Knowledge

Capitanian mass extinction event

Source 📝

896:, with the widespread demise of reefs in particular being linked to this marine regression. The Guadalupian-Lopingian boundary coincided with one of the most prominent first-order marine regressions of the Phanerozoic. Evidence for abrupt sea level fall at the terminus of the Guadalupian comes from evaporites and terrestrial facies overlying marine carbonate deposits across the Guadalupian-Lopingian transition. Additionally, a tremendous unconformity is associated with the Guadalupian-Lopingian boundary in many strata across the world. The closure of the Sino-Mongolian Seaway at the end of the Capitanian has been invoked as a potential driver of 884:, show that the large scale decrease in terrestrial vertebrate diversity coincided with volcanism in the Emeishan Traps, although robust evidence for a causal relationship between these two events remains elusive. A 2015 study called into question whether the Capitanian mass extinction event was global in nature at all or merely a regional biotic crisis limited to South China and a few other areas, finding no evidence for terrestrial or marine extinctions in eastern Australia linked to the Emeishan Traps or to any proposed extinction triggers invoked to explain the biodiversity drop in low-latitudes of the Northern Hemisphere. 807:. Euxinia may have been exacerbated even further by the increasing sluggishness of ocean circulation resulting from volcanically driven warming. The initial hydrothermal nature of the Emeishan Traps meant that local marine life around South China would have been especially jeopardised by anoxia due to hyaloclastite development in restricted, fault-bounded basins. Expansion of oceanic anoxia has been posited to have occurred slightly before the Capitanian extinction event itself by some studies, though it is probable that upwelling of anoxic waters prior to the mass extinction was a local phenomenon specific to South China. 119: 24: 666:. The brachiopod-mollusc transition that characterised the broader shift from the Palaeozoic to Modern evolutionary faunas has been suggested to have had its roots in the Capitanian mass extinction event, although other research has concluded that this may be an illusion created by taphonomic bias in silicified fossil assemblages, with the transition beginning only in the aftermath of the more cataclysmic end-Permian extinction. After the Capitanian mass extinction, disaster taxa such as 659:
patterns. A study examining foraminiferal extinctions in particular found that the Central and Western Palaeotethys experienced taxonomic losses of a lower magnitude than the Northern and Eastern Palaeotethys, which had the highest extinction magnitude. The same study found that Panthalassa's overall extinction magnitude was similar to that of the Central and Western Palaeotethys, but that it had a high magnitude of extinction of endemic taxa.
778:
the most precipitous in the entire geological history of the Earth. The rate of carbon dioxide emissions during the Capitanian mass extinction, though extremely abrupt, was nonetheless significantly slower than that during the end-Permian extinction, during which carbon dioxide levels rose five times faster according to one study. Significant quantities of
378:. Additionally, there is a dispute regarding the severity of the extinction and whether the extinction in China happened at the same time as the extinction in Spitsbergen. According to one study, the Capitanian mass extinction was not one discrete event but a continuous decline in diversity that began at the end of the 2907: 819:
absorbing atmospheric carbon dioxide, it is likely that the excessive volcanic emissions of carbon dioxide resulted in marine hypercapnia, which would have acted in conjunction with other killing mechanisms to further increase the severity of the biotic crisis. The dissolution of volcanically emitted
777:
global warming. The Emeishan Traps discharged between 130 and 188 teratonnes of carbon dioxide in total, doing so at a rate of between 0.08 to 0.25 gigatonnes of carbon dioxide per year, making them responsible for an increase in atmospheric carbon dioxide that was both one of the largest and one of
739:
piles from which currently cover an area of 250,000 to 500,000 km, although the original volume of the basalts may have been anywhere from 500,000 km to over 1,000,000 km. The age of the extinction event and the deposition of the Emeishan basalts are in good alignment. Reefs and other
658:
Whether and to what degree latitude affected the likelihood of taxa to go extinct remains disputed amongst palaeontologists. Whereas some studies conclude that the extinction event was a regional one limited to tropical areas, others suggest that there was little latitudinal variation in extinction
512:
After the recognition of a separate marine mass extinction at the end of the Guadalupian, the dinocephalian extinction was seen to represent its terrestrial correlate. Though it was subsequently suggested that because the Russian Ischeevo fauna, which was considered the youngest dinocephalian fauna
790:
intruding into coal-rich deposits has been implicated as an additional driver of warming, though this idea has been challenged by studies that instead conclude that the extinction was precipitated directly by the Emeishan Traps or by their interaction with platform carbonates. The emissions of the
615:
made up 61.2% of the individuals found in similar environments after the extinction. 87% of brachiopod species and 82% of fusulinacean foraminifer species in South China were lost. Although severe for brachiopods, the Capitanian extinction's impact on their diversity was nowhere near as strong as
803:. Two anoxic events, the middle Capitanian OAE-C1 and the end-Capitanian OAE-C2, occurred thanks to Emeishan volcanic activity. Volcanic greenhouse gas release and global warming increased continental weathering and mineral erosion, which in turn has been propounded as a factor enhancing oceanic 236:
mass extinctions, respectively, while being the fifth worst in terms of ecological severity. The global nature of the Capitanian mass extinction has been called into question by some palaeontologists as a result of some analyses finding it to have affected only low-latitude taxa in the Northern
748:
enrichment at the Guadalupian-Lopingian boundary further confirms the existence of massive volcanic activity; coronene can only form at extremely high temperatures created either by extraterrestrial impacts or massive volcanism, with the former being ruled out because of an absence of iridium
320:
in terms of the proportion of marine invertebrate genera lost; a different study found the Capitanian extinction event to be only the ninth worst in terms of taxonomic severity (number of genera lost) but found it to be the fifth worst with regard to its ecological impact (i.e., the degree of
606:
of East Greenland is similar to that of Spitsbergen; the faunal losses in Canada's Sverdrup Basin are comparable to the extinctions in Spitsbergen and East Greenland, but the post-extinction recovery that happened in Spitsbergen and East Greenland did not occur in the Sverdrup Basin. Whereas
144:
that are present in each interval of time but do not exist in the following interval) vs time in the past for marine genera. Geological periods are annotated (by abbreviation and colour) above. The Capitanian extinction event occurred 260–259 million years ago, ~7 million years before the
3078: 369:
Although it is known that the Capitanian mass extinction occurred after Olson's Extinction and before the Permian–Triassic extinction event, the exact age of the Capitanian mass extinction remains controversial. This is partly due to the somewhat circumstantial age of the
871:
shows a positive δ13C excursion and concludes that the end of the Capitanian was marked by massive aridification in the region, although the temperature remained largely the same, suggesting that global climate change did not account for the extinction event. Analysis of
740:
marine sediments interbedded among basalt piles indicate Emeishan volcanism initially developed underwater; terrestrial outflows of lava occurred only later in the large igneous province's period of activity. These eruptions would have released high doses of toxic
1915: 2594: 2175: 1835: 623:
and photoautotrophic bacteria dominated marine microbial communities. Significant turnovers in microbial ecosystems occurred during the Capitanian mass extinction, though they were smaller in magnitude than those associated with the end-Permian extinction.
1142:
Bond, D. P. G., Wignall, P. B., Wang, W., Izon, G., Jiang, H. S., Lai, X. L., Sund, Y.-D., Newtona, R.J., Shaoe, L.-Y., Védrinea, S. & Cope, H. (2010). "The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China".
836:
and a decline of terrestrial infaunal invertebrates. Some researchers have cast doubt on whether significant acidification took place globally, concluding that the carbon cycle perturbation was too small to have caused a major worldwide drop in
2488:"A remarkable sea-level drop and relevant biotic responses across the Guadalupian–Lopingian (Permian) boundary in low-latitude mid-Panthalassa: Irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama, Japan" 697:
that lived during the late Guadalupian was cut in half by the Capitanian mass extinction. Terrestrial survivors of the Capitanian extinction event were generally 20 kg (44 lb) to 50 kg (110 lb) and commonly found in
427:
directly constraining the extinction horizons themselves in the marine sections, most recent studies refrain from placing a number on its age, but based on extrapolations from the Permian timescale an age of approximately 260–262
361:, Stevens and colleagues found an extinction of 56% of plant species recorded in the mid-Upper Shihhotse Formation in North China, which was approximately mid-Capitanian in age. 24% of plant species in South China went extinct. 382:. Another study examining fossiliferous facies in Svalbard found no evidence for a sudden mass extinction, instead attributing local biotic changes during the Capitanian to the southward migration of many taxa through the 3134: 3354:
Shen, Shu-zhong; Cao, Chang-qun; Zhang, Hua; Bowring, Samuel A.; Henderson, Charles M.; Payne, Jonathan L.; Davydov, Vladimir I.; Chen, Bo; Yuan, Dong-xun; Zhang, Yi-zhun; Wang, Wei; Zheng, Quan-feng (1 August 2013).
432:
has been estimated; this fits broadly with radiometric ages from the terrestrial realm, assuming the two events are contemporaneous. Plant losses occurred either at the same time as the marine extinction or after it.
676:
became abundant in what is now South China. The initial recovery of reefs consisted of non-metazoan reefs: algal bioherms and algal-sponge reef buildups. This initial recovery interval was followed by an interval of
2779:
Ota, A. & Isozaki, Y. (March 2006). "Fusuline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate buildups: Biostratigraphy of accreted limestone in Japan".
517:
stage, well before the end of the Guadalupian, this constraint applied to the type locality only. The recognition of a younger dinocephalian fauna in Russia (the Sundyr Tetrapod Assemblage) and the retrieval of
3863: 562:
relationship; many species with poorly buffered respiratory physiologies also became extinct. The extinction event led to a collapse of the reef carbonate factory in the shallow seas surrounding South China.
919:
may have also played a role in the extinction. Potential drivers of extinction proposed as causes of end-Guadalupian reef decline include fluctuations in salinity and tectonic collisions of microcontinents.
2026:
Wignall, Paul B.; Bond, David P. G.; Haas, János; Wang, Wei; Jiang, Haishui; Lai, Xulong; Altiner, Demir; Védrine, Stéphanie; Hips, Kinga; Zajzon, Norbert; Sun, Yadong; Newton, Robert J. (1 February 2012).
2088:
Wignall, Paul B.; Sun, Yadong; Bond, David P. G.; Izon, Gareth; Newton, Robert J.; Védrine, Stéphanie; Widdowson, Mike; Ali, Jason R.; Lai, Xulong; Jiang, Haishui; Cope, Helen; Bottrell, Simon H. (2009).
601:
species emerged after the extinction, the dominant position of the brachiopods was taken over by the bivalves. Approximately 70% of other species found at the Kapp Starostin Formation also vanished. The
3624:"Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume–lithosphere interaction during the Capitanian, Middle Permian ('end Guadalupian') extinction event" 2670:"Stratigraphy of the Guadalupian (Permian) siliceous deposits from central Guizhou of South China: Regional correlations with implications for carbonate productivity during the Middle Permian biocrisis" 1460: 3517:"Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section" 4262:
Song, Huyue; Algeo, Thomas J.; Song, Haijun; Tong, Jinnan; Wignall, Paul B.; Bond, David P. G.; Zheng, Wang; Chen, Xinming; Romaniello, Stephen J.; Wei, Hengye; Anbar, Ariel D. (15 May 2023).
1098:"Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis" 465:
The existence of change in tetrapod faunas in the mid-Permian has long been known in South Africa and Russia. In Russia, it corresponded to the boundary between what became known as the
2266: 1507:
Marchetti, Lorenzo; Logghe, Antoine; Mujal, Eudald; Barrier, Pascal; Montenat, Christian; Nel, André; Pouillon, Jean-Marc; Garrouste, Romain; Steyer, J. Sébastien (1 August 2022).
