Knowledge

Tate–Shafarevich group

Source 📝

708:
is a square whenever it is finite; this mistake originated in a paper by Swinnerton-Dyer, who misquoted one of the results of Tate. Poonen and Stoll gave some examples where the order is twice a square, such as the Jacobian of a certain genus 2 curve over the rationals whose Tate–Shafarevich group
413: 658:
and the pairing is an alternating form. The kernel of this form is the subgroup of divisible elements, which is trivial if the Tate–Shafarevich conjecture is true. Tate extended the pairing to general abelian varieties, as a variation of
717:
is a square or twice a square (if it is finite), and if in addition the principal polarization comes from a rational divisor (as is the case for elliptic curves) then the form is alternating and the order of
278: 143: 214: 709:
has order 2, and Stein gave some examples where the power of an odd prime dividing the order is odd. If the abelian variety has a principal polarization then the form on
609: 1072: 1148: 769:
is finite in Konstantinous' examples and these examples confirm a conjecture of Stein. Thus modulo squares any integer can be the order of
704:
is finite then it is a square. For more general abelian varieties it was sometimes incorrectly believed for many years that the order of
17: 408:{\displaystyle \bigcap _{v}\mathrm {ker} \left(H^{1}\left(G_{K},A\right)\rightarrow H^{1}\left(G_{K_{v}},A_{v}\right)\right).} 1197: 1168: 1131: 897: 782: 559:
The special case of the Tate–Shafarevich group for the finite group scheme consisting of points of some given finite order
722:
is a square (if it is finite). On the other hand building on the results just presented Konstantinous showed that for any
71: 474:
Geometrically, the non-trivial elements of the Tate–Shafarevich group can be thought of as the homogeneous spaces of
148: 597: 1030:
Cassels, John William Scott (1962), "Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups",
585:. Victor A. Kolyvagin extended this to modular elliptic curves over the rationals of analytic rank at most 1 (The 1571: 1542: 1236: 700:
For an elliptic curve, Cassels showed that the pairing is alternating, and a consequence is that if the order of
936: 1355:
Rubin, Karl (1987), "Tate–Shafarevich groups and L-functions of elliptic curves with complex multiplication",
1189: 1615:
Konstantinous, Alexandros (2024-04-25). "A note on the order of the Tate-Shafarevich group modulo squares".
1640: 1115: 66: 1538: 1517: 1231: 423: 1357: 1299:
Poonen, Bjorn; Stoll, Michael (1999), "The Cassels-Tate pairing on polarized abelian varieties",
524:. Carl-Erik Lind gave an example of such a homogeneous space, by showing that the genus 1 curve 1645: 582: 697:, but unlike the case of elliptic curves this need not be alternating or even skew symmetric. 1301: 1067: 217: 1608: 1554: 1531: 1526:, Séminaire Bourbaki; 10e année: 1957/1958, vol. 13, Paris: Secrétariat Mathématique, 1510: 1486: 1462: 1434: 1394: 1366: 1348: 1291: 1273: 1141: 1101: 1059: 540:-adic fields, but has no rational points. Ernst S. Selmer gave many more examples, such as 8: 1283:
Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins
1206:
Kolyvagin, V. A. (1988), "Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves",
1152: 494: 248: 28: 1370: 1616: 1596: 1521: 1336: 1310: 1261: 586: 1588: 1450: 1441:
Shafarevich, I. R. (1959), "The group of principal homogeneous algebraic manifolds",
1422: 1382: 1328: 1253: 1215: 1193: 1181: 1164: 1127: 1089: 1047: 930: 893: 257: 1481:, Progr. Math., vol. 224, Basel, Boston, Berlin: Birkhäuser, pp. 277–289, 1580: 1471: 1412: 1403: 1374: 1320: 1245: 1119: 1081: 1039: 883: 431: 427: 1494: 577:
The Tate–Shafarevich conjecture states that the Tate–Shafarevich group is finite.
