Knowledge

Bilinear form

Source 📝

4843: 3007:
In finite dimensions, this is equivalent to the pairing being nondegenerate (the spaces necessarily having the same dimensions). For modules (instead of vector spaces), just as how a nondegenerate form is weaker than a unimodular form, a nondegenerate pairing is a weaker notion than a perfect
2304: 2664:
and is independent of the antisymmetric part. In this case there is a one-to-one correspondence between the symmetric part of the bilinear form and the quadratic form, and it makes sense to speak of the symmetric bilinear form associated with a quadratic form.
620: 2458: 1990: 2564: 2146:
is reflexive if and only if it is either symmetric or alternating. In the absence of reflexivity we have to distinguish left and right orthogonality. In a reflexive space the left and right radicals agree and are termed the
734: 1183:
is an isomorphism. Given a finitely generated module over a commutative ring, the pairing may be injective (hence "nondegenerate" in the above sense) but not unimodular. For example, over the integers, the pairing
3204: 2214: 495: 2389: 1876: 1582:). These statements are independent of the chosen basis. For a module over a commutative ring, a unimodular form is one for which the determinant of the associate matrix is a 288: 2501: 1126: 1050: 1830:). A bilinear form is alternating if and only if its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when 767: 1152: 1076: 655: 1586:(for example 1), hence the term; note that a form whose matrix determinant is non-zero but not a unit will be nondegenerate but not unimodular, for example 3101: 1449:, this is equivalent to the condition that the left and equivalently right radicals be trivial. For finite-dimensional spaces, this is often taken as the 1008:. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element: 4732: 1578:
of the associated matrix is zero. Likewise, a nondegenerate form is one for which the determinant of the associated matrix is non-zero (the matrix is
4214: 2996:. It may happen that these mappings are isomorphisms; assuming finite dimensions, if one is an isomorphism, the other must be. When this occurs, 4568: 4395: 4558: 1815:
then a skew-symmetric form is the same as a symmetric form and there exist symmetric/skew-symmetric forms that are not alternating.
4685: 4540: 4516: 624:
A bilinear form has different matrices on different bases. However, the matrices of a bilinear form on different bases are all
4286: 4259: 4197: 4120: 4091: 4073: 2299:{\displaystyle W^{\perp }=\left\{\mathbf {v} \mid B(\mathbf {v} ,\mathbf {w} )=0{\text{ for all }}\mathbf {w} \in W\right\}.} 4408: 4108: 615:{\displaystyle B(\mathbf {x} ,\mathbf {y} )=\mathbf {x} ^{\textsf {T}}A\mathbf {y} =\sum _{i,j=1}^{n}x_{i}A_{ij}y_{j}.} 4497: 4388: 4326: 4304: 4226: 4150: 4031: 4767: 4278: 2478: 4412: 4563: 4352: 4318: 4019: 4895: 4846: 4619: 4553: 4381: 3883: 4583: 4347: 4165: 2453:{\displaystyle B(\mathbf {u} ,\mathbf {v} )\leq C\left\|\mathbf {u} \right\|\left\|\mathbf {v} \right\|.} 4828: 4782: 4706: 4588: 4251: 4170: 4272: 1985:{\displaystyle B^{+}={\tfrac {1}{2}}(B+{}^{\text{t}}B)\qquad B^{-}={\tfrac {1}{2}}(B-{}^{\text{t}}B),} 264: 4880: 4823: 4639: 1249: 3070: 4675: 4573: 4476: 4342: 1800: 1446: 799: 352: 4890: 4885: 4772: 4548: 3062: 1617: 2155:
of the bilinear form: the subspace of all vectors orthogonal with every other vector. A vector
4803: 4747: 4711: 3848: 1807:
is not 2 then the converse is also true: every skew-symmetric form is alternating. However, if
1567: 1374:
respectively; they are the vectors orthogonal to the whole space on the