554:, and brachiopods. It was more severe in restricted marine basins than in the open oceans. It appears to have been particularly selective against shallow-water taxa that relied on 2908:"Earliest Wuchiapingian (Lopingian, late Permian) brachiopods in southern Hunan, South China: implications for the pre-Lopingian crisis and onset of Lopingian recovery/radiation" 1731:
McGhee, G.R., Sheehan, P.M., Bottjer, D.J. & Droser, M.L., 2004. "Ecological ranking of Phanerozoic biodiversity crises: Ecological and taxonomic severities are decoupled".
445:
in Southwest China was originally dated to the end of the Guadalupian, but studies published in 2009 and 2010 dated the extinction of these fusulinaceans to the mid-Capitanian.
4391:"Development of a high-productivity and anoxic-euxinic condition during the late Guadalupian in the Lower Yangtze region: Implications for the mid-Capitanian extinction event" 693:, which were one of the most common elements of tetrapod fauna of the Guadalupian; only one dinocephalian genus survived the Capitanian extinction event. The diversity of the 2840: 273:
began recovery immediately after the Capitanian extinction event, rebuilding complex trophic structures and refilling guilds, diversity and disparity fell further until the
4856:"The appearance of an oxygen-depleted condition on the Capitanian disphotic slope/basin in South China: Middle–Upper Permian stratigraphy at Chaotian in northern Sichuan" 791:
Emeishan Traps may also have contributed to the downfall of the ozone shield, exposing the Earth's surface to a vastly increased flux of high-frequency solar radiation.
3918:
Wang, Wen-qian; Zheng, Feifei; Zhang, Shuang; Cui, Ying; Zheng, Quan-feng; Zhang, Yi-chun; Chang, Dong-xun; Zhang, Hua; Xu, Yi-gang; Shen, Shu-zhong (15 January 2023).
374:
boundary itself, which is currently estimated to be approximately 259.1 million years old, but is subject to change by the Subcommission on Permian Stratigraphy of the
1963: 3023:"Middle Permian (Capitanian) seawater 87Sr/86Sr minimum coincided with disappearance of tropical biota and reef collapse in NE Japan and Primorye (Far East Russia)" 1357:"High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana" 993:
De la Horra, R.; Galán-Abellán, A. B.; López-Gómez, José; Sheldon, Nathan D.; Barrenechea, J. F.; Luque, F. J.; Arche, A.; Benito, M. I. (August–September 2012).
828:
bivalves. By virtue of the greater solubility of carbon dioxide in colder waters, ocean acidification was especially lethal in high latitude waters. Furthermore,
4600:
Buatois, Luis A.; Borruel-Abadía, Violeta; De la Horra, Raúl; Galán-Abellán, Ana Belén; López-Gómez, José; Barrenechea, José F.; Arche, Alfredo (25 March 2021).
2243:
The Distribution of the Karroo Vertebrate Fauna: With Special Reference to Certain Genera and the Bearing of this Distribution on the Zoning of the Beaufort Beds
498:
and the overlying assemblages. In both Russia and South Africa, this transition was associated with the extinction of the previously dominant group of therapsid
3747:"The Emeishan large igneous province eruption triggered coastal perturbations and the Capitanian mass extinction: Insights from mercury in Permian bauxite beds" 3671: 3405:"The Emeishan large igneous province eruption triggered coastal perturbations and the Capitanian mass extinction: Insights from mercury in Permian bauxite beds" 550:
In the oceans, the Capitanian extinction event led to high extinction rates among ammonoids, corals and calcareous algal reef-building organisms, foraminifera,
261:. The Capitanian mass extinction greatly reduced disparity (the range of different guilds); eight guilds were lost. It impacted the diversity within individual 4447:"Middle–Upper Permian carbon isotope stratigraphy at Chaotian, South China: Pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf" 2028: 4215: 3672:"Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea" 1712: 4319: 2725: 2153: 1461:"Biodiversity across the Guadalupian-Lopingian Boundary: first results on the ostracod (Crustacea) fauna, Chaotian section (Sichuan Province, South China)" 681:-dominated reefs, which in turn was followed by a return of metazoan, sponge-dominated reefs. Overall, reef recovery took approximately 2.5 million years. 3857:
Jiang, Qiang; Jourdan, Fred; Olierook, Hugo K. H.; Merle, Renaud E.; Bourdet, Julien; Fougerouse, Denis; Godel, Belinda; Walker, Alex T. (25 July 2022).
4216:"The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia" 1509:"Vertebrate tracks from the Permian of Gonfaron (Provence, Southern France) and their implications for the late Capitanian terrestrial extinction event" 611:
brachiopods made up 99.1% of the individuals found in tropical carbonates in the Western United States, South China and Greece prior to the extinction,
4395: 4263: 3807: 3628: 3465: 3027: 2669: 2626: 2029:"CAPITANIAN (MIDDLE PERMIAN) MASS EXTINCTION AND RECOVERY IN WESTERN TETHYS: A FOSSIL, FACIES, AND δ13C STUDY FROM HUNGARY AND HYDRA ISLAND (GREECE)" 1513: 1308: 1046: 502:, the dinocephalians, which led to its later designation as the dinocephalian extinction. Post-extinction origination rates remained low through the 3079:"Estimating spatial variation in origination and extinction in deep time: a case study using the Permian–Triassic marine invertebrate fossil record" 4894:
Shu-Zhong, Shen; Shi, G. R. (8 April 2016). "Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region".
2892: 4131: 1896: 1866:
CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province
537:
Assemblage Zone of the Karoo Basin demonstrated that the dinocephalian extinction did occur in the late Capitanian, around 260 million years ago.
2427:"High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa" 3182: 2859: 832:
would have arisen as yet another biocidal consequence of the intense sulphur emissions produced by Emeishan Traps volcanism. This resulted in
4656:
Jost, Adam B.; Mundil, Roland; He, Bin; Brown, Shaun T.; Altiner, Demir; Sun, Yadong; DePaolo, Donald J.; Payne, Jonathan L. (15 June 2014).
1916:"The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian)" 1040:
Huang, Yuangeng; Chen, Zhong-Qiang; Zhao, Laishi; Stanley Jr., George D.; Yan, Jiaxin; Pei, Yu; Yang, Wanrong; Huang, Junhua (1 April 2019).
2668:
Meng, Qi; Xue, Wuqiang; Chen, Fayao; Yan, Jiaxin; Cai, Jiahua; Sun, Yadong; Wignall, Paul B.; Liu, Ke; Liu, Zhichen; Chen, Deng (May 2022).
1042:"Restoration of reef ecosystems following the Guadalupian–Lopingian boundary mass extinction: Evidence from the Laibin area, South China" 3622:
Jerram, Dougal A.; Widdowson, Mike; Wignall, Paul B.; Sun, Yadong; Lai, Xulong; Bond, David P. G.; Torsvik, Trond H. (1 January 2016).
3295:"Global Taxonomic Diversity of Anomodonts (Tetrapoda, Therapsida) and the Terrestrial Rock Record Across the Permian-Triassic Boundary" 3563:
Huang, Hu; Cawood, Peter A.; Hou, Ming-Cai; Yang, Jiang-Hai; Ni, Shi-Jun; Du, Yuan-Sheng; Yan, Zhao-Kun; Wang, Jun (1 November 2016).
2245:. Memoir No. 1. Johannesburg: Bernard Price Institute for Palaeontological Research, University of the Witwatersrand. pp. 1–131. 2228: 1759:
When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa
995:"Paleoecological and paleoenvironmental changes during the continental Middle–Late Permian transition at the SE Iberian Ranges, Spain" 3077:
Allen, Bethany J.; Clapham, Matthew E.; Saupe, Erin E.; Wignall, Paul B.; Hill, Daniel J.; Dunhill, Alexander M. (10 February 2023).
2620:
Lai, Xulong; Wang, Wei; Wignall, Paul B.; Bond, David P. G.; Jiang, Haishui; Ali, J. R.; John, E. H.; Sun, Yadong (4 November 2008).
313: 75: 4335:"Collapsed upwelling and intensified euxinia in response to climate warming during the Capitanian (Middle Permian) mass extinction" 4078:"Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations" 3239:"Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction" 1626:
Sepkoski Jr., J. J. (1996). "Patterns of Phanerozoic Extinction: a Perspective from Global Data Bases". In: Walliser, O. H. (Ed.),
578:, 77.8% of coral genera and 82.2% of coral species that were in Permian China were lost during the Capitanian mass extinction. The 394:
show no sign of an extinction event at the end of the Capitanian; the extinction event there is recorded in the middle Capitanian.
375: 224:
extinction event, and only viewed as separate relatively recently, this mass extinction is believed to be the third largest of the
2154:
An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification
744:; increased mercury concentrations are coincident with the negative carbon isotope excursion, indicating a common volcanic cause. 2227:
Ivakhnenko, M. F., Golubev, V. K., Gubin, Yu. M., Kalandadze, N. N., Novikov, I. V., Sennikov, A. G. & Rautian, A. S. 1997. "
4220: 1968: 82: 197:
epoch. It is often called the end-Guadalupian extinction event because of its initial recognition between the Guadalupian and
2604: 2189: 1849: 655:
suggests that mid-latitude marine life became affected earlier by the extinction event than marine organisms of the tropics.
266: 146: 89: 3727: 2956:"Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries" 2954:
Xie, Shucheng; Algeo, Thomas J.; Zhou, Wenfeng; Ruan, Xiaoyan; Luo, Genming; Huang, Junhua; Yan, Jiaxin (15 February 2017).
1868: 4662: 4268: 3924: 3521: 3361: 2960: 2452: 205:
study suggests that extinction peaks in many taxonomic groups occurred within the Guadalupian, in the latter half of the
2152:
Bond, D.P.G., Wignall, P.B., Joachimski, M.M., Sun, Y., Savov, I., Grasby, S.E., Beauchamp, B. and Blomeier, D.P. 2015.
4707:
Kévin Rey; Michael O. Day; Romain Amiot; Jean Goedert; Christophe Lécuyer; Judith Sealy; Bruce S. Rubidge (July 2018).
4546:"The implications of the giant bivalve family Alatoconchidae for the end-Guadalupian (Middle Permian) extinction event" 4195: 2448:"Impacts of basin restriction on geochemistry and extinction patterns: A case from the Guadalupian Delaware Basin, USA" 1808:
Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change
1566:
Villier, L.; Korn, D. (October 2004). "Morphological Disparity of Ammonoids and the Mark of Permian Mass Extinctions".
1414: 4498:"Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution" 3357:"High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran" 2742:
Wang, X.-D. & Sugiyama, T. (December 2000). "Diversity and extinction patterns of Permian coral faunas of China".
2250: 2181: 1841: 1302:
McGhee Jr., George R.; Clapham, Matthew E.; Sheehan, Peter M.; Bottjer, David J.; Droser, Mary L. (15 January 2013).
126: 31: 3003: 513:
in that region, was constrained to below the Illawarra magnetic reversal and therefore had to have occurred in the
405:
of the Maokou Formation, are unique for preserving a mass extinction and the cause of that mass extinction. Large
4451: 2782: 2492: 2329: 503: 233: 110: 4909: 2426: 1662: 1166:"Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises" 3745:
Ling, Kunyue; Wen, Hanjie; Grasby, Stephen E.; Zhao, Haonan; Deng, Changzhou; Yin, Runsheng (5 February 2023).
3461:"End-Guadalupian extinction of larger fusulinids in central Iran and implications for the global biotic crisis" 3403:
Ling, Kunyue; Wen, Hanjie; Grasby, Stephen E.; Zhao, Haonan; Deng, Changzhou; Yin, Runsheng (5 February 2023).
492: 4658:"Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes" 3515:
He, Bin; Xu, Yi-Gang; Huang, Xiao-Long; Luo, Zhen-Yu; Shi, Yu-Ruo; Yun, Qi-Jun; Yu, Song-Yue (30 March 2007).
