Knowledge

Biogenic sulfide corrosion

Source 📝

485:*Pomeroy's report contains errors in the equation: the pipeline slope (S, p. 8) is quoted as m/100m, but should be m/m. This introduces a factor of 10 underestimate in the calculation of the "Z factor", used to indicate if there is a risk of sulfide-induced corrosion, if the published units are used. The web link is to the revised 1992 edition, which contains the units error - the 1976 edition has the correct units. 359:
growth. Providing good ventilation of sewers can reduce atmospheric concentrations of hydrogen sulfide gas and may dry exposed sewer crowns, but this may create odor issues with neighbors around the venting shafts. Three other efficient methods can be used involving continuous operation of mechanical
161:
Some hydrogen sulfide gas diffuses into the headspace environment above the wastewater. Moisture evaporated from warm sewage may condense on unsubmerged walls of sewers, and is likely to hang in partially formed droplets from the horizontal crown of the sewer. As a portion of the hydrogen sulfide gas
63:
Corrosion may occur where stale sewage generates hydrogen sulfide gas into an atmosphere containing oxygen gas and high relative humidity. There must be an underlying anaerobic aquatic habitat containing sulfates and an overlying aerobic aquatic habitat separated by a gas phase containing both oxygen
387:
Existing structures that have extensive exposure to biogenic corrosion such as sewer manholes and pump station wet wells can be rehabilitated. Rehabilitation can be done with materials such as a structural epoxy coating, this epoxy is designed to be both acid-resistant and strengthen the compromised
320:
The second barrier is due to the precipitation, when the surficial pH gets below 10, of a layer of alumina gel (AH3 in cement chemistry notation). AH3 is a stable compound down to a pH of 4 and it will form an acid-resistant barrier as long as the surface pH is not lowered below 3–4 by the bacterial
354:
S, or using materials resistant to biogenic corrosion. For example, sewage flows more rapidly through steeper gradient sewers reducing time available for hydrogen sulfide generation. Likewise, removing sludge and sediments from the bottom of the pipes reduces the amount of anoxic areas responsible
151:
S is formed only in anaerobic conditions. Slow flow and long retention time gives more time to aerobic bacteria to consume all available dissolved oxygen in water, creating anaerobic conditions. The flatter the land, the less slope can be given to the sewer network, and this favors slower flow and
50:
in the presence of moisture to form sulfuric acid. The effect of sulfuric acid on concrete and steel surfaces exposed to severe wastewater environments can be devastating. In the USA alone, corrosion causes sewer asset losses estimated at $ 14 billion per year. This cost is expected to increase as
201:
of the adjacent concrete and aggregate particles. The weakened crown may then collapse under heavy overburden loads. Even within a well-designed sewer network, a rule of thumb in the industry suggests that 5% of the total length may/will suffer from biogenic corrosion. In these specific areas,
324:
The third barrier is the bacteriostatic effect locally activated when the surface reaches pH values less than 3–4. At this level, the alumina gel is no longer stable and will dissolve, liberating aluminum ions. These ions will accumulate in the thin biofilm. Once the concentration reaches
337:
A mortar made of calcium aluminate cement combined with calcium aluminate aggregates, i.e. a 100% calcium aluminate material, will last much longer, as aggregates can also limit microorganisms' growth and inhibit the acid generation at the source itself.
