627: 16607: 16580: 16560: 16513: 16472: 16445: 16425: 16385: 16359: 16272: 16240: 16208: 16188: 16168: 16083: 16052: 16025: 15984: 15919: 15908:short exact sequence 15890: 15862: 15827: 15801: 15781: 15732: 15682: 15588: 15485: 15411: 15385: 15347: 15314: 15285: 15254: 15202: 15125: 14926: 14880: 14830: 14796: 14770: 14696: 14622: 14578: 14557: 14537: 14485: 14455: 14435: 14406: 14386: 14334: 14287: 14178: 14112: 14108:matrix with columns 14086: 14033: 14013: 13955: 13784: 13759: 13707: 13687: 13660: 13602: 13550: 13530: 13510: 13484: 13464: 13412: 13392: 13372: 13331: 13290: 13228: 13197: 13164: 13144: 13124: 13096: 13065: 12995: 12966: 12946: 12894: 12865: 12845: 12825: 12805: 12779: 12696: 12671: 12641: 12618: 12578: 12436: 12360: 12311: 12280: 12254: 12201: 12181: 12157: 12137: 12111: 12058: 12038: 11985: 11965: 11934: 11907: 11819: 11756: 11743:For any morphism of 11592: 11539: 11519: 11464: 11440: 11358: 11334: 11315:{\displaystyle K(s)} 11297: 11221: 11170: 11118: 11098: 11078: 10969: 10939: 10919: 10879: 10859: 10835: 10811: 10791: 10771: 10747: 10699: 10679: 10621: 10601: 10581: 10508: 10479: 10459: 10439: 10419: 10413:quasi-coherent sheaf 10391: 10226: 10166: 10131: 9948: 9910: 9887: 9763: 9740: 9683: 9648: 9491: 9468: 9441: 9409: 9287: 9251: 9231: 9191: 9171: 9136: 9113: 9093: 9071: 9049: 9027: 8990: 8966: 8913: 8893: 8848: 8826: 8804: 8781: 8706: 8663: 8626: 8479: 8449: 8413: 8393: 8353: 8308: 8301:can be expressed as 8259: 8239: 8206: 8186: 8166: 8126: 8033: 7976: 7941: 7921: 7894: 7842: 7808: 7756: 7736: 7701: 7677: 7642: 7618: 7572: 7546: 7480: 7431: 7408: 7373: 7321: 7237: 7177: 7148: 7128: 7079: 7050: 7030: 6981: 6938: 6896: 6876: 6841: 6817: 6782: 6758: 6712: 6646: 6620: 6583: 6528: 6496: 6459: 6374: 6325: 6233: 6195: 6160: 6134: 6085: 6036: 6001: 5966: 5820: 5795: 5775: 5735: 5684: 5664: 5644: 5535: 5503: 5483: 5439: 5414: 5388: 5345: 5325: 5305: 5285: 5265: 5233: 5220:projection operators 5173: 5075: 5022: 4960: 4933: 4913: 4887: 4794: 4584: 4526: 4473: 4283: 4225: 4172: 4080: 4027: 3975: 3971:submatrix with rows 3949: 3824: 3815:matrices. Denote by 3781: 3761: 3708: 3651: 3598: 3541: 3494: 3468: 3448: 3422: 3370: 3306: 3253: 3215: 3162: 3142: 3115: 3095: 3042: 3016: 2996: 2949: 2896: 2838: 2815: 2787: 2735: 2731:whose rows are the 2682: 2656: 2598: 2578: 2558: 2538: 2518: 2482: 2462: 2424: 2234: 2209: 2189: 2141: 2121: 2097: 2071: 2042: 2022: 2002: 1976: 1956: 1930: 1921:general linear group 1879: 1836: 1784: 1755: 1735: 1697: 1670: 1650: 1630: 1597: 1550: 1494: 1488:linearly independent 1471: 1430: 1404: 1384: 1332: 1305: 1285: 1265: 1220: 1122: 1053: 1033: 1002: 982: 956: 906: 882: 849: 820: 800: 770: 741: 721: 701: 642: 622: 602: 562: 521: 481: 440: 375: 329: 294: 274: 243: 220: 179: 159: 136: 113: 86: 74:(named in honour of 37: 19:For other uses, see 21336:Projective geometry 21021:Voevodsky, Vladimir 20961:2014JHEP...10..030A 20882:2014InMat.198..637K 20618:1981JPSJ...50.3806D 20551:J. Amer. Math. Soc 20430:1995JMP....36.1945H 20391:1992JMP....33.3197H 20152:Affine Grassmannian 20078:projective geometry 20031:subatomic particles 20003:and the associated 19764: 19712: 19666:-dimensional space 18429:total Chern classes 18246:tautological bundle 17934:gives the formula: 17932:recursion relations 17711:vector bundle over 17206:with the subspaces 15879:{\displaystyle V/W} 15400:{\displaystyle k=2} 14811:{\displaystyle k+1} 14785:{\displaystyle k-1} 14281:Plücker coordinates 12307:, and the image of 12269:{\displaystyle k-1} 12126:{\displaystyle T=S} 10100: 10072: 9426: 9385: 9357: 8878:is considered as a 8094: 7636:projection operator 7298: 6776:projection operator 5680:defines a subspace 5169:gives an atlas for 4872: 4758: 3355: 1100:, the Grassmannian 423:Plücker coordinates 21346:Algebraic geometry 21209:, Academic Press, 21162:Stasheff, James D. 21094:Griffiths, Phillip 21046:10.1007/BF02698831 20476:10338.dmlcz/700905 20346:Dover Publications 20264:Griffiths, Phillip 20146:algebraic K-theory 20126:classifying spaces 19984:. Subvarieties of 19982:Schubert varieties 19925: 19853: 19827: 19817:consisting of all 19807: 19745: 19728: 19693: 19676: 19656: 19636: 19608: 19472: 19423:and is denoted by 19413: 19363: 19334: 19299: 19266: 19197: 19146: 19106: 19028: 18994: 18889: 18842: 18795: 18759: 18732: 18691: 18671: 18657:Associated measure 18646:{\displaystyle 2n} 18643: 18619:{\displaystyle 2n} 18616: 18580: 18490:quantum cohomology 18473: 18413: 18393: 18369: 18349: 18326: 18294: 18274: 18234: 18211: 18191: 18171: 18108: 18102: 18007: 17983: 17963: 17915: 17757: 17701: 17681: 17603: 17553: 17516: 17486: 17436: 17405:Schubert varieties 17384: 17229: 17192: 17145: 17076: 17030: 16967: 16895: 16831: 16781: 16712: 16645: 16613: 16593: 16566: 16546: 16499: 16458: 16431: 16411: 16371: 16340: 16253: 16226: 16194: 16174: 16148: 16065: 16038: 16011: 15957: 15896: 15876: 15845: 15813: 15787: 15759: 15718: 15663: 15569: 15471: 15397: 15371: 15330: 15300: 15267: 15240: 15188: 15106: 14907: 14866: 14808: 14782: 14756: 14682: 14605: 14563: 14543: 14523: 14471: 14441: 14421: 14392: 14372: 14320: 14269: 14164: 14098: 14072: 14019: 13999: 13936: 13927: 13765: 13745: 13693: 13673: 13646: 13588: 13536: 13516: 13496: 13470: 13450: 13398: 13378: 13358: 13317: 13255: 13209: 13179: 13150: 13130: 13102: 13079: 13051: 12981: 12952: 12932: 12880: 12851: 12831: 12811: 12791: 12677: 12657: 12624: 12604: 12544: 12341: 12297: 12266: 12240: 12187: 12167: 12143: 12123: 12095: 12044: 12024: 11971: 11951: 11920: 11884: 11795: 11728: 11569: 11525: 11505: 11450: 11426: 11344: 11312: 11280: 11207: 11156: 11104: 11084: 11059: 10953:{\displaystyle S'} 10950: 10925: 10905: 10865: 10841: 10821: 10797: 10777: 10757: 10729: 10685: 10658: 10607: 10587: 10562: 10485: 10465: 10445: 10425: 10401: 10369:algebraic geometry 10327: 10209: 10152: 10114: 10086: 10058: 9931: 9893: 9864: 9746: 9726: 9669: 9630: 9474: 9454: 9427: 9412: 9391: 9371: 9343: 9270: 9237: 9217: 9177: 9157: 9119: 9099: 9079: 9057: 9035: 9010: 8984:parabolic subgroup 8972: 8933: 8899: 8868: 8834: 8812: 8787: 8760: 8689: 8646: 8609: 8462: 8431: 8399: 8379: 8336: 8291: 8245: 8225: 8192: 8172: 8146: 8098: 8080: 8014: 7962: 7927: 7907: 7880: 7828: 7786: 7742: 7720: 7683: 7661: 7624: 7601: 7558: 7532: 7466: 7414: 7394: 7359: 7302: 7284: 7218: 7163: 7134: 7114: 7065: 7036: 7016: 6967: 6920: 6882: 6860: 6823: 6801: 6764: 6741: 6698: 6632: 6606: 6534: 6502: 6482: 6440: 6351: 6304: 6216: 6181: 6146: 6120: 6071: 6022: 5987: 5947: 5801: 5781: 5761: 5717: 5670: 5650: 5625: 5620: 5516: 5489: 5464: 5420: 5400: 5370: 5331: 5311: 5291: 5271: 5251: 5200: 5159: 5061: 5008: 4946: 4919: 4899: 4883:is the invertible 4873: 4797: 4775: 4683: 4565: 4512: 4454: 4264: 4211: 4158: 4066: 4013: 3961: 3930: 3805: 3767: 3747: 3690: 3637: 3580: 3527: 3480: 3454: 3444:coordinate matrix 3434: 3408: 3356: 3312: 3292: 3239: 3201: 3148: 3128: 3101: 3081: 3028: 3002: 2982: 2935: 2882: 2821: 2793: 2773: 2721: 2668: 2642: 2584: 2574:has maximal rank 2564: 2544: 2524: 2504: 2468: 2448: 2405: 2399: 2215: 2195: 2171: 2127: 2103: 2083: 2054: 2028: 2008: 1988: 1962: 1942: 1909: 1860: 1817: 1770: 1741: 1721: 1683: 1656: 1636: 1609: 1583: 1532: 1477: 1457: 1416: 1390: 1370: 1318: 1291: 1271: 1247: 1143: 1059: 1039: 1008: 988: 968: 942: 888: 864: 835: 806: 782: 756: 727: 707: 648: 628: 608: 588: 548: 507: 467: 411: 350: 300: 280: 260: 226: 206: 165: 142: 119: 92: 64: 16:Mathematical space 21313:978-0-387-97716-4 21245:978-1-4419-9981-8 21216:978-0-8218-2848-9 20999:978-1-4244-2242-5 20355:978-0-486-64070-9 20236:978-3-540-05113-8 20098:Stiefel manifolds 20082:Plücker embedding 20062:Schubert calculus 20013:Plücker relations 19978:Schubert calculus 19830:{\displaystyle k} 19679:{\displaystyle V} 19659:{\displaystyle n} 19639:{\displaystyle Q} 19510: 19445: 19337:{\displaystyle k} 18852:. Then for a set 18694:{\displaystyle n} 18674:{\displaystyle V} 18416:{\displaystyle F} 18396:{\displaystyle E} 18372:{\displaystyle F} 18352:{\displaystyle E} 18329:{\displaystyle E} 18297:{\displaystyle F} 18252:. Similarly the 18237:{\displaystyle E} 18214:{\displaystyle n} 18194:{\displaystyle k} 18094: 18072: 18010:{\displaystyle k} 17986:{\displaystyle n} 17704:{\displaystyle k} 17519:{\displaystyle 1} 16843:integer partition 16616:{\displaystyle k} 16569:{\displaystyle V} 16434:{\displaystyle V} 16197:{\displaystyle V} 16177:{\displaystyle k} 15899:{\displaystyle V} 15790:{\displaystyle k} 15163: 15070: 14820:Plücker relations 14566:{\displaystyle w} 14546:{\displaystyle V} 14444:{\displaystyle w} 14395:{\displaystyle V} 14022:{\displaystyle k} 13768:{\displaystyle k} 13696:{\displaystyle V} 13539:{\displaystyle V} 13519:{\displaystyle k} 13473:{\displaystyle V} 13401:{\displaystyle V} 13381:{\displaystyle k} 13283:Plücker relations 13278:Plücker embedding 13153:{\displaystyle w} 13105:{\displaystyle w} 12955:{\displaystyle w} 12890:, choose a basis 12854:{\displaystyle V} 12834:{\displaystyle n} 12814:{\displaystyle k} 12680:{\displaystyle V} 12627:{\displaystyle k} 12572:Plücker embedding 12566:Plücker embedding 12190:{\displaystyle V} 12146:{\displaystyle K} 12047:{\displaystyle k} 11974:{\displaystyle k} 11528:{\displaystyle k} 11136: 11107:{\displaystyle S} 11087:{\displaystyle s} 10928:{\displaystyle S} 10868:{\displaystyle V} 10844:{\displaystyle V} 10807:, then the sheaf 10800:{\displaystyle K} 10780:{\displaystyle S} 10688:{\displaystyle S} 10610:{\displaystyle T} 10590:{\displaystyle k} 10488:{\displaystyle T} 10468:{\displaystyle S} 10448:{\displaystyle k} 10428:{\displaystyle S} 9896:{\displaystyle h} 9749:{\displaystyle k} 9477:{\displaystyle V} 9240:{\displaystyle k} 9180:{\displaystyle k} 9122:{\displaystyle V} 9102:{\displaystyle q} 8975:{\displaystyle H} 8956:Plücker embedding 8952:algebraic variety 8902:{\displaystyle K} 8790:{\displaystyle H} 8402:{\displaystyle g} 8248:{\displaystyle k} 8195:{\displaystyle V} 8175:{\displaystyle k} 8120:homogeneous space 7930:{\displaystyle k} 7917:onto the complex 7745:{\displaystyle P} 7686:{\displaystyle P} 7627:{\displaystyle P} 7417:{\displaystyle n} 7404:, viewed as real 7137:{\displaystyle k} 7075:given by sending 7039:{\displaystyle k} 6885:{\displaystyle P} 6826:{\displaystyle P} 6767:{\displaystyle P} 6537:{\displaystyle V} 6505:{\displaystyle k} 5804:{\displaystyle P} 5784:{\displaystyle k} 5673:{\displaystyle k} 5653:{\displaystyle P} 5597: 5575: 5492:{\displaystyle w} 5423:{\displaystyle V} 5334:{\displaystyle w} 5314:{\displaystyle k} 5294:{\displaystyle V} 5274:{\displaystyle V} 4973: 4922:{\displaystyle l} 4807: 4693: 4645: 4597: 4380: 4296: 3837: 3770:{\displaystyle K} 3457:{\displaystyle W} 3366:complementary to 3151:{\displaystyle W} 3104:{\displaystyle j} 3005:{\displaystyle W} 2824:{\displaystyle w} 2796:{\displaystyle W} 2587:{\displaystyle k} 2567:{\displaystyle W} 2547:{\displaystyle k} 2527:{\displaystyle w} 2471:{\displaystyle A} 2218:{\displaystyle W} 2198:{\displaystyle k} 2130:{\displaystyle W} 2106:{\displaystyle W} 2031:{\displaystyle k} 2011:{\displaystyle W} 1965:{\displaystyle K} 1875:for some element 1848: 1767: 1744:{\displaystyle W} 1659:{\displaystyle i} 1639:{\displaystyle W} 1480:{\displaystyle k} 1393:{\displaystyle k} 1294:{\displaystyle V} 1274:{\displaystyle V} 1062:{\displaystyle M} 1042:{\displaystyle M} 1011:{\displaystyle k} 991:{\displaystyle x} 891:{\displaystyle x} 809:{\displaystyle M} 730:{\displaystyle k} 710:{\displaystyle M} 651:{\displaystyle V} 631:{\displaystyle n} 611:{\displaystyle k} 431:Hermann Grassmann 303:{\displaystyle V} 283:{\displaystyle V} 229:{\displaystyle V} 168:{\displaystyle K} 145:{\displaystyle V} 122:{\displaystyle n} 95:{\displaystyle k} 76:Hermann Grassmann 21353: 21317: 21296:Springer Science 21281: 21257: 21219: 21201: 21180:see chapters 5–7 21179: 21152: 21150: 21135: 21081: 21079: 21077: 21076: 21029: 21016: 21010: 21001:, pp. 1–8 ( 20987: 20981: 20980: 20954: 20934: 20928: 20927: 20925: 20923: 20908: 20902: 20901: 20875: 20855: 20849: 20848: 20830: 20810: 20804: 20803: 20766: 20760: 20759: 20735: 20729: 20728: 20691: 20682: 20681: 20671: 20647: 20638: 20637: 20601: 20592: 20585: 20579: 20578: 20576: 20566: 20538: 20532: 20531: 20503: 20497: 20496: 20478: 20450: 20444: 20443: 20441: 20439:10.1063/1.531096 20409: 20403: 20402: 20399:10.1063/1.529538 20374: 20368: 20367: 20335: 20326: 20325: 20323: 20311: 20305: 20304: 20260: 20254: 20248: 20242: 20240: 20213: 20207: 20201: 20195: 20192:Shafarevich 2013 20189: 20183: 20177: 20157:Grassmann bundle 19934: 19932: 19931: 19926: 19862: 19860: 19859: 19854: 19836: 19834: 19833: 19828: 19816: 19814: 19813: 19808: 19797: 19796: 19791: 19763: 19758: 19753: 19737: 19735: 19734: 19729: 19711: 19706: 19701: 19685: 19683: 19682: 19677: 19665: 19663: 19662: 19657: 19645: 19643: 19642: 19637: 19617: 19615: 19614: 19609: 19559: 19533: 19532: 19527: 19518: 19517: 19512: 19511: 19506: 19498: 19481: 19479: 19478: 19473: 19468: 19467: 19462: 19453: 19452: 19447: 19446: 19441: 19433: 19422: 19420: 19419: 19414: 19409: 19408: 19403: 19394: 19393: 19388: 19372: 19370: 19369: 19364: 19362: 19361: 19356: 19343: 19341: 19340: 19335: 19308: 19306: 19305: 19300: 19298: 19297: 19275: 19273: 19272: 19267: 19247: 19246: 19241: 19229: 19228: 19206: 19204: 19203: 19198: 19172: 19171: 19155: 19153: 19152: 19147: 19115: 19113: 19112: 19107: 19096: 19095: 19065: 19064: 19037: 19035: 19034: 19029: 19003: 19001: 19000: 18995: 18948: 18947: 18926: 18925: 18898: 18896: 18895: 18890: 18879: 18878: 18873: 18851: 18849: 18848: 18843: 18832: 18831: 18826: 18804: 18802: 18801: 18796: 18775:orthogonal group 18768: 18766: 18765: 18760: 18758: 18757: 18741: 18739: 18738: 18733: 18722: 18721: 18716: 18700: 18698: 18697: 18692: 18680: 18678: 18677: 18672: 18652: 18650: 18649: 18644: 18625: 18623: 18622: 18617: 18589: 18587: 18586: 18581: 18579: 18578: 18542: 18541: 18517: 18516: 18482: 18480: 18479: 18474: 18422: 18420: 18419: 18414: 18402: 18400: 18399: 18394: 18378: 18376: 18375: 18370: 18358: 18356: 18355: 18350: 18335: 18333: 18332: 18327: 18304:. The integral 18303: 18301: 18300: 18295: 18283: 18281: 18280: 18275: 18250:projective space 18243: 18241: 18240: 18235: 18220: 18218: 18217: 18212: 18200: 18198: 18197: 18192: 18180: 18178: 18177: 18172: 18167: 18166: 18161: 18152: 18151: 18146: 18117: 18115: 18114: 18109: 18107: 18106: 18099: 18095: 18087: 18077: 18073: 18065: 18048: 18047: 18016: 18014: 18013: 18008: 17992: 17990: 17989: 17984: 17972: 17970: 17969: 17964: 17956: 17955: 17924: 17922: 17921: 17916: 17908: 17907: 17889: 17888: 17869: 17868: 17847: 17846: 17825: 17824: 17794: 17793: 17766: 17764: 17763: 17758: 17753: 17752: 17741: 17732: 17731: 17726: 17710: 17708: 17707: 17702: 17690: 17688: 17687: 17682: 17677: 17676: 17665: 17656: 17655: 17644: 17628: 17622: 17616: 17612: 17610: 17609: 17604: 17599: 17598: 17593: 17584: 17583: 17578: 17562: 17560: 17559: 17554: 17552: 17551: 17546: 17537: 17525: 17523: 17522: 17517: 17505: 17499: 