485:
Superassemblage, respectively. In South Africa, this corresponded to the boundary between the variously named
4854:
Saitoh, Masamufi; Isozaki, Yukio; Yao, Jianxin; Ji, Zhansheng; Ueno, Yuichiro; Yoshida, Naohiro (June 2015).
2381:
Golubev, V. K. (2015). "Dinocephalian stage in the history of the Permian tetrapod fauna of Eastern Europe".
1757:
Day, M.O., Ramezani, J., Bowring, S.A., Sadler, P.M., Erwin, D.H., Abdala, F. and Rubidge, B.S., July 2015. "
799:
Global warming resulting from the large igneous province's activity has been implicated as a cause of marine
152: 118: 23: 4445:
Saitoh, Masafumi; Isozaki, Yukio; Ueno, Yuichiro; Yoshida, Naohiro; Yao, Jianxin; Ji, Zhansheng (May 2013).
2536:"Guadalupian (Middle Permian) ocean redox evolution in South China and its implications for mass extinction" 312:. The loss of marine invertebrates during the Capitanian mass extinction was comparable in magnitude to the 4709:"Stable isotope record implicates aridification without warming during the late Capitanian mass extinction" 1711:
Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. H. & Sheldon, N. D. (2006).
130: 35: 4855: 4807: 4708: 4657: 4497: 4446: 4390: 4334: 4022:
Sheldon, Nathan D.; Chakrabarti, Ramananda; Retallack, Gregory J.; Smith, Roger M. H. (20 February 2014).
3919: 3803:"High-temperature combustion event spanning the Guadalupian−Lopingian boundary terminated by soil erosion" 3802: 3746: 3623: 3564: 3516: 3460: 3404: 3356: 3238: 3022: 2955: 2621: 2535: 2487: 1508: 1356: 1303: 1097: 1041: 994: 509:
for at least 1 million years, which suggests that there was a delayed recovery of Karoo Basin ecosystems.
185:
that predated the end-Permian extinction event. The mass extinction occurred during a period of decreased
4860: 3243: 3183:"Ecological consequences of the Guadalupian extinction and its role in the brachiopod-mollusk transition" 999: 123: 28: 2327:
Lucas, S. G. (2009). "Timing and magnitude of tetrapod extinctions across the Permo-Triassic boundary".
131: 36: 4945: 4769: 1264:"The Hirnantian (Late Ordovician) and end-Guadalupian (Middle Permian) mass-extinction events compared" 4077: 2208: 824:, which probably contributed to the demise of various calcareous marine organisms, particularly giant 2229:
Permskiye I Triasovyye tetrapody vostochnoi Evropy (Permian and Triassic Tetrapods of Eastern Europe)
1215: 406: 129: 128: 34: 33: 4132:"Climate changes caused by degassing of sediments during the emplacement of large igneous provinces" 2871: 296:
genera between 35 and 47%, while an estimate published in 2016 suggested a loss of 33–35% of marine
125: 30: 4765:"The Late Capitanian Mass Extinction of Terrestrial Vertebrates in the Karoo Basin of South Africa" 4076:
Zhu, Jiang; Zhang, Zhaochong; Santosh, M.; Tan, Shucheng; Deng, Yinan; Xie, Qiuhong (1 July 2021).
2622:"Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China" 2367:
The Pristerognathus AZ and the aftermath of the Capitanian extinction event in the main Karoo Basin
2207:
Bond, D.P.G.; Hilton, J.; Wignall, P.B.; Ali, J.R.; Steven, L.G.; Sun, Y.; Lai, X. September 2010.
590: 124: 122: 103: 29: 27: 132: 127: 37: 32: 3670:
Grasby, Stephen E.; Beauchamp, Benoit; Bond, David P. G.; Wignall, Paul B.; Sanei, Hamed (2016).
3021:
Kani, Tomomi; Isozaki, Yukio; Hayashi, Ryutaro; Zakharov, Yuri; Popov, Alexander (15 June 2018).
2912: 2447: 2383: 2304:
Watson, D. M. S. May 1914. "The Zones of the Beaufort Beds of the Karoo System in South Africa."
1784: 1459:
Zazzali, Sindbad; Crasquin, Sylvie; Deconinck, Jean-François; Feng, Qinglai (25 September 2015).
877: 800: 526: 305: 1758: 54: 4896: 4024:"Contrasting geochemical signatures on land from the Middle and Late Permian extinction events" 3980: 3187: 3139: 3083: 2534:
Wei, Hengye; Tang, Zhanwen; Yan, Detian; Wang, Jianguo; Roberts, Andrew P. (30 December 2019).
1964:"Mass extinction or extirpation: Permian biotic turnovers in the northwestern margin of Pangea" 1920: 1649: 916: 732: 3859:"Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises" 2267:
Vertebrate biozonation of the Beaufort Group with special reference to the Western Karoo Basin
1962:
Lee, Sangmin; Shi, Guang R.; Nakrem, Hans A.; Woo, Jusun; Tazawa, Jun-Ichi (4 February 2022).
662:
This mass extinction marked the beginning of the transition between the Palaeozoic and Modern
209:
age. The extinction event has been argued to have begun around 262 million years ago with the
4812: 4601: 4313: 2886: 2719: 2674: 338: 301: 246: 4675: 4281: 3975: 3937: 3534: 3374: 2973: 2091:"Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China" 1897:"Sixth extinction, rivaling that of the dinosaurs, should join the big five, scientists say" 1263: 4955: 4821: 4778: 4722: 4671: 4615: 4606: 4559: 4511: 4456: 4404: 4389:
Zhang, Bolin; Yao, Suping; Hu, Wenxuan; Ding, Hai; Liu, Bao; Ren, Yongle (1 October 2019).
4348: 4277: 4145: 4089: 3933: 3872: 3816: 3760: 3685: 3637: 3578: 3530: 3474: 3418: 3370: 3308: 3252: 3196: 3092: 3036: 2969: 2791: 2753: 2683: 2635: 2549: 2501: 2446:
Smith, Benjamin P.; Larson, Toti; Martindale, Rowan C.; Kerans, Charles (15 January 2020).
2392: 2338: 2104: 2042: 1977: 1577: 1522: 1370: 1317: 1179: 1055: 1004: 948: 720:
It is believed that the extinction, which coincided with the beginning of a major negative
4264:"Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction" 8: 4950: 3676: 2425:
Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & De Klerk, W. J. (2013).
821: 766: 762: 293: 262: 66: 4825: 4782: 4726: 4619: 4563: 4515: 4460: 4408: 4352: 4149: 4093: 4023: 3876: 3820: 3764: 3689: 3641: 3582: 3478: 3422: 3312: 3256: 3200: 3096: 3040: 2821: 2795: 2757: 2687: 2639: 2553: 2505: 2396: 2342: 2108: 2046: 1981: 1581: 1526: 1374: 1321: 1183: 1059: 1008: 952: 4921: 4913: 4738: 4631: 4575: 4550: 4420: 4364: 4293: 4237: 4188:
The Worst of Times: How Life on Earth Survived Eighty Million Years of Mass Extinctions
4051: 3997: 3949: 3895: 3858: 3832: 3776: 3701: 3490: 3434: 3331: 3294: 3268: 3212: 3156: 3135:"Latitudinal selectivity of foraminifer extinctions during the late Guadalupian crisis" 3108: 3052: 2929: 2699: 2565: 2408: 2128: 2058: 2001: 1937: 1666: 1609: 1538: 1482: 1436: 1409: 1237: 1220: 1071: 972: 897: 881: 863: 833: 663: 644: 632: 608: 424: 402: 213:, though its most intense pulse occurred 259 million years ago in what is known as the 4833: 4545: 4523: 3976:"Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events" 2860:"Decoupled diversity and ecology during the end-Guadalupian extinction (late Permian)" 2090: 1216:"The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction?" 849:
Not all studies, however, have supported the volcanic warming hypothesis; analysis of
453:
losses occurred in the middle of the Capitanian stage. The extinction suffered by the
409:
occurred when the Emeishan Traps first started to erupt, leading to the extinction of
4742: 4713: 4635: 4579: 4424: 4368: 4339: 4297: 4241: 4191: 4161: 4136: 4105: 4055: 3953: 3900: 3836: 3780: 3565:"Silicic ash beds bracket Emeishan Large Igneous province to < 1 m.y. at ~ 260 Ma" 3494: 3438: 3336: 3272: 3160: 3112: 3056: 2933: 2703: 2600: 2569: 2412: 2365: 2246: 2185: 2132: 2120: 2095: 2062: 2005: 1845: 1806:
Stevens, L.G., Hilton, J., Bond, D.P.G., Glasspool, I.J. & Jardine, P.E., 2011. "
1601: 1593: 1568: 1542: 1486: 1441: 1361: 1241: 1075: 964: 893: 741: 575: 574:, suffered a selective extinction pulse at the end of the Capitanian. 75.6% of coral 250: 4925: 4873: 4333:
Zhang, Bolin; Wignall, Paul B.; Yao, Suping; Hu, Wenxuan; Liu, Biao (January 2021).
4001: 3705: 3264: 3216: 2695: 1941: 1807: 1670: 1613: 1016: 976: 4905: 4869: 4829: 4786: 4730: 4679: 4623: 4567: 4519: 4464: 4412: 4356: 4285: 4229: 4153: 4097: 4043: 4035: 3989: 3941: 3890: 3880: 3824: 3768: 3751: 3693: 3645: 3594: 3586: 3569: 3538: 3482: 3426: 3409: 3378: 3326: 3316: 3260: 3204: 3148: 3100: 3044: 2977: 2921: 2799: 2761: 2691: 2643: 2557: 2540: 2509: 2461: 2400: 2346: 2112: 2050: 1993: 1985: 1929: 1658: 1585: 1530: 1474: 1431: 1423: 1378: 1325: 1277: 1229: 1187: 1165: 1111: 1063: 1012: 956: 939: 868: 640: 597:
disappeared over a period of tens of thousands of years; though new brachiopod and
326: 289: 258: 221: 186: 182: 3772: 3430: 2561: 1233: 1152: 292:
is still heavily debated by palaeontologists. Early estimates indicated a loss of
4468: 4416: 3828: 3649: 3590: 3486: 3321: 3048: 2803: 2647: 2513: 2350: 1872: 1534: 1329: 1115: 1067: 912: 628: 519: 317: 1631: 4706: 4683: 4289: 3945: 3864:
Proceedings of the National Academy of Sciences of the United States of America
3542: 3382: 3152: 2981: 2765: 2465: 2054: 1865: 1739: 1689:
Proceedings of the National Academy of Sciences of the United States of America
1685:"Estimates of the magnitudes of major marine mass extinctions in earth history" 1170: 825: 787: 783: 754: 750: 729: 570:, which had been in a long-term decline for a 30 million year period since the 559: 555: 398: 391: 354: 254: 190: 4791: 4764: 4101: 3920:"Ecosystem responses of two Permian biocrises modulated by CO2 emission rates" 3697: 2404: 4939: 4734: 4599: 4360: 4165: 4109: 1597: 1465: 1382: 908: 603: 579: 478: 467: 383: 371: 202: 3885: 2312: 2293: 2116: 1684: 1644: 1589: 1304:"A new ecological-severity ranking of major Phanerozoic biodiversity crises" 1192: 3904: 3340: 2124: 1605: 1445: 1427: 968: 758: 725: 487: 442: 4214:
Bond, David P. G.; Wignall, Paul B.; Grasby, Stephen E. (30 August 2019).
4047: 992: 2857: 2209:
The Middle Permian (Capitanian) mass extinction on land and in the oceans
1769: 1355:
Metcalfe, I.; Crowley, J. L.; Nicholl, R. S.; Schmitz, M. (August 2015).