1604: 1550: 1527: 1506: 1502: 1482: 1458: 1430: 1390: 1344: 1287: 1281: 1269: 1177: 1160: 1137: 1109: 1097: 1055: 920:"THE SELMER GROUP, THE SHAFAREVICH-TATE GROUP, AND THE WEAK MORDELL-WEIL THEOREM" 515: 47: 1043: 643: 490: 455: 919: 875: 1634: 1592: 1547:
Proceedings of the International Congress of Mathematicians (Stockholm, 1962)
1454: 1426: 1386: 1332: 1257: 1219: 1123: 1093: 1085: 1051: 593: 1566: 660: 566: 233: 56: 1600: 1417: 1378: 1265: 1227: 888: 723: 578: 419: 1558: 1340: 247:
by completing with respect to all its Archimedean and non Archimedean
1315: 1584: 1249: 518:
fails to hold for rational equations with coefficients in the field
1621: 1401:
Selmer, Ernst S. (1951), "The Diophantine equation ax³+by³+cz³=0",
1324: 514:-rational point. Thus, the group measures the extent to which the 451: 1159:, Graduate Texts in Mathematics, vol. 201, Berlin, New York: 1068:"Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung" 596:, thus the conjecture is equivalent to stating that the group is 1234:(1958), "Principal homogeneous spaces over abelian varieties", 1180:(1994), "Iwasawa Theory and p-adic Deformation of Motives", in 882:, vol. 1479, Springer Berlin Heidelberg, pp. 94–121, 1499:
Proceedings of a Conference on Local Fields (Driebergen, 1966)
581:
proved this for some elliptic curves of rank at most 1 with
1495:"The conjectures of Birch and Swinnerton-Dyer, and of Tate" 1114:, London Mathematical Society Student Texts, vol. 24, 970: 589:
later showed that the modularity assumption always holds).
1543:"Duality theorems in Galois cohomology over number fields" 1006: 469: 1466:
English translation in his collected mathematical papers
1286:(Thesis). Vol. 1940. University of Uppsala. 97 pp. 982: 232:(i.e., the real and complex completions as well as the 1569:(1955), "On algebraic groups and homogeneous spaces", 807: 1549:, Djursholm: Inst. Mittag-Leffler, pp. 288–295, 1208:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
281: 151: 74: 855: 960: 958: 795: 226:, that become trivial in all of the completions of 943: 713:is skew symmetric which implies that the order of 407: 208: 137: 994: 831: 592:It is known that the Tate–Shafarevich group is a 458:", for Shafarevich, replacing the older notation 138:{\displaystyle \mathrm {WC} (A/K)=H^{1}(G_{K},A)} 1632: 955: 843: 565:of an abelian variety is closely related to the 1492: 1147: 1073:Journal für die reine und angewandte Mathematik 976: 819: 209:{\displaystyle G_{K}=\mathrm {Gal} (K^{alg}/K)} 1032:Proceedings of the London Mathematical Society 572: 1614: 1012: 876:"On the structure of shafarevich-tate groups" 1472:"Shafarevich–Tate groups of nonsquare order" 1440: 1298: 1184:; Jannsen, Uwe; Kleiman, Steven L. (eds.), 988: 813: 534:has solutions over the reals and over all 1620: 1416: 1314: 1205: 1176: 887: 873: 861: 642:is