17495: 17493: 17492: 17487: 17482: 17481: 17476: 17467: 17466: 17461: 17445: 17443: 17442: 17437: 17435: 17434: 17401:Zariski topology 17393: 17391: 17390: 17385: 17368: 17367: 17366: 17365: 17317: 17302: 17301: 17296: 17260: 17259: 17238: 17236: 17235: 17230: 17225: 17224: 17201: 17199: 17198: 17193: 17182: 17181: 17176: 17154: 17152: 17151: 17146: 17135: 17134: 17129: 17102: 17101: 17085: 17083: 17082: 17077: 17075: 17074: 17039: 17037: 17036: 17031: 17020: 17019: 17001: 17000: 16976: 16974: 16973: 16968: 16966: 16965: 16955: 16950: 16932: 16924: 16904: 16902: 16901: 16896: 16891: 16890: 16872: 16871: 16840: 16838: 16837: 16832: 16821: 16820: 16808: 16790: 16788: 16787: 16782: 16774: 16773: 16755: 16754: 16742: 16741: 16721: 16719: 16718: 16713: 16702: 16701: 16696: 16654: 16652: 16651: 16646: 16622: 16620: 16619: 16614: 16602: 16600: 16599: 16594: 16592: 16591: 16575: 16573: 16572: 16567: 16555: 16553: 16552: 16547: 16536: 16535: 16524: 16508: 16506: 16505: 16500: 16489: 16488: 16483: 16467: 16465: 16464: 16459: 16457: 16456: 16440: 16438: 16437: 16432: 16420: 16418: 16417: 16412: 16410: 16409: 16397: 16396: 16381:its annihilator 16380: 16378: 16377: 16372: 16349: 16347: 16346: 16341: 16336: 16335: 16323: 16309: 16289: 16288: 16283: 16262: 16260: 16259: 16254: 16252: 16251: 16235: 16233: 16232: 16227: 16203: 16201: 16200: 16195: 16183: 16181: 16180: 16175: 16157: 16155: 16154: 16149: 16141: 16140: 16128: 16127: 16115: 16114: 16102: 16074: 16072: 16071: 16066: 16064: 16063: 16047: 16045: 16044: 16039: 16037: 16036: 16020: 16018: 16017: 16012: 16010: 16009: 15997: 15966: 15964: 15963: 15958: 15947: 15905: 15903: 15902: 15897: 15885: 15883: 15882: 15877: 15872: 15854: 15852: 15851: 15846: 15822: 15820: 15819: 15814: 15796: 15794: 15793: 15788: 15768: 15766: 15765: 15760: 15752: 15751: 15739: 15727: 15725: 15724: 15719: 15705: 15704: 15699: 15672: 15670: 15669: 15664: 15656: 15655: 15646: 15645: 15633: 15632: 15623: 15622: 15610: 15609: 15600: 15599: 15578: 15576: 15575: 15570: 15565: 15564: 15552: 15551: 15539: 15538: 15526: 15525: 15513: 15512: 15500: 15499: 15480: 15478: 15477: 15472: 15464: 15463: 15451: 15434: 15433: 15428: 15406: 15404: 15403: 15398: 15380: 15378: 15377: 15372: 15339: 15337: 15336: 15331: 15326: 15325: 15309: 15307: 15306: 15301: 15276: 15274: 15273: 15268: 15266: 15265: 15249: 15247: 15246: 15241: 15239: 15238: 15214: 15213: 15197: 15195: 15194: 15189: 15187: 15186: 15165: 15164: 15159: 15158: 15149: 15137: 15136: 15115: 15113: 15112: 15107: 15096: 15095: 15094: 15093: 15072: 15071: 15066: 15065: 15056: 15044: 15043: 15029: 15028: 15027: 15026: 15014: 15013: 14989: 14988: 14974: 14973: 14954: 14943: 14916: 14914: 14913: 14908: 14897: 14896: 14891: 14875: 14873: 14872: 14867: 14853: 14852: 14847: 14817: 14815: 14814: 14809: 14791: 14789: 14788: 14783: 14765: 14763: 14762: 14757: 14749: 14748: 14727: 14726: 14714: 14713: 14691: 14689: 14688: 14683: 14675: 14674: 14653: 14652: 14640: 14639: 14614: 14612: 14611: 14606: 14598: 14597: 14585: 14572: 14570: 14569: 14564: 14552: 14550: 14549: 14544: 14532: 14530: 14529: 14524: 14519: 14518: 14500: 14499: 14480: 14478: 14477: 14472: 14467: 14466: 14450: 14448: 14447: 14442: 14430: 14428: 14427: 14422: 14401: 14399: 14398: 14393: 14381: 14379: 14378: 14373: 14368: 14367: 14349: 14348: 14329: 14327: 14326: 14321: 14310: 14309: 14304: 14278: 14276: 14275: 14270: 14259: 14258: 14240: 14239: 14219: 14218: 14217: 14216: 14198: 14197: 14173: 14171: 14170: 14167:{\displaystyle } 14165: 14160: 14159: 14158: 14157: 14134: 14133: 14132: 14131: 14107: 14105: 14104: 14099: 14081: 14079: 14078: 14073: 14071: 14070: 14069: 14068: 14050: 14049: 14028: 14026: 14025: 14020: 14008: 14006: 14005: 14000: 13992: 13991: 13973: 13972: 13945: 13943: 13942: 13937: 13932: 13931: 13924: 13923: 13904: 13903: 13870: 13869: 13850: 13849: 13826: 13825: 13812: 13811: 13796: 13795: 13774: 13772: 13771: 13766: 13754: 13752: 13751: 13746: 13741: 13740: 13722: 13721: 13702: 13700: 13699: 13694: 13682: 13680: 13679: 13674: 13672: 13671: 13655: 13653: 13652: 13647: 13642: 13641: 13620: 13619: 13597: 13595: 13594: 13589: 13584: 13583: 13565: 13564: 13545: 13543: 13542: 13537: 13525: 13523: 13522: 13517: 13505: 13503: 13502: 13497: 13479: 13477: 13476: 13471: 13459: 13457: 13456: 13451: 13446: 13445: 13427: 13426: 13407: 13405: 13404: 13399: 13387: 13385: 13384: 13379: 13367: 13365: 13364: 13359: 13351: 13350: 13338: 13326: 13324: 13323: 13318: 13307: 13306: 13301: 13264: 13262: 13261: 13256: 13218: 13216: 13215: 13210: 13188: 13186: 13185: 13180: 13159: 13157: 13156: 13151: 13139: 13137: 13136: 13131: 13111: 13109: 13108: 13103: 13088: 13086: 13085: 13082:{\displaystyle } 13080: 13060: 13058: 13057: 13052: 13044: 13043: 13025: 13024: 12990: 12988: 12987: 12982: 12961: 12959: 12958: 12953: 12941: 12939: 12938: 12933: 12928: 12927: 12909: 12908: 12889: 12887: 12886: 12881: 12860: 12858: 12857: 12852: 12840: 12838: 12837: 12832: 12820: 12818: 12817: 12812: 12800: 12798: 12797: 12792: 12769: 12767: 12766: 12761: 12757: 12753: 12749: 12748: 12734: 12711: 12686: 12684: 12683: 12678: 12666: 12664: 12663: 12658: 12653: 12652: 12633: 12631: 12630: 12625: 12613: 12611: 12610: 12605: 12588: 12553: 12551: 12550: 12545: 12540: 12536: 12511: 12510: 12495: 12466: 12421: 12419: 12418: 12413: 12409: 12408: 12393: 12385: 12384: 12366: 12350: 12348: 12347: 12342: 12328: 12327: 12318: 12306: 12304: 12303: 12298: 12287: 12275: 12273: 12272: 12267: 12249: 12247: 12246: 12241: 12227: 12226: 12211: 12196: 12194: 12193: 12188: 12176: 12174: 12173: 12168: 12166: 12165: 12152: 12150: 12149: 12144: 12132: 12130: 12129: 12124: 12104: 12102: 12101: 12096: 12088: 12087: 12075: 12074: 12065: 12053: 12051: 12050: 12045: 12033: 12031: 12030: 12025: 12011: 12010: 11995: 11980: 11978: 11977: 11972: 11960: 11958: 11957: 11952: 11950: 11949: 11944: 11943: 11929: 11927: 11926: 11921: 11919: 11918: 11903:homomorphism of 11893: 11891: 11890: 11885: 11877: 11876: 11864: 11863: 11854: 11843: 11842: 11837: 11836: 11826: 11804: 11802: 11801: 11796: 11788: 11787: 11772: 11746: 11737: 11735: 11734: 11729: 11721: 11720: 11705: 11697: 11696: 11684: 11683: 11674: 11666: 11662: 11661: 11657: 11656: 11641: 11632: 11631: 11620: 11609: 11608: 11599: 11578: 11576: 11575: 11570: 11565: 11564: 11549: 11534: 11532: 11531: 11526: 11514: 11512: 11511: 11506: 11504: 11503: 11499: 11498: 11483: 11474: 11473: 11459: 11457: 11456: 11451: 11449: 11448: 11435: 11433: 11432: 11427: 11422: 11418: 11417: 11416: 11412: 11411: 11396: 11387: 11386: 11368: 11353: 11351: 11350: 11345: 11343: 11342: 11326:Universal family 11321: 11319: 11318: 11313: 11289: 11287: 11286: 11281: 11264: 11263: 11262: 11261: 11247: 11246: 11231: 11216: 11214: 11213: 11208: 11206: 11205: 11196: 11195: 11180: 11165: 11163: 11162: 11157: 11137: 11134: 11113: 11111: 11110: 11105: 11093: 11091: 11090: 11085: 11068: 11066: 11065: 11060: 11055: 11054: 11053: 11044: 11043: 11027: 11016: 11008: 11007: 10995: 10994: 10979: 10959: 10957: 10956: 10951: 10949: 10934: 10932: 10931: 10926: 10914: 10912: 10911: 10906: 10889: 10874: 10872: 10871: 10866: 10850: 10848: 10847: 10842: 10830: 10828: 10827: 10822: 10820: 10819: 10806: 10804: 10803: 10798: 10786: 10784: 10783: 10778: 10766: 10764: 10763: 10758: 10756: 10755: 10739:. The latter is 10738: 10736: 10735: 10730: 10725: 10724: 10709: 10694: 10692: 10691: 10686: 10667: 10665: 10664: 10659: 10654: 10653: 10648: 10647: 10631: 10616: 10614: 10613: 10608: 10596: 10594: 10593: 10588: 10571: 10569: 10568: 10563: 10561: 10560: 10551: 10550: 10549: 10548: 10534: 10533: 10524: 10523: 10518: 10517: 10497:quotient modules 10494: 10492: 10491: 10486: 10474: 10472: 10471: 10466: 10454: 10452: 10451: 10446: 10434: 10432: 10431: 10426: 10410: 10408: 10407: 10402: 10400: 10399: 10367:In the realm of 10358: 10336: 10334: 10333: 10328: 10323: 10319: 10280: 10257: 10256: 10251: 10236: 10218: 10216: 10215: 10210: 10208: 10207: 10202: 10193: 10192: 10187: 10178: 10177: 10161: 10159: 10158: 10153: 10151: 10150: 10145: 10123: 10121: 10120: 10115: 10110: 10106: 10102: 10101: 10099: 10094: 10077: 10071: 10066: 10045: 10044: 10043: 10042: 10032: 10020: 10019: 9999: 9958: 9940: 9938: 9937: 9932: 9902: 9900: 9899: 9894: 9882: 9873: 9871: 9870: 9865: 9860: 9856: 9817: 9794: 9793: 9788: 9773: 9755: 9753: 9752: 9747: 9735: 9733: 9732: 9727: 9725: 9724: 9719: 9710: 9709: 9704: 9695: 9694: 9678: 9676: 9675: 9670: 9668: 9667: 9662: 9639: 9637: 9636: 9631: 9629: 9625: 9621: 9620: 9619: 9618: 9608: 9596: 9595: 9574: 9573: 9568: 9542: 9501: 9483: 9481: 9480: 9475: 9463: 9461: 9460: 9455: 9453: 9452: 9436: 9434: 9433: 9428: 9425: 9420: 9400: 9398: 9397: 9392: 9387: 9386: 9384: 9379: 9369: 9356: 9351: 9330: 9329: 9328: 9327: 9317: 9305: 9304: 9279: 9277: 9276: 9271: 9263: 9262: 9246: 9244: 9243: 9238: 9226: 9224: 9223: 9218: 9201: 9186: 9184: 9183: 9178: 9166: 9164: 9163: 9158: 9131:orthogonal group 9128: 9126: 9125: 9120: 9108: 9106: 9105: 9100: 9088: 9086: 9085: 9080: 9078: 9066: 9064: 9063: 9058: 9056: 9044: 9042: 9041: 9036: 9034: 9019: 9017: 9016: 9011: 9000: 8981: 8979: 8978: 8973: 8942: 8940: 8939: 8934: 8923: 8908: 8906: 8905: 8900: 8877: 8875: 8874: 8869: 8858: 8843: 8841: 8840: 8835: 8833: 8821: 8819: 8818: 8813: 8811: 8796: 8794: 8793: 8788: 8769: 8767: 8766: 8761: 8756: 8742: 8716: 8698: 8696: 8695: 8690: 8673: 8655: 8653: 8652: 8647: 8636: 8618: 8616: 8615: 8610: 8599: 8585: 8584: 8569: 8568: 8552: 8537: 8514: 8513: 8501: 8471: 8469: 8468: 8463: 8461: 8460: 8440: 8438: 8437: 8432: 8408: 8406: 8405: 8400: 8388: 8386: 8385: 8380: 8369: 8345: 8343: 8342: 8337: 8332: 8331: 8300: 8298: 8297: 8292: 8275: 8254: 8252: 8251: 8246: 8234: 8232: 8231: 8226: 8218: 8217: 8201: 8199: 8198: 8193: 8181: 8179: 8178: 8173: 8155: 8153: 8152: 8147: 8136: 8107: 8105: 8104: 8099: 8093: 8088: 8079: 8078: 8068: 8063: 8045: 8044: 8023: 8021: 8020: 8015: 8010: 8009: 7991: 7990: 7971: 7969: 7968: 7963: 7961: 7960: 7955: 7936: 7934: 7933: 7928: 7916: 7914: 7913: 7908: 7906: 7905: 7889: 7887: 7886: 7881: 7876: 7875: 7857: 7856: 7837: 7835: 7834: 7829: 7802:self-adjointness 7795: 7793: 7792: 7787: 7785: 7784: 7768: 7751: 7749: 7748: 7743: 7729: 7727: 7726: 7721: 7713: 7712: 7692: 7690: 7689: 7684: 7670: 7668: 7667: 7662: 7654: 7653: 7633: 7631: 7630: 7625: 7610: 7608: 7607: 7602: 7597: 7567: 7565: 7564: 7559: 7541: 7539: 7538: 7533: 7528: 7505: 7475: 7473: 7472: 7467: 7462: 7461: 7456: 7441: 7423: 7421: 7420: 7415: 7403: 7401: 7400: 7395: 7393: 7392: 7387: 7368: 7366: 7365: 7360: 7355: 7354: 7336: 7335: 7311: 7309: 7308: 7303: 7297: 7292: 7283: 7282: 7272: 7267: 7249: 7248: 7227: 7225: 7224: 7219: 7214: 7213: 7208: 7193: 7172: 7170: 7169: 7164: 7162: 7161: 7156: 7143: 7141: 7140: 7135: 7123: 7121: 7120: 7115: 7110: 7074: 7072: 7071: 7066: 7064: 7063: 7058: 7045: 7043: 7042: 7037: 7025: 7023: 7022: 7017: 7012: 7011: 7006: 6991: 6976: 6974: 6973: 6968: 6963: 6929: 6927: 6926: 6921: 6891: 6889: 6888: 6883: 6869: 6867: 6866: 6861: 6853: 6852: 6832: 6830: 6829: 6824: 6810: 6808: 6807: 6802: 6794: 6793: 6773: 6771: 6770: 6765: 6750: 6748: 6747: 6742: 6737: 6707: 6705: 6704: 6699: 6694: 6671: 6641: 6639: 6638: 6633: 6615: 6613: 6612: 6607: 6602: 6543: 6541: 6540: 6535: 6519: 6517: 6511: 6509: 6508: 6503: 6491: 6489: 6488: 6483: 6475: 6449: 6447: 6446: 6441: 6433: 6432: 6431: 6415: 6414: 6396: 6360: 6358: 6357: 6352: 6335: 6313: 6311: 6310: 6305: 6291: 6290: 6275: 6255: 6226:, respectively. 6225: 6223: 6222: 6217: 6215: 6214: 6203: 6190: 6188: 6187: 6182: 6180: 6179: 6168: 6155: 6153: 6152: 6147: 6129: 6127: 6126: 6121: 6116: 6115: 6110: 6095: 6080: 6078: 6077: 6072: 6067: 6066: 6061: 6046: 6031: 6029: 6028: 6023: 6021: 6020: 6015: 5996: 5994: 5993: 5988: 5986: 5985: 5980: 5956: 5954: 5953: 5948: 5943: 5939: 5923: 5911: 5910: 5898: 5897: 5870: 5830: 5810: 5808: 5807: 5802: 5790: 5788: 5787: 5782: 5770: 5768: 5767: 5762: 5745: 5726: 5724: 5723: 5718: 5707: 5696: 5695: 5679: 5677: 5676: 5671: 5659: 5657: 5656: 5651: 5634: 5632: 5631: 5626: 5624: 5623: 5614: 5613: 5598: 5595: 5576: 5573: 5547: 5546: 5525: 5523: 5522: 5517: 5515: 5514: 5498: 5496: 5495: 5490: 5473: 5471: 5470: 5465: 5463: 5462: 5429: 5427: 5426: 5421: 5409: 5407: 5406: 5401: 5379: 5377: 5376: 5371: 5357: 5356: 5340: 5338: 5337: 5332: 5320: 5318: 5317: 5312: 5300: 5298: 5297: 5292: 5280: 5278: 5277: 5272: 5260: 5258: 5257: 5252: 5209: 5207: 5206: 5201: 5190: 5189: 5184: 5168: 5166: 5165: 5160: 5155: 5154: 5153: 5152: 5134: 5133: 5116: 5115: 5114: 5113: 5095: 5094: 5070: 5068: 5067: 5062: 5060: 5059: 5058: 5057: 5039: 5038: 5017: 5015: 5014: 5009: 5007: 5006: 5005: 5004: 4986: 4985: 4975: 4974: 4966: 4955: 4953: 4952: 4947: 4945: 4944: 4928: 4926: 4925: 4920: 4908: 4906: 4905: 4900: 4882: 4880: 4879: 4874: 4871: 4870: 4869: 4851: 4850: 4840: 4839: 4838: 4820: 4819: 4809: 4808: 4800: 4784: 4782: 4781: 4776: 4771: 4770: 4757: 4756: 4755: 4737: 4736: 4726: 4725: 4724: 4706: 4705: 4695: 4694: 4686: 4679: 4678: 4677: 4676: 4658: 4657: 4647: 4646: 4638: 4631: 4630: 4629: 4628: 4610: 4609: 4599: 4598: 4590: 4574: 4572: 4571: 4566: 4564: 4563: 4562: 4561: 4543: 4542: 4521: 4519: 4518: 4513: 4511: 4510: 4509: 4508: 4490: 4489: 4463: 4461: 4460: 4455: 4450: 4449: 4448: 4447: 4429: 4428: 4414: 4413: 4412: 4411: 4393: 4392: 4382: 4381: 4373: 4366: 4365: 4364: 4363: 4345: 4344: 4330: 4329: 4328: 4327: 4309: 4308: 4298: 4297: 4289: 4273: 4271: 4270: 4265: 4263: 4262: 4261: 4260: 4242: 4241: 4220: 4218: 4217: 4212: 4210: 4209: 4208: 4207: 4189: 4188: 4167: 4165: 4164: 4159: 4157: 4156: 4155: 4154: 4136: 4135: 4118: 4117: 4116: 4115: 4097: 4096: 4075: 4073: 4072: 4067: 4065: 4064: 4063: 4062: 4044: 4043: 4022: 4020: 4019: 4014: 4009: 4008: 3990: 3989: 3970: 3968: 3967: 3962: 3939: 3937: 3936: 3931: 3929: 3928: 3916: 3915: 3914: 3913: 3895: 3894: 3871: 3870: 3869: 3868: 3850: 3849: 3839: 3838: 3830: 3814: 3812: 3811: 3806: 3776: 3774: 3773: 3768: 3757:to the space of 3756: 3754: 3753: 3748: 3746: 3745: 3744: 3743: 3725: 3724: 3699: 3697: 3696: 3691: 3689: 3688: 3687: 3686: 3668: 3667: 3646: 3644: 3643: 3638: 3636: 3635: 3634: 3633: 3615: 3614: 3593: 3589: 3587: 3586: 3581: 3579: 3578: 3577: 3576: 3558: 3557: 3536: 3534: 3533: 3528: 3517: 3516: 3511: 3489: 3487: 3486: 3483:{\displaystyle } 3481: 3463: 3461: 3460: 3455: 3443: 3441: 3440: 3435: 3417: 3415: 3414: 3409: 3404: 3403: 3385: 3384: 3365: 3363: 3362: 3357: 3354: 3346: 3345: 3344: 3326: 3325: 3301: 3299: 3298: 3293: 3291: 3290: 3289: 3288: 3270: 3269: 3248: 3246: 3245: 3240: 3210: 3208: 3207: 3202: 3200: 3199: 3198: 3197: 3179: 3178: 3157: 3155: 3154: 3149: 3137: 3135: 3134: 3129: 3127: 3126: 3110: 3108: 3107: 3102: 3090: 3088: 3087: 3082: 3080: 3079: 3078: 3077: 3059: 3058: 3037: 3035: 3034: 3029: 3011: 3009: 3008: 3003: 2991: 2989: 2988: 2983: 2972: 2971: 2966: 2944: 2942: 2941: 2936: 2934: 2933: 2932: 2931: 2913: 2912: 2891: 2889: 2888: 2883: 2875: 2874: 2856: 2855: 2830: 2828: 2827: 2822: 2802: 2800: 2799: 2794: 2782: 2780: 2779: 2774: 2769: 2768: 2750: 2749: 