1102: 816: 594: 473: 410: 358: 350: 225: 194: 47: 4702: 4700: 4602:"Impact of Permian mass extinctions on continental invertebrate infauna" 3208: 1997: 960: 749:
anomalies coeval with mercury and coronene anomalies. A large amount of
4917: 3598: 3104: 1914:
Clapham, Matthew E.; Shen, Shuzhong; Bottjer, David J. (8 April 2016).
873: 482: 446: 414: 342: 206: 4627: 4157: 4039: 3237:
Wang, X.; Foster, W. J.; Yan, J.; Li, A.; Mutti, M. (September 2019).
2285:
Broom, R. 1906. "On the Permian and Triassic Faunas of South Africa."
1478: 1281: 4697: 4233: 2925: 1989: 1642: 937:
Rohde, R.A. & Muller, R.A. (2005). "Cycles in fossil diversity".
829: 773:
location of the Emeishan Traps, leading to sudden global cooling and
694: 690: 668: 620: 583: 567: 454: 429: 322: 198: 4571: 1933: 1350: 1348: 1346: 345:, Day and colleagues suggested a 74–80% loss of generic richness in 149:, with just over 35% (according to this source) failing to survive. 4186:
Wignall, Paul B. (29 September 2015). "Extinction in the Shadows".
3993: 3801:
Kaiho, Kunio; Grasby, Stephen E.; Chen, Zhong-Qiang (15 May 2023).
3299: 2486:
Kofukuda, Daisuke; Isozaki, Yukio; Igo, Hisayoshi (15 March 2014).
745: 689:
Among terrestrial vertebrates, the main victims were dinocephalian
652: 551: 346: 276: 4544:
Chen, Fayao; Xue, Wuqiang; Yan, Jiaxin; Meng, Qi (19 April 2021).
1645:"Origination, extinction, and mass depletions of marine diversity" 4502: 2744: 2033: 1343: 1268: 858: 804: 779: 770: 636: 612: 598: 571: 514: 499: 387: 379: 229: 4021: 854: 850: 721: 1301: 736: 699: 316:. Some studies have considered it the third or fourth greatest 297: 1410:"Recovery from the most profound mass extinction of all time" 1354: 844: 648: 450: 417: 270: 141: 2596:
Volcanism, Impacts, and Mass Extinctions: Causes and Effects
2177:
Volcanism, Impacts, and Mass Extinctions: Causes and Effects
1837:
Volcanism, Impacts, and Mass Extinctions: Causes and Effects
1458: 876:
extinction rates in the Karoo Basin, specifically the upper
253:
rose during the Capitanian. This was probably the result of
4910:
10.1666/0094-8373(2002)028<0449:PEPOPB>2.0.CO;2
3174: 2445: 1663:
10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2
1506: 530: 309: 3669: 3020: 3001: 3974:
Retallack, Gregory J.; Jahren, A. Hope (1 October 2007).
3856: 3728:"Brachiopod die-off signaled mid-Permian mass extinction" 3621: 1214:
Rampino, Michael R.; Shen, Shu-Zhong (5 September 2019).
627:
Most of the marine victims of the extinction were either
4444: 4209: 4207: 3076: 1864:
Zhong, Y.-T., He, B., Mundil, R., and Xu, Y.-G. (2014).
1039: 4763:
Day, Michael O.; Rubidge, Bruce S. (18 February 2021).
3459:
Arefifard, Sakineh; Payne, Jonathan L. (15 July 2020).
2741: 1643:
Bambach, R. K.; Knoll, A. H. & Wang, S. C. (2004).
1628:
Global Events and Event Stratigraphy in the Phanerozoic
936: 838: 892:
The Capitanian mass extinction has been attributed to
4204: 4190:. Princeton: Princeton University Press. p. 38. 2864:
Geological Society of America Abstracts with Programs
4130:
Ganino, Clément; Arndt, Nicholas T. (1 April 2009).
3617: 3615: 3133:
Bond, David P. G.; Wignall, Paul B. (8 April 2016).
2822:"New mass extinction event identified by geologists" 2370:. 35th International Geological Congress. Cape Town. 1785:"South Africa's Great Karoo reveals mass extinction" 3353: 2025: 1262:Isozaki, Yukio; Servais, Thomas (8 December 2017). 988: 986: 220:Having historically been considered as part of the 189:and increased extinction rates near the end of the 4853: 4537: 4075: 3562: 3452: 2858:Clapham, M.E., Bottjer, D.J. and Shen, S. (2006). 2778: 2619: 2485: 2087: 1913: 1035: 1033: 4655: 4396:Palaeogeography, Palaeoclimatology, Palaeoecology 4332: 4261: 4213: 3917: 3808:Palaeogeography, Palaeoclimatology, Palaeoecology 3744: 3629:Palaeogeography, Palaeoclimatology, Palaeoecology 3612: 3466:Palaeogeography, Palaeoclimatology, Palaeoecology 3402: 3028:Palaeogeography, Palaeoclimatology, Palaeoecology 2627:Palaeogeography, Palaeoclimatology, Palaeoecology 2599:. The Geological Society of America. p. 38. 1890: 1888: 1733:Palaeogeography, Palaeoclimatology, Palaeoecology 1514:Palaeogeography, Palaeoclimatology, Palaeoecology 1309:Palaeogeography, Palaeoclimatology, Palaeoecology 1145:Palaeogeography, Palaeoclimatology, Palaeoecology 1047:Palaeogeography, Palaeoclimatology, Palaeoecology 724:excursion signifying a severe disturbance of the 353:in South Africa, including the extinction of the 288:The impact of the Capitanian extinction event on 4937: 4318:: CS1 maint: bot: original URL status unknown ( 3850: 2953: 2906:Shen, Shu-Zhong; Zhang, Yi-Chun (14 July 2015). 2724:: CS1 maint: bot: original URL status unknown ( 2706:. Archived from the original on 22 December 2022 1707: 1705: 1703: 1701: 983: 810: 341:exist for the Capitanian mass extinction. Among 4491: 4489: 4487: 4485: 4179: 3973: 3800: 3236: 3014: 3004:"Two Phases of the End-Permian Mass Extinction" 2588: 2586: 2271:Annals of the Geological Survey of South Africa 1961: 1829: 1827: 1825: 1823: 1779: 1777: 1153:https://dx.doi.org/10.1016/j.palaeo.2010.03.056 1030: 121: 26: 4806:Hallam, A.; Wignall, Paul B. (December 1999). 4543: 4388: 3458: 2737: 2735: 2667: 2533: 2380: 2083: 2081: 2079: 1885: 1261: 1096:Shen, Shu-Zhong; Shi, G. R. (September 2009). 457:may have occurred in the early Wuchiapingian. 171:Guadalupian-Lopingian boundary mass extinction 4805: 4300:. Archived from the original on 22 April 2023 2593:Keller, Gerta; Kerr, Andrew C., eds. (2014). 2174:Keller, Gerta; Kerr, Andrew C., eds. (2014). 1834:Keller, Gerta; Kerr, Andrew C., eds. (2014). 1713:"Middle-Late Permian mass extinction on land" 1698: 1632:https://doi.org/10.1007%2F978-3-642-79634-0_4 757:is believed to have been discharged into the 16:Extinction event around 260 million years ago 4893: 4495: 4482: 3514: 3002:Yugan, J.; Jing, Z. & Shang, Q. (1994). 2891:: CS1 maint: multiple names: authors list ( 2583: 2326: 1820: 1774: 1740:https://doi.org/10.1016/j.palaeo.2004.05.010 1561: 1559: 1407: 140:Plot of extinction intensity (percentage of 4129: 3292: 3132: 2841:"Tantalizing evidence of a mass extinction" 2732: 2265:Keyser, A. W. & Smith, R. H. M. 1979. " 2203: 2201: 2076: 1802: 1800: 1798: 1565: 1403: 1401: 1399: 1213: 4762: 2592: 2322: 2320: 2173: 1833: 1753: 1751: 1749: 1747: 845:Criticism of the volcanic cause hypothesis 616:that of the later end-Permian extinction. 337:Few published estimates for the impact on 4790: 3894: 3884: 3330: 3320: 3008:Pangea: Global Environments and Resources 2905: 2313:https://doi.org/10.1017/S001675680019675X 2294:https://doi.org/10.1017/S001675680012271X 2148: 2146: 2144: 2142: 1556: 1435: 1191: 332: 308:and clustering of extinctions in certain 4808:"Mass extinctions and sea-level changes" 3725: 3181:Clapham, Matthew E. (24 February 2015). 2815: 2813: 2240: 2198: 1795: 1396: 1138: 1136: 1134: 1132: 639:that died when the seas closed, or were 376:International Commission on Stratigraphy 4185: 3180: 2819: 2317: 1744: 1095: 820:carbon dioxide in the oceans triggered 589:87% of brachiopod species found at the 329:or even entire ecosystems themselves). 4938: 4221:Geological Society of America Bulletin 2838: 2231:". GEOS, Moscow (original in Russian). 2158:Geological Society of America Bulletin 2139: 1969:Geological Society of America Bulletin 1770:https://doi.org/10.1098/rspb.2015.0834 1717:Geological Society of America Bulletin 1630:. Springer-Verlag, Berlin, pp. 35–51. 401:, which are interbedded with tropical 80: 73: 64: 59: 2810: 2363: 1163: 1129: 794: 715: 314:Cretaceous–Paleogene extinction event 108: 101: 94: 87: 4119:– via Elsevier Science Direct. 2475:– via Elsevier Science Direct. 1894: 930: 728:, was triggered by eruptions of the 460: 283: 215:Guadalupian-Lopingian boundary event 52: 44: 4663:Earth and Planetary Science Letters 4269:Earth and Planetary Science Letters 3925:Earth and Planetary Science Letters 3522:Earth and Planetary Science Letters 3362:Earth and Planetary Science Letters 2961:Earth and Planetary Science Letters 2453:Earth and Planetary Science Letters 903: 684: 647:. Evidence from marine deposits in 46:Marine extinction intensity during 13: 1763:Proceedings of the Royal Society B 1415:Proceedings of the Royal Society B 540: 117: 22: 14: 4967: 2182:The Geological Society of America 1842:The Geological Society of America 1812:Journal of the Geological Society 1408:Sahney, S.; Benton, M.J. (2008). 