its dual. Cassels introduced this for 1226: 1065: 801: 1107: 1029: 949: 603: 14: 1633: 1400: 917: 837: 679:, which induces a bilinear pairing on 470:Elements of the Tate–Shafarevich group 1469: 1354: 1157:Diophantine geometry: an introduction 1066:Cassels, John William Scott (1962b), 1000: 849: 1565: 1537: 1516: 1479:Modular curves and abelian varieties 1279: 1108:Cassels, John William Scott (1991), 964: 825: 783:Birch and Swinnerton-Dyer conjecture 24: 299: 296: 293: 172: 169: 166: 79: 76: 25: 1657: 65:consists of the elements of the 1572:American Journal of Mathematics 1497:, in Springer, Tonny A. (ed.), 1237:American Journal of Mathematics 911: 867: 663:. A choice of polarization on 608:The Cassels–Tate pairing is a 344: 203: 176: 132: 113: 97: 83: 59:) defined over a number field 13: 1: 1190:American Mathematical Society 1022: 418:This group was introduced by 1523:WC-groups over p-adic fields 1493:Swinnerton-Dyer, P. (1967), 918:Poonen, Bjorn (2024-09-01). 788: 732:there is an abelian variety 7: 1111:Lectures on elliptic curves 776: 573:Tate-Shafarevich conjecture 10: 1662: 1470:Stein, William A. (2004), 1443:Doklady Akademii Nauk SSSR 1116:Cambridge University Press 935:: CS1 maint: url-status ( 636:is an abelian variety and 874:Kolyvagin, V. A. (1991), 1358:Inventiones Mathematicae 1280:Lind, Carl-Erik (1940). 1124:10.1017/CBO9781139172530 1086:10.1515/crll.1962.211.95 1044:10.1112/plms/s3-12.1.259 434:introduced the notation 1214:(3): 522–540, 670–671, 989:Poonen & Stoll 1999 652:can be identified with 583:complex multiplication 409: 210: 139: 33:Tate–Shafarevich group 1302:Annals of Mathematics 760: ⋅  410: 256:). Thus, in terms of 218:absolute Galois group 211: 140: 55:(or more generally a 1505:, pp. 132–157, 1501:, Berlin, New York: 1188:, Providence, R.I.: 1153:Silverman, Joseph H. 977:Swinnerton-Dyer 1967 802:Lang & Tate 1958 604:Cassels–Tate pairing 279: 149: 72: 18:Cassels–Tate pairing 1371:1987InMat..89..527R 67:Weil–Châtelet group 29:arithmetic geometry 1641:Algebraic geometry 1418:10.1007/BF02395746 1379:10.1007/BF01388984 1182:Serre, Jean-Pierre 1013:Konstantinous 2024 889:10.1007/bfb0086267 880:Algebraic Geometry 598:finitely generated 587:modularity theorem 405: 291: 272:can be defined as 206: 135: 1305:, Second Series, 1199:978-0-8218-1637-0 1170:978-0-387-98981-5 1133:978-0-521-41517-0 899:978-3-540-54456-2 667:gives a map from 282: 258:Galois cohomology 16:(Redirected from 1653: 1626: 1624: 1611: 1562: 1557:, archived from 1534: 1513: 1489: 1476: 1465: 1437: 1420: 1404:Acta Mathematica 1397: 1351: 1318: 1309:(3): 1109–1149, 1295: 1276: 1223: 1202: 1178:Greenberg, Ralph 1173: 1144: 1104: 1062: 1034:, Third Series, 1016: 1010: 1004: 998: 992: 986: 980: 974: 968: 962: 953: 947: 941: 940: 934: 926: 924: 915: 909: 908: 907: 906: 891: 871: 865: 859: 853: 847: 