2730: 2728: 2727: 2722: 2720: 2719: 2718: 2717: 2699: 2698: 2677: 2675: 2674: 2669: 2651: 2649: 2648: 2643: 2635: 2634: 2616: 2615: 2593: 2591: 2590: 2585: 2573: 2571: 2570: 2565: 2553: 2551: 2550: 2545: 2533: 2531: 2530: 2525: 2513: 2511: 2510: 2505: 2500: 2499: 2477: 2475: 2474: 2469: 2457: 2455: 2454: 2449: 2414: 2412: 2411: 2406: 2404: 2403: 2396: 2395: 2362: 2361: 2332: 2331: 2322: 2321: 2294: 2293: 2270: 2269: 2268: 2260: 2259: 2251: 2224: 2222: 2221: 2216: 2204: 2202: 2201: 2196: 2185:. If the first 2181:) to obtain its 2180: 2178: 2177: 2172: 2136: 2134: 2133: 2128: 2112: 2110: 2109: 2104: 2092: 2090: 2089: 2084: 2063: 2061: 2060: 2057:{\displaystyle } 2055: 2037: 2035: 2034: 2029: 2017: 2015: 2014: 2009: 1997: 1995: 1994: 1989: 1971: 1969: 1968: 1963: 1951: 1949: 1948: 1943: 1918: 1916: 1915: 1910: 1869: 1867: 1866: 1861: 1850: 1849: 1841: 1827:if and only if 1826: 1824: 1823: 1818: 1807: 1806: 1801: 1779: 1777: 1776: 1771: 1769: 1768: 1760: 1750: 1748: 1747: 1742: 1730: 1728: 1727: 1722: 1692: 1690: 1689: 1684: 1682: 1681: 1665: 1663: 1662: 1657: 1645: 1643: 1642: 1637: 1618: 1616: 1615: 1610: 1592: 1590: 1589: 1584: 1573: 1572: 1567: 1541: 1539: 1538: 1533: 1528: 1527: 1509: 1508: 1486: 1484: 1483: 1478: 1466: 1464: 1463: 1458: 1447: 1446: 1441: 1425: 1423: 1422: 1417: 1399: 1397: 1396: 1391: 1379: 1377: 1376: 1371: 1366: 1365: 1347: 1346: 1327: 1325: 1324: 1319: 1317: 1316: 1300: 1298: 1297: 1292: 1280: 1278: 1277: 1272: 1256: 1254: 1253: 1248: 1237: 1236: 1231: 1207: 1196:projective plane 1193: 1187: 1180: 1169: 1159: 1152: 1150: 1149: 1144: 1142: 1141: 1130: 1117:projective space 1114: 1110: 1099: 1068: 1066: 1065: 1060: 1048: 1046: 1045: 1040: 1029:over a manifold 1017: 1015: 1014: 1009: 997: 995: 994: 989: 977: 975: 974: 969: 951: 949: 948: 943: 938: 937: 932: 923: 922: 917: 901: 897: 895: 894: 889: 873: 871: 870: 865: 863: 862: 857: 844: 842: 841: 836: 834: 833: 828: 815: 813: 812: 807: 791: 789: 788: 783: 766:. At each point 765: 763: 762: 757: 755: 754: 749: 736: 734: 733: 728: 716: 714: 713: 708: 657: 655: 654: 649: 637: 635: 634: 629: 617: 615: 614: 609: 597: 595: 594: 589: 572: 557: 555: 554: 549: 538: 537: 532: 516: 514: 513: 508: 491: 476: 474: 473: 468: 457: 456: 451: 420: 418: 417: 412: 407: 406: 401: 392: 391: 386: 359: 357: 356: 351: 323:smooth manifolds 309: 307: 306: 301: 289: 287: 286: 281: 269: 267: 266: 261: 250: 238:projective space 235: 233: 232: 227: 215: 213: 212: 207: 196: 195: 190: 174: 172: 171: 166: 151: 149: 148: 143: 128: 126: 125: 120: 107:linear subspaces 101: 99: 98: 93: 73: 71: 70: 65: 54: 53: 48: 21361: 21360: 21356: 21355: 21354: 21352: 21351: 21350: 21321: 21320: 21314: 21278: 21262:Mattila, Pertti 21246: 21236:Springer-Verlag 21217: 21198: 21176: 21158:Milnor, John W. 21151:(2.0 ed.). 21148: 21116: 21108:. p. 211. 21089: 21084: 21074: 21072: 21027: 21019:Morel, Fabien; 21017: 21013: 20988: 20984: 20935: 20931: 20921: 20919: 20917:Quanta Magazine 20909: 20905: 20856: 20852: 20811: 20807: 20792: 20767: 20763: 20736: 20732: 20717: 20692: 20685: 20648: 20641: 20602: 20595: 20591:, 30–46 (1981). 20586: 20582: 20539: 20535: 20520:10.2307/2373211 20504: 20500: 20467:10.2307/2372896 20451: 20447: 20410: 20406: 20375: 20371: 20356: 20336: 20329: 20312: 20308: 20286: 20278:, p. 211, 20261: 20257: 20249: 20245: 20237: 20227:Springer-Verlag 20214: 20210: 20202: 20198: 20190: 20186: 20178: 20174: 20170: 20162:Grassmann graph 20058: 20046:computer vision 20009:KP Tau function 19971: 19963:Cartan quadrics 19873: 19870: 19869: 19842: 19839: 19838: 19822: 19819: 19818: 19792: 19784: 19783: 19759: 19754: 19746: 19743: 19740: 19739: 19707: 19702: 19694: 19691: 19688: 19687: 19671: 19668: 19667: 19651: 19648: 19647: 19631: 19628: 19627: 19624: 19555: 19528: 19523: 19522: 19513: 19499: 19497: 19496: 19495: 19493: 19490: 19489: 19463: 19458: 19457: 19448: 19434: 19432: 19431: 19430: 19428: 19425: 19424: 19404: 19399: 19398: 19389: 19381: 19380: 19378: 19375: 19374: 19357: 19352: 19351: 19349: 19346: 19345: 19329: 19326: 19325: 19319: 19287: 19283: 19281: 19278: 19277: 19242: 19234: 19233: 19218: 19214: 19212: 19209: 19208: 19167: 19163: 19161: 19158: 19157: 19126: 19123: 19122: 19085: 19081: 19054: 19050: 19048: 19045: 19044: 19014: 19011: 19010: 18943: 18939: 18915: 18911: 18909: 18906: 18905: 18874: 18866: 18865: 18857: 18854: 18853: 18827: 18819: 18818: 18810: 18807: 18806: 18781: 18778: 18777: 18753: 18749: 18747: 18744: 18743: 18717: 18709: 18708: 18706: 18703: 18702: 18686: 18683: 18682: 18666: 18663: 18662: 18659: 18635: 18632: 18631: 18608: 18605: 18604: 18568: 18564: 18531: 18527: 18512: 18508: 18506: 18503: 18502: 18441: 18438: 18437: 18408: 18405: 18404: 18388: 18385: 18384: 18383:of the bundles 18364: 18361: 18360: 18344: 18341: 18340: 18321: 18318: 18317: 18289: 18286: 18285: 18257: 18254: 18253: 18229: 18226: 18225: 18206: 18203: 18202: 18186: 18183: 18182: 18162: 18157: 18156: 18147: 18139: 18138: 18136: 18133: 18132: 18129: 18101: 18100: 18086: 18082: 18079: 18078: 18064: 18060: 18053: 18052: 18037: 18033: 18031: 18028: 18027: 18002: 17999: 17998: 17978: 17975: 17974: 17945: 17941: 17939: 17936: 17935: 17897: 17893: 17878: 17874: 17852: 17848: 17842: 17838: 17802: 17798: 17783: 17779: 17777: 17774: 17773: 17742: 17737: 17736: 17727: 17719: 17718: 17716: 17713: 17712: 17696: 17693: 17692: 17666: 17661: 17660: 17645: 17637: 17636: 17634: 17631: 17630: 17624: 17618: 17614: 17594: 17589: 17588: 17579: 17571: 17570: 17568: 17565: 17564: 17547: 17542: 17541: 17533: 17531: 17528: 17527: 17511: 17508: 17507: 17501: 17497: 17477: 17472: 17471: 17462: 17454: 17453: 17451: 17448: 17447: 17424: 17420: 17418: 17415: 17414: 17403:) are known as 17361: 17357: 17338: 17334: 17313: 17297: 17289: 17288: 17255: 17251: 17249: 17246: 17245: 17220: 17216: 17211: 17208: 17207: 17177: 17169: 17168: 17160: 17157: 17156: 17130: 17122: 17121: 17097: 17093: 17091: 17088: 17087: 17070: 17066: 17052: 17049: 17048: 17015: 17011: 16996: 16992: 16990: 16987: 16986: 16961: 16957: 16951: 16940: 16928: 16920: 16918: 16915: 16914: 16886: 16882: 16867: 16863: 16852: 16849: 16848: 16816: 16812: 16798: 16796: 16793: 16792: 16769: 16765: 16750: 16746: 16737: 16733: 16731: 16728: 16727: 16697: 16689: 16688: 16686: 16683: 16682: 16669:affine subpaces 16665: 16628: 16625: 16624: 16608: 16605: 16604: 16587: 16583: 16581: 16578: 16577: 16561: 16558: 16557: 16525: 16517: 16516: 16514: 16511: 16510: 16484: 16476: 16475: 16473: 16470: 16469: 16452: 16448: 16446: 16443: 16442: 16426: 16423: 16422: 16405: 16401: 16392: 16388: 16386: 16383: 16382: 16360: 16357: 16356: 16331: 16327: 16310: 16302: 16284: 16276: 16275: 16273: 16270: 16269: 16247: 16243: 16241: 16238: 16237: 16209: 16206: 16205: 16189: 16186: 16185: 16169: 16166: 16165: 16136: 16132: 16123: 16119: 16110: 16106: 16098: 16084: 16081: 16080: 16059: 16055: 16053: 16050: 16049: 16032: 16028: 16026: 16023: 16022: 16005: 16001: 15993: 15985: 15982: 15981: 15943: 15920: 15917: 15916: 15891: 15888: 15887: 15868: 15863: 15860: 15859: 15828: 15825: 15824: 15802: 15799: 15798: 15782: 15779: 15778: 15775: 15747: 15743: 15735: 15733: 15730: 15729: 15700: 15692: 15691: 15683: 15680: 15679: 15651: 15647: 15641: 15637: 15628: 15624: 15618: 15614: 15605: 15601: 15595: 15591: 15589: 15586: 15585: 15560: 15556: 15547: 15543: 15534: 15530: 15521: 15517: 15508: 15504: 15495: 15491: 15486: 15483: 15482: 15459: 15455: 15447: 15429: 15421: 15420: 15412: 15409: 15408: 15386: 15383: 15382: 15348: 15345: 15344: 15321: 15317: 15315: 15312: 15311: 15286: 15283: 15282: 15261: 15257: 15255: 15252: 15251: 15228: 15224: 15209: 15205: 15203: 15200: 15199: 15176: 15172: 15154: 15150: 15148: 15147: 15132: 15128: 15126: 15123: 15122: 15083: 15079: 15061: 15057: 15055: 15054: 15039: 15035: 15034: 15030: 15022: 15018: 15003: 14999: 14984: 14980: 14979: 14975: 14969: 14965: 14944: 14933: 14927: 14924: 14923: 14892: 14884: 14883: 14881: 14878: 14877: 14848: 14840: 14839: 14831: 14828: 14827: 14797: 14794: 14793: 14771: 14768: 14767: 14738: 14734: 14722: 14718: 14709: 14705: 14697: 14694: 14693: 14664: 14660: 14648: 14644: 14635: 14631: 14623: 14620: 14619: 14593: 14589: 14581: 14579: 14576: 14575: 14558: 14555: 14554: 14538: 14535: 14534: 14514: 14510: 14495: 14491: 14486: 14483: 14482: 14462: 14458: 14456: 14453: 14452: 14436: 14433: 14432: 14407: 14404: 14403: 14387: 14384: 14383: 14363: 14359: 14344: 14340: 14335: 14332: 14331: 14305: 14297: 14296: 14288: 14285: 14284: 14283:of the element 14279:are called the 14254: 14250: 14235: 14231: 14212: 14208: 14193: 14189: 14188: 14184: 14179: 14176: 14175: 14174:. The elements 14153: 14149: 14148: 14144: 14127: 14123: 14122: 14118: 14113: 14110: 14109: 14087: 14084: 14083: 14064: 14060: 14045: 14041: 14040: 14036: 14034: 14031: 14030: 14014: 14011: 14010: 13987: 13983: 13968: 13964: 13956: 13953: 13952: 13926: 13925: 13916: 13912: 13910: 13905: 13896: 13892: 13889: 13888: 13883: 13878: 13872: 13871: 13862: 13858: 13856: 13851: 13845: 13841: 13834: 13833: 13821: 13817: 13807: 13803: 13791: 13787: 13785: 13782: 13781: 13760: 13757: 13756: 13736: 13732: 13717: 13713: 13708: 13705: 13704: 13688: 13685: 13684: 13667: 13663: 13661: 13658: 13657: 13634: 13630: 13612: 13608: 13603: 13600: 13599: 13579: 13575: 13560: 13556: 13551: 13548: 13547: 13531: 13528: 13527: 13511: 13508: 13507: 13485: 13482: 13481: 13465: 13462: 13461: 13441: 13437: 13422: 13418: 13413: 13410: 13409: 13393: 13390: 13389: 13373: 13370: 13369: 13346: 13342: 13334: 13332: 13329: 13328: 13302: 13294: 13293: 13291: 13288: 13287: 13274: 13229: 13226: 13225: 13198: 13195: 13194: 13165: 13162: 13161: 13145: 13142: 13141: 13125: 13122: 13121: 13118:change of basis 13097: 13094: 13093: 13066: 13063: 13062: 13039: 13035: 13020: 13016: 12996: 12993: 12992: 12967: 12964: 12963: 12947: 12944: 12943: 12923: 12919: 12904: 12900: 12895: 12892: 12891: 12866: 12863: 12862: 12846: 12843: 12842: 12826: 12823: 12822: 12806: 12803: 12802: 12780: 12777: 12776: 12744: 12740: 12739: 12735: 12730: 12704: 12697: 12694: 12693: 12672: 12669: 12668: 12648: 12644: 12642: 12639: 12638: 12619: 12616: 12615: 12581: 12579: 12576: 12575: 12568: 12562: 12506: 12505: 12488: 12462: 12443: 12439: 12437: 12434: 12433: 12404: 12403: 12386: 12380: 12376: 12362: 12361: 12358: 12357: 12323: 12322: 12314: 12312: 12309: 12308: 12283: 12281: 12278: 12277: 12255: 12252: 12251: 12222: 12221: 12204: 12202: 12199: 12198: 12182: 12179: 12178: 12161: 12160: 12158: 12155: 12154: 12138: 12135: 12134: 12112: 12109: 12108: 12083: 12079: 12070: 12069: 12061: 12059: 12056: 12055: 12039: 12036: 12035: 12006: 12005: 11988: 11986: 11983: 11982: 11966: 11963: 11962: 11945: 11939: 11938: 11937: 11935: 11932: 11931: 11914: 11910: 11908: 11905: 11904: 11872: 11868: 11859: 11858: 11850: 11838: 11832: 11831: 11830: 11822: 11820: 11817: 11816: 11783: 11782: 11765: 11757: 11754: 11753: 11744: 11716: 11715: 11698: 11692: 11688: 11679: 11678: 11670: 11652: 11651: 11634: 11633: 11627: 11626: 11625: 11621: 11616: 11604: 11603: 11595: 11593: 11590: 11589: 11579:. The quotient 11560: 11559: 11542: 11540: 11537: 11536: 11520: 11517: 11516: 11494: 11493: 11476: 11475: 11469: 11468: 11467: 11465: 11462: 11461: 11444: 11443: 11441: 11438: 11437: 11407: 11406: 11389: 11388: 11382: 11381: 11380: 11373: 11369: 11361: 11359: 11356: 11355: 11338: 11337: 11335: 11332: 11331: 11328: 11298: 11295: 11294: 11257: 11253: 11252: 11248: 11242: 11241: 11224: 11222: 11219: 11218: 11201: 11197: 11191: 11190: 11173: 11171: 11168: 11167: 11133: 11119: 11116: 11115: 11099: 11096: 11095: 11079: 11076: 11075: 11046: 11045: 11039: 11038: 11037: 11020: 11009: 11003: 10999: 10990: 10989: 10972: 10970: 10967: 10966: 10942: 10940: 10937: 10936: 10920: 10917: 10916: 10882: 10880: 10877: 10876: 10860: 10857: 10856: 10836: 10833: 10832: 10815: 10814: 10812: 10809: 10808: 10792: 10789: 10788: 10772: 10769: 10768: 10751: 10750: 10748: 10745: 10744: 10720: 10719: 10702: 10700: 10697: 10696: 10680: 10677: 10676: 10649: 10643: 10642: 10641: 10624: 10622: 10619: 10618: 10602: 10599: 10598: 10582: 10579: 10578: 10556: 10552: 10544: 10540: 10539: 10535: 10529: 10528: 10519: 10513: 10512: 10511: 10509: 10506: 10505: 10480: 10477: 10476: 10460: 10457: 10456: 10455:. Then to each 10440: 10437: 10436: 10420: 10417: 10416: 10395: 10394: 10392: 10389: 10388: 10385: 10365: 10345: 10285: 10281: 10276: 10252: 10247: 10246: 10229: 10227: 10224: 10223: 10203: 10198: 10197: 10188: 10183: 10182: 10173: 10169: 10167: 10164: 10163: 10146: 10141: 10140: 10132: 10129: 10128: 10095: 10090: 10085: 10081: 10073: 10067: 10062: 10038: 10034: 10033: 10028: 10027: 10015: 10011: 10004: 10000: 9995: 9951: 9949: 9946: 9945: 9911: 9908: 9907: 9888: 9885: 9884: 9878: 9822: 9818: 9813: 9789: 9784: 9783: 9766: 9764: 9761: 9760: 9741: 9738: 9737: 9720: 9715: 9714: 9705: 9700: 9699: 9690: 9686: 9684: 9681: 9680: 9663: 9658: 9657: 9649: 9646: 9645: 9614: 9610: 9609: 9604: 9603: 9591: 9587: 9569: 9564: 9563: 9547: 9543: 9538: 9494: 9492: 9489: 9488: 9469: 9466: 9465: 9448: 9444: 9442: 9439: 9438: 9421: 9416: 9410: 9407: 9406: 9380: 9375: 9370: 9365: 9364: 9352: 9347: 9323: 9319: 9318: 9313: 9312: 9300: 9296: 9288: 9285: 9284: 9258: 9254: 9252: 9249: 9248: 9232: 9229: 9228: 9194: 9192: 9189: 9188: 9172: 9169: 9168: 9137: 9134: 9133: 9114: 9111: 9110: 9094: 9091: 9090: 9074: 9072: 9069: 9068: 9052: 9050: 9047: 9046: 9030: 9028: 9025: 9024: 8993: 8991: 8988: 8987: 8967: 8964: 8963: 8945:algebraic group 8916: 8914: 8911: 8910: 8894: 8891: 8890: 8884:smooth manifold 8851: 8849: 8846: 8845: 8829: 8827: 8824: 8823: 8807: 8805: 8802: 8801: 8782: 8779: 8778: 8752: 8735: 8709: 8707: 8704: 8703: 8666: 8664: 8661: 8660: 8629: 8627: 8624: 8623: 8592: 8580: 8576: 8564: 8560: 8548: 8530: 8509: 8505: 8488: 8480: 8477: 8476: 8456: 8452: 8450: 8447: 8446: 8414: 8411: 8410: 8394: 8391: 8390: 8362: 8354: 8351: 8350: 8327: 8323: 8309: 8306: 8305: 8268: 8260: 8257: 8256: 8240: 8237: 8236: 8213: 8209: 8207: 8204: 8203: 8187: 8184: 8183: 8167: 8164: 8163: 8129: 8127: 8124: 8123: 8116: 8089: 8084: 8074: 8070: 8064: 8053: 8040: 8036: 8034: 8031: 8030: 8005: 8001: 7986: 7982: 7977: 7974: 7973: 7956: 7951: 7950: 7942: 7939: 7938: 7922: 7919: 7918: 7901: 7897: 7895: 7892: 7891: 7871: 7867: 7852: 7848: 7843: 7840: 7839: 7809: 7806: 7805: 7761: 7760: 7759: 7757: 7754: 7753: 7737: 7734: 7733: 7708: 7704: 7702: 7699: 7698: 7678: 7675: 7674: 7649: 7645: 7643: 7640: 7639: 7619: 7616: 7615: 7593: 7573: 7570: 7569: 7547: 7544: 7543: 7524: 7501: 7481: 7478: 7477: 7457: 7452: 7451: 7434: 7432: 7429: 7428: 7409: 7406: 7405: 7388: 7383: 7382: 7374: 7371: 7370: 7350: 7346: 7331: 7327: 7322: 7319: 7318: 7293: 7288: 7278: 7274: 7268: 7257: 7244: 7240: 7238: 7235: 7234: 7209: 7204: 7203: 7186: 7178: 7175: 7174: 7157: 7152: 7151: 7149: 7146: 7145: 7129: 7126: 7125: 7106: 7080: 7077: 7076: 7059: 7054: 7053: 7051: 7048: 7047: 7031: 7028: 7027: 7007: 7002: 7001: 6984: 6982: 6979: 6978: 6959: 6939: 6936: 6935: 6897: 6894: 6893: 6877: 