887: 710: 386:. Carbonate platform deposits in 267:Permian–Triassic extinction event 147:Permian–Triassic extinction event 3726:Freydlin, Julie (16 July 2015). 2839:Kaplan, Sarah (April 23, 2015). 2820:Berezow, Alex (April 21, 2015). 232:lost, after the end-Permian and 167:end-Guadalupian extinction event 163:Capitanian mass extinction event 4887: 4874:10.1016/j.gloplacha.2012.01.002 4847: 4799: 4756: 4649: 4593: 4452:Journal of Asian Earth Sciences 4438: 4382: 4326: 4255: 4123: 4069: 4015: 3967: 3911: 3794: 3738: 3719: 3663: 3556: 3508: 3396: 3347: 3286: 3265:10.1016/j.gloplacha.2019.05.005 3230: 3126: 3070: 2995: 2947: 2899: 2851: 2832: 2783:Journal of Asian Earth Sciences 2772: 2696:10.1016/j.earscirev.2022.104011 2661: 2613: 2527: 2493:Journal of Asian Earth Sciences 2479: 2439: 2419: 2374: 2357: 2330:Journal of Asian Earth Sciences 2298: 2279: 2259: 2234: 2221: 2167: 2019: 1955: 1907: 1858: 1725: 1677: 1636: 1620: 1500: 1452: 1017:10.1016/j.gloplacha.2012.06.008 441:The extinction of fusulinacean 436: 321:taxonomic restructuring within 1295: 1255: 1207: 1157: 1089: 545: 228:in terms of the percentage of 201:series; however, more refined 1: 4834:10.1016/S0012-8252(99)00055-0 4524:10.1016/S0016-6995(02)00066-9 3773:10.1016/j.chemgeo.2022.121243 3431:10.1016/j.chemgeo.2022.121243 3293:J. Fröbisch (November 2008). 2562:10.1016/j.chemgeo.2019.119318 1895:Hand, Eric (April 16, 2015). 1234:10.1080/08912963.2019.1658096 1164:Kaiho, Kunio (22 July 2022). 923: 811:Hypercapnia and acidification 619:Biomarker evidence indicates 4469:10.1016/j.jseaes.2013.02.009 4417:10.1016/j.palaeo.2018.01.021 4175:– via GeoScienceWorld. 3829:10.1016/j.palaeo.2023.111518 3650:10.1016/j.palaeo.2015.06.009 3591:10.1016/j.lithos.2016.08.013 3487:10.1016/j.palaeo.2020.109743 3322:10.1371/journal.pone.0003733 3049:10.1016/j.palaeo.2018.03.033 2804:10.1016/j.jseaes.2005.04.001 2648:10.1016/j.palaeo.2008.08.005 2514:10.1016/j.jseaes.2013.12.010 2351:10.1016/j.jseaes.2008.11.016 1535:10.1016/j.palaeo.2022.111043 1330:10.1016/j.palaeo.2012.12.019 1116:10.1016/j.palwor.2009.04.010 1068:10.1016/j.palaeo.2017.08.027 815:Because the ocean acts as a 586:foraminifera, went extinct. 240: 7: 4861:Global and Planetary Change 3244:Global and Planetary Change 2241:Kitching, James W. (1977). 1000:Global and Planetary Change 10: 4972: 4770:Frontiers in Earth Science 4684:10.1016/j.epsl.2014.04.014 4290:10.1016/j.epsl.2023.118128 3946:10.1016/j.epsl.2022.117940 3543:10.1016/j.epsl.2006.12.021 3383:10.1016/j.epsl.2013.05.020 3153:10.1666/0094-8373-35.4.465 2982:10.1016/j.epsl.2016.12.015 2766:10.1080/002411600750053853 2466:10.1016/j.epsl.2019.115876 2055:10.2110/palo.2011.p11-058r 4792:10.3389/feart.2021.631198 4102:10.1016/j.gsf.2021.101140 3698:10.1017/S0016756815000436 2405:10.1134/S0031030115120059 705: 407:phreatomagmatic eruptions 364: 179:Middle Permian extinction 4735:10.1016/j.gr.2018.02.017 4361:10.1016/j.gr.2020.09.003 2870:(7): 117. Archived from 1383:10.1016/j.gr.2014.09.002 591:Kapp Starostin Formation 481:Superassemblage and the 477:Superzone and later the 4676:2014E&PSL.396..201J 4282:2023E&PSL.61018128S 3938:2023E&PSL.60217940W 3886:10.1073/pnas.2202039119 3535:2007E&PSL.255..306H 3375:2013E&PSL.375..156S 2974:2017E&PSL.460..180X 2913:Journal of Paleontology 2384:Paleontological Journal 2117:10.1126/science.1171956 1590:10.1126/science.1102127 1193:10.5194/bg-19-3369-2022 878:Abrahamskraal Formation 265:more severely than the 211:Late Guadalupian crisis 3981:The Journal of Geology 1683:Stanley, S. M., 2016. 1428:10.1098/rspb.2007.1370 917:biological competition 857:values from the tooth 733:large igneous province 339:terrestrial ecosystems 333:Terrestrial ecosystems 135: 40: 4813:Earth-Science Reviews 4496:Weidlich, O. (2002). 3010:(Memoir 17): 813–822. 2675:Earth-Science Reviews 2213:Earth-Science Reviews 525:radiometric ages via 397:The volcanics of the 302:background extinction 153:source and image info 134: 61:Millions of years ago 39: 4082:Geoscience Frontiers 1738:(3-4), pp. 289–297. 1151:(1-2), pp. 282-294. 767:Southern Hemispheres 582:, a family of large 520:biostratigraphically 245:In the aftermath of 193:, also known as the 175:pre-Lopingian crisis 165:, also known as the 4826:1999ESRv...48..217H 4783:2021FrEaS...9...15D 4727:2018GondR..59....1R 4620:2021TeNov..33..455B 4564:2021GeolJ..56.6073C 4516:2002Geobi..35..287W 4461:2013JAESc..67...51S 4409:2019PPP...53108630Z 4353:2021GondR..89...31Z 4150:2009Geo....37..323G 4094:2021GeoFr..1201140Z 3877:2022PNAS..11902039J 3871:(31): e2202039119. 3821:2023PPP...61811518K 3765:2023ChGeo.61721243L 3690:2016GeoM..153..285G 3677:Geological Magazine 3642:2016PPP...441...65J 3583:2016Litho.264...17H 3479:2020PPP...55009743A 3423:2023ChGeo.61721243L 3313:2008PLoSO...3.3733F 3257:2019GPC...180....1W 3209:10.1017/pab.2014.15 3201:2015Pbio...41..266C 3097:2023Pbio...49..509A 3041:2018PPP...499...13K 2845:The Washington Post 2796:2006JAESc..26..353O 2758:2000Letha..33..285W 2688:2022ESRv..22804011M 2640:2008PPP...269...78L 2554:2019ChGeo.53019318W 2506:2014JAESc..82...47K 2397:2015PalJ...49.1346G 2343:2009JAESc..36..491L 2306:Geological Magazine 2287:Geological Magazine 2109:2009Sci...324.1179W 2103:(5931): 1179–1182. 2047:2012Palai..27...78W 1982:2022GSAB..134.2399L 1976:(9–10): 2399–2414. 1722:(11-12): 1398-1411. 1582:2004Sci...306..264V 1527:2022PPP...59911043M 1375:2015GondR..28...61M 1322:2013PPP...370..260M 1184:2022BGeo...19.3369K 1060:2019PPP...519....8H 1009:2012GPC....94...46D 961:10.1038/nature03339 953:2005Natur.434..208R 900:biodiversity loss. 867:specimens from the 822:ocean acidification 664:evolutionary faunas 633:epicontinental seas 527:uranium–lead dating 491:, Dinocephalian or 403:carbonate platforms 306:Signor–Lipps effect 300:when corrected for 294:marine invertebrate 4551:Geological Journal 3105:10.1017/pab.2023.1 2311:(5), pp. 203-208. 2184:. pp. 36–37. 2164:(9-10): 1411-1421. 1871:2019-06-24 at the 1695:(42), E6325–E6334. 1221:Historical Biology 882:Teekloof Formation 864:Diictodon feliceps 834:soil acidification 795:Anoxia and euxinia 716:Volcanic emissions 471:Superzone and the 423:In the absence of 257:replacing extinct 247:Olson's Extinction 136: 41: 4946:Extinction events 4714:Gondwana Research 4628:10.1111/ter.12530 4340:Gondwana Research 4158:10.1130/G25325A.1 4040:10.1111/sed.12117 2606:978-0-8137-2505-5 2391:(12): 1346–1352. 2191:978-0-8137-2505-5 1851:978-0-8137-2505-5 1576:(5694): 264–266. 1479:10.5252/g2015n3a1 1422:(1636): 759–765. 1362:Gondwana Research 1282:10.1111/let.12252 1178:(14): 3369–3380. 947:(7030): 209–210. 645:Paleotethys Ocean 461:Terrestrial realm 413:foraminifera and 327:ecological niches 290:marine ecosystems 284:Marine ecosystems 69: 4963: 4930: 4929: 4891: 4885: 4884: 4882: 4880: 4851: 4845: 4844: 4842: 4840: 4803: 4797: 4796: 4794: 4760: 4754: 4753: 4751: 4749: 4704: 4695: 4694: 4692: 4690: 4653: 4647: 4646: 4644: 4642: 4597: 4591: 4590: 4588: 4586: 4558:(2): 6073–6087. 4541: 4535: 4534: 4532: 4530: 4493: 4480: 4479: 4477: 4475: 4455:. 67–68: 51–62. 4442: 4436: 4435: 4433: 4431: 4386: 4380: 4379: 4377: 4375: 4330: 4324: 4323: 4317: 4309: 4307: 4305: 4259: 4253: 4252: 4250: 4248: 4234:10.1130/B35281.1 4228:(5–6): 931–942. 4211: 4202: 4201: 4183: 4177: 4176: 4174: 4172: 4127: 4121: 4120: 4118: 4116: 4073: 4067: 4066: 4064: 4062: 4034:(6): 1812–1829. 4019: 4013: 4012: 4010: 4008: 3971: 3965: 3964: 3962: 3960: 3915: 3909: 3908: 3898: 3888: 3854: 3848: 3847: 3845: 3843: 3798: 3792: 3791: 3789: 3787: 3752:Chemical Geology 3742: 3736: 3735: 3723: 3717: 3716: 3714: 3712: 3667: 3661: 3660: 3658: 3656: 3619: 3610: 3609: 3607: 3605: 3560: 3554: 3553: 3551: 3549: 3529:(3–4): 306–323. 3512: 3506: 3505: 3503: 3501: 3456: 3450: 3449: 3447: 3445: 3410:Chemical Geology 3400: 3394: 3393: 3391: 3389: 3351: 3345: 3344: 3334: 3324: 3290: 3284: 3283: 3281: 3279: 3234: 3228: 3227: 3225: 3223: 3178: 3172: 3171: 3169: 3167: 3130: 3124: 3123: 3121: 3119: 3074: 3068: 3067: 3065: 3063: 3018: 3012: 3011: 2999: 2993: 2992: 2990: 2988: 2951: 2945: 2944: 2942: 2940: 2926:10.1666/07-118.1 2903: 2897: 2896: 2890: 2882: 2880: 2879: 2855: 2849: 2848: 2836: 2830: 2829: 2817: 2808: 2807: 2790:(3–4): 353–368. 