678:
Herisson J., Van Hullebusch E., Gueguen Minerbe M., Chaussadent T. (2014) Biogenic corrosion mechanism: study of parameters explaining calcium aluminate cement durability. CAC 2014 – International Conference on Calcium Aluminates, May 2014, France. 12
453:
Herisson J., Van Hullebusch E., Gueguen Minerbe M., Chaussadent T. (2014) Biogenic corrosion mechanism: study of parameters explaining calcium aluminate cement durability. CAC 2014 – International Conference on Calcium Aluminates, May 2014, France. 12
668:
Vincke E., Van Wanseele E., Monteny J., Beeldens A., De Belie N., Taerwe L., Van Gemert D., Verstraete W. (2002) Influence of polymer addition on biogenic sulfuric acid attack. International Biodeterioration and Biodegradation, 49,
449:
Vincke E., Van Wanseele E., Monteny J., Beeldens A., De Belie N., Taerwe L., Van Gemert D., Verstraete W. (2002) Influence of polymer addition on biogenic sulfuric acid attack. International Biodeterioration and Biodegradation, 49,
197:, it reacts with the calcium hydroxide in concrete to form calcium sulfate. This change simultaneously destroys the polymeric nature of calcium hydroxide and substitutes a larger molecule into the matrix causing pressure and 419:
Brongers, M.P.H., Virmani, P.Y., Payer, J.H., 2002. Drinking Water and Sewer Systems in Corrosion Costs and preventive Strategies in the United States. United States Department of Transportation Federal Highway
312:
of calcium aluminate cements vs. ordinary Portland Cement; one gram of calcium aluminate cement can neutralize around 40% more acid than a gram of ordinary Portland cement. For a given production of acid by the
621:
Morton R.L., Yanko W.A., Grahom D.W., Arnold R.G. (1991) Relationship between metal concentrations and crown corrosion in Los Angeles County sewers. Research Journal of Water Pollution Control Federation, 63,
432:
Morton R.L., Yanko W.A., Grahom D.W., Arnold R.G. (1991) Relationship between metal concentrations and crown corrosion in Los Angeles County sewers. Research Journal of Water Pollution Control Federation, 63,
121:
Sewage oxygen concentration. The threshold is 0.1 mg/l; above this value, sulfides produced in sludge and sediments are oxidized by oxygen; below this value, sulfides are emitted in the gaseous phase.
658:
Monteny J., De Belie N., Vincke E., Verstraete W., Taerwe L. (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, 31,
445:
Monteny J., De Belie N., Vincke E., Verstraete W., Taerwe L. (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, 31,
372:
S, or an injection of compressed air in pressurized mains to avoid the anaerobic condition to develop. In sewerage areas where biogenic sulfide corrosion is expected, acid-resistant materials like
304:, processes are completely different because they are based on another chemical composition. At least three different mechanisms contribute to the better resistance to biogenic corrosion: 631:
Mori T., Nonaka T., Tazaki K., Koga M., Hikosaka Y., Noda S. (1992) Interactions of nutrients, moisture, and pH on microbial corrosion of concrete sewer pipes. Water Research, 26, 29–37.
436:
Mori T., Nonaka T., Tazaki K., Koga M., Hikosaka Y., Noda S. (1992) Interactions of nutrients, moisture, and pH on microbial corrosion of concrete sewer pipes. Water Research, 26, 29–37.
511:
Weismann, D. & Lohse, M. (Hrsg.): "Sulfid-Praxishandbuch der Abwassertechnik; Geruch, Gefahr, Korrosion verhindern und Kosten beherrschen!" 1. Auflage, VULKAN-Verlag, 2007,
640:
Ismail N., Nonaka T., Noda S., Mori T. (1993) Effect of carbonation on microbial corrosion of concrete. Journal of Construction Management and Engineering, 20, 133-138.
439:
Ismail N., Nonaka T., Noda S., Mori T. (1993) Effect of carbonation on microbial corrosion of concrete. Journal of Construction Management and Engineering, 20, 133–138.
429:
United States Environmental Protection Agency (1985) Design Manual, Odor and Corrosion Control in Sanitary Sewerage Systems and Treatment Plants (Technical Report).
700: 649:
Davis J.L. (1998) Characterization and modeling of microbially induced corrosion of concrete sewer pipes. Ph.D. Dissertation, University of Houston, Houston, TX.
442:
Davis J.L. (1998) Characterization and modeling of microbially induced corrosion of concrete sewer pipes. Ph.D. Dissertation, University of Houston, Houston, TX.
162:
and oxygen gas from the air above the sewage dissolves into these stationary droplets, they become a habitat for sulfur oxidizing bacteria (SOB), of the genus
426:
United States Environmental Protection Agency, 1991. Hydrogen Sulphide Corrosion in Wastewater Collection and Treatment Systems (Technical Report).
612:
United States Environmental Protection Agency, 1991. Hydrogen Sulphide Corrosion in Wastewater Collection and Treatment Systems (Technical Report)
423:
Sydney, R., Esfandi, E., Surapaneni, S., 1996. Control concrete sewer corrosion via the crown spray process. Water Environ. Res. 68 (3), 338–347.