6874: 6873: 6848: 6844: 6842: 6839: 6838: 6818: 6815: 6814: 6789: 6785: 6783: 6780: 6779: 6759: 6756: 6755: 6733: 6713: 6710: 6709: 6690: 6667: 6647: 6644: 6643: 6621: 6618: 6617: 6598: 6584: 6581: 6580: 6577: 6529: 6526: 6525: 6515: 6513: 6497: 6494: 6493: 6468: 6460: 6457: 6456: 6424: 6423: 6419: 6410: 6406: 6389: 6375: 6372: 6371: 6328: 6326: 6323: 6322: 6286: 6282: 6268: 6245: 6234: 6231: 6230: 6204: 6199: 6198: 6196: 6193: 6192: 6169: 6164: 6163: 6161: 6158: 6157: 6135: 6132: 6131: 6111: 6106: 6105: 6088: 6086: 6083: 6082: 6062: 6057: 6056: 6039: 6037: 6034: 6033: 6016: 6011: 6010: 6002: 5999: 5998: 5981: 5976: 5975: 5967: 5964: 5963: 5916: 5906: 5902: 5893: 5889: 5860: 5853: 5849: 5823: 5821: 5818: 5817: 5796: 5793: 5792: 5776: 5773: 5772: 5738: 5736: 5733: 5732: 5700: 5691: 5687: 5685: 5682: 5681: 5665: 5662: 5661: 5645: 5642: 5641: 5619: 5618: 5609: 5605: 5594: 5587: 5586: 5572: 5561: 5560: 5542: 5538: 5536: 5533: 5532: 5510: 5506: 5504: 5501: 5500: 5484: 5481: 5480: 5458: 5454: 5440: 5437: 5436: 5415: 5412: 5411: 5389: 5386: 5385: 5352: 5348: 5346: 5343: 5342: 5326: 5323: 5322: 5306: 5303: 5302: 5286: 5283: 5282: 5266: 5263: 5262: 5234: 5231: 5230: 5216: 5185: 5177: 5176: 5174: 5171: 5170: 5148: 5144: 5129: 5125: 5124: 5120: 5109: 5105: 5090: 5086: 5085: 5081: 5076: 5073: 5072: 5053: 5049: 5034: 5030: 5029: 5025: 5023: 5020: 5019: 5000: 4996: 4981: 4977: 4976: 4965: 4964: 4963: 4961: 4958: 4957: 4940: 4936: 4934: 4931: 4930: 4914: 4911: 4910: 4888: 4885: 4884: 4865: 4861: 4846: 4842: 4841: 4834: 4830: 4815: 4811: 4810: 4799: 4798: 4795: 4792: 4791: 4763: 4759: 4751: 4747: 4732: 4728: 4727: 4720: 4716: 4701: 4697: 4696: 4685: 4684: 4672: 4668: 4653: 4649: 4648: 4637: 4636: 4635: 4624: 4620: 4605: 4601: 4600: 4589: 4588: 4587: 4585: 4582: 4581: 4557: 4553: 4538: 4534: 4533: 4529: 4527: 4524: 4523: 4504: 4500: 4485: 4481: 4480: 4476: 4474: 4471: 4470: 4443: 4439: 4424: 4420: 4419: 4415: 4407: 4403: 4388: 4384: 4383: 4372: 4371: 4370: 4359: 4355: 4340: 4336: 4335: 4331: 4323: 4319: 4304: 4300: 4299: 4288: 4287: 4286: 4284: 4281: 4280: 4256: 4252: 4237: 4233: 4232: 4228: 4226: 4223: 4222: 4203: 4199: 4184: 4180: 4179: 4175: 4173: 4170: 4169: 4150: 4146: 4131: 4127: 4126: 4122: 4111: 4107: 4092: 4088: 4087: 4083: 4081: 4078: 4077: 4058: 4054: 4039: 4035: 4034: 4030: 4028: 4025: 4024: 4004: 4000: 3985: 3981: 3976: 3973: 3972: 3950: 3947: 3946: 3921: 3917: 3909: 3905: 3890: 3886: 3885: 3881: 3864: 3860: 3845: 3841: 3840: 3829: 3828: 3827: 3825: 3822: 3821: 3782: 3779: 3778: 3762: 3759: 3758: 3739: 3735: 3720: 3716: 3715: 3711: 3709: 3706: 3705: 3682: 3678: 3663: 3659: 3658: 3654: 3652: 3649: 3648: 3629: 3625: 3610: 3606: 3605: 3601: 3599: 3596: 3595: 3591: 3572: 3568: 3553: 3549: 3548: 3544: 3542: 3539: 3538: 3512: 3504: 3503: 3495: 3492: 3491: 3469: 3466: 3465: 3449: 3446: 3445: 3423: 3420: 3419: 3399: 3395: 3380: 3376: 3371: 3368: 3367: 3347: 3340: 3336: 3321: 3317: 3316: 3307: 3304: 3303: 3284: 3280: 3265: 3261: 3260: 3256: 3254: 3251: 3250: 3216: 3213: 3212: 3193: 3189: 3174: 3170: 3169: 3165: 3163: 3160: 3159: 3143: 3140: 3139: 3122: 3118: 3116: 3113: 3112: 3111:-th row is the 3096: 3093: 3092: 3073: 3069: 3054: 3050: 3049: 3045: 3043: 3040: 3039: 3017: 3014: 3013: 2997: 2994: 2993: 2967: 2959: 2958: 2950: 2947: 2946: 2927: 2923: 2908: 2904: 2903: 2899: 2897: 2894: 2893: 2870: 2866: 2851: 2847: 2839: 2836: 2835: 2816: 2813: 2812: 2809:identity matrix 2788: 2785: 2784: 2764: 2760: 2745: 2741: 2736: 2733: 2732: 2713: 2709: 2694: 2690: 2689: 2685: 2683: 2680: 2679: 2657: 2654: 2653: 2630: 2626: 2611: 2607: 2599: 2596: 2595: 2579: 2576: 2575: 2559: 2556: 2555: 2539: 2536: 2535: 2519: 2516: 2515: 2492: 2488: 2483: 2480: 2479: 2463: 2460: 2459: 2425: 2422: 2421: 2398: 2397: 2379: 2375: 2373: 2368: 2363: 2345: 2341: 2338: 2337: 2330: 2324: 2323: 2311: 2307: 2305: 2300: 2295: 2283: 2279: 2276: 2275: 2266: 2265: 2257: 2256: 2249: 2248: 2238: 2237: 2235: 2232: 2231: 2210: 2207: 2206: 2190: 2187: 2186: 2142: 2139: 2138: 2122: 2119: 2118: 2113:, we can apply 2098: 2095: 2094: 2072: 2069: 2068: 2043: 2040: 2039: 2023: 2020: 2019: 2003: 2000: 1999: 1977: 1974: 1973: 1957: 1954: 1953: 1931: 1928: 1927: 1880: 1877: 1876: 1840: 1839: 1837: 1834: 1833: 1802: 1794: 1793: 1785: 1782: 1781: 1759: 1758: 1756: 1753: 1752: 1736: 1733: 1732: 1698: 1695: 1694: 1677: 1673: 1671: 1668: 1667: 1651: 1648: 1647: 1631: 1628: 1627: 1598: 1595: 1594: 1568: 1560: 1559: 1551: 1548: 1547: 1546:of the element 1523: 1519: 1504: 1500: 1495: 1492: 1491: 1490:column vectors 1472: 1469: 1468: 1442: 1434: 1433: 1431: 1428: 1427: 1405: 1402: 1401: 1385: 1382: 1381: 1361: 1357: 1342: 1338: 1333: 1330: 1329: 1312: 1308: 1306: 1303: 1302: 1286: 1283: 1282: 1266: 1263: 1262: 1232: 1224: 1223: 1221: 1218: 1217: 1214: 1202: 1189: 1182: 1175: 1164: 1154: 1131: 1126: 1125: 1123: 1120: 1119: 1112: 1101: 1094: 1091: 1054: 1051: 1050: 1034: 1031: 1030: 1003: 1000: 999: 983: 980: 979: 957: 954: 953: 933: 928: 927: 918: 910: 909: 907: 904: 903: 899: 883: 880: 879: 858: 853: 852: 850: 847: 846: 829: 824: 823: 821: 818: 817: 801: 798: 797: 771: 768: 767: 750: 745: 744: 742: 739: 738: 722: 719: 718: 702: 699: 698: 695:Euclidean space 691:tangent bundles 664: 643: 640: 639: 623: 620: 619: 603: 600: 599: 565: 563: 560: 559: 533: 525: 524: 522: 519: 518: 484: 482: 479: 478: 452: 444: 443: 441: 438: 437: 402: 397: 396: 387: 379: 378: 376: 373: 372: 330: 327: 326: 325:, of dimension 295: 292: 291: 275: 272: 271: 246: 244: 241: 240: 221: 218: 217: 191: 183: 182: 180: 177: 176: 160: 157: 156: 137: 134: 133: 114: 111: 110: 87: 84: 83: 49: 41: 40: 38: 35: 34: 24: 17: 12: 11: 5: 21359: 21349: 21348: 21343: 21338: 21333: 21319: 21318: 21312: 21282: 21276: 21258: 21244: 21220: 21215: 21202: 21196: 21181: 21174: 21154: 21140:Hatcher, Allen 21136: 21114: 21098:Harris, Joseph 21088: 21085: 21083: 21082: 21040:(90): 45–143. 21011: 20982: 20929: 20903: 20866:(3): 637–699. 20850: 20805: 20790: 20761: 20730: 20715: 20683: 20639: 20593: 20580: 20533: 20514:(2): 223–231. 20498: 20461:(3): 563–572. 20445: 20404: 20369: 20354: 20327: 20321:hep-th/9312104 20306: 20284: 20268:Harris, Joseph 20255: 20243: 20235: 20208: 20196: 20184: 20171: 20169: 20166: 20165: 20164: 20159: 20154: 20149: 20132:, notably the 20122: 20117: 20112: 20101: 20095: 20092:Flag manifolds 20089: 20074: 20064: 20057: 20054: 19986:Schubert cells 19970: 19967: 19938: 19937: 19936: 19935: 19924: 19921: 19918: 19915: 19912: 19909: 19905: 19901: 19898: 19895: 19892: 19889: 19886: 19883: 19880: 19877: 19852: 19849: 19846: 19826: 19806: 19803: 19800: 19795: 19790: 19787: 19782: 19779: 19776: 19773: 19770: 19767: 19762: 19757: 19752: 19749: 19727: 19724: 19721: 19718: 19715: 19710: 19705: 19700: 19697: 19675: 19655: 19635: 19623: 19620: 19619: 19618: 19607: 19604: 19601: 19598: 19595: 19592: 19589: 19586: 19583: 19580: 19577: 19574: 19571: 19568: 19565: 19562: 19558: 19554: 19551: 19548: 19545: 19542: 19539: 19536: 19531: 19526: 19521: 19516: 19509: 19505: 19502: 19471: 19466: 19461: 19456: 19451: 19444: 19440: 19437: 19412: 19407: 19402: 19397: 19392: 19387: 19384: 19360: 19355: 19333: 19318: 19315: 19296: 19293: 19290: 19286: 19265: 19262: 19259: 19256: 19253: 19250: 19245: 19240: 19237: 19232: 19227: 19224: 19221: 19217: 19196: 19193: 19190: 19187: 19184: 19181: 19178: 19175: 19170: 19166: 19145: 19142: 19139: 19136: 19133: 19130: 19119: 19118: 19117: 19116: 19105: 19102: 19099: 19094: 19091: 19088: 19084: 19080: 19077: 19074: 19071: 19068: 19063: 19060: 19057: 19053: 19027: 19024: 19021: 19018: 19007: 19006: 19005: 19004: 18993: 18990: 18987: 18984: 18981: 18978: 18975: 18972: 18969: 18966: 18963: 18960: 18957: 18954: 18951: 18946: 18942: 18938: 18935: 18932: 18929: 18924: 18921: 18918: 18914: 18888: 18885: 18882: 18877: 18872: 18869: 18864: 18861: 18841: 18838: 18835: 18830: 18825: 18822: 18817: 18814: 18794: 18791: 18788: 18785: 18756: 18752: 18731: 18728: 18725: 18720: 18715: 18712: 18690: 18670: 18658: 18655: 18642: 18639: 18615: 18612: 18593: 18592: 18591: 18590: 18577: 18574: 18571: 18567: 18563: 18560: 18557: 18554: 18551: 18548: 18545: 18540: 18537: 18534: 18530: 18526: 18523: 18520: 18515: 18511: 18486: 18485: 18484: 18483: 18472: 18469: 18466: 18463: 18460: 18457: 18454: 18451: 18448: 18445: 18412: 18392: 18368: 18348: 18325: 18293: 18273: 18270: 18267: 18264: 18261: 18233: 18210: 18190: 18170: 18165: 18160: 18155: 18150: 18145: 18142: 18128: 18125: 18121: 18120: 18119: 18118: 18105: 18098: 18093: 18090: 18085: 18081: 18080: 18076: 18071: 18068: 18063: 18059: 18058: 18056: 18051: 18046: 18043: 18040: 18036: 18006: 17982: 17962: 17959: 17954: 17951: 17948: 17944: 17930:Solving these 17928: 17927: 17926: 17925: 17914: 17911: 17906: 17903: 17900: 17896: 17892: 17887: 17884: 17881: 17877: 17872: 17867: 17864: 17861: 17858: 17855: 17851: 17845: 17841: 17837: 17834: 17831: 17828: 17823: 17820: 17817: 17814: 17811: 17808: 17805: 17801: 17797: 17792: 17789: 17786: 17782: 17756: 17751: 17748: 17745: 17740: 17735: 17730: 17725: 17722: 17700: 17680: 17675: 17672: 17669: 17664: 17659: 17654: 17651: 17648: 17643: 17640: 17602: 17597: 17592: 17587: 17582: 17577: 17574: 17550: 17545: 17540: 17536: 17515: 17485: 17480: 17475: 17470: 17465: 17460: 17457: 17433: 17430: 17427: 17423: 17397: 17396: 17395: 17394: 17383: 17380: 17377: 17374: 17371: 17364: 17360: 17356: 17353: 17350: 17347: 17344: 17341: 17337: 17333: 17330: 17327: 17324: 17321: 17316: 17311: 17308: 17305: 17300: 17295: 17292: 17287: 17284: 17281: 17278: 17275: 17272: 17269: 17266: 17263: 17258: 17254: 17228: 17223: 17219: 17215: 17191: 17188: 17185: 17180: 17175: 17172: 17167: 17164: 17144: 17141: 17138: 17133: 17128: 17125: 17120: 17117: 17114: 17111: 17108: 17105: 17100: 17096: 17073: 17069: 17065: 17062: 17059: 17056: 17041: 17040: 17029: 17026: 17023: 17018: 17014: 17010: 17007: 17004: 16999: 16995: 16980: 16979: 16978: 16977: 16964: 16960: 16954: 16949: 16946: 16943: 16939: 16935: 16931: 16927: 16923: 16906: 16905: 16894: 16889: 16885: 16881: 16878: 16875: 16870: 16866: 16862: 16859: 16856: 16830: 16827: 16824: 16819: 16815: 16811: 16807: 16804: 16801: 16780: 16777: 16772: 16768: 16764: 16761: 16758: 16753: 16749: 16745: 16740: 16736: 16711: 16708: 16705: 16700: 16695: 16692: 16674:Schubert cells 16664: 16663:Schubert cells 16661: 16655:}-dimensional 16644: 16641: 16638: 16635: 16632: 16612: 16590: 16586: 16565: 16545: 16542: 16539: 16534: 16531: 16528: 16523: 16520: 16498: 16495: 16492: 16487: 16482: 16479: 16455: 16451: 16430: 16408: 16404: 16400: 16395: 16391: 16370: 16367: 16364: 16353: 16352: 16351: 16350: 16339: 16334: 16330: 16326: 16322: 16319: 16316: 16313: 16308: 16305: 16301: 16298: 16295: 16292: 16287: 16282: 16279: 16250: 16246: 16225: 16222: 16219: 16216: 16213: 16193: 16173: 16161: 16160: 16159: 16158: 16147: 16144: 16139: 16135: 16131: 16126: 16122: 16118: 16113: 16109: 16105: 16101: 16097: 16094: 16091: 16088: 16062: 16058: 16048:with quotient 16035: 16031: 16008: 16004: 16000: 15996: 15992: 15989: 15970: 15969: 15968: 15967: 15956: 15953: 15950: 15946: 15942: 15939: 15936: 15933: 15930: 15927: 15924: 15895: 15875: 15871: 15867: 15857:quotient space 15844: 15841: 15838: 15835: 15832: 15823:determines an 15812: 15809: 15806: 15786: 15774: 15771: 15758: 15755: 15750: 15746: 15742: 15738: 15717: 15714: 15711: 15708: 15703: 15698: 15695: 15690: 15687: 15676: 15675: 15674: 15673: 15662: 15659: 15654: 15650: 15644: 15640: 15636: 15631: 15627: 15621: 15617: 15613: 15608: 15604: 15598: 15594: 15568: 15563: 15559: 15555: 15550: 15546: 15542: 15537: 15533: 15529: 15524: 15520: 15516: 15511: 15507: 15503: 15498: 15494: 15490: 15470: 15467: 15462: 15458: 15454: 15450: 15446: 15443: 15440: 15437: 15432: 15427: 15424: 15419: 15416: 15396: 15393: 15390: 15370: 15367: 15364: 15361: 15358: 15355: 15352: 15329: 15324: 15320: 15299: 15296: 15293: 15290: 15264: 15260: 15250:with the term 15237: 15234: 15231: 15227: 15223: 15220: 15217: 15212: 15208: 15185: 15182: 15179: 15175: 15171: 15168: 15162: 15157: 15153: 15146: 15143: 15140: 15135: 15131: 15119: 15118: 15117: 15116: 15105: 15102: 15099: 15092: 15089: 15086: 15082: 15078: 15075: 15069: 15064: 15060: 15053: 15050: 15047: 15042: 15038: 15033: 15025: 15021: 15017: 15012: 15009: 15006: 15002: 14998: 14995: 14992: 14987: 14983: 14978: 14972: 14968: 14964: 14961: 14958: 14953: 14950: 14947: 14942: 14939: 14936: 14932: 14906: 14903: 14900: 14895: 14890: 14887: 14865: 14862: 14859: 14856: 14851: 14846: 14843: 14838: 14835: 14807: 14804: 14801: 14781: 14778: 14775: 14755: 14752: 14747: 14744: 14741: 14737: 14733: 14730: 14725: 14721: 14717: 14712: 14708: 14704: 14701: 14681: 14678: 14673: 14670: 14667: 14663: 14659: 14656: 14651: 14647: 14643: 14638: 14634: 14630: 14627: 14604: 14601: 14596: 14592: 14588: 14584: 14562: 14542: 14522: 14517: 14513: 14509: 14506: 14503: 14498: 14494: 14490: 14470: 14465: 14461: 14440: 14420: 14417: 14414: 14411: 14391: 14371: 14366: 14362: 14358: 14355: 14352: 14347: 14343: 14339: 14319: 14316: 14313: 14308: 14303: 14300: 14295: 14292: 14268: 14265: 14262: 14257: 14253: 14249: 14246: 14243: 14238: 14234: 14230: 14227: 14223: 14215: 14211: 14207: 14204: 14201: 14196: 14192: 14187: 14183: 14163: 14156: 14152: 14147: 14143: 14140: 14137: 14130: 14126: 14121: 14117: 14097: 14094: 14091: 14067: 14063: 14059: 14056: 14053: 14048: 14044: 14039: 14018: 13998: 13995: 13990: 13986: 13982: 13979: 13976: 13971: 13967: 13963: 13960: 13949: 13948: 13947: 13946: 13935: 13930: 13922: 13919: 13915: 13911: 13909: 13906: 13902: 13899: 13895: 13891: 13890: 13887: 13884: 13882: 13879: 13877: 13874: 13873: 13868: 13865: 13861: 13857: 13855: 13852: 13848: 13844: 13840: 13839: 13837: 13832: 13829: 13824: 13820: 13816: 13810: 13806: 13802: 13799: 13794: 13790: 13764: 13744: 13739: 13735: 13731: 13728: 13725: 13720: 13716: 13712: 13692: 13670: 13666: 13645: 13640: 13637: 13633: 13629: 13626: 13623: 13618: 13615: 13611: 13607: 13587: 13582: 13578: 13574: 13571: 13568: 13563: 13559: 13555: 13535: 13515: 13495: 13492: 13489: 13469: 13449: 13444: 13440: 13436: 13433: 13430: 13425: 13421: 13417: 13397: 13377: 13357: 13354: 13349: 13345: 13341: 13337: 13316: 13313: 13310: 13305: 13300: 13297: 13273: 13270: 13269: 13268: 13267: 13266: 13254: 13251: 13248: 13245: 13242: 13239: 13236: 13233: 13208: 13205: 13202: 13178: 13175: 13172: 13169: 13149: 13129: 13101: 13078: 13074: 13070: 13050: 13047: 13042: 13038: 13034: 13031: 13028: 13023: 13019: 13015: 13012: 13009: 13006: 13003: 13000: 12980: 12977: 12974: 12971: 12951: 12931: 12926: 12922: 12918: 12915: 12912: 12907: 12903: 12899: 12879: 12876: 12873: 12870: 12850: 12830: 12810: 12790: 12787: 12784: 12773: 12772: 12771: 12770: 12760: 12756: 12752: 12747: 12743: 12738: 12733: 12729: 12726: 12723: 12720: 12717: 12714: 12710: 12707: 12703: 12700: 12676: 12656: 12651: 12647: 12636:Exterior power 12623: 12603: 12600: 12597: 12594: 12591: 12587: 12584: 12564:Main article: 12561: 12558: 12557: 12556: 12555: 12554: 12543: 12539: 12535: 