2776: 2770: 2769: 2739: 2730: 2729: 2723: 2715: 2713: 2711: 2665: 2659: 2658: 2656: 2654: 2617: 2611: 2610: 2590: 2581: 2580: 2578: 2576: 2541:Chemical Geology 2531: 2525: 2524: 2522: 2520: 2483: 2477: 2476: 2474: 2472: 2443: 2437: 2423: 2417: 2416: 2378: 2372: 2371: 2361: 2355: 2354: 2324: 2315: 2302: 2296: 2292:(1), pp. 29-30. 2283: 2277: 2263: 2257: 2256: 2238: 2232: 2225: 2219: 2205: 2196: 2195: 2171: 2165: 2150: 2137: 2136: 2085: 2074: 2073: 2071: 2069: 2023: 2017: 2016: 2014: 2012: 1990:10.1130/B36227.1 1959: 1953: 1952: 1950: 1948: 1911: 1905: 1904: 1892: 1883: 1862: 1856: 1855: 1831: 1818: 1804: 1793: 1792: 1781: 1772: 1755: 1742: 1729: 1723: 1709: 1696: 1681: 1675: 1674: 1640: 1634: 1624: 1618: 1617: 1563: 1554: 1553: 1551: 1549: 1504: 1498: 1497: 1495: 1493: 1456: 1450: 1449: 1439: 1405: 1394: 1393: 1391: 1389: 1352: 1341: 1340: 1338: 1336: 1299: 1293: 1292: 1290: 1288: 1259: 1253: 1252: 1250: 1248: 1211: 1205: 1204: 1202: 1200: 1195: 1161: 1155: 1140: 1127: 1126: 1124: 1122: 1110:(2–3): 152–161. 1093: 1087: 1086: 1084: 1082: 1037: 1028: 1027: 1025: 1023: 1003:. 94–95: 46–61. 990: 981: 980: 934: 904:Other hypotheses 869:Karoo Supergroup 776: 685:Terrestrial life 641:dominant species 609:rhynchonelliform 524: 523:well-constrained 425:radiometric ages 279: 187:species richness 183:extinction event 113: 106: 99: 92: 85: 78: 71: 67: 62: 57: 56: 50: 4971: 4970: 4966: 4965: 4964: 4962: 4961: 4960: 4936: 4935: 4934: 4933: 4892: 4888: 4878: 4876: 4852: 4848: 4838: 4836: 4804: 4800: 4761: 4757: 4747: 4745: 4705: 4698: 4688: 4686: 4654: 4650: 4640: 4638: 4598: 4594: 4584: 4582: 4572:10.1002/gj.4151 4542: 4538: 4528: 4526: 4494: 4483: 4473: 4471: 4443: 4439: 4429: 4427: 4387: 4383: 4373: 4371: 4331: 4327: 4311: 4310: 4303: 4301: 4260: 4256: 4246: 4244: 4212: 4205: 4198: 4184: 4180: 4170: 4168: 4128: 4124: 4114: 4112: 4074: 4070: 4060: 4058: 4020: 4016: 4006: 4004: 3972: 3968: 3958: 3956: 3916: 3912: 3855: 3851: 3841: 3839: 3799: 3795: 3785: 3783: 3743: 3739: 3724: 3720: 3710: 3708: 3668: 3664: 3654: 3652: 3620: 3613: 3603: 3601: 3561: 3557: 3547: 3545: 3513: 3509: 3499: 3497: 3457: 3453: 3443: 3441: 3401: 3397: 3387: 3385: 3352: 3348: 3291: 3287: 3277: 3275: 3235: 3231: 3221: 3219: 3179: 3175: 3165: 3163: 3131: 3127: 3117: 3115: 3075: 3071: 3061: 3059: 3019: 3015: 3000: 2996: 2986: 2984: 2952: 2948: 2938: 2936: 2904: 2900: 2884: 2883: 2877: 2875: 2856: 2852: 2837: 2833: 2818: 2811: 2777: 2773: 2740: 2733: 2717: 2716: 2709: 2707: 2666: 2662: 2652: 2650: 2618: 2614: 2607: 2591: 2584: 2574: 2572: 2532: 2528: 2518: 2516: 2484: 2480: 2470: 2468: 2444: 2440: 2424: 2420: 2379: 2375: 2362: 2358: 2325: 2318: 2303: 2299: 2284: 2280: 2264: 2260: 2253: 2239: 2235: 2226: 2222: 2218:(1-2): 100-116. 2206: 2199: 2192: 2172: 2168: 2151: 2140: 2086: 2077: 2067: 2065: 2024: 2020: 2010: 2008: 1960: 1956: 1946: 1944: 1934:10.1666/08033.1 1912: 1908: 1893: 1886: 1873:Wayback Machine 1863: 1859: 1852: 1832: 1821: 1805: 1796: 1791:. July 7, 2015. 1783: 1782: 1775: 1756: 1745: 1730: 1726: 1710: 1699: 1682: 1678: 1641: 1637: 1625: 1621: 1564: 1557: 1547: 1545: 1505: 1501: 1491: 1489: 1457: 1453: 1406: 1397: 1387: 1385: 1353: 1344: 1334: 1332: 1300: 1296: 1286: 1284: 1260: 1256: 1246: 1244: 1212: 1208: 1198: 1196: 1162: 1158: 1141: 1130: 1120: 1118: 1094: 1090: 1080: 1078: 1038: 1031: 1021: 1019: 991: 984: 935: 931: 926: 913:plate tectonics 906: 890: 847: 813: 797: 774: 755:sulphur dioxide 718: 713: 708: 687: 629:endemic species 548: 543: 541:Effects on life 522: 507:Assemblage Zone 505:Pristerognathus 496:Assemblage Zone 463: 439: 367: 335: 325:or the loss of 318:mass extinction 286: 274: 243: 234:Late Ordovician 159: 158: 157: 138: 137: 133: 115: 114: 109: 107: 102: 100: 95: 93: 88: 86: 81: 79: 74: 72: 65: 63: 60: 58: 53: 51: 45: 42: 38: 17: 12: 11: 5: 4969: 4959: 4958: 4953: 4948: 4932: 4931: 4904:(4): 449–463. 4886: 4846: 4820:(4): 217–250. 4798: 4755: 4696: 4648: 4614:(5): 455–464. 4592: 4536: 4510:(1): 287–294. 4481: 4437: 4381: 4325: 4254: 4203: 4197:978-0691142098 4196: 4178: 4144:(4): 323–326. 4122: 4068: 4048:2027.42/108696 4014: 3994:10.1086/524120 3966: 3910: 3849: 3793: 3737: 3732:Earth Magazine 3718: 3684:(2): 285–297. 3662: 3611: 3555: 3507: 3451: 3395: 3346: 3285: 3229: 3195:(2): 266–279. 3173: 3147:(4): 465–483. 3125: 3091:(3): 509–526. 3069: 3013: 2994: 2946: 2920:(5): 924–937. 2898: 2850: 2831: 2809: 2771: 2752:(4): 285–294. 2731: 2660: 2634:(1–2): 78–93. 2612: 2605: 2582: 2526: 2478: 2438: 2418: 2373: 2356: 2337:(6): 491–502. 2316: 2297: 2278: 2258: 2251: 2233: 2220: 2197: 2190: 2166: 2138: 2075: 2018: 1954: 1906: 1884: 1857: 1850: 1844:. p. 37. 1819: 1817:, pp. 607–619. 1794: 1773: 1743: 1724: 1697: 1676: 1657:(4): 522–542. 1635: 1619: 1555: 1499: 1473:(3): 283–313. 1451: 1395: 1342: 1294: 1276:(2): 173–186. 1254: 1228:(5): 716–722. 1206: 1171:Biogeosciences 1156: 1128: 1088: 1029: 982: 928: 927: 925: 922: 905: 902: 894:sea level fall 889: 888:Sea level fall 886: 846: 843: 812: 809: 796: 793: 751:carbon dioxide 730:Emeishan Traps 717: 714: 712: 711:Emeishan Traps 709: 707: 704: 686: 683: 674:Diplosphaerina 560:photosymbiotic 556:photosynthesis 547: 544: 542: 539: 535:Tapinocephalus 494:Tapinocephalus 462: 459: 438: 435: 399:Emeishan Traps 366: 363: 355:dinocephalians 334: 331: 285: 282: 242: 239: 191:Middle Permian 139: 116: 43: 21: 20: 19: 18: 15: 9: 6: 4: 3: 2: 4968: 4957: 4954: 4952: 4949: 4947: 4944: 4943: 4941: 4927: 4923: 4919: 4915: 4911: 4907: 4903: 4899: 4898: 4890: 4875: 4871: 4867: 4863: 4862: 4857: 4850: 4835: 4831: 4827: 4823: 4819: 4815: 4814: 4809: 4802: 4793: 4788: 4784: 4780: 4776: 4772: 4771: 4766: 4759: 4744: 4740: 4736: 4732: 4728: 4724: 4720: 4716: 4715: 4710: 4703: 4701: 4685: 4681: 4677: 4673: 4669: 4665: 4664: 4659: 4652: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4608: 4603: 4596: 4581: 4577: 4573: 4569: 4565: 4561: 4557: 4553: 4552: 4547: 4540: 4525: 4521: 4517: 4513: 4509: 4505: 4504: 4499: 4492: 4490: 4488: 4486: 4470: 4466: 4462: 4458: 4454: 4453: 4448: 4441: 4426: 4422: 4418: 4414: 4410: 4406: 4402: 4398: 4397: 4392: 4385: 4370: 4366: 4362: 4358: 4354: 4350: 4346: 4342: 4341: 4336: 4329: 4321: 4315: 4299: 4295: 4291: 4287: 4283: 4279: 4275: 4271: 4270: 4265: 4258: 4243: 4239: 4235: 4231: 4227: 4223: 4222: 4217: 4210: 4208: 4199: 4193: 4189: 4182: 4167: 4163: 4159: 4155: 4151: 4147: 4143: 4139: 4138: 4133: 4126: 4111: 4107: 4103: 4099: 4095: 4091: 4088:(4): 101140. 4087: 4083: 4079: 4072: 4057: 4053: 4049: 4045: 4041: 4037: 4033: 4029: 4028:Sedimentology 4025: 4018: 4003: 3999: 3995: 3991: 3987: 3983: 3982: 3977: 3970: 3955: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3926: 3921: 3914: 3906: 3902: 3897: 3892: 3887: 3882: 3878: 3874: 3870: 3866: 3865: 3860: 3853: 3838: 3834: 3830: 3826: 3822: 3818: 3814: 3810: 3809: 3804: 3797: 3782: 3778: 3774: 3770: 3766: 3762: 3758: 3754: 3753: 3748: 3741: 3733: 3729: 3722: 3707: 3703: 3699: 3695: 3691: 3687: 3683: 3679: 3678: 3673: 3666: 3651: 3647: 3643: 3639: 3635: 3631: 3630: 3625: 3618: 3616: 3600: 3596: 3592: 3588: 3584: 3580: 3576: 3572: 3571: 3566: 3559: 3544: 3540: 3536: 3532: 3528: 3524: 3523: 3518: 3511: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3467: 3462: 3455: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3411: 3406: 3399: 3384: 3380: 3376: 3372: 3368: 3364: 3363: 3358: 3350: 3342: 3338: 3333: 3328: 3323: 3318: 3314: 3310: 3307:(11): e3733. 3306: 3302: 3301: 3296: 3289: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3245: 3240: 3233: 3218: 3214: 3210: 3206: 3202: 3198: 3194: 3190: 3189: 3184: 3177: 3162: 3158: 3154: 3150: 3146: 3142: 3141: 3136: 3129: 3114: 3110: 3106: 3102: 3098: 3094: 3090: 3086: 3085: 3080: 3073: 3058: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3029: 3024: 3017: 3009: 3005: 2998: 2983: 2979: 2975: 2971: 2967: 2963: 2962: 2957: 2950: 2935: 2931: 2927: 2923: 2919: 2915: 2914: 2909: 2902: 2894: 2888: 2874:on 2015-12-08 2873: 2869: 2865: 2861: 2854: 2846: 2842: 2835: 2827: 2823: 2816: 2814: 2805: 2801: 2797: 2793: 2789: 2785: 2784: 2775: 2767: 2763: 2759: 2755: 2751: 2747: 2746: 2738: 2736: 2727: 2721: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2676: 2671: 2664: 2649: 2645: 2641: 2637: 2633: 2629: 2628: 2623: 2616: 2608: 2602: 2598: 2597: 2589: 2587: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2542: 2537: 2530: 2515: 2511: 2507: 2503: 2499: 2495: 2494: 2489: 2482: 2467: 2463: 2459: 2455: 2454: 2449: 2442: 2436:(3): 363-366. 