72:
Fresh domestic sewage entering a wastewater collection system contains proteins including organic sulfur compounds oxidizable to sulfates (
1036: 516: 479: 707: 499: 466: 735: 868: 117:
Hydrogen sulfide production depends on various physicochemical, topographic, and hydraulic parameters such as:
817: 202:
biogenic sulfide corrosion can deteriorate metal or several millimeters per year of concrete (see Table).
913: 309: 193:
Sulfuric acid produced by microorganisms will interact with the surface of the structure material. For
908: 373: 356: 301: 138: 105: 969: 740: 1010: 329:
effect on bacteria metabolism. In other words, bacteria will stop oxidizing the sulfur from H
326: 168:. Colonies of these aerobic bacteria metabolize the hydrogen sulfide gas to sulfuric acid ( 8: 964: 883: 847: 837: 775: 535:
O'Dea, Vaughn, "Understanding Biogenic Sulfide Corrosion", MP (November 2007), pp. 36-39.
402: 52: 1072: 1000: 1077: 1067: 1057: 903: 827: 693: 512: 495: 462: 346:
There are several options to address biogenic sulfide corrosion problems: impairing H
164: 918: 893: 832: 97: 27: 1062: 928: 801: 361: 194: 898: 812: 770: 765: 745: 730: 1051: 949: 863: 755: 110: 31: 888: 878: 785: 368:
S formation, an active ventilation through odor treatment units to remove H
131:
Sewage pH. It must be included between 5.5 and 9 with an optimum at 7.5–8.
959: 873: 780: 188: 104:
S) as an alternative source of oxygen for catabolizing organic waste by
1020: 842: 750: 89: 43: 1005: 984: 979: 974: 923: 807: 397: 124:
Temperature. The higher the temperature, the faster the kinetics of H
716: 92:
organic material in sewage. In the absence of dissolved oxygen and
47: 35: 23: 156: 954: 822: 760: 407: 314: 152:
more pumping stations (where retention time is generally longer).
93: 108:(SRB), identified primarily from the obligate anaerobic species 1015: 364:
can be continuously added in the sewerage water to impair the H
144: 85: 508:(8th edition) United States Government Printing Office (1975) 198: 39: 67: 685: 64:
and hydrogen sulfide at concentrations in excess of 2 ppm.
384:
may be substituted to ordinary concrete or steel sewers.
46:
environments. The hydrogen sulfide gas is biochemically
317:, a calcium aluminate cement concrete will last longer. 482:. Published by the Clay Pipes Development Association 333:
S to produce acid, and the pH will stop decreasing.
1049: 504:United States Department of the Interior (USDI) 84:) and may contain inorganic sulfates. Dissolved 16:Microbial degradation involving the sulfur cycle 157:Conversion of hydrogen sulfide to sulfuric acid 701: 480:"The problem of hydrogen sulphide in sewers" 137:Nutrients concentration, associated to the 708: 694: 563: 561: 559: 490:Sawyer, Clair N. & McCarty, Perry L. 68:Conversion of sulfate to hydrogen sulfide 1050: 1037:History of water supply and sanitation 556: 689: 30:gas and the subsequent conversion to 325:300–500 ppm, it will produce a 13: 360:equipment: chemical reactant like 14: 1089: 553:Sydney et al., 1996; US EPA, 1991 494:(2nd edition) McGraw-Hill (1967) 88:is depleted as bacteria begin to 567:Sawyer&McCarty p.461&462 492:Chemistry for Sanitary Engineers 459:Water and Waste-Water Technology 308:The first barrier is the larger 736:Decentralized wastewater system 672: 662: 652: 643: 634: 625: 615: 606: 597: 588: 579: 570: 547: 538: 529: 350:S formation, venting out the H 58: 1: 461:John Wiley & Sons (1975) 413: 341: 715: 182: 26:mediated