841: 835: 829: 823: 817: 814:Shafarevich 1959 811: 805: 799: 772: 768: 765:. In particular 764: 755: 749: 743: 737: 731: 721: 716: 712: 707: 703: 696: 686: 678: 672: 657: 651: 641: 635: 629: 610:bilinear pairing 564: 555: 539: 533: 523: 513: 507: 501: 488: 479: 465: 461: 449: 445: 428:Igor Shafarevich 414: 412: 411: 406: 401: 397: 396: 392: 391: 390: 378: 377: 376: 375: 356: 355: 343: 339: 332: 331: 317: 316: 302: 290: 271: 255: 246: 238: 231: 225: 215: 213: 212: 207: 199: 194: 193: 175: 161: 160: 144: 142: 141: 136: 125: 124: 112: 111: 93: 82: 64: 54: 45: 21: 1661: 1660: 1656: 1655: 1654: 1652: 1651: 1650: 1631: 1630: 1629: 1585:10.2307/2372637 1503:Springer-Verlag 1474: 1250:10.2307/2372778 1200: 1171: 1161:Springer-Verlag 1134: 1080:(211): 95–112, 1025: 1020: 1019: 1011: 1007: 999: 995: 987: 983: 975: 971: 963: 956: 948: 944: 928: 927: 922: 916: 912: 904: 902: 900: 872: 868: 860: 856: 848: 844: 836: 832: 824: 820: 812: 808: 800: 796: 791: 779: 770: 766: 753: 751: 745: 744:and an integer 739: 733: 727: 719: 714: 710: 705: 701: 688: 687:with values in 680: 674: 668: 653: 647: 644:elliptic curves 637: 631: 612: 606: 575: 560: 541: 535: 525: 519: 516:Hasse principle 509: 503: 497: 491:rational points 486: 481: 475: 472: 463: 459: 447: 435: 386: 382: 371: 367: 366: 362: 361: 357: 351: 347: 327: 323: 322: 318: 312: 308: 307: 303: 292: 286: 280: 277: 276: 261: 251: 242: 234: 227: 221: 195: 183: 179: 165: 156: 152: 150: 147: 146: 120: 116: 107: 103: 89: 75: 73: 70: 69: 60: 50: 48:abelian variety 35: 23: 22: 15: 12: 11: 5: 1659: 1649: 1648: 1643: 1628: 1627: 1612: 1579:(3): 493–512, 1563: 1535: 1514: 1490: 1467: 1445:(in Russian), 1438: 1398: 1365:(3): 527–559, 1352: 1325:10.2307/121064 1296: 1277: 1244:(3): 659–684, 1224: 1203: 1198: 1174: 1169: 1145: 1132: 1105: 1063: 1026: 1024: 1021: 1018: 1017: 1005: 993: 981: 969: 954: 942: 910: 898: 866: 862:Kolyvagin 1988 854: 842: 830: 818: 806: 793: 792: 790: 787: 786: 785: 778: 775: 605: 602: 574: 571: 484: 471: 468: 416: 415: 404: 400: 395: 389: 385: 381: 374: 370: 365: 360: 354: 350: 346: 342: 338: 335: 330: 326: 321: 315: 311: 306: 301: 298: 295: 289: 285: 241:obtained from 205: 202: 198: 192: 189: 186: 182: 178: 174: 171: 168: 164: 159: 155: 134: 131: 128: 123: 119: 115: 110: 106: 102: 99: 96: 92: 88: 85: 81: 78: 9: 6: 4: 3: 2: 1658: 1647: 1646:Number theory 1644: 1642: 1639: 1638: 1636: 1623: 1618: 1613: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1573: 1568: 1564: 1561:on 2011-07-17 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1533: 1529: 1525: 1524: 1519: 1515: 1512: 1508: 1504: 1500: 1496: 1491: 1488: 1484: 1480: 1473: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1439: 1436: 1432: 1428: 1424: 1419: 1414: 1410: 1406: 1405: 1399: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1359: 