12532: 12529: 12526: 12523: 12520: 12517: 12514: 12509: 12504: 12501: 12498: 12494: 12491: 12487: 12484: 12481: 12478: 12475: 12472: 12469: 12465: 12461: 12458: 12455: 12452: 12449: 12446: 12442: 12425: 12424: 12423: 12422: 12412: 12407: 12402: 12399: 12396: 12392: 12389: 12383: 12379: 12375: 12372: 12369: 12365: 12340: 12337: 12334: 12331: 12326: 12321: 12317: 12296: 12293: 12290: 12286: 12265: 12262: 12259: 12239: 12236: 12233: 12230: 12225: 12220: 12217: 12214: 12210: 12207: 12186: 12164: 12142: 12122: 12119: 12116: 12094: 12091: 12086: 12082: 12078: 12073: 12068: 12064: 12043: 12023: 12020: 12017: 12014: 12009: 12004: 12001: 11998: 11994: 11991: 11970: 11948: 11942: 11930:-modules from 11917: 11913: 11897: 11896: 11895: 11894: 11883: 11880: 11875: 11871: 11867: 11862: 11857: 11853: 11849: 11846: 11841: 11835: 11829: 11825: 11808: 11807: 11806: 11805: 11794: 11791: 11786: 11781: 11778: 11775: 11771: 11768: 11764: 11761: 11741: 11740: 11739: 11738: 11727: 11724: 11719: 11714: 11711: 11708: 11704: 11701: 11695: 11691: 11687: 11682: 11677: 11673: 11669: 11665: 11660: 11655: 11650: 11647: 11644: 11640: 11637: 11630: 11624: 11619: 11615: 11612: 11607: 11602: 11598: 11568: 11563: 11558: 11555: 11552: 11548: 11545: 11524: 11502: 11497: 11492: 11489: 11486: 11482: 11479: 11472: 11447: 11425: 11421: 11415: 11410: 11405: 11402: 11399: 11395: 11392: 11385: 11379: 11376: 11372: 11367: 11364: 11341: 11327: 11324: 11311: 11308: 11305: 11302: 11279: 11276: 11273: 11270: 11267: 11260: 11256: 11251: 11245: 11240: 11237: 11234: 11230: 11227: 11204: 11200: 11194: 11189: 11186: 11183: 11179: 11176: 11155: 11152: 11149: 11146: 11143: 11140: 11132: 11129: 11126: 11123: 11103: 11083: 11072: 11071: 11070: 11069: 11058: 11052: 11049: 11042: 11036: 11033: 11030: 11026: 11023: 11019: 11015: 11012: 11006: 11002: 10998: 10993: 10988: 10985: 10982: 10978: 10975: 10948: 10945: 10924: 10904: 10901: 10898: 10895: 10892: 10888: 10885: 10864: 10840: 10818: 10796: 10776: 10754: 10728: 10723: 10718: 10715: 10712: 10708: 10705: 10684: 10657: 10652: 10646: 10640: 10637: 10634: 10630: 10627: 10606: 10586: 10575: 10574: 10573: 10572: 10559: 10555: 10547: 10543: 10538: 10532: 10527: 10522: 10516: 10484: 10464: 10444: 10424: 10398: 10384: 10381: 10364: 10361: 10338: 10337: 10326: 10322: 10318: 10315: 10312: 10309: 10306: 10303: 10300: 10297: 10294: 10291: 10288: 10284: 10279: 10275: 10272: 10269: 10266: 10263: 10260: 10255: 10250: 10245: 10242: 10239: 10235: 10232: 10206: 10201: 10196: 10191: 10186: 10181: 10176: 10172: 10149: 10144: 10139: 10136: 10125: 10124: 10113: 10109: 10105: 10098: 10093: 10089: 10084: 10080: 10076: 10070: 10065: 10061: 10057: 10054: 10051: 10048: 10041: 10037: 10031: 10026: 10023: 10018: 10014: 10010: 10007: 10003: 9998: 9994: 9991: 9988: 9985: 9982: 9979: 9976: 9973: 9970: 9967: 9964: 9961: 9957: 9954: 9930: 9927: 9924: 9921: 9918: 9915: 9892: 9875: 9874: 9863: 9859: 9855: 9852: 9849: 9846: 9843: 9840: 9837: 9834: 9831: 9828: 9825: 9821: 9816: 9812: 9809: 9806: 9803: 9800: 9797: 9792: 9787: 9782: 9779: 9776: 9772: 9769: 9745: 9723: 9718: 9713: 9708: 9703: 9698: 9693: 9689: 9666: 9661: 9656: 9653: 9642: 9641: 9628: 9624: 9617: 9613: 9607: 9602: 9599: 9594: 9590: 9586: 9583: 9580: 9577: 9572: 9567: 9562: 9559: 9556: 9553: 9550: 9546: 9541: 9537: 9534: 9531: 9528: 9525: 9522: 9519: 9516: 9513: 9510: 9507: 9504: 9500: 9497: 9473: 9451: 9447: 9424: 9419: 9415: 9403: 9402: 9390: 9383: 9378: 9374: 9368: 9363: 9360: 9355: 9350: 9346: 9342: 9339: 9336: 9333: 9326: 9322: 9316: 9311: 9308: 9303: 9299: 9295: 9292: 9269: 9266: 9261: 9257: 9236: 9216: 9213: 9210: 9207: 9204: 9200: 9197: 9176: 9156: 9153: 9150: 9147: 9144: 9141: 9118: 9098: 9077: 9055: 9033: 9009: 9006: 9003: 8999: 8996: 8971: 8932: 8929: 8926: 8922: 8919: 8898: 8867: 8864: 8861: 8857: 8854: 8832: 8810: 8786: 8771: 8770: 8759: 8755: 8751: 8748: 8745: 8741: 8738: 8734: 8731: 8728: 8725: 8722: 8719: 8715: 8712: 8688: 8685: 8682: 8679: 8676: 8672: 8669: 8645: 8642: 8639: 8635: 8632: 8620: 8619: 8608: 8605: 8602: 8598: 8595: 8591: 8588: 8583: 8579: 8575: 8572: 8567: 8563: 8559: 8556: 8551: 8546: 8543: 8540: 8536: 8533: 8529: 8526: 8523: 8520: 8517: 8512: 8508: 8504: 8500: 8497: 8494: 8491: 8487: 8484: 8459: 8455: 8430: 8427: 8424: 8421: 8418: 8398: 8378: 8375: 8372: 8368: 8365: 8361: 8358: 8347: 8346: 8335: 8330: 8326: 8322: 8319: 8316: 8313: 8290: 8287: 8284: 8281: 8278: 8274: 8271: 8267: 8264: 8255:, any element 8244: 8224: 8221: 8216: 8212: 8191: 8171: 8145: 8142: 8139: 8135: 8132: 8115: 8112: 8111: 8110: 8109: 8108: 8097: 8092: 8087: 8083: 8077: 8073: 8067: 8062: 8059: 8056: 8052: 8048: 8043: 8039: 8013: 8008: 8004: 8000: 7997: 7994: 7989: 7985: 7981: 7959: 7954: 7949: 7946: 7926: 7904: 7900: 7879: 7874: 7870: 7866: 7863: 7860: 7855: 7851: 7847: 7827: 7823: 7820: 7817: 7813: 7798: 7797: 7783: 7780: 7777: 7774: 7771: 7767: 7764: 7741: 7731: 7719: 7716: 7711: 7707: 7682: 7672: 7660: 7657: 7652: 7648: 7623: 7600: 7596: 7592: 7589: 7586: 7583: 7580: 7577: 7557: 7554: 7551: 7531: 7527: 7523: 7520: 7517: 7514: 7511: 7508: 7504: 7500: 7497: 7494: 7491: 7488: 7485: 7465: 7460: 7455: 7450: 7447: 7444: 7440: 7437: 7413: 7391: 7386: 7381: 7378: 7358: 7353: 7349: 7345: 7342: 7339: 7334: 7330: 7326: 7315: 7314: 7313: 7312: 7301: 7296: 7291: 7287: 7281: 7277: 7271: 7266: 7263: 7260: 7256: 7252: 7247: 7243: 7217: 7212: 7207: 7202: 7199: 7196: 7192: 7189: 7185: 7182: 7160: 7155: 7133: 7113: 7109: 7105: 7102: 7099: 7096: 7093: 7090: 7087: 7084: 7062: 7057: 7035: 7015: 7010: 7005: 7000: 6997: 6994: 6990: 6987: 6966: 6962: 6958: 6955: 6952: 6949: 6946: 6943: 6932: 6931: 6919: 6916: 6913: 6910: 6907: 6904: 6901: 6881: 6871: 6859: 6856: 6851: 6847: 6822: 6812: 6800: 6797: 6792: 6788: 6763: 6740: 6736: 6732: 6729: 6726: 6723: 6720: 6717: 6697: 6693: 6689: 6686: 6683: 6680: 6677: 6674: 6670: 6666: 6663: 6660: 6657: 6654: 6651: 6631: 6628: 6625: 6605: 6601: 6597: 6594: 6591: 6588: 6576: 6551:Grassmannians 6549: 6533: 6501: 6481: 6478: 6474: 6471: 6467: 6464: 6453: 6452: 6451: 6450: 6439: 6436: 6430: 6427: 6422: 6418: 6413: 6409: 6405: 6402: 6399: 6395: 6392: 6388: 6385: 6382: 6379: 6350: 6347: 6344: 6341: 6338: 6334: 6331: 6303: 6300: 6297: 6294: 6289: 6285: 6281: 6278: 6274: 6271: 6267: 6264: 6261: 6258: 6254: 6251: 6248: 6244: 6241: 6238: 6213: 6210: 6207: 6202: 6178: 6175: 6172: 6167: 6145: 6142: 6139: 6119: 6114: 6109: 6104: 6101: 6098: 6094: 6091: 6070: 6065: 6060: 6055: 6052: 6049: 6045: 6042: 6019: 6014: 6009: 6006: 5984: 5979: 5974: 5971: 5960: 5959: 5958: 5957: 5946: 5942: 5938: 5935: 5932: 5929: 5926: 5922: 5919: 5914: 5909: 5905: 5901: 5896: 5892: 5888: 5885: 5882: 5879: 5876: 5873: 5869: 5866: 5863: 5859: 5856: 5852: 5848: 5845: 5842: 5839: 5836: 5833: 5829: 5826: 5800: 5780: 5760: 5757: 5754: 5751: 5748: 5744: 5741: 5716: 5713: 5710: 5706: 5703: 5699: 5694: 5690: 5669: 5649: 5638: 5637: 5636: 5635: 5622: 5617: 5612: 5608: 5604: 5601: 5596: if  5592: 5589: 5588: 5585: 5582: 5579: 5574: if  5570: 5567: 5566: 5564: 5559: 5556: 5553: 5550: 5545: 5541: 5513: 5509: 5488: 5477: 5476: 5475: 5474: 5461: 5457: 5453: 5450: 5447: 5444: 5419: 5399: 5396: 5393: 5369: 5366: 5363: 5360: 5355: 5351: 5330: 5310: 5290: 5270: 5250: 5247: 5244: 5241: 5238: 5215: 5212: 5199: 5196: 5193: 5188: 5183: 5180: 5158: 5151: 5147: 5143: 5140: 5137: 5132: 5128: 5123: 5119: 5112: 5108: 5104: 5101: 5098: 5093: 5089: 5084: 5080: 5056: 5052: 5048: 5045: 5042: 5037: 5033: 5028: 5003: 4999: 4995: 4992: 4989: 4984: 4980: 4972: 4969: 4943: 4939: 4929:th row is the 4918: 4898: 4895: 4892: 4868: 4864: 4860: 4857: 4854: 4849: 4845: 4837: 4833: 4829: 4826: 4823: 4818: 4814: 4806: 4803: 4788: 4787: 4786: 4785: 4774: 4769: 4766: 4762: 4754: 4750: 4746: 4743: 4740: 4735: 4731: 4723: 4719: 4715: 4712: 4709: 4704: 4700: 4692: 4689: 4682: 4675: 4671: 4667: 4664: 4661: 4656: 4652: 4644: 4641: 4634: 4627: 4623: 4619: 4616: 4613: 4608: 4604: 4596: 4593: 4560: 4556: 4552: 4549: 4546: 4541: 4537: 4532: 4507: 4503: 4499: 4496: 4493: 4488: 4484: 4479: 4467: 4466: 4465: 4464: 4453: 4446: 4442: 4438: 4435: 4432: 4427: 4423: 4418: 4410: 4406: 4402: 4399: 4396: 4391: 4387: 4379: 4376: 4369: 4362: 4358: 4354: 4351: 4348: 4343: 4339: 4334: 4326: 4322: 4318: 4315: 4312: 4307: 4303: 4295: 4292: 4259: 4255: 4251: 4248: 4245: 4240: 4236: 4231: 4206: 4202: 4198: 4195: 4192: 4187: 4183: 4178: 4153: 4149: 4145: 4142: 4139: 4134: 4130: 4125: 4121: 4114: 4110: 4106: 4103: 4100: 4095: 4091: 4086: 4061: 4057: 4053: 4050: 4047: 4042: 4038: 4033: 4012: 4007: 4003: 3999: 3996: 3993: 3988: 3984: 3980: 3960: 3957: 3954: 3943: 3942: 3941: 3940: 3927: 3924: 3920: 3912: 3908: 3904: 3901: 3898: 3893: 3889: 3884: 3880: 3877: 3874: 3867: 3863: 3859: 3856: 3853: 3848: 3844: 3836: 3833: 3804: 3801: 3798: 3795: 3792: 3789: 3786: 3766: 3742: 3738: 3734: 3731: 3728: 3723: 3719: 3714: 3702:diffeomorphism 3685: 3681: 3677: 3674: 3671: 3666: 3662: 3657: 3632: 3628: 3624: 3621: 3618: 3613: 3609: 3604: 3575: 3571: 3567: 3564: 3561: 3556: 3552: 3547: 3526: 3523: 3520: 3515: 3510: 3507: 3502: 3499: 3479: 3476: 3473: 3453: 3433: 3430: 3427: 3407: 3402: 3398: 3394: 3391: 3388: 3383: 3379: 3375: 3353: 3350: 3343: 3339: 3335: 3332: 3329: 3324: 3320: 3315: 3311: 3287: 3283: 3279: 3276: 3273: 3268: 3264: 3259: 3238: 3235: 3232: 3229: 3226: 3223: 3220: 3196: 3192: 3188: 3185: 3182: 3177: 3173: 3168: 3147: 3125: 3121: 3100: 3076: 3072: 3068: 3065: 3062: 3057: 3053: 3048: 3027: 3024: 3021: 3001: 2981: 2978: 2975: 2970: 2965: 2962: 2957: 2954: 2930: 2926: 2922: 2919: 2916: 2911: 2907: 2902: 2881: 2878: 2873: 2869: 2865: 2862: 2859: 2854: 2850: 2846: 2843: 2820: 2792: 2772: 2767: 2763: 2759: 2756: 2753: 2748: 2744: 2740: 2716: 2712: 2708: 2705: 2702: 2697: 2693: 2688: 2667: 2664: 2661: 2652:such that the 2641: 2638: 2633: 2629: 2625: 2622: 2619: 2614: 2610: 2606: 2603: 2583: 2563: 2543: 2523: 2503: 2498: 2495: 2491: 2487: 2467: 2447: 2444: 2441: 2438: 2435: 2432: 2429: 2418: 2417: 2416: 2415: 2402: 2394: 2391: 2388: 2385: 2382: 2378: 2374: 2372: 2369: 2367: 2364: 2360: 2357: 2354: 2351: 2348: 2344: 2340: 2339: 2336: 2333: 2329: 2326: 2325: 2320: 2317: 2314: 2310: 2306: 2304: 2301: 2299: 2296: 2292: 2289: 2286: 2282: 2278: 2277: 2274: 2271: 2267: 2264: 2261: 2258: 2255: 2252: 2250: 2247: 2244: 2243: 2241: 2214: 2194: 2170: 2167: 2164: 2161: 2158: 2155: 2152: 2149: 2146: 2126: 2102: 2082: 2079: 2076: 2053: 2050: 2047: 2027: 2007: 1987: 1984: 1981: 1961: 1941: 1938: 1935: 1908: 1905: 1902: 1899: 1896: 1893: 1890: 1887: 1884: 1873: 1872: 1871: 1870: 1859: 1856: 1853: 1847: 1844: 1816: 1813: 1810: 1805: 1800: 1797: 1792: 1789: 1766: 1763: 1740: 1720: 1717: 1714: 1711: 1708: 1705: 1702: 1680: 1676: 1655: 1635: 1608: 1605: 1602: 1582: 1579: 1576: 1571: 1566: 1563: 1558: 1555: 1531: 1526: 1522: 1518: 1515: 1512: 1507: 1503: 1499: 1476: 1456: 1453: 1450: 1445: 1440: 1437: 1415: 1412: 1409: 1389: 1369: 1364: 1360: 1356: 1353: 1350: 1345: 1341: 1337: 1315: 1311: 1290: 1270: 1246: 1243: 1240: 1235: 1230: 1227: 1213: 1210: 1140: 1137: 1134: 1129: 1090: 1089:Low dimensions 1087: 1058: 1038: 1027:vector bundles 1007: 987: 967: 964: 961: 941: 936: 931: 926: 921: 916: 913: 887: 861: 856: 832: 827: 805: 781: 778: 775: 753: 748: 726: 706: 663: 660: 647: 627: 607: 587: 584: 581: 578: 575: 571: 568: 547: 544: 541: 536: 531: 528: 506: 503: 500: 497: 494: 490: 487: 466: 463: 460: 455: 450: 447: 410: 405: 400: 395: 390: 385: 382: 369:Julius Plücker 349: 346: 343: 340: 337: 334: 299: 279: 259: 256: 253: 249: 225: 205: 202: 199: 194: 189: 186: 164: 141: 118: 91: 63: 60: 57: 52: 47: 44: 15: 9: 6: 4: 3: 2: 21358: 21347: 21344: 21342: 21339: 21337: 21334: 21332: 21329: 21328: 21326: 21315: 21309: 21305: 21301: 21297: 21293: 21292: 21287: 21283: 21279: 21277:0-521-65595-1 21273: 21269: 21268: 21263: 21259: 21255: 21251: 21247: 21241: 21237: 21233: 21229: 21225: 21221: 21218: 21212: 21208: 21203: 21199: 21197:0-387-97716-3 21193: 21189: 21188: 21182: 21177: 21175:0-691-08122-0 21171: 21167: 21163: 21159: 21155: 21147: 21146: 21141: 21137: 21133: 21129: 21125: 21121: 21117: 21115:0-471-05059-8 21111: 21107: 21103: 21099: 21095: 21091: 21090: 21071: 21067: 21063: 21059: 21055: 21051: 21047: 21043: 21039: 21035: 21034: 21026: 21022: 21015: 21008: 21004: 21000: 20996: 20992: 20986: 20978: 20974: 20970: 20966: 20962: 20958: 20953: 20948: 20944: 20940: 20933: 20918: 20914: 20907: 20899: 20895: 20891: 20887: 20883: 20879: 20874: 20869: 20865: 20861: 20854: 20846: 20842: 20838: 20834: 20829: 20824: 20820: 20816: 20809: 20801: 20797: 20793: 20791:9781108610902 20787: 20783: 20779: 20775: 20771: 20765: 20757: 20753: 20749: 20745: 20741: 20734: 20726: 20722: 20718: 20716:9781108610902 20712: 20708: 20704: 20700: 20696: 20690: 20688: 20679: 20675: 20670: 20665: 20661: 20657: 20653: 20646: 20644: 20635: 20631: 20627: 20623: 20619: 20615: 20611: 20607: 20600: 20598: 20590: 20584: 20575: 20570: 20565: 20560: 20556: 20552: 20548: 20544: 20543:Varchenko, A. 20537: 20529: 20525: 20521: 20517: 20513: 20509: 20502: 20494: 20490: 20486: 20482: 20477: 20472: 20468: 20464: 20460: 20456: 20449: 20440: 20435: 20431: 20427: 20423: 20419: 20415: 20408: 20400: 20396: 20392: 20388: 20384: 20380: 20373: 20365: 20361: 20357: 20351: 20347: 20343: 20342: 20334: 20332: 20322: 20317: 20310: 20303: 20299: 20295: 20291: 20287: 20285:0-471-05059-8 20281: 20277: 20273: 20269: 20265: 20259: 20252: 20247: 20241:, Chapter I.9 20238: 20232: 20228: 20224: 20223: 20218: 20212: 20205: 20200: 20193: 20188: 20181: 20176: 20172: 20163: 20160: 20158: 20155: 20153: 20150: 20147: 20143: 20139: 20137: 20131: 20127: 20123: 20121: 20118: 20116: 20113: 20110: 20106: 20102: 20099: 20096: 20093: 20090: 20087: 20083: 20079: 20075: 20073: 20069: 20065: 20063: 20060: 20059: 20053: 20051: 20047: 20042: 20040: 20039:amplituhedron 20036: 20032: 20028: 20023: 20021: 20016: 20014: 20010: 20006: 20002: 19997: 19995: 19991: 19987: 19983: 19979: 19974: 19966: 19964: 19960: 19956: 19952: 19951: 19946: 19942: 19922: 19919: 19916: 19913: 19910: 19907: 19899: 19896: 19893: 19887: 19884: 19881: 19875: 19868: 19867: 19866: 19865: 19864: 19850: 19847: 19844: 19824: 19801: 19793: 19780: 19774: 19771: 19768: 19760: 19755: 19722: 19719: 19716: 19708: 19703: 19673: 19653: 19633: 19605: 19596: 19593: 19590: 19584: 19581: 19578: 19572: 19566: 19563: 19556: 19549: 19543: 19540: 19537: 19529: 19514: 19507: 19488: 19487: 19486: 19483: 19464: 19449: 19442: 19405: 19390: 19358: 19331: 19324: 19314: 19312: 19311:Radon measure 19294: 19291: 19288: 19284: 19276:. Moreover, 19263: 19260: 19251: 19243: 19225: 19222: 19219: 19215: 19194: 19191: 19182: 19176: 19168: 19164: 19140: 19134: 19131: 19128: 19100: 19092: 19089: 19086: 19082: 19078: 19072: 19069: 19061: 19058: 19055: 19051: 19043: 19042: 19041: 19040: 19039: 19022: 19016: 18991: 18985: 18982: 18979: 18976: 18973: 18967: 18961: 18955: 18952: 18944: 18940: 18936: 18930: 18922: 18919: 18916: 18912: 18904: 18903: 18902: 18901: 18900: 18883: 18875: 18862: 18859: 18836: 18828: 18815: 18812: 18789: 18783: 18776: 18772: 18754: 18750: 18726: 18718: 18688: 18668: 18654: 18640: 18637: 18629: 18613: 18610: 18602: 18598: 18575: 18572: 18569: 18561: 18558: 18552: 18546: 18538: 18535: 18532: 18528: 18521: 18513: 18509: 18501: 18500: 18499: 18498: 18497: 18495: 18494:Edward Witten 18491: 18470: 18467: 18461: 18455: 18449: 18443: 18436: 18435: 18434: 18433: 18432: 18430: 18426: 18425:Functoriality 18423:is trivial. 