process of forming 7: 391: 10: 1094: 945:Biogenic sulfide corrosion 914:Stormwater detention vault 310:acid neutralizing capacity 186: 96:, sulfates are reduced to 20:Biogenic sulfide corrosion 1029: 993: 937: 909:Sewer gas destructor lamp 856: 794: 723: 374:calcium aluminate cements 357:sulfate-reducing bacteria 302:calcium aluminate cements 139:biochemical oxygen demand 106:sulfate-reducing bacteria 576:Metcalf & Eddy p.259 522: 195:ordinary Portland cement 970:Sanitary sewer overflow 869:Combined sewer overflow 741:Drain-waste-vent system 795:Construction materials 473:Wastewater Engineering 1011:Industrial wastewater 544:Brongers et al., 2002 478:Pomeroy, R.D., 1976, 134:Sulfate concentration 388:concrete structure. 277:Monteny et al., 2001 994:Liquids transported 965:Infiltration/Inflow 848:Vitrified clay pipe 838:Reinforced concrete 776:Simplified sewerage 471:Metcalf & Eddy 403:Microbial corrosion 382:vitrified clay pipe 288:Vincke et al., 2002 255:Ismail et al., 1993 233:Morton et al., 1991 55:continues to fail. 1001:Blackwater (waste) 475:McGraw-Hill (1972) 143:Conception of the 1045: 1044: 904:Sewer dosing unit 857:Related equipment 828:Interceptor ditch 517:978-3-8027-2845-7 298: 297: 244:Mori et al., 1992 165:Acidithiobacillus 1085: 919:Submersible pump 894:Sanitary manhole 710: 703: 696: 687: 686: 680: 676: 670: 666: 660: 656: 650: 647: 641: 638: 632: 629: 623: 619: 613: 610: 604: 601: 595: 594:USDI pp.9&10 592: 586: 583: 577: 574: 568: 565: 554: 551: 545: 542: 536: 533: 457:Hammer, Mark J. 205: 204: 178: 98:hydrogen sulfide 83: 82: 81: 78: 28:hydrogen sulfide 1093: 1092: 1088: 1087: 1086: 1084: 1083: 1082: 1048: 1047: 1046: 1041: 1025: 989: 933: 852: 802:Asbestos cement 790: 719: 714: 684: 683: 677: 673: 667: 663: 657: 653: 648: 644: 639: 635: 630: 626: 620: 616: 611: 607: 602: 598: 593: 589: 584: 580: 575: 571: 566: 557: 552: 548: 543: 539: 534: 530: 525: 506:Concrete Manual 420:Administration. 416: 394: 371: 367: 362:calcium nitrate 353: 349: 344: 332: 211:Thickness loss 191: 185: 177: 173: 169: 159: 150: 127: 103: 79: 76: 75: 73: 70: 61: 17: 12: 11: 5: 1091: 1081: 1080: 1075: 1070: 1065: 1060: 1043: 1042: 1040: 1039: 1033: 1031: 1027: 1026: 1024: 1023: 1018: 1013: 1008: 1003: 997: 995: 991: 990: 988: 987: 982: 977: 972: 967: 962: 957: 952: 947: 941: 939: 935: 934: 932: 931: 926: 921: 916: 911: 906: 901: 899:Sewage pumping 896: 891: 886: 881: 876: 871: 866: 860: 858: 854: 853: 851: 850: 845: 840: 835: 830: 825: 820: 815: 813:Cast iron pipe 810: 805: 798: 796: 792: 791: 789: 788: 783: 778: 773: 771:Sanitary sewer 768: 766:Pressure sewer 763: 758: 753: 748: 746:Effluent sewer 743: 738: 733: 731:Combined sewer 727: 725: 721: 720: 713: 712: 705: 698: 690: 682: 681: 671: 661: 651: 642: 633: 624: 614: 605: 596: 587: 578: 569: 555: 546: 537: 527: 526: 524: 521: 520: 519: 509: 502: 488: 487: 486: 476: 469: 455: 451: 447: 443: 440: 437: 434: 430: 427: 424: 421: 415: 412: 411: 410: 405: 400: 393: 390: 369: 365: 351: 347: 343: 340: 335: 334: 330: 327:bacteriostatic 322: 318: 296: 295: 292: 289: 285: 284: 281: 278: 274: 273: 270: 267: 263: 262: 259: 256: 252: 251: 248: 245: 241: 240: 237: 234: 230: 229: 226: 223: 219: 218: 217:Material type 215: 209: 184: 181: 175: 171: 158: 155: 154: 153: 148: 141: 135: 132: 129: 125: 122: 101: 69: 66: 60: 57: 53:infrastructure 15: 9: 6: 4: 3: 2: 1090: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1055: 1053: 1038: 1035: 1034: 1032: 