1353: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1317: 1312: 1308: 1304: 1303: 1297: 1293: 1289: 1285: 1284: 1278: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1238: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1204: 1201: 1195: 1191: 1187: 1183: 1179: 1175: 1172: 1166: 1162: 1158: 1154: 1150: 1146: 1143: 1139: 1135: 1129: 1125: 1121: 1117: 1113: 1112: 1106: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1074: 1069: 1064: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1028: 1027: 1014: 1009: 1002: 997: 990: 985: 978: 973: 966: 961: 959: 951: 946: 938: 932: 921: 914: 901: 895: 890: 885: 881: 877: 870: 863: 858: 851: 846: 839: 834: 827: 822: 815: 810: 803: 798: 794: 784: 781: 780: 774: 763: 759: 748: 742: 738:defined over 736: 730: 725: 698: 695: 691: 684: 677: 671: 666: 662: 656: 650: 645: 640: 634: 628: 624: 620: 616: 611: 601: 599: 595: 594:torsion group 590: 588: 584: 580: 570: 568: 563: 557: 553: 549: 545: 538: 532: 528: 522: 517: 512: 506: 500: 496: 492: 487: 478: 467: 457: 453: 443: 439: 433: 429: 425: 421: 402: 398: 393: 387: 383: 379: 372: 368: 363: 358: 352: 348: 340: 336: 333: 328: 324: 319: 313: 309: 304: 287: 283: 275: 274: 273: 269: 265: 259: 254: 250: 245: 240: 237: 230: 224: 219: 200: 196: 190: 187: 184: 180: 162: 157: 153: 129: 126: 121: 117: 108: 104: 100: 94: 90: 86: 68: 63: 58: 53: 49: 43: 39: 34: 30: 19: 1576: 1570: 1559:the original 1546: 1522: 1498: 1478: 1446: 1442: 1408: 1402: 1362: 1356: 1316:math/9911267 1306: 1300: 1282: 1241: 1235: 1211: 1207: 1185: 1156: 1149:Hindry, Marc 1110: 1077: 1071: 1035: 1031: 1008: 996: 984: 972: 950:Cassels 1962 945: 913: 903:, retrieved 879: 869: 857: 845: 833: 821: 809: 797: 761: 757: 746: 740: 734: 728: 699: 693: 689: 682: 675: 669: 664: 661:Tate duality 654: 648: 638: 632: 626: 622: 618: 614: 607: 591: 576: 567:Selmer group 561: 558: 551: 547: 543: 536: 530: 526: 520: 510: 504: 498: 482: 476: 473: 441: 437: 417: 267: 263: 252: 243: 239:-adic fields 235: 228: 222: 61: 57:group scheme 51: 41: 37: 32: 26: 1567:Weil, André 1411:: 203–362, 1228:Lang, Serge 1038:: 259–296, 838:Selmer 1951 1635:Categories 1622:2404.16785 1539:Tate, John 1518:Tate, John 1232:Tate, John 1023:References 1001:Stein 2004 905:2024-09-01 850:Rubin 1987 724:squarefree 579:Karl Rubin 493:for every 480:that have 420:Serge Lang 249:valuations 1593:0002-9327 1455:0002-3264 1449:: 42–43, 1427:0001-5962 1387:0020-9910 1333:0003-486X 1258:0002-9327 1220:0373-2436 1094:0075-4102 1052:0024-6115 965:Tate 1963 826:Lind 1940 789:Citations 756:| = 508:, but no 424:John Tate 345:→ 284:⋂ 1541:(1963), 1520:(1958), 1222:, 954295 1155:(2000), 931:cite web 777:See also 630:, where 529:− 17 = 2 454:letter " 452:Cyrillic 446:, where 145:, where 1609:0074084 1601:2372637 1555:0175892 1532:0105420 1511:0230727 1487:2058655 1463:0106227 1435:0041871 1395:0903383 