18410: 18390: 18382: 18366: 18346: 18337: 18323: 18315: 18314:Chern classes 18311: 18307: 18291: 18268: 18265: 18262: 18251: 18247: 18231: 18224: 18223:vector bundle 18208: 18188: 18163: 18148: 18124: 18103: 18096: 18091: 18088: 18083: 18074: 18069: 18066: 18061: 18054: 18049: 18044: 18041: 18038: 18034: 18026: 18025: 18024: 18023: 18022: 18020: 18004: 17996: 17980: 17960: 17957: 17952: 17949: 17946: 17942: 17933: 17912: 17909: 17904: 17901: 17898: 17894: 17890: 17885: 17882: 17879: 17875: 17870: 17865: 17862: 17859: 17856: 17853: 17849: 17843: 17835: 17832: 17826: 17821: 17818: 17815: 17812: 17809: 17806: 17803: 17799: 17795: 17790: 17787: 17784: 17780: 17772: 17771: 17770: 17769: 17768: 17749: 17746: 17743: 17728: 17698: 17673: 17670: 17667: 17652: 17649: 17646: 17627: 17623:that contain 17621: 17595: 17580: 17548: 17538: 17513: 17504: 17478: 17463: 17431: 17428: 17425: 17421: 17413: 17408: 17406: 17402: 17381: 17375: 17372: 17362: 17358: 17354: 17351: 17348: 17345: 17342: 17339: 17335: 17331: 17328: 17322: 17319: 17306: 17298: 17285: 17282: 17276: 17270: 17267: 17264: 17256: 17252: 17244: 17243: 17242: 17241: 17240: 17221: 17217: 17205: 17204:intersections 17186: 17178: 17165: 17162: 17139: 17131: 17118: 17112: 17109: 17106: 17098: 17094: 17071: 17063: 17060: 17057: 17046: 17045:Young diagram 17027: 17024: 17021: 17016: 17012: 17008: 17005: 17002: 16997: 16993: 16985: 16984: 16983: 16962: 16958: 16952: 16947: 16944: 16941: 16937: 16933: 16925: 16913: 16912: 16911: 16910: 16909: 16887: 16883: 16879: 16876: 16873: 16868: 16864: 16857: 16854: 16847: 16846: 16845: 16844: 16828: 16825: 16817: 16813: 16791:of dimension 16778: 16775: 16770: 16766: 16762: 16759: 16756: 16751: 16747: 16743: 16738: 16734: 16726:of subspaces 16725: 16724:complete flag 16706: 16698: 16680: 16676: 16675: 16670: 16660: 16658: 16639: 16636: 16633: 16610: 16588: 16584: 16563: 16540: 16532: 16529: 16526: 16493: 16485: 16453: 16449: 16428: 16406: 16402: 16398: 16393: 16389: 16368: 16365: 16362: 16332: 16328: 16324: 16320: 16317: 16314: 16293: 16285: 16268: 16267: 16266: 16265: 16264: 16248: 16244: 16220: 16217: 16214: 16191: 16171: 16145: 16137: 16133: 16124: 16120: 16111: 16103: 16099: 16095: 16086: 16079: 16078: 16077: 16076: 16075: 16060: 16056: 16033: 16029: 16006: 15998: 15994: 15990: 15979: 15975: 15954: 15948: 15944: 15940: 15934: 15928: 15922: 15915: 15914: 15913: 15912: 15911: 15909: 15893: 15873: 15869: 15865: 15858: 15855:-dimensional 15839: 15836: 15833: 15810: 15807: 15804: 15784: 15770: 15753: 15748: 15709: 15701: 15685: 15660: 15657: 15652: 15648: 15642: 15638: 15634: 15629: 15625: 15619: 15615: 15611: 15606: 15602: 15596: 15592: 15584: 15583: 15582: 15581: 15580: 15561: 15557: 15553: 15548: 15544: 15540: 15535: 15531: 15527: 15522: 15518: 15514: 15509: 15505: 15501: 15496: 15492: 15465: 15460: 15444: 15438: 15430: 15414: 15394: 15391: 15388: 15368: 15365: 15359: 15353: 15350: 15341: 15327: 15322: 15294: 15288: 15280: 15262: 15258: 15235: 15232: 15229: 15225: 15221: 15218: 15215: 15210: 15206: 15183: 15180: 15177: 15173: 15169: 15166: 15160: 15155: 15151: 15144: 15141: 15138: 15133: 15129: 15103: 15100: 15097: 15090: 15087: 15084: 15080: 15076: 15073: 15067: 15062: 15058: 15051: 15048: 15045: 15040: 15036: 15031: 15023: 15019: 15015: 15010: 15007: 15004: 15000: 14996: 14993: 14990: 14985: 14981: 14976: 14970: 14962: 14959: 14951: 14948: 14945: 14940: 14937: 14934: 14930: 14922: 14921: 14920: 14919: 14918: 14901: 14893: 14857: 14849: 14833: 14825: 14821: 14805: 14802: 14799: 14779: 14776: 14773: 14753: 14750: 14745: 14742: 14739: 14735: 14731: 14728: 14723: 14719: 14715: 14710: 14706: 14702: 14699: 14679: 14676: 14671: 14668: 14665: 14661: 14657: 14654: 14649: 14645: 14641: 14636: 14632: 14628: 14625: 14616: 14599: 14594: 14560: 14540: 14515: 14511: 14507: 14504: 14501: 14496: 14492: 14468: 14463: 14438: 14415: 14409: 14389: 14364: 14360: 14356: 14353: 14350: 14345: 14341: 14314: 14306: 14293: 14290: 14282: 14263: 14260: 14255: 14251: 14247: 14244: 14241: 14236: 14232: 14228: 14225: 14213: 14209: 14205: 14202: 14199: 14194: 14190: 14185: 14154: 14150: 14145: 14141: 14138: 14135: 14128: 14124: 14119: 14095: 14092: 14089: 14065: 14061: 14057: 14054: 14051: 14046: 14042: 14037: 14016: 13996: 13993: 13988: 13984: 13980: 13977: 13974: 13969: 13965: 13961: 13958: 13933: 13928: 13920: 13917: 13913: 13907: 13900: 13897: 13893: 13885: 13880: 13875: 13866: 13863: 13859: 13853: 13846: 13842: 13835: 13830: 13822: 13818: 13814: 13808: 13804: 13797: 13792: 13788: 13780: 13779: 13778: 13777: 13776: 13762: 13737: 13733: 13729: 13726: 13723: 13718: 13714: 13690: 13668: 13664: 13638: 13635: 13631: 13627: 13624: 13621: 13616: 13613: 13609: 13580: 13576: 13572: 13569: 13566: 13561: 13557: 13533: 13513: 13493: 13490: 13487: 13467: 13442: 13438: 13434: 13431: 13428: 13423: 13419: 13395: 13375: 13352: 13347: 13311: 13303: 13285: 13284: 13279: 13252: 13249: 13243: 13237: 13234: 13231: 13224: 13223: 13222: 13221: 13220: 13206: 13203: 13200: 13192: 13173: 13167: 13147: 13127: 13119: 13115: 13099: 13090: 13072: 13048: 13040: 13036: 13032: 13029: 13026: 13021: 13017: 13010: 13004: 12998: 12975: 12969: 12949: 12924: 12920: 12916: 12913: 12910: 12905: 12901: 12874: 12868: 12861:. To define 12848: 12828: 12808: 12788: 12785: 12782: 12775:Suppose that 12758: 12754: 12750: 12745: 12736: 12721: 12718: 12715: 12701: 12698: 12692: 12691: 12690: 12689: 12688: 12674: 12654: 12649: 12637: 12621: 12598: 12595: 12592: 12573: 12567: 12541: 12537: 12533: 12530: 12527: 12524: 12518: 12502: 12499: 12485: 12479: 12470: 12459: 12453: 12450: 12447: 12440: 12432: 12431: 12430: 12429: 12428: 12400: 12397: 12381: 12377: 12370: 12356: 12355: 12354: 12353: 12352: 12335: 12291: 12263: 12260: 12257: 12234: 12218: 12215: 12184: 12140: 12120: 12117: 12114: 12105: 12092: 12089: 12084: 12080: 12041: 12018: 12002: 11999: 11968: 11946: 11915: 11911: 11902: 11881: 11878: 11873: 11869: 11839: 11815: 11814: 11813: 11812: 11811: 11792: 11779: 11776: 11759: 11752: 11751: 11750: 11749: 11748: 11725: 11712: 11709: 11693: 11689: 11667: 11663: 11648: 11645: 11622: 11588: 11587: 11586: 11585: 11584: 11582: 11556: 11553: 11522: 11490: 11487: 11423: 11419: 11403: 11400: 11377: 11374: 11370: 11323: 11306: 11300: 11293: 11292:residue field 11271: 11265: 11258: 11254: 11249: 11238: 11235: 11202: 11187: 11184: 11153: 11144: 11138: 11130: 11124: 11101: 11081: 11050: 11047: 11034: 11031: 11017: 11013: 11010: 11004: 11000: 10986: 10983: 10965: 10964: 10963: 10962: 10961: 10946: 10943: 10922: 10899: 10896: 10893: 10862: 10854: 10838: 10794: 10774: 10742: 10716: 10713: 10682: 10674: 10669: 10650: 10638: 10635: 10604: 10584: 10557: 10553: 10545: 10541: 10536: 10525: 10520: 10504: 10503: 10502: 10501: 10500: 10498: 10482: 10462: 10442: 10422: 10414: 10380: 10378: 10374: 10370: 10360: 10356: 10352: 10348: 10343: 10324: 10320: 10313: 10310: 10307: 10301: 10298: 10292: 10286: 10282: 10277: 10270: 10264: 10261: 10253: 10243: 10240: 10222: 10221: 10220: 10204: 10194: 10189: 10179: 10174: 10170: 10147: 10137: 10134: 10111: 10107: 10096: 10091: 10087: 10082: 10078: 10068: 10063: 10059: 10052: 10049: 10039: 10035: 10024: 10021: 10016: 10012: 10005: 10001: 9996: 9989: 9986: 9983: 9977: 9974: 9968: 9965: 9962: 9944: 9943: 9942: 9925: 9922: 9919: 9913: 9906: 9905:unitary group 9890: 9881: 9861: 9857: 9850: 9847: 9844: 9838: 9835: 9829: 9823: 9819: 9814: 9807: 9801: 9798: 9790: 9780: 9777: 9759: 9758: 9757: 9743: 9721: 9711: 9706: 9696: 9691: 9687: 9664: 9654: 9651: 9626: 9615: 9611: 9600: 9597: 9592: 9588: 9581: 9578: 9570: 9560: 9557: 9554: 9548: 9544: 9539: 9532: 9529: 9526: 9520: 9517: 9511: 9508: 9505: 9487: 9486: 9485: 9471: 9449: 9445: 9422: 9417: 9413: 9381: 9376: 9372: 9361: 9358: 9353: 9348: 9344: 9337: 9334: 9324: 9320: 9309: 9306: 9301: 9297: 9290: 9283: 9282: 9281: 9267: 9264: 9259: 9255: 9234: 9211: 9208: 9205: 9174: 9151: 9148: 9145: 9139: 9132: 9116: 9096: 9021: 9004: 8985: 8969: 8961: 8957: 8953: 8950: 8946: 8927: 8896: 8889: 8885: 8881: 8862: 8798: 8784: 8776: 8757: 8753: 8746: 8732: 8726: 8723: 8720: 8702: 8701: 8700: 8683: 8680: 8677: 8657: 8640: 8603: 8589: 8581: 8577: 8573: 8565: 8561: 8554: 8541: 8527: 8524: 8518: 8510: 8506: 8485: 8482: 8475: 8474: 8473: 8457: 8453: 8444: 8425: 8422: 8419: 8396: 8373: 8359: 8356: 8328: 8324: 8317: 8314: 8311: 8304: 8303: 8302: 8285: 8282: 8279: 8265: 8262: 8242: 8235:of dimension 8222: 8219: 8214: 8210: 8189: 8169: 8161: 8158: 8140: 8121: 8095: 8090: 8085: 8081: 8075: 8071: 8065: 8060: 8057: 8054: 8050: 8046: 8041: 8037: 8029: 8028: 8027: 8026: 8025: 8006: 8002: 7998: 7995: 7992: 7987: 7983: 7957: 7947: 7944: 7924: 7902: 7898: 7872: 7868: 7864: 7861: 7858: 7853: 7849: 7821: 7818: 7815: 7803: 7778: 7739: 7732: 7717: 7714: 7709: 7705: 7697:(Hermitian): 7696: 7680: 7673: 7658: 7655: 7650: 7646: 7637: 7621: 7614: 7613: 7612: 7590: 7587: 7581: 7578: 7575: 7555: 7552: 7549: 7521: 7518: 7512: 7509: 7498: 7495: 7492: 7489: 7483: 7458: 7448: 7445: 7425: 7411: 7389: 7379: 7376: 7351: 7347: 7343: 7340: 7337: 7332: 7328: 7299: 7294: 7289: 7285: 7279: 7275: 7269: 7264: 7261: 7258: 7254: 7250: 7245: 7241: 7233: 7232: 7231: 7230: 7229: 7210: 7200: 7197: 7183: 7180: 7158: 7131: 7103: 7100: 7097: 7094: 7088: 7085: 7082: 7060: 7033: 7008: 6998: 6995: 6956: 6953: 6950: 6947: 6941: 6917: 6914: 6908: 6902: 6899: 6879: 6872: 6857: 6854: 6849: 6845: 6836: 6820: 6813: 6798: 6795: 6790: 6786: 6777: 6761: 6754: 6753: 6752: 6730: 6727: 6721: 6718: 6715: 6687: 6684: 6678: 6675: 6664: 6661: 6658: 6655: 6649: 6629: 6626: 6623: 6595: 6592: 6586: 6574: 6570: 6566: 6562: 6558: 6554: 6548: 6545: 6531: 6523: 6522:operator norm 6499: 6479: 6476: 6472: 6469: 6465: 6462: 6455:for any pair 6437: 6428: 6425: 6420: 6416: 6411: 6407: 6400: 6393: 6390: 6386: 6383: 6377: 6370: 6369: 6368: 6367: 6366: 6364: 6345: 6342: 6339: 6320: 6317: 6298: 6295: 6287: 6283: 6279: 6265: 6259: 6242: 6239: 6227: 6211: 6208: 6205: 6176: 6173: 6170: 6143: 6140: 6137: 6112: 6102: 6099: 6063: 6053: 6050: 6017: 6007: 6004: 5982: 5972: 5969: 5944: 5940: 5936: 5933: 5927: 5912: 5907: 5903: 5899: 5894: 5890: 5886: 5883: 5880: 5874: 5857: 5854: 5850: 5846: 5840: 5837: 5834: 5816: 5815: 5814: 5813: 5812: 5798: 5778: 5755: 5752: 5749: 5730: 5711: 5697: 5692: 5688: 5667: 5647: 5615: 5610: 5606: 5602: 5599: 5590: 5583: 5580: 5577: 5568: 5562: 5557: 5551: 5543: 5539: 5531: 5530: 5529: 5528: 5527: 5526:and defining 5511: 5507: 5486: 5459: 5455: 5451: 5448: 5445: 5442: 5435: 5434: 5433: 5432: 5431: 5417: 5410:by splitting 5397: 5394: 5391: 5383: 5367: 5361: 5358: 5353: 5349: 5328: 5308: 5288: 5268: 5245: 5242: 5239: 5229: 5228:inner product 5225: 5221: 5211: 5194: 5186: 5149: 5145: 5141: 5138: 5135: 5130: 5126: 5121: 5117: 5110: 5106: 5102: 5099: 5096: 5091: 5087: 5082: 5054: 5050: 5046: 5043: 5040: 5035: 5031: 5026: 5001: 4997: 4993: 4990: 4987: 4982: 4978: 4967: 4941: 4937: 4916: 4909:matrix whose 4896: 4893: 4890: 4866: 4862: 4858: 4855: 4852: 4847: 4843: 4835: 4831: 4827: 4824: 4821: 4816: 4812: 4801: 4772: 4767: 4764: 4752: 4748: 4744: 4741: 4738: 4733: 4729: 4721: 4717: 4713: 4710: 4707: 4702: 4698: 4687: 4673: 4669: 4665: 4662: 4659: 4654: 4650: 4639: 4632: 4625: 4621: 4617: 4614: 4611: 4606: 4602: 4591: 4580: 4579: 4578: 4577: 4576: 4558: 4554: 4550: 4547: 4544: 4539: 4535: 4530: 4505: 4501: 4497: 4494: 4491: 4486: 4482: 4477: 4451: 4444: 4440: 4436: 4433: 4430: 4425: 4421: 4416: 4408: 4404: 4400: 4397: 4394: 4389: 4385: 4374: 4367: 4360: 4356: 4352: 4349: 4346: 4341: 4337: 4332: 4324: 4320: 4316: 4313: 4310: 4305: 4301: 4290: 4279: 4278: 4277: 4276: 4275: 4257: 4253: 4249: 4246: 4243: 4238: 4234: 4229: 4204: 4200: 4196: 4193: 4190: 4185: 4181: 4176: 4151: 4147: 4143: 4140: 4137: 4132: 4128: 4123: 4119: 4112: 4108: 4104: 4101: 4098: 4093: 4089: 4084: 4059: 4055: 4051: 4048: 4045: 4040: 4036: 4031: 4005: 4001: 3997: 3994: 3991: 3986: 3982: 3958: 3955: 3952: 3925: 3922: 3910: 3906: 3902: 3899: 3896: 3891: 3887: 3882: 3875: 3872: 3865: 3861: 3857: 3854: 3851: 3846: 3842: 3831: 3820: 3819: 3818: 3817: 3816: 3802: 3799: 3793: 3790: 3787: 3764: 3740: 3736: 3732: 3729: 3726: 3721: 3717: 3712: 3703: 3683: 3679: 3675: 3672: 3669: 3664: 3660: 3655: 3630: 3626: 3622: 3619: 3616: 3611: 3607: 3602: 3590:representing 3573: 3569: 3565: 3562: 3559: 3554: 3550: 3545: 3521: 3513: 3500: 3497: 3474: 3451: 3431: 3428: 3425: 3400: 3396: 3392: 3389: 3386: 3381: 3377: 3351: 3348: 3341: 3337: 3333: 3330: 3327: 3322: 3318: 3313: 3309: 3285: 3281: 3277: 3274: 3271: 3266: 3262: 3257: 3236: 3233: 3227: 3224: 3221: 3194: 3190: 3186: 3183: 3180: 3175: 3171: 3166: 3145: 3123: 3119: 3098: 3074: 3070: 3066: 3063: 3060: 3055: 3051: 3046: 3025: 3022: 3019: 2999: 2976: 2968: 2955: 2952: 2928: 2924: 2920: 2917: 2914: 2909: 2905: 2900: 2879: 2876: 2871: 2867: 2863: 2860: 2857: 2852: 2848: 2844: 2841: 2832: 2818: 2810: 2806: 2790: 2765: 2761: 2757: 2754: 2751: 2746: 2742: 2714: 2710: 2706: 2703: 2700: 2695: 2691: 2686: 2665: 2662: 2659: 2639: 2636: 2631: 2627: 2623: 2620: 2617: 2612: 2608: 2604: 2601: 2581: 2561: 2541: 2521: 2496: 2493: 2489: 2478:with entries 2465: 2445: 2442: 2436: 2433: 2430: 2400: 2392: 2389: 2386: 2383: 2380: 2376: 2370: 2365: 2358: 2355: 2352: 2349: 2346: 2342: 2334: 2327: 2318: 2315: 2312: 2308: 2302: 2297: 2290: 2287: 2284: 2280: 2272: 2262: 2253: 2245: 2239: 2230: 2229: 2228: 2227: 2226: 2212: 2192: 2184: 2165: 2162: 2159: 2153: 2150: 2147: 2144: 2124: 2116: 2100: 2080: 2077: 2074: 2065: 2048: 2025: 2005: 1985: 1982: 1979: 1959: 1939: 1936: 1933: 1926: 1922: 1903: 1900: 1897: 1891: 1888: 1885: 1882: 1857: 1854: 1851: 1842: 1832: 1831: 1830: 1829: 1828: 1811: 1803: 1790: 1787: 1761: 1738: 1718: 1715: 1712: 1709: 1706: 1703: 1700: 1678: 1674: 1653: 1633: 1626: 1622: 1606: 1603: 1600: 1577: 1569: 1556: 1553: 1545: 1524: 1520: 1516: 1513: 1510: 1505: 1501: 1489: 1474: 1451: 1443: 1413: 1410: 1407: 1387: 1362: 1358: 1354: 1351: 1348: 1343: 1339: 1313: 1309: 1288: 1268: 1260: 1241: 1233: 1209: 1205: 1199: 1197: 1192: 1185: 1178: 1173: 1172:perpendicular 1167: 1161: 1157: 1138: 1135: 1132: 1118: 1108: 1104: 1097: 1086: 1084: 1080: 1076: 1072: 1056: 1036: 1028: 1023: 1021: 1005: 985: 965: 962: 959: 934: 919: 885: 878:assigning to 877: 859: 830: 803: 795: 794:tangent space 779: 776: 773: 751: 724: 717:of dimension 704: 696: 692: 687: 685: 681: 677: 673: 669: 659: 645: 625: 605: 582: 579: 576: 542: 534: 501: 498: 495: 461: 453: 434: 432: 428: 424: 403: 388: 370: 365: 363: 344: 341: 338: 332: 324: 321: 317: 313: 297: 277: 254: 239: 223: 200: 192: 162: 155: 139: 132: 129:-dimensional 116: 108: 105: 89: 81: 77: 58: 50: 33: 29: 22: 21290: 21266: 21227: 21224:Lee, John M. 21206: 21186: 21165: 21144: 21101: 21073:. Retrieved 21037: 21031: 21014: 20990: 20985: 20942: 20938: 20932: 20920:. Retrieved 20916: 20906: 20863: 20859: 20853: 20818: 20814: 20808: 20773: 20764: 20747: 20743: 20733: 20698: 20659: 20655: 20609: 20605: 20588: 20583: 20554: 20550: 20536: 20511: 20507: 20501: 20458: 20454: 20448: 20421: 20417: 20407: 20382: 20378: 20372: 20344:. New York: 20340: 20309: 20271: 20258: 20246: 20221: 20211: 20206:, pp. 57–59. 