2435: 2432: 2428: 2422: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2385: 2377: 2369: 2368: 2360: 2352: 2348: 2344: 2340: 2336: 2332: 2331: 2323: 2321: 2314: 2310: 2307: 2301: 2295: 2291: 2288: 2282: 2275: 2272: 2268: 2262: 2254: 2252:9780854944279 2248: 2244: 2237: 2230: 2224: 2217: 2214: 2210: 2204: 2202: 2193: 2187: 2183: 2179: 2178: 2170: 2163: 2159: 2155: 2149: 2147: 2145: 2143: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2097: 2092: 2084: 2082: 2080: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2035: 2030: 2022: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1970: 1965: 1958: 1943: 1939: 1935: 1931: 1927: 1923: 1922: 1917: 1910: 1902: 1898: 1891: 1889: 1881: 1878: 1874: 1870: 1867: 1861: 1853: 1847: 1843: 1839: 1838: 1830: 1828: 1826: 1824: 1816: 1813: 1809: 1803: 1801: 1799: 1790: 1786: 1780: 1778: 1771: 1767: 1764: 1760: 1754: 1752: 1750: 1748: 1741: 1737: 1734: 1728: 1721: 1718: 1714: 1708: 1706: 1704: 1702: 1694: 1690: 1686: 1680: 1672: 1668: 1664: 1660: 1656: 1652: 1651: 1646: 1639: 1633: 1629: 1623: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1570: 1562: 1560: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1515: 1510: 1503: 1488: 1484: 1480: 1476: 1472: 1468: 1467: 1466:Geodiversitas 1462: 1455: 1447: 1443: 1438: 1433: 1429: 1425: 1421: 1417: 1416: 1411: 1404: 1402: 1400: 1384: 1380: 1376: 1372: 1368: 1364: 1363: 1358: 1351: 1349: 1347: 1331: 1327: 1323: 1319: 1315: 1311: 1310: 1305: 1298: 1283: 1279: 1275: 1271: 1270: 1265: 1258: 1243: 1239: 1235: 1231: 1227: 1223: 1222: 1217: 1210: 1194: 1189: 1185: 1181: 1177: 1173: 1172: 1167: 1160: 1154: 1150: 1146: 1139: 1137: 1135: 1133: 1117: 1113: 1109: 1105: 1104: 1099: 1092: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1048: 1043: 1036: 1034: 1018: 1014: 1010: 1006: 1002: 1001: 996: 989: 987: 978: 974: 970: 966: 962: 958: 954: 950: 946: 942: 941: 933: 929: 921: 918: 914: 910: 909:Global drying 901: 899: 898:Palaeotethyan 895: 885: 883: 879: 875: 870: 866: 865: 860: 856: 852: 842: 840: 835: 831: 827: 823: 818: 808: 806: 802: 792: 789: 785: 781: 772: 768: 764: 760: 756: 752: 747: 743: 738: 734: 731: 727: 723: 703: 701: 696: 692: 682: 680: 675: 671: 670: 665: 660: 656: 654: 650: 646: 642: 638: 634: 630: 625: 622: 617: 614: 610: 605: 604:fossil record 600: 596: 592: 587: 585: 581: 580:Verbeekinidae 577: 573: 569: 564: 561: 557: 553: 538: 536: 532: 528: 521: 516: 510: 508: 506: 501: 497: 495: 490: 489: 484: 483:Theriodontian 480: 479:Dinocephalian 476: 475: 470: 469: 468:Titanophoneus 458: 456: 452: 448: 444: 434: 431: 426: 421: 419: 416: 412: 408: 404: 400: 395: 393: 389: 385: 384:Zechstein Sea 381: 377: 373: 372:Wuchiapingian 362: 360: 356: 352: 348: 344: 340: 330: 328: 324: 319: 315: 311: 307: 303: 299: 295: 291: 281: 278: 272: 268: 264: 260: 256: 255:disaster taxa 252: 248: 238: 235: 231: 227: 223: 218: 216: 212: 208: 204: 203:stratigraphic 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 156: 154: 148: 143: 120: 112: 105: 98: 91: 84: 77: 70: 49: 25: 4901: 4897:Paleobiology 4895: 4889: 4877:. Retrieved 4865: 4859: 4849: 4837:. Retrieved 4817: 4811: 4801: 4774: 4768: 4758: 4746:. Retrieved 4718: 4712: 4687:. Retrieved 4667: 4661: 4651: 4639:. Retrieved 4611: 4605: 4595: 4583:. Retrieved 4555: 4549: 4539: 4527:. Retrieved 4507: 4501: 4472:. Retrieved 4450: 4440: 4428:. Retrieved 4400: 4394: 4384: 4374:30 September 4372:. Retrieved 4344: 4338: 4328: 4314:cite journal 4302:. Retrieved 4273: 4267: 4257: 4245:. Retrieved 4225: 4219: 4187: 4181: 4169:. Retrieved 4141: 4135: 4125: 4113:. Retrieved 4085: 4081: 4071: 4059:. Retrieved 4031: 4027: 4017: 4007:30 September 4005:. Retrieved 3985: 3979: 3969: 3957:. Retrieved 3929: 3923: 3913: 3868: 3862: 3852: 3840:. Retrieved 3812: 3806: 3796: 3784:. Retrieved 3756: 3750: 3740: 3731: 3721: 3711:16 September 3709:. Retrieved 3681: 3675: 3665: 3653:. Retrieved 3633: 3627: 3602:. Retrieved 3574: 3568: 3558: 3546:. Retrieved 3526: 3520: 3510: 3498:. Retrieved 3470: 3464: 3454: 3442:. Retrieved 3414: 3408: 3398: 3386:. Retrieved 3366: 3360: 3349: 3304: 3298: 3288: 3276:. Retrieved 3248: 3242: 3232: 3220:. Retrieved 3192: 3188:Paleobiology 3186: 3176: 3164:. Retrieved 3144: 3140:Paleobiology 3138: 3128: 3116:. Retrieved 3088: 3084:Paleobiology 3082: 3072: 3060:. Retrieved 3032: 3026: 3016: 3007: 2997: 2985:. Retrieved 2965: 2959: 2949: 2937:. Retrieved 2917: 2911: 2901: 2887:cite journal 2876:. Retrieved 2872:the original 2867: 2863: 2853: 2844: 2834: 2825: 2787: 2781: 2774: 2749: 2743: 2720:cite journal 2708:. Retrieved 2679: 2673: 2663: 2651:. Retrieved 2631: 2625: 2615: 2595: 2573:. Retrieved 2545: 2539: 2529: 2517:. Retrieved 2497: 2491: 2481: 2469:. Retrieved 2457: 2451: 2441: 2433: 2430: 2421: 2388: 2382: 2376: 2366: 2359: 2334: 2328: 2308: 2305: 2300: 2289: 2286: 2281: 2273: 2270: 2261: 2242: 2236: 2223: 2215: 2212: 2176: 2169: 2161: 2157: 2100: 2094: 2066:. Retrieved 2041:(2): 78–89. 2038: 2032: 2021: 2009:. Retrieved 1998:10852/101313 1973: 1967: 1957: 1945:. Retrieved 1928:(1): 32–50. 1925: 1921:Paleobiology 1919: 1909: 1900: 1882:, pp. 14-19. 1879: 1876: 1860: 1836: 1814: 1811: 1789:ScienceDaily 1788: 1765: 1762: 1735: 1732: 1727: 1719: 1716: 1692: 1688: 1679: 1654: 1650:Paleobiology 1648: 1638: 1627: 1622: 1573: 1567: 1546:. Retrieved 1518: 1512: 1502: 1490:. Retrieved 1470: 1464: 1454: 1419: 1413: 1386:. Retrieved 1369:(1): 61–81. 1366: 1360: 1333:. Retrieved 1313: 1307: 1297: 1285:. Retrieved 1273: 1267: 1257: 1245:. Retrieved 1225: 1219: 1209: 1197:. Retrieved 1175: 1169: 1159: 1148: 1144: 1119:. Retrieved 1107: 1101: 1091: 1079:. Retrieved 1051: 1045: 1020:. Retrieved 998: 944: 938: 932: 907: 891: 862: 848: 826:alatoconchid 814: 798: 782:released by 759:stratosphere 726:carbon cycle 719: 688: 678: 673: 667: 661: 657: 626: 618: 588: 565: 549: 534: 511: 504: 493: 488:Pareiasaurus 486: 472: 466: 464: 443:foraminifera 440: 437:Marine realm 422: 411:fusulinacean 396: 368: 336: 287: 244: 237:Hemisphere. 219: 214: 210: 178: 174: 170: 166: 162: 160: 150: 96: 4956:Guadalupian 4868:: 180–192. 4670:: 201–212. 4641:23 December 4247:29 November 4061:23 December 3988:(1): 1–20. 3655:19 December 3599:10023/11511 3369:: 156–165. 3222:20 February 2968:: 180–191. 2710:21 December 2653:21 December 2575:25 December 2519:25 December 2364:M. O. Day. 2276:, pp. 1-36. 1388:22 December 1316:: 260–270. 1247:26 December 1121:21 December 1103:Palaeoworld 1022:15 December 817:carbon sink 769:due to the 595:Spitsbergen 546:Marine life 474:Scutosaurus 370:Capitanian– 359:land plants 351:Karoo Basin 343:vertebrates 269:. Although 263:communities 226:Phanerozoic 222:end-Permian 195:Guadalupian 48:Phanerozoic 4951:Capitanian 4940:Categories 4879:13 January 4839:13 January 4689:12 January 4607:Terra Nova 4585:7 November 4529:13 January 4474:14 January 4430:7 November 4403:: 108630. 4276:: 118128. 4171:12 January 4115:12 January 3959:30 January 3932:: 117940. 3815:: 111518. 3759:: 121243. 3500:5 November 3473:: 109743. 3417:: 121243. 3388:13 January 3062:2 December 2878:2019-07-10 2682:: 104011. 2548:: 119318. 2460:: 115876. 1548:2 December 1521:: 111043. 1492:2 December 1335:2 December 1287:23 October 924:References 880:and lower 874:vertebrate 771:equatorial 695:anomodonts 691:therapsids 679:Tubiphytes 447:Brachiopod 415:calcareous 323:ecosystems 280:boundary. 207:Capitanian 4743:135404039 4636:233616369 4580:234815123 4425:133916878 4369:224981591 4347:: 31–46. 4298:257873150 4242:199104686 4166:1943-2682 4110:1674-9871 4056:129862176 3954:254660567 3837:257675859 3781:254298090 3636:: 65–73. 3604:15 August 3577:: 17–27. 3548:15 August 3495:216327821 3439:254298090 3278:6 January 3273:181887456 3161:140713258 3113:256801383 3057:133766806 3035:: 13–21. 2987:4 January 2934:140628267 2704:247754192 2570:210302271 2500:: 47–65. 2413:130694755 2133:206519019 2063:129448153 2006:245242389 1598:0036-8075 1543:248597280 1487:128473981 1242:202858078 1081:8 January 1076:134096639 830:acid rain 775:long-term 669:Earlandia 621:red algae 568:ammonoids 552:bryozoans 533:from the 455:ammonoids 347:tetrapods 251:diversity 249:, global 241:Magnitude 199:Lopingian 181:, was an 177:, or the 4926:35611701 4748:18 March 4304:21 April 4002:46914712 3905:35878029 3842:20 April 3786:18 April 3706:85549730 3444:14 March 3341:19011684 3300:PLOS ONE 3251:: 1–15. 