1367:Bibcode 1349:1740984 1292:0022563 1274:0106226 1266:2372778 1186:Motives 1142:1144763 1102:0163915 1060:0163913 726:number 646:, when 450:is the 432:Cassels 216:is the 31:, the 1607:  1599:  1591:  1553:  1530:  1509:  1485:  1461:  1453:  1433:  1425:  1393:  1385:  1347:  1341:121064 1339:  1331:  1290:  1272:  1264:  1256:  1218:  1196:  1167:  1140:  1130:  1100:  1092:  1058:  1050:  896:  752:| 617:) × Ш( 46:of an 1617:arXiv 1597:JSTOR 1475:(PDF) 1337:JSTOR 1311:arXiv 1262:JSTOR 923:(PDF) 750:with 495:place 1589:ISSN 1451:ISSN 1423:ISSN 1383:ISSN 1329:ISSN 1254:ISSN 1216:ISSN 1194:ISBN 1165:ISBN 1128:ISBN 1090:ISSN 1048:ISSN 937:link 894:ISBN 621:) → 426:and 422:and 1581:doi 1447:124 1413:doi 1375:doi 1321:doi 1307:150 1246:doi 1120:doi 1082:doi 1078:211 1040:doi 884:doi 673:to 554:= 0 550:+ 5 546:+ 4 502:of 462:or 456:Sha 220:of 27:In 1637:: 1605:MR 1603:, 1595:, 1587:, 1577:77 1575:, 1551:MR 1545:, 1528:MR 1507:MR 1483:MR 1477:, 1459:MR 1457:, 1431:MR 1429:, 1421:, 1409:85 1407:, 1391:MR 1389:, 1381:, 1373:, 1363:89 1361:, 1345:MR 1343:, 1335:, 1327:, 1319:, 1288:MR 1270:MR 1268:, 1260:, 1252:, 1242:80 1240:, 1230:; 1212:52 1210:, 1192:, 1163:, 1151:; 1138:MR 1136:, 1126:, 1118:, 1098:MR 1096:, 1088:, 1076:, 1070:, 1056:MR 1054:, 1046:, 1036:12 957:^ 933:}} 929:{{ 892:, 878:, 773:. 681:Ш( 613:Ш( 600:. 569:. 556:. 466:. 464:TŠ 460:TS 436:Ш( 430:. 262:Ш( 260:, 36:Ш( 1625:. 1619:: 1583:: 1415:: 1377:: 1369:: 1323:: 1313:: 1294:. 1248:: 1122:: 1084:: 1042:: 1015:. 1003:. 991:. 979:. 967:. 952:. 939:) 925:. 886:: 864:. 852:. 840:. 828:. 816:. 804:. 771:Ш 767:Ш 762:m 758:n 754:Ш 747:m 741:Q 735:A 729:n 720:Ш 715:Ш 711:Ш 706:Ш 702:Ш 694:Z 692:/ 690:Q 685:) 683:A 676:Â 670:A 665:A 655:Â 649:A 639:Â 633:A 627:Z 625:/ 623:Q 619:Â 615:A 562:n 552:z 548:y 544:x 542:3 537:p 531:y 527:x 521:K 511:K 505:K 499:v 489:- 485:v 483:K 477:A 448:Ш 444:) 442:K 440:/ 438:A 403:. 399:) 394:) 388:v 384:A 380:, 373:v 369:K 364:G 359:( 353:1 349:H 341:) 337:A 334:, 329:K 325:G 320:( 314:1 310:H 305:( 300:r 297:e 294:k 288:v 270:) 268:K 266:/ 264:A 253:v 244:K 236:p 229:K 223:K 204:) 201:K 197:/ 191:g 188:l 185:a 181:K 177:( 173:l 170:a 167:G 163:= 158:K 154:G 133:) 130:A 127:, 122:K 118:G 114:( 109:1 105:H 101:= 98:) 95:K 91:/ 87:A 84:( 80:C 77:W 62:K 52:A 44:) 42:K 40:/ 38:A 20:)

Index

Cassels–Tate pairing
arithmetic geometry
abelian variety
group scheme
Weil–Châtelet group
absolute Galois group
p-adic fields
valuations
Galois cohomology
Serge Lang
John Tate
Igor Shafarevich
Cassels
Cyrillic
Sha
rational points
place
Hasse principle
Selmer group
Karl Rubin
complex multiplication
modularity theorem
torsion group
finitely generated
bilinear pairing
elliptic curves
Tate duality
squarefree
Birch and Swinnerton-Dyer conjecture
Lang & Tate 1958

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.