20199: 20187: 20175: 20135: 20043: 20024: 20017: 20005:KP hierarchy 19998: 19994:Bethe ansatz 19992:, using the 19990:Gaudin model 19975: 19972: 19969:Applications 19962: 19949: 19939: 19625: 19484: 19322: 19320: 19120: 19008: 18771:Haar measure 18769:be the unit 18660: 18594: 18487: 18338: 18130: 18122: 17929: 17625: 17619: 17502: 17409: 17398: 17042: 16981: 16907: 16673: 16666: 16354: 16162: 15971: 15776: 15677: 15342: 15120: 14617: 14280: 13950: 13282: 13275: 13091: 12774: 12569: 12426: 12106: 11898: 11809: 11742: 11581:homomorphism 11329: 11073: 10670: 10576: 10415:on a scheme 10386: 10366: 10354: 10350: 10346: 10339: 10126: 9879: 9876: 9643: 9404: 9022: 8949:non-singular 8909:, the group 8888:ground field 8799: 8772: 8658: 8621: 8348: 8160:transitively 8117: 7799: 7695:self-adjoint 7426: 7316: 6933: 6708:of matrices 6578: 6572: 6568: 6564: 6560: 6556: 6552: 6546: 6520:denotes the 6454: 6365:with metric 6363:metric space 6228: 5961: 5639: 5478: 5217: 4789: 4468: 3944: 2833: 2783:-th rows of 2419: 2066: 1874: 1623:rectangular 1215: 1203: 1200: 1190: 1183: 1176: 1165: 1162: 1160:dimensions. 1155: 1106: 1102: 1095: 1092: 1024: 737:embedded in 688: 665: 435: 366: 131:vector space 32:Grassmannian 31: 25: 21153:section 1.2 20922:17 December 20756:2433/102800 20253:, II.3.6.3. 19955:pure spinor 19207:, we have 19038:; that is, 18123:otherwise. 17613:into those 15972:Taking the 13546:with basis 13219:such that 13114:determinant 12427:is the set 9736:(the first 9644:If we take 9129:. The real 8775:left cosets 7611:satisfying 7542:of complex 4469:where both 3138:-th row of 2805:nonsingular 2514:determines 668:topological 104:dimensional 28:mathematics 21325:Categories 21132:0836.14001 21087:References 21075:2008-09-05 20945:(10): 30. 20821:: 83–151. 20770:Harnad, J. 20744:数理解析研究所講究録 20695:Harnad, J. 20302:0836.14001 20050:grand tour 19947:theory of 19863:for which 18628:zero-modes 18626:fermionic 18381:direct sum 18306:cohomology 18201:-plane in 18181:defines a 16908:of weight 16841:. For any 13480:, and let 12962:, and let 11901:surjective 11747:-schemes: 10875:, namely: 10853:dual space 10741:projective 8622:under the 8443:stabilizer 7800:where the 7752:has trace 6892:has trace 4956:th row of 3038:submatrix 2678:submatrix 1925:invertible 1083:isomorphic 672:continuous 662:Motivation 21254:808682771 21054:1618-1913 21007:full text 20952:1312.2007 20873:1106.0023 20828:0902.4433 20800:222379146 20750:: 30–46. 20725:222379146 20678:0034-5318 20634:0031-9015 20564:0711.4079 20493:123324468 20140:. In the 20072:Gauss map 19917:∈ 19904:∀ 19848:⊂ 19781:⊂ 19594:− 19585:⁡ 19579:× 19567:⁡ 19544:⁡ 19508:~ 19443:~ 19285:γ 19216:γ 19165:θ 19132:∈ 19083:γ 19052:γ 18983:∈ 18962:⁡ 18956:∈ 18941:θ 18913:γ 18899:, define 18863:⊂ 18816:∈ 18751:θ 18601:instanton 18573:− 18559:− 18536:− 18312:, by the 18266:− 18035:χ 17943:χ 17895:χ 17876:χ 17863:− 17850:χ 17833:− 17819:− 17807:− 17800:χ 17781:χ 17747:− 17671:− 17650:− 17539:⊂ 17506:. Fix a 17422:χ 17359:λ 17355:− 17343:− 17332:∩ 17323:⁡ 17286:∈ 17257:λ 17166:∈ 17119:⊂ 17099:λ 17061:− 17022:≥ 17013:λ 17009:≥ 17006:⋯ 17003:≥ 16994:λ 16959:λ 16938:∑ 16926:λ 16884:λ 16877:⋯ 16865:λ 16855:λ 16763:⊂ 16760:⋯ 16757:⊂ 16744:⊂ 16637:− 16589:∗ 16530:− 16454:∗ 16407:∗ 16399:⊂ 16366:⊂ 16333:∗ 16318:− 16300:↔ 16249:∗ 16218:− 16143:→ 16138:∗ 16130:→ 16125:∗ 16117:→ 16112:∗ 16090:→ 16061:∗ 16034:∗ 16007:∗ 15952:→ 15938:→ 15932:→ 15926:→ 15837:− 15808:⊂ 15745:Λ 15686:ι 15612:− 15457:Λ 15445:⊂ 15415:ι 15354:⁡ 15319:Λ 15289:ι 15219:… 15170:… 15161:^ 15142:… 15077:… 15068:^ 15049:… 15008:− 14994:… 14971:ℓ 14960:− 14931:∑ 14834:ι 14822:, or the 14777:− 14751:≤ 14729:⋯ 14703:≤ 14677:≤ 14669:− 14655:⋯ 14629:≤ 14591:Λ 14505:⋯ 14460:Λ 14410:ι 14354:⋯ 14294:∈ 14261:≤ 14245:⋯ 14229:≤ 14203:… 14139:… 14093:× 14055:… 13994:≤ 13978:⋯ 13962:≤ 13908:⋯ 13886:⋮ 13881:⋱ 13876:⋮ 13854:⋯ 13815:⋯ 13727:… 13625:⋯ 13570:⋯ 13491:⊂ 13432:⋯ 13344:Λ 13238:ι 13235:∧ 13204:∈ 13168:ι 13128:ι 13073:⋅ 13033:∧ 13030:⋯ 13027:∧ 12999:ι 12970:ι 12914:⋯ 12869:ι 12786:⊂ 12742:Λ 12728:→ 12699:ι 12646:Λ 12531:∈ 12525:∣ 12486:× 12460:∈ 12378:× 12261:− 12081:× 11870:× 11848:→ 11763:→ 11690:× 11614:→ 11290:over the 11250:⊗ 11151:→ 11018:≃ 11001:× 10537:⊗ 10311:− 10299:× 10195:⊂ 10097:⊥ 10069:⊥ 10050:× 9848:− 9836:× 9712:⊂ 9616:⊥ 9593:⊥ 9579:× 9423:⊥ 9382:⊥ 9354:⊥ 9335:× 9265:⊂ 8880:Lie group 8656:-action. 8590:⊂ 8528:∈ 8423:∈ 8360:∈ 8266:∈ 8220:⊂ 8091:† 8051:∑ 7996:⋯ 7948:⊂ 7862:⋯ 7826:⟩ 7822:⋅ 7816:⋅ 7812:⟨ 7710:† 7579:∈ 7568:matrices 7553:× 7510:⊂ 7380:⊂ 7341:⋯ 7255:∑ 7184:∈ 7086:∈ 6903:⁡ 6835:symmetric 6719:∈ 6676:⊂ 6627:× 6477:⊂ 6435:‖ 6417:− 6404:‖ 6319:Hausdorff 6288:† 6266:∣ 6243:∈ 6209:× 6174:× 6156:matrices 6141:× 5908:† 5881:∣ 5858:∈ 5847:∼ 5611:⊥ 5603:∈ 5581:∈ 5512:⊥ 5460:⊥ 5452:⊕ 5395:⊂ 5365:→ 5249:⟩ 5246:⋅ 5240:⋅ 5237:⟨ 5139:… 5100:… 5044:… 4991:… 4971:^ 4894:× 4856:… 4825:… 4805:^ 4765:− 4742:… 4711:… 4691:^ 4663:… 4643:^ 4615:… 4595:^ 4548:… 4495:… 4434:… 4398:… 4378:^ 4350:… 4314:… 4294:^ 4247:… 4194:… 4141:… 4120:∩ 4102:… 4049:… 3995:… 3956:× 3923:− 3900:… 3855:… 3835:^ 3800:× 3791:− 3730:… 3673:… 3620:… 3563:… 3501:∈ 3429:× 3390:… 3349:− 3331:… 3275:… 3234:× 3225:− 3184:… 3064:… 3023:× 2956:∈ 2918:… 2877:≤ 2861:⋯ 2845:≤ 2755:… 2704:… 2663:× 2637:≤ 2621:⋯ 2605:≤ 2443:× 2434:− 2384:− 2371:⋯ 2366:⋯ 2350:− 2335:⋮ 2328:⋮ 2303:⋯ 2298:⋯ 2263:⋱ 2148:∈ 2078:× 1998:matrices 1983:× 1937:× 1886:∈ 1846:~ 1791:∈ 1765:~ 1713:… 1604:× 1557:∈ 1514:… 1411:⊂ 1352:… 1216:To endow 1136:− 1079:homotopic 1020:Gauss map 963:∈ 777:∈ 342:− 21288:(2013). 21264:(1995). 21226:(2012). 21164:(1974). 21142:(2003). 21100:(1994). 21070:14420180 21023:(1999). 21003:abstract 20898:51759294 20845:18390193 20545:(2009). 20270:(1994), 20219:(1971). 20180:Lee 2012 20130:K-theory 20056:See also 19996:method. 19945:Cartan's 19323:oriented 19156:. Since 19121:for all 18805:and fix 18097:⌋ 18084:⌊ 18075:⌋ 18062:⌊ 11051:′ 11014:′ 10947:′ 10935:-scheme 10695:-scheme 10475:-scheme 10127:or, for 8960:complete 8389:, where 6518:‖ 6514:‖ 6473:′ 6429:′ 6394:′ 5660:of rank 3777:-valued 2420:and the 2205:rows of 2018:of rank 1619:maximal 1073:must be 1071:theorems 429:below.) 21124:1288523 21062:1813224 20977:7717260 20957:Bibcode 20878:Bibcode 20614:Bibcode 20528:2373211 20485:2372896 20426:Bibcode 20387:Bibcode 20364:0631850 20294:1288523 20020:soliton 19950:spinors 19646:on the 18773:on the 18653:units. 18427:of the 16671:called 15773:Duality 13368:of the 13189:as the 13116:of the 10673:functor 10342:compact 9247:-space 8441:of the 8162:on the 7124:to the 6361:into a 6316:compact 3249:matrix 1919:of the 1542:. The 425:. (See 320:compact 316:complex 290:. When 152:over a 78:) is a 21310:  21274:  21252:  21242:  21213:  21194:  21172:  21130:  21122:  21112:  21068:  21060:  21052:  20997:  20975:  20896:  20843:  20798:  20788:  20723:  20713:  20676:  20632:  20526:  20491:  20483:  20362:  20352:  20300:  20292:  20282:  20233:  20080:, see 20070:, see 18681:is an 18599:of an 17202:whose 17043:whose 15777:Every 15381:, and 15121:where 13703:, and 13598:. Let 13061:where 10373:scheme 9903:, the 9405:where 8943:is an 7317:where 6563:) and 5380:whose 5071:, and 4790:where 3091:whose 3012:, the 2892:, let 1646:whose 1625:matrix 1206:(2, 4) 1188:, and 1186:(1, 3) 1179:(2, 3) 1075:proved 874:. The 792:, the 680:closed 109:of an 30:, the 21149:(PDF) 21066:S2CID 21028:(PDF) 20973:S2CID 20947:arXiv 20894:S2CID 20868:arXiv 20841:S2CID 20823:arXiv 20796:S2CID 20721:S2CID 20559:arXiv 20524:JSTOR 20489:S2CID 20481:JSTOR 20316:arXiv 20168:Notes 19309:is a 18661:When 18603:with 18248:of a 16576:with 16441:with 15343:When 13506:be a 13160:from 12801:is a 11535:over 10671:This 10411:be a 9877:Over 9023:Over 8982:is a 7634:is a 6774:is a 5729:trace 5382:image 3704:from 1301:with 1259:basis 1194:(the 310:is a 154:field 21308:ISBN 21272:ISBN 21250:OCLC 21240:ISBN 21211:ISBN 21192:ISBN 21170:ISBN 21110:ISBN 21050:ISSN 20995:ISBN 20943:2014 20924:2020 20786:ISBN 20711:ISBN 20674:ISSN 20630:ISSN 20350:ISBN 20280:ISBN 20231:ISBN 20084:and 20025:The 18488:The 18403:and 18359:and 18310:ring 18021:and 17997:and 17995:even 16509:and 16204:and 15974:dual 14792:and 14732:< 14716:< 14692:and 14658:< 14642:< 14248:< 14242:< 13981:< 13975:< 13755:the 13460:for 13276:The 13191:span 12942:for 12570:The 12153:and 11135:Spec 10387:Let 10162:and 9679:and 9280:is 8844:and 8157:acts 6579:Let 5811:: 4522:and 4221:and 2864:< 2858:< 2624:< 2618:< 1751:and 1621:rank 1261:for 1163:For 1105:(1, 1093:For 678:and 676:open 312:real 21300:doi 21128:Zbl 21042:doi 20965:doi 20886:doi 20864:198 20833:doi 20819:123 20778:doi 20752:hdl 20748:439 20703:doi 20664:doi 20622:doi 20569:doi 20516:doi 20471:hdl 20463:doi 20434:doi 20395:doi 20298:Zbl 20251:EGA 20128:in 20107:or 20076:In 20029:of 18316:of 18019:odd 18017:is 17993:is 17973:if 17496:of 17320:dim 16021:in 15886:of 15351:dim 14876:of 14766:of 14533:of 14431:of 14382:of 14009:of 12667:of 12634:th 12351:in 12276:in 12054:in 11460:of 11094:of 10855:of 10743:if 10597:on 10499:of 9464:in 9109:on 9045:or 8986:of 8822:or 8777:of 8773:of 8445:of 8024:is 7693:is 7026:of 6833:is 6492:of 6191:, 5997:or 5479:of 5384:is 5261:on 3464:in 2803:is 1923:of 1168:= 2 1158:− 1 1153:of 1098:= 1 902:to 876:map 796:to 314:or 26:In 21327:: 21306:. 21298:. 21294:. 21248:. 21238:. 21230:. 21160:; 21126:. 21120:MR 21118:. 21096:; 21064:. 21058:MR 21056:. 21048:. 21038:90 21036:. 21030:. 21005:, 20971:. 20963:. 20955:. 20941:. 20915:. 20892:. 20884:. 20876:. 20862:. 20839:. 20831:. 20817:. 20794:. 20784:. 20746:. 20742:. 20719:. 20709:. 20686:^ 20672:. 20660:19 20658:. 20654:. 20642:^ 20628:. 20620:. 20610:50 20608:. 20596:^ 20567:. 20555:22 20553:. 20549:. 20522:. 20512:85 20510:. 20487:. 20479:. 20469:. 20459:83 20457:. 20432:. 20422:36 20420:. 20416:. 20393:. 20383:33 20381:. 20360:MR 20358:. 20348:. 20330:^ 20296:, 20290:MR 20288:, 20266:; 20229:. 20052:. 20041:. 19965:. 19582:SO 19564:SO 19541:SO 19482:. 18471:1. 17913:1. 17407:. 16659:. 16146:0. 15955:0. 15910:: 15661:0. 15653:23 15643:14 15630:24 15620:13 15607:34 15597:12 15562:34 15549:24 15536:23 15523:14 15510:13 15497:12 15340:. 14615:. 13847:11 12687:. 11322:. 10668:. 10526::= 10379:. 10359:. 10353:− 10219:, 9020:. 8797:. 8519::= 8486::= 8472:: 8047::= 7638:: 7251::= 6900:tr 6837:: 6778:: 6565:Gr 6553:Gr 6401::= 6081:, 5698::= 3873::= 2064:. 1693:, 1208:. 1204:Gr 1184:Gr 1181:, 1177:Gr 1103:Gr 658:. 558:, 477:, 364:. 21316:. 21302:: 21280:. 21256:. 21200:. 21178:. 21134:. 21078:. 21044:: 21009:) 20979:. 20967:: 20959:: 20949:: 20926:. 20900:. 20888:: 20880:: 20870:: 20847:. 20835:: 20825:: 20802:. 20780:: 20758:. 20754:: 20727:. 20705:: 20680:. 20666:: 20636:. 20624:: 20616:: 20577:. 20571:: 20561:: 20530:. 20518:: 20495:. 20473:: 20465:: 20442:. 20436:: 20428:: 20401:. 20397:: 20389:: 20366:. 20324:. 20318:: 20239:. 20148:. 20138:) 20136:n 20111:. 20088:. 19923:. 19920:w 19914:v 19911:, 19908:u 19900:, 19897:0 19894:= 19891:) 19888:v 19885:, 19882:u 19879:( 19876:Q 19851:V 19845:w 19825:k 19805:) 19802:V 19799:( 19794:k 19789:r 19786:G 19778:) 19775:Q 19772:, 19769:V 19766:( 19761:0 19756:k 19751:r 19748:G 19726:) 19723:Q 19720:, 19717:V 19714:( 19709:0 19704:k 19699:r 19696:G 19674:V 19654:n 19634:Q 19606:. 19603:) 19600:) 19597:k 19591:n 19588:( 19576:) 19573:k 19570:( 19561:( 19557:/ 19553:) 19550:n 19547:( 19538:= 19535:) 19530:n 19525:R 19520:( 19515:k 19504:r 19501:G 19470:) 19465:n 19460:R 19455:( 19450:k 19439:r 19436:G 19411:) 19406:n 19401:R 19396:( 19391:k 19386:r 19383:G 19359:n 19354:R 19332:k 19295:n 19292:, 19289:k 19264:1 19261:= 19258:) 19255:) 19252:V 19249:( 19244:k 19239:r 19236:G 19231:( 19226:n 19223:, 19220:k 19195:1 19192:= 19189:) 19186:) 19183:n 19180:( 19177:O 19174:( 19169:n 19144:) 19141:n 19138:( 19135:O 19129:g 19104:) 19101:A 19098:( 19093:n 19090:, 19087:k 19079:= 19076:) 19073:A 19070:g 19067:( 19062:n 19059:, 19056:k 19026:) 19023:n 19020:( 19017:O 18992:. 18989:} 18986:A 18980:w 18977:g 18974:: 18971:) 18968:n 18965:( 18959:O 18953:g 18950:{ 18945:n 18937:= 18934:) 18931:A 18928:( 18923:n 18920:, 18917:k 18887:) 18884:V 18881:( 18876:k 18871:r 18868:G 18860:A 18840:) 18837:V 18834:( 18829:k 18824:r 18821:G 18813:w 18793:) 18790:n 18787:( 18784:O 18755:n 18730:) 18727:V 18724:( 18719:k 18714:r 18711:G 18689:n 18669:V 18641:n 18638:2 18614:n 18611:2 18576:k 18570:n 18566:) 18562:1 18556:( 18553:= 18550:) 18547:F 18544:( 18539:k 18533:n 18529:c 18525:) 18522:E 18519:( 18514:k 18510:c 18468:= 18465:) 18462:F 18459:( 18456:c 18453:) 18450:E 18447:( 18444:c 18411:F 18391:E 18367:F 18347:E 18324:E 18292:F 18272:) 18269:k 18263:n 18260:( 18232:E 18209:n 18189:k 18169:) 18164:n 18159:C 18154:( 18149:k 18144:r 18141:G 18104:) 18092:2 18089:k 18070:2 18067:n 18055:( 18050:= 18045:n 18042:, 18039:k 18005:k 17981:n 17961:0 17958:= 17953:n 17950:, 17947:k 17910:= 17905:n 17902:, 17899:n 17891:= 17886:n 17883:, 17880:0 17871:, 17866:1 17860:n 17857:, 17854:k 17844:k 17840:) 17836:1 17830:( 17827:+ 17822:1 17816:n 17813:, 17810:1 17804:k 17796:= 17791:n 17788:, 17785:k 17755:) 17750:1 17744:n 17739:R 17734:( 17729:k 17724:r 17721:G 17699:k 17679:) 17674:1 17668:n 17663:R 17658:( 17653:1 17647:k 17642:r 17639:G 17626:R 17620:R 17615:k 17601:) 17596:n 17591:R 17586:( 17581:k 17576:r 17573:G 17549:n 17544:R 17535:R 17514:1 17503:R 17498:k 17484:) 17479:n 17474:R 17469:( 17464:k 17459:r 17456:G 17432:n 17429:, 17426:k 17382:. 