1028: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 998: 996: 992: 986: 983: 981: 978: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 950:Blocked Sewer 948: 946: 943: 942: 940: 936: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 864:Chopper pumps 862: 861: 859: 855: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 818:Concrete pipe 816: 814: 811: 809: 806: 803: 800: 799: 797: 793: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 756:Gravity sewer 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 728: 726: 722: 718: 711: 706: 704: 699: 697: 692: 691: 688: 675: 665: 655: 646: 637: 628: 618: 609: 600: 591: 582: 573: 564: 562: 560: 550: 541: 532: 528: 518: 514: 510: 507: 503: 501: 500:0-07-054970-2 497: 493: 489: 484: 483: 481: 477: 474: 470: 468: 467:0-471-34726-4 464: 460: 456: 452: 448: 444: 441: 438: 435: 431: 428: 425: 422: 418: 417: 409: 406: 404: 401: 399: 396: 395: 389: 385: 383: 379: 375: 363: 358: 339: 328: 323: 319: 316: 311: 307: 306: 305: 303: 293: 290: 287: 286: 282: 279: 276: 275: 271: 268: 265: 264: 260: 257: 254: 253: 249: 246: 243: 242: 238: 235: 232: 231: 227: 224: 221: 220: 216: 214: 213:(in mm/year) 210: 207: 206: 203: 200: 196: 190: 180: 167: 166: 146: 142: 140: 136: 133: 130: 128:S production. 123: 120: 119: 118: 115: 113: 112: 111:Desulfovibrio 107: 99: 95: 91: 87: 65: 56: 54: 49: 45: 41: 37: 34:that attacks 33: 32:sulfuric acid 29: 25: 21: 944: 889:Lift station 879:Grinder pump 833:Plastic pipe 786:Vacuum sewer 674: 664: 654: 645: 636: 627: 617: 608: 599: 590: 585:US EPA, 1985 581: 572: 549: 540: 531: 505: 491: 472: 458: 386: 381: 377: 345: 336: 299: 222:US EPA, 1991 212: 192: 163: 160: 116: 109: 71: 62: 19: 18: 960:First flush 874:Grease trap 781:Storm drain 603:Hammer p.58 266:Davis, 1998 189:Sulfidation 59:Environment 24:bacterially 1052:Categories 1030:Background 1021:Stormwater 884:Maceration 843:Steel pipe 751:Force main 659:1359-1365. 446:1359–1365. 414:References 342:Prevention 187:See also: 90:catabolize 51:the aging 44:wastewater 1073:Corrosion 1006:Greywater 985:Sewer rat 980:Sewer gas 975:Sewer fly 924:Sump pump 808:Brickwork 398:Corrosion 321:activity. 294:Concrete 291:1.1 – 1.8 280:1.0 – 1.3 272:Concrete 250:Concrete 247:4.3 – 4.7 239:Concrete 228:Concrete 183:Corrosion 1078:Sewerage 1068:Concrete 1058:Bacteria 938:Problems 717:Sewerage 669:283-292. 622:789–798. 450:283–292. 433:789–798. 392:See also 225:2.5 – 10 199:spalling 94:nitrates 48:oxidized 36:concrete 955:Fatberg 823:Culvert 761:Outfall 408:Sulfide 315:biofilm 283:Mortar 261:Mortar 42:within 1063:Cement 1016:Sewage 515:  498:  465:  208:Source 145:sewage 86:oxygen 724:Types 523:Notes 258:2 – 4 40:steel 22:is a 929:Trap 804:pipe 513:ISBN 496:ISBN 463:ISBN 355:for 300:For 147:As H 38:and 380:or 378:PVC 269:3.1 236:2.7 179:). 1054:: 679:p. 558:^ 454:p. 376:, 174:SO 114:. 100:(H 77:2− 74:SO 709:e 702:t 695:v 370:2 366:2 352:2 348:2 331:2 176:4 172:2 170:H 149:2 126:2 102:2 80:4

Index

bacterially
hydrogen sulfide
sulfuric acid
concrete
steel
wastewater
oxidized
infrastructure
oxygen
catabolize
nitrates
hydrogen sulfide
sulfate-reducing bacteria
Desulfovibrio
biochemical oxygen demand
sewage
Acidithiobacillus
Sulfidation
ordinary Portland cement
spalling
calcium aluminate cements
acid neutralizing capacity
biofilm
bacteriostatic
sulfate-reducing bacteria
calcium nitrate
calcium aluminate cements
Corrosion
Microbial corrosion
Sulfide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.