3217:33132983 3166:23 March 3118:22 March 2939:22 March 2471:13 March 2125:19478179 1947:22 March 1942:26571574 1869:Archived 1768:(1811). 1671:17279135 1614:17304091 1606:15472073 1446:18198148 1199:18 March 1054:: 8–22. 977:32520208 969:15758998 763:Northern 746:Coronene 653:Primorye 613:molluscs 584:fusuline 576:families 500:amniotes 277:Triassic 275:Permian– 4918:3595495 4822:Bibcode 4779:Bibcode 4723:Bibcode 4721:: 1–8. 4672:Bibcode 4616:Bibcode 4560:Bibcode 4512:Bibcode 4503:Geobios 4457:Bibcode 4405:Bibcode 4349:Bibcode 4278:Bibcode 4146:Bibcode 4137:Geology 4090:Bibcode 3934:Bibcode 3896:9351498 3873:Bibcode 3817:Bibcode 3761:Bibcode 3686:Bibcode 3638:Bibcode 3579:Bibcode 3531:Bibcode 3475:Bibcode 3419:Bibcode 3371:Bibcode 3332:2581439 3309:Bibcode 3253:Bibcode 3197:Bibcode 3093:Bibcode 3037:Bibcode 2970:Bibcode 2792:Bibcode 2754:Bibcode 2745:Lethaia 2684:Bibcode 2636:Bibcode 2550:Bibcode 2502:Bibcode 2431:Geology 2393:Bibcode 2339:Bibcode 2105:Bibcode 2096:Science 2068:6 April 2043:Bibcode 2034:PALAIOS 2011:2 April 1978:Bibcode 1901:Science 1578:Bibcode 1569:Science 1523:Bibcode 1437:2596898 1371:Bibcode 1318:Bibcode 1269:Lethaia 1180:Bibcode 1056:Bibcode 1005:Bibcode 949:Bibcode 859:apatite 805:euxinia 780:methane 761:of the 742:mercury 700:burrows 643:of the 637:Pangaea 635:around 599:bivalve 572:Roadian 515:Wordian 388:Hungary 380:Wordian 349:of the 230:species 4924:  4916:  4777:: 15. 4741:  4634:  4578:  4423:  4367:  4296:  4240:  4194:  4164:  4108:  4054:  4000:  3952:  3903:  3893:  3835:  3779:  3704:  3570:Lithos 3493:  3437:  3339:  3329:  3271:  3215:  3159:  3111:  3055:  2932:  2702:  2603:  2568:  2411:  2249:  2188:  2131:  2123:  2061:  2004:  1940:  1877:Lithos 1848:  1669:  1612:  1604:  1596:  1541:  1485:  1444:  1434:  1240:  1074:  975:  967:  940:Nature 915:, and 801:anoxia 737:basalt 706:Causes 365:Timing 304:, the 298:genera 271:faunas 259:guilds 173:, the 169:, the 142:genera 104:Late D 4922:S2CID 4914:JSTOR 4739:S2CID 4632:S2CID 4576:S2CID 4421:S2CID 4365:S2CID 4294:S2CID 4238:S2CID 4052:S2CID 3998:S2CID 3950:S2CID 3833:S2CID 3777:S2CID 3702:S2CID 3491:S2CID 3435:S2CID 3269:S2CID 3213:S2CID 3157:S2CID 3109:S2CID 3053:S2CID 2930:S2CID 2700:S2CID 2566:S2CID 2409:S2CID 2129:S2CID 2059:S2CID 2002:S2CID 1938:S2CID 1667:S2CID 1610:S2CID 1539:S2CID 1483:S2CID 1238:S2CID 1072:S2CID 973:S2CID 788:sills 784:dikes 649:Japan 558:or a 529:of a 451:coral 418:algae 392:Hydra 357:. In 4881:2023 4841:2023 4750:2023 4691:2023 4643:2022 4587:2022 4531:2023 4476:2023 4432:2022 4376:2022 4320:link 4306:2023 4249:2022 4192:ISBN 4173:2024 4162:ISSN 4117:2024 4106:ISSN 4063:2022 4009:2022 3961:2023 3901:PMID 3844:2023 3788:2023 3713:2022 3657:2022 3606:2023 3550:2023 3502:2022 3446:2023 3390:2023 3337:PMID 3280:2023 3224:2023 3168:2023 3120:2023 3064:2022 2989:2023 2941:2023 2893:link 2726:link 2712:2022 2655:2022 2601:ISBN 2577:2022 2521:2022 2473:2024 2247:ISBN 2186:ISBN 2121:PMID 2070:2023 2013:2023 1949:2023 1846:ISBN 1602:PMID 1594:ISSN 1550:2022 1494:2022 1442:PMID 1390:2022 1337:2022 1289:2022 1249:2022 1201:2023 1123:2022 1083:2023 1024:2022 965:PMID 855:δ18O 853:and 851:δ13C 786:and 765:and 753:and 722:δ13C 672:and 651:and 566:The 531:tuff 449:and 390:and 310:taxa 161:The 90:P–Tr 83:Tr–J 76:K–Pg 4906:doi 4870:doi 4866:105 4830:doi 4787:doi 4731:doi 4680:doi 4668:396 4624:doi 4568:doi 4520:doi 4465:doi 4413:doi 4401:531 4357:doi 4286:doi 4274:610 4230:doi 4226:132 4154:doi 4098:doi 4044:hdl 4036:doi 3990:doi 3986:116 3942:doi 3930:602 3891:PMC 3881:doi 3869:119 3825:doi 3813:618 3769:doi 3757:617 3694:doi 3682:153 3646:doi 3634:441 3595:hdl 3587:doi 3575:264 3539:doi 3527:255 3483:doi 3471:550 3427:doi 3415:617 3379:doi 3367:375 3327:PMC 3317:doi 3261:doi 3249:180 3205:doi 3149:doi 3101:doi 3045:doi 3033:499 2978:doi 2966:460 2922:doi 2826:BBC 2800:doi 2762:doi 2692:doi 2680:228 2644:doi 2632:269 2558:doi 2546:530 2510:doi 2462:doi 2458:530 2401:doi 2347:doi 2269:." 2216:102 2162:127 2113:doi 2101:324 2051:doi 1994:hdl 1986:doi 1974:134 1930:doi 1880:204 1815:168 1810:". 1766:282 1761:". 1736:211 1720:118 1693:113 1659:doi 1586:doi 1574:306 1531:doi 1519:599 1475:doi 1432:PMC 1424:doi 1420:275 1379:doi 1326:doi 1314:370 1278:doi 1230:doi 1188:doi 1149:292 1112:doi 1064:doi 1052:519 1013:doi 957:doi 945:434 861:of 631:of 593:on 111:O–S 97:Cap 68:(H) 4942:: 4920:. 4912:. 4902:28 4900:. 4864:. 4858:. 4828:. 4818:48 4816:. 4810:. 4785:. 4773:. 4767:. 4737:. 4729:. 4719:59 4717:. 4711:. 4699:^ 4678:. 4666:. 4660:. 4630:. 4622:. 4612:33 4610:. 4604:. 4574:. 4566:. 4556:56 4554:. 4548:. 4518:. 4508:35 4506:. 4500:. 4484:^ 4463:. 4449:. 4419:. 4411:. 4399:. 4393:. 4363:. 4355:. 4345:89 4343:. 4337:. 4316:}} 4312:{{ 4292:. 4284:. 4272:. 4266:. 4236:. 4224:. 4218:. 4206:^ 4160:. 4152:. 4142:37 4140:. 4134:. 4104:. 4096:. 4086:12 4084:. 4080:. 4050:. 4042:. 4032:61 4030:. 4026:. 3996:. 3984:. 3978:. 3948:. 3940:. 3928:. 3922:. 3899:. 3889:. 3879:. 3867:. 3861:. 3831:. 3823:. 3811:. 3805:. 3775:. 3767:. 3755:. 3749:. 3730:. 3700:. 3692:. 3680:. 3674:. 3644:. 3632:. 3626:. 3614:^ 3593:. 3585:. 3573:. 3567:. 3537:. 3525:. 3519:. 3489:. 3481:. 3469:. 3463:. 3433:. 3425:. 3413:. 3407:. 3377:. 3365:. 3359:. 3335:. 3325:. 3315:. 3303:. 3297:. 3267:. 3259:. 3247:. 3241:. 3211:. 3203:. 3193:41 3191:. 3185:. 3155:. 3145:35 3143:. 3137:. 3107:. 3099:. 3089:49 3087:. 3081:. 3051:. 3043:. 3031:. 3025:. 3006:. 2976:. 2964:. 2958:. 2928:. 2918:82 2916:. 2910:. 2889:}} 2885:{{ 2868:38 2866:. 2862:. 2843:. 2824:. 2812:^ 2798:. 2788:26 2786:. 2760:. 2750:33 2748:. 2734:^ 2722:}} 2718:{{ 2698:. 2690:. 2678:. 2672:. 2642:. 2630:. 2624:. 2585:^ 2564:. 2556:. 2544:. 2538:. 2508:. 2498:82 2496:. 2490:. 2456:. 2450:. 2434:41 2429:. 2407:. 2399:. 2389:49 2387:. 2345:. 2335:36 2333:. 2319:^ 2274:12 2211:. 2200:^ 2180:. 2160:, 2156:. 2141:^ 2127:. 2119:. 2111:. 2099:. 2093:. 2078:^ 2057:. 2049:. 2039:27 2037:. 2031:. 2000:. 1992:. 1984:. 1972:. 1966:. 1936:. 1926:35 1924:. 1918:. 1899:. 1887:^ 1875:. 1840:. 1822:^ 1797:^ 1787:. 1776:^ 1746:^ 1715:. 1700:^ 1691:, 1687:. 1665:. 1655:30 1653:. 1647:. 1608:. 1600:. 1592:. 1584:. 1572:. 1558:^ 1537:. 1529:. 1517:. 1511:. 1481:. 1471:37 1469:. 1463:. 1440:. 1430:. 1418:. 1412:. 1398:^ 1377:. 1367:28 1365:. 1359:. 1345:^ 1324:. 1312:. 1306:. 1274:51 1272:. 1266:. 1236:. 1226:33 1224:. 1218:. 1186:. 1176:19 1174:. 1168:. 1147:, 1131:^ 1108:18 1106:. 1100:. 1070:. 1062:. 1050:. 1044:. 1032:^ 1011:. 997:. 985:^ 971:. 963:. 955:. 943:. 911:, 841:. 839:pH 735:, 702:. 430:Ma 420:. 217:. 4928:. 4908:: 4883:. 4872:: 4843:. 4832:: 4824:: 4795:. 4789:: 4781:: 4775:9 4752:. 4733:: 4725:: 4693:. 4682:: 4674:: 4645:. 4626:: 4618:: 4589:. 4570:: 4562:: 4533:. 4522:: 4514:: 4478:. 4467:: 4459:: 4434:. 4415:: 4407:: 4378:. 4359:: 4351:: 4322:) 4308:. 4288:: 4280:: 4251:. 4232:: 4200:. 4156:: 4148:: 4100:: 4092:: 4065:. 4046:: 4038:: 4011:. 3992:: 3963:. 3944:: 3936:: 3907:. 3883:: 3875:: 3846:. 3827:: 3819:: 3790:. 3771:: 3763:: 3734:. 3715:. 3696:: 3688:: 3659:. 3648:: 3640:: 3608:. 3597:: 3589:: 3581:: 3552:. 3541:: 3533:: 3504:. 3485:: 3477:: 3448:. 3429:: 3421:: 3392:. 3381:: 3373:: 3343:. 3319:: 3311:: 3305:3 3282:. 3263:: 3255:: 3226:. 3207:: 3199:: 3170:. 3151:: 3122:. 3103:: 3095:: 3066:. 3047:: 3039:: 2991:. 2980:: 2972:: 2943:. 2924:: 2895:) 2881:. 2847:. 2828:. 2806:. 2802:: 2794:: 2768:. 2764:: 2756:: 2728:) 2714:. 2694:: 2686:: 2657:. 2646:: 2638:: 2609:. 2579:. 2560:: 2552:: 2523:. 2512:: 2504:: 2464:: 2415:. 2403:: 2395:: 2353:. 2349:: 2341:: 2309:1 2290:3 2255:. 2194:. 2135:. 2115:: 2107:: 2072:. 2053:: 2045:: 2015:. 1996:: 1988:: 1980:: 1951:. 1932:: 1903:. 1854:. 1673:. 1661:: 1616:. 1588:: 1580:: 1552:. 1533:: 1525:: 1496:. 1477:: 1448:. 1426:: 1392:. 1381:: 1373:: 1339:. 1328:: 1320:: 1291:. 1280:: 1251:. 1232:: 1203:. 1190:: 1182:: 1125:. 1114:: 1085:. 1066:: 1058:: 1026:. 1015:: 1007:: 979:. 959:: 951:: 155:) 151:( 55:%

Index


Phanerozoic
(H)
K–Pg
Tr–J
P–Tr
Cap
Late D
O–S

genera
Permian–Triassic extinction event
source and image info
extinction event
species richness
Middle Permian
Guadalupian
Lopingian
stratigraphic
Capitanian
end-Permian
Phanerozoic
species
Late Ordovician
Olson's Extinction
diversity
disaster taxa
guilds
communities
Permian–Triassic extinction event

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.