17379:} 17376:j 17373:= 17370:) 17363:j 17352:j 17349:+ 17346:k 17340:n 17336:V 17329:W 17326:( 17315:| 17310:) 17307:V 17304:( 17299:k 17294:r 17291:G 17283:W 17280:{ 17277:= 17274:) 17271:n 17268:, 17265:k 17262:( 17253:X 17227:} 17222:i 17218:V 17214:{ 17190:) 17187:V 17184:( 17179:k 17174:r 17171:G 17163:W 17143:) 17140:V 17137:( 17132:k 17127:r 17124:G 17116:) 17113:n 17110:, 17107:k 17104:( 17095:X 17072:k 17068:) 17064:k 17058:n 17055:( 17028:, 17025:0 17017:k 16998:1 16963:i 16953:k 16948:1 16945:= 16942:i 16934:= 16930:| 16922:| 16893:) 16888:k 16880:, 16874:, 16869:1 16861:( 16858:= 16829:i 16826:= 16823:) 16818:i 16814:V 16810:( 16806:m 16803:i 16800:d 16779:V 16776:= 16771:n 16767:V 16752:2 16748:V 16739:1 16735:V 16710:) 16707:V 16704:( 16699:k 16694:r 16691:G 16643:) 16640:k 16634:n 16631:( 16611:k 16585:V 16564:V 16544:) 16541:V 16538:( 16533:k 16527:n 16522:r 16519:G 16497:) 16494:V 16491:( 16486:k 16481:r 16478:G 16450:V 16429:V 16403:V 16394:0 16390:W 16369:V 16363:W 16338:) 16329:V 16325:, 16321:k 16315:n 16312:( 16307:r 16304:G 16297:) 16294:V 16291:( 16286:k 16281:r 16278:G 16245:V 16224:) 16221:k 16215:n 16212:( 16192:V 16172:k 16134:W 16121:V 16108:) 16104:W 16100:/ 16096:V 16093:( 16087:0 16057:W 16030:V 16003:) 15999:W 15995:/ 15991:V 15988:( 15949:W 15945:/ 15941:V 15935:V 15929:W 15923:0 15894:V 15874:W 15870:/ 15866:V 15843:) 15840:k 15834:n 15831:( 15811:V 15805:W 15785:k 15757:) 15754:V 15749:k 15741:( 15737:P 15716:) 15713:) 15710:V 15707:( 15702:k 15697:r 15694:G 15689:( 15658:= 15649:w 15639:w 15635:+ 15626:w 15616:w 15603:w 15593:w 15567:) 15558:w 15554:, 15545:w 15541:, 15532:w 15528:, 15519:w 15515:, 15506:w 15502:, 15493:w 15489:( 15469:) 15466:V 15461:2 15453:( 15449:P 15442:) 15439:V 15436:( 15431:2 15426:r 15423:G 15418:( 15395:2 15392:= 15389:k 15369:4 15366:= 15363:) 15360:V 15357:( 15328:V 15323:k 15298:) 15295:w 15292:( 15263:l 15259:j 15236:1 15233:+ 15230:k 15226:j 15222:, 15216:, 15211:1 15207:j 15184:1 15181:+ 15178:k 15174:j 15167:, 15156:l 15152:j 15145:, 15139:, 15134:1 15130:j 15104:, 15101:0 15098:= 15091:1 15088:+ 15085:k 15081:j 15074:, 15063:l 15059:j 15052:, 15046:, 15041:1 15037:j 15032:w 15024:l 15020:j 15016:, 15011:1 15005:k 15001:i 14997:, 14991:, 14986:1 14982:i 14977:w 14967:) 14963:1 14957:( 14952:1 14949:+ 14946:k 14941:1 14938:= 14935:l 14905:) 14902:V 14899:( 14894:k 14889:r 14886:G 14864:) 14861:) 14858:V 14855:( 14850:k 14845:r 14842:G 14837:( 14806:1 14803:+ 14800:k 14780:1 14774:k 14754:n 14746:1 14743:+ 14740:k 14736:j 14724:2 14720:j 14711:1 14707:j 14700:1 14680:n 14672:1 14666:k 14662:i 14650:2 14646:i 14637:1 14633:i 14626:1 14603:) 14600:V 14595:k 14587:( 14583:P 14561:w 14541:V 14521:) 14516:n 14512:e 14508:, 14502:, 14497:1 14493:e 14489:( 14469:V 14464:k 14439:w 14419:) 14416:w 14413:( 14390:V 14370:) 14365:n 14361:e 14357:, 14351:, 14346:1 14342:e 14338:( 14318:) 14315:V 14312:( 14307:k 14302:r 14299:G 14291:w 14267:} 14264:n 14256:k 14252:i 14237:1 14233:i 14226:1 14222:| 14214:k 14210:i 14206:, 14200:, 14195:1 14191:i 14186:w 14182:{ 14162:] 14155:k 14151:i 14146:W 14142:, 14136:, 14129:1 14125:i 14120:W 14116:[ 14096:k 14090:k 14066:k 14062:i 14058:, 14052:, 14047:1 14043:i 14038:w 14017:k 13997:n 13989:k 13985:i 13970:1 13966:i 13959:1 13934:, 13929:] 13921:n 13918:k 13914:w 13901:1 13898:k 13894:w 13867:n 13864:1 13860:w 13843:w 13836:[ 13831:= 13828:] 13823:n 13819:W 13809:1 13805:W 13801:[ 13798:= 13793:T 13789:W 13763:k 13743:) 13738:n 13734:W 13730:, 13724:, 13719:1 13715:W 13711:( 13691:V 13669:i 13665:w 13644:) 13639:n 13636:i 13632:w 13628:, 13622:, 13617:1 13614:i 13610:w 13606:( 13586:) 13581:k 13577:w 13573:, 13567:, 13562:1 13558:w 13554:( 13534:V 13514:k 13494:V 13488:w 13468:V 13448:) 13443:n 13439:e 13435:, 13429:, 13424:1 13420:e 13416:( 13396:V 13376:k 13356:) 13353:V 13348:k 13340:( 13336:P 13315:) 13312:V 13309:( 13304:k 13299:r 13296:G 13265:. 13253:0 13250:= 13247:) 13244:w 13241:( 13232:v 13207:V 13201:v 13177:) 13174:w 13171:( 13148:w 13100:w 13077:] 13069:[ 13049:, 13046:] 13041:k 13037:w 13022:1 13018:w 13014:[ 13011:= 13008:) 13005:w 13002:( 12979:) 12976:w 12973:( 12950:w 12930:) 12925:k 12921:w 12917:, 12911:, 12906:1 12902:w 12898:( 12878:) 12875:w 12872:( 12849:V 12829:n 12809:k 12789:V 12783:w 12759:. 12755:) 12751:V 12746:k 12737:( 12732:P 12725:) 12722:V 12719:, 12716:k 12713:( 12709:r 12706:G 12702:: 12675:V 12655:V 12650:k 12622:k 12602:) 12599:V 12596:, 12593:k 12590:( 12586:r 12583:G 12542:. 12538:} 12534:v 12528:x 12522:) 12519:K 12516:( 12513:) 12508:E 12503:, 12500:k 12497:( 12493:r 12490:G 12483:) 12480:K 12477:( 12474:) 12471:V 12468:( 12464:P 12457:) 12454:v 12451:, 12448:x 12445:( 12441:{ 12411:) 12406:E 12401:, 12398:k 12395:( 12391:r 12388:G 12382:K 12374:) 12371:V 12368:( 12364:P 12339:) 12336:K 12333:( 12330:) 12325:G 12320:( 12316:P 12295:) 12292:V 12289:( 12285:P 12264:1 12258:k 12238:) 12235:K 12232:( 12229:) 12224:E 12219:, 12216:k 12213:( 12209:r 12206:G 12185:V 12163:E 12141:K 12121:S 12118:= 12115:T 12093:. 12090:T 12085:S 12077:) 12072:E 12067:( 12063:P 12042:k 12022:) 12019:T 12016:( 12013:) 12008:E 12003:, 12000:k 11997:( 11993:r 11990:G 11969:k 11947:T 11941:E 11916:T 11912:O 11882:. 11879:T 11874:S 11866:) 11861:E 11856:( 11852:P 11845:) 11840:T 11834:G 11828:( 11824:P 11793:, 11790:) 11785:E 11780:, 11777:k 11774:( 11770:r 11767:G 11760:T 11745:S 11726:. 11723:) 11718:E 11713:, 11710:k 11707:( 11703:r 11700:G 11694:S 11686:) 11681:E 11676:( 11672:P 11668:= 11664:) 11659:) 11654:E 11649:, 11646:k 11643:( 11639:r 11636:G 11629:E 11623:( 11618:P 11611:) 11606:G 11601:( 11597:P 11567:) 11562:E 11557:, 11554:k 11551:( 11547:r 11544:G 11523:k 11501:) 11496:E 11491:, 11488:k 11485:( 11481:r 11478:G 11471:E 11446:G 11424:, 11420:) 11414:) 11409:E 11404:, 11401:k 11398:( 11394:r 11391:G 11384:E 11378:, 11375:k 11371:( 11366:r 11363:G 11340:G 11310:) 11307:s 11304:( 11301:K 11278:) 11275:) 11272:s 11269:( 11266:K 11259:S 11255:O 11244:E 11239:, 11236:k 11233:( 11229:r 11226:G 11203:s 11199:) 11193:E 11188:, 11185:k 11182:( 11178:r 11175:G 11154:S 11148:) 11145:s 11142:( 11139:K 11131:= 11128:} 11125:s 11122:{ 11102:S 11082:s 11057:) 11048:S 11041:E 11035:, 11032:k 11029:( 11025:r 11022:G 11011:S 11005:S 10997:) 10992:E 10987:, 10984:k 10981:( 10977:r 10974:G 10944:S 10923:S 10903:) 10900:V 10897:, 10894:k 10891:( 10887:r 10884:G 10863:V 10839:V 10817:E 10795:K 10775:S 10753:E 10727:) 10722:E 10717:, 10714:k 10711:( 10707:r 10704:G 10683:S 10656:) 10651:T 10645:E 10639:, 10636:k 10633:( 10629:r 10626:G 10605:T 10585:k 10558:T 10554:O 10546:S 10542:O 10531:E 10521:T 10515:E 10483:T 10463:S 10443:k 10423:S 10397:E 10357:) 10355:k 10351:n 10349:( 10347:k 10325:. 10321:) 10317:) 10314:k 10308:n 10305:( 10302:U 10296:) 10293:k 10290:( 10287:U 10283:( 10278:/ 10274:) 10271:n 10268:( 10265:U 10262:= 10259:) 10254:n 10249:C 10244:, 10241:k 10238:( 10234:r 10231:G 10205:n 10200:C 10190:k 10185:C 10180:= 10175:0 10171:w 10148:n 10143:C 10138:= 10135:V 10112:, 10108:) 10104:) 10092:0 10088:w 10083:h 10079:, 10075:| 10064:0 10060:w 10056:( 10053:U 10047:) 10040:0 10036:w 10030:| 10025:h 10022:, 10017:0 10013:w 10009:( 10006:U 10002:( 9997:/ 9993:) 9990:h 9987:, 9984:V 9981:( 9978:U 9975:= 9972:) 9969:V 9966:, 9963:k 9960:( 9956:r 9953:G 9929:) 9926:h 9923:, 9920:V 9917:( 9914:U 9891:h 9880:C 9862:. 9858:) 9854:) 9851:k 9845:n 9842:( 9839:O 9833:) 9830:k 9827:( 9824:O 9820:( 9815:/ 9811:) 9808:n 9805:( 9802:O 9799:= 9796:) 9791:n 9786:R 9781:, 9778:k 9775:( 9771:r 9768:G 9744:k 9722:n 9717:R 9707:k 9702:R 9697:= 9692:0 9688:w 9665:n 9660:R 9655:= 9652:V 9640:. 9627:) 9623:) 9612:w 9606:| 9601:q 9598:, 9589:w 9585:( 9582:O 9576:) 9571:w 9566:| 9561:q 9558:, 9555:w 9552:( 9549:O 9545:( 9540:/ 9536:) 9533:q 9530:, 9527:V 9524:( 9521:O 9518:= 9515:) 9512:V 9509:, 9506:k 9503:( 9499:r 9496:G 9472:V 9450:0 9446:w 9418:0 9414:w 9401:, 9389:) 9377:0 9373:w 9367:| 9362:q 9359:, 9349:0 9345:w 9341:( 9338:O 9332:) 9325:0 9321:w 9315:| 9310:q 9307:, 9302:0 9298:w 9294:( 9291:O 9268:V 9260:0 9256:w 9235:k 9215:) 9212:V 9209:, 9206:k 9203:( 9199:r 9196:G 9175:k 9155:) 9152:q 9149:, 9146:V 9143:( 9140:O 9117:V 9097:q 9076:R 9054:C 9032:R 9008:) 9005:V 9002:( 8998:L 8995:G 8970:H 8931:) 8928:V 8925:( 8921:L 8918:G 8897:K 8866:) 8863:V 8860:( 8856:L 8853:G 8831:C 8809:R 8785:H 8758:H 8754:/ 8750:) 8747:V 8744:( 8740:L 8737:G 8733:= 8730:) 8727:V 8724:, 8721:k 8718:( 8714:r 8711:G 8687:) 8684:V 8681:, 8678:k 8675:( 8671:r 8668:G 8644:) 8641:V 8638:( 8634:L 8631:G 8607:) 8604:V 8601:( 8597:L 8594:G 8587:} 8582:0 8578:w 8574:= 8571:) 8566:0 8562:w 8558:( 8555:h 8550:| 8545:) 8542:V 8539:( 8535:L 8532:G 8525:h 8522:{ 8516:) 8511:0 8507:w 8503:( 8499:b 8496:a 8493:t 8490:s 8483:H 8458:0 8454:w 8429:} 8426:H 8420:h 8417:{ 8397:g 8377:) 8374:V 8371:( 8367:L 8364:G 8357:g 8334:) 8329:0 8325:w 8321:( 8318:g 8315:= 8312:w 8289:) 8286:V 8283:, 8280:k 8277:( 8273:r 8270:G 8263:w 8243:k 8223:V 8215:0 8211:w 8190:V 8170:k 8144:) 8141:V 8138:( 8134:L 8131:G 8096:. 8086:i 8082:w 8076:i 8072:w 8066:k 8061:1 8058:= 8055:i 8042:w 8038:P 8012:) 8007:k 8003:w 7999:, 7993:, 7988:1 7984:w 7980:( 7958:n 7953:C 7945:w 7925:k 7903:w 7899:P 7878:) 7873:n 7869:e 7865:, 7859:, 7854:1 7850:e 7846:( 7819:, 7796:, 7782:k 7779:= 7776:) 7773:P 7770:( 7766:r 7763:t 7740:P 7730:. 7718:P 7715:= 7706:P 7681:P 7671:. 7659:P 7656:= 7651:2 7647:P 7622:P 7599:) 7595:C 7591:, 7588:n 7585:( 7582:M 7576:P 7556:n 7550:n 7530:) 7526:C 7522:, 7519:n 7516:( 7513:M 7507:) 7503:C 7499:, 7496:n 7493:, 7490:k 7487:( 7484:P 7464:) 7459:n 7454:C 7449:, 7446:k 7443:( 7439:r 7436:G 7412:n 7390:n 7385:R 7377:w 7357:) 7352:k 7348:w 7344:, 7338:, 7333:1 7329:w 7325:( 7300:, 7295:T 7290:i 7286:w 7280:i 7276:w 7270:k 7265:1 7262:= 7259:i 7246:w 7242:P 7216:) 7211:n 7206:R 7201:, 7198:k 7195:( 7191:r 7188:G 7181:w 7159:n 7154:R 7132:k 7112:) 7108:R 7104:, 7101:n 7098:, 7095:k 7092:( 7089:P 7083:P 7061:n 7056:R 7034:k 7014:) 7009:n 7004:R 6999:, 6996:k 6993:( 6989:r 6986:G 6965:) 6961:R 6957:, 6954:n 6951:, 6948:k 6945:( 6942:P 6930:. 6918:k 6915:= 6912:) 6909:P 6906:( 6880:P 6870:. 6858:P 6855:= 6850:T 6846:P 6821:P 6811:. 6799:P 6796:= 6791:2 6787:P 6762:P 6739:) 6735:R 6731:, 6728:n 6725:( 6722:M 6716:P 6696:) 6692:R 6688:, 6685:n 6682:( 6679:M 6673:) 6669:R 6665:, 6662:n 6659:, 6656:k 6653:( 6650:P 6630:n 6624:n 6604:) 6600:R 6596:, 6593:n 6590:( 6587:M 6573:C 6571:, 6569:k 6567:( 6561:R 6559:, 6557:k 6555:( 6532:V 6516:⋅ 6500:k 6480:V 6470:w 6466:, 6463:w 6438:, 6426:w 6421:P 6412:w 6408:P 6398:) 6391:w 6387:, 6384:w 6381:( 6378:d 6349:) 6346:V 6343:, 6340:k 6337:( 6333:r 6330:G 6302:} 6299:k 6296:= 6293:) 6284:X 6280:X 6277:( 6273:r 6270:t 6263:) 6260:V 6257:( 6253:d 6250:n 6247:E 6240:X 6237:{ 6212:n 6206:n 6201:C 6177:n 6171:n 6166:R 6144:n 6138:n 6118:) 6113:N 6108:C 6103:, 6100:k 6097:( 6093:r 6090:G 6069:) 6064:N 6059:R 6054:, 6051:k 6048:( 6044:r 6041:G 6018:n 6013:C 6008:= 6005:V 5983:n 5978:R 5973:= 5970:V 5945:. 5941:} 5937:k 5934:= 5931:) 5928:P 5925:( 5921:r 5918:t 5913:, 5904:P 5900:= 5895:2 5891:P 5887:= 5884:P 5878:) 5875:V 5872:( 5868:d 5865:n 5862:E 5855:P 5851:{ 5844:) 5841:V 5838:, 5835:k 5832:( 5828:r 5825:G 5799:P 5779:k 5759:) 5756:V 5753:, 5750:k 5747:( 5743:r 5740:G 5715:) 5712:P 5709:( 5705:m 5702:I 5693:P 5689:w 5668:k 5648:P 5616:. 5607:w 5600:v 5591:0 5584:w 5578:v 5569:v 5563:{ 5558:= 5555:) 5552:v 5549:( 5544:w 5540:P 5508:w 5487:w 5456:w 5449:w 5446:= 5443:V 5418:V 5398:V 5392:w 5368:V 5362:V 5359:: 5354:w 5350:P 5329:w 5309:k 5289:V 5269:V 5243:, 5222:( 5198:) 5195:V 5192:( 5187:k 5182:r 5179:G 5157:} 5150:k 5146:i 5142:, 5136:, 5131:1 5127:i 5122:A 5118:, 5111:k 5107:i 5103:, 5097:, 5092:1 5088:i 5083:U 5079:{ 5055:k 5051:i 5047:, 5041:, 5036:1 5032:i 5027:A 5002:k 4998:i 4994:, 4988:, 4983:1 4979:i 4968:A 4942:l 4938:j 4917:l 4897:k 4891:k 4867:k 4863:i 4859:, 4853:, 4848:1 4844:i 4836:k 4832:j 4828:, 4822:, 4817:1 4813:j 4802:A 4773:, 4768:1 4761:) 4753:k 4749:i 4745:, 4739:, 4734:1 4730:i 4722:k 4718:j 4714:, 4708:, 4703:1 4699:j 4688:A 4681:( 4674:k 4670:i 4666:, 4660:, 4655:1 4651:i 4640:A 4633:= 4626:k 4622:j 4618:, 4612:, 4607:1 4603:j 4592:A 4559:k 4555:j 4551:, 4545:, 4540:1 4536:j 4531:W 4506:k 4502:i 4498:, 4492:, 4487:1 4483:i 4478:W 4452:, 4445:k 4441:j 4437:, 4431:, 4426:1 4422:j 4417:W 4409:k 4405:j 4401:, 4395:, 4390:1 4386:j 4375:A 4368:= 4361:k 4357:i 4353:, 4347:, 4342:1 4338:i 4333:W 4325:k 4321:i 4317:, 4311:, 4306:1 4302:i 4291:A 4258:k 4254:j 4250:, 4244:, 4239:1 4235:j 4230:A 4205:k 4201:i 4197:, 4191:, 4186:1 4182:i 4177:A 4152:k 4148:j 4144:, 4138:, 4133:1 4129:j 4124:U 4113:k 4109:i 4105:, 4099:, 4094:1 4090:i 4085:U 4060:k 4056:i 4052:, 4046:, 4041:1 4037:i 4032:A 4011:) 4006:k 4002:i 3998:, 3992:, 3987:1 3983:i 3979:( 3959:k 3953:k 3926:1 3919:) 3911:k 3907:i 3903:, 3897:, 3892:1 3888:i 3883:W 3879:( 3876:W 3866:k 3862:i 3858:, 3852:, 3847:1 3843:i 3832:A 3803:k 3797:) 3794:k 3788:n 3785:( 3765:K 3741:k 3737:i 3733:, 3727:, 3722:1 3718:i 3713:U 3684:k 3680:i 3676:, 3670:, 3665:1 3661:i 3656:A 3631:k 3627:i 3623:, 3617:, 3612:1 3608:i 3603:U 3592:w 3574:k 3570:i 3566:, 3560:, 3555:1 3551:i 3546:A 3525:) 3522:V 3519:( 3514:k 3509:r 3506:G 3498:w 3478:] 3475:W 3472:[ 3452:W 3432:k 3426:n 3406:) 3401:k 3397:i 3393:, 3387:, 3382:1 3378:i 3374:( 3352:1 3342:k 3338:i 3334:, 3328:, 3323:1 3319:i 3314:W 3310:W 3286:k 3282:i 3278:, 3272:, 3267:1 3263:i 3258:A 3237:k 3231:) 3228:k 3222:n 3219:( 3195:k 3191:i 3187:, 3181:, 3176:1 3172:i 3167:U 3146:W 3124:j 3120:i 3099:j 3075:k 3071:i 3067:, 3061:, 3056:1 3052:i 3047:W 3026:k 3020:k 3000:W 2980:) 2977:V 2974:( 2969:k 2964:r 2961:G 2953:w 2929:k 2925:i 2921:, 2915:, 2910:1 2906:i 2901:U 2880:n 2872:k 2868:i 2853:1 2849:i 2842:1 2819:w 2791:W 2771:) 2766:k 2762:i 2758:, 2752:, 2747:1 2743:i 2739:( 2715:k 2711:i 2707:, 2701:, 2696:1 2692:i 2687:W 2666:k 2660:k 2640:n 2632:k 2628:i 2613:1 2609:i 2602:1 2582:k 2562:W 2542:k 2522:w 2502:) 2497:j 2494:i 2490:a 2486:( 2466:A 2446:k 2440:) 2437:k 2431:n 2428:( 2401:] 2393:k 2390:, 2387:k 2381:n 2377:a 2359:1 2356:, 2353:k 2347:n 2343:a 2319:k 2316:, 2313:1 2309:a 2291:1 2288:, 2285:1 2281:a 2273:1 2254:1 2246:1 2240:[ 2213:W 2193:k 2169:) 2166:K 2163:, 2160:k 2157:( 2154:L 2151:G 2145:g 2125:W 2101:W 2081:k 2075:n 2052:] 2049:W 2046:[ 2026:k 2006:W 1986:k 1980:n 1960:K 1940:k 1934:k 1907:) 1904:K 1901:, 1898:k 1895:( 1892:L 1889:G 1883:g 1858:g 1855:W 1852:= 1843:W 1815:) 1812:V 1809:( 1804:k 1799:r 1796:G 1788:w 1762:W 1739:W 1719:k 1716:, 1710:, 1707:1 1704:= 1701:i 1679:i 1675:W 1654:i 1634:W 1607:k 1601:n 1581:) 1578:V 1575:( 1570:k 1565:r 1562:G 1554:w 1530:) 1525:k 1521:W 1517:, 1511:, 1506:1 1502:W 1498:( 1475:k 1455:) 1452:V 1449:( 1444:k 1439:r 1436:G 1414:V 1408:w 1388:k 1368:) 1363:n 1359:e 1355:, 1349:, 1344:1 1340:e 1336:( 1314:n 1310:K 1289:V 1269:V 1245:) 1242:V 1239:( 1234:k 1229:r 1226:G 1191:P 1166:k 1156:n 1139:1 1133:n 1128:P 1113:n 1109:) 1107:n 1096:k 1057:M 1037:M 1006:k 986:x 966:M 960:x 940:) 935:n 930:R 925:( 920:k 915:r 912:G 900:M 886:x 860:n 855:R 831:n 826:R 804:M 780:M 774:x 752:n 747:R 725:k 705:M 646:V 626:n 606:k 586:) 583:n 580:, 577:k 574:( 570:r 567:G 546:) 543:n 540:( 535:k 530:r 527:G 517:, 505:) 502:V 499:, 496:k 493:( 489:r 486:G 465:) 462:V 459:( 454:k 449:r 446:G 409:) 404:4 399:R 394:( 389:2 384:r 381:G 348:) 345:k 339:n 336:( 333:k 298:V 278:V 258:) 255:V 252:( 248:P 224:V 204:) 201:V 198:( 193:1 188:r 185:G 163:K 140:V 117:n 102:- 90:k 62:) 59:V 56:( 51:k 46:r 43:G 23:.

Index

Grassmannian (disambiguation)
mathematics
Hermann Grassmann
differentiable manifold
dimensional
linear subspaces
vector space
field
projective space
real
complex
compact
smooth manifolds
projective algebraic variety
Julius Plücker
Plücker coordinates
§ Plücker coordinates and Plücker relations
Hermann Grassmann
topological
continuous
open
closed
differential manifold
tangent bundles
Euclidean space
tangent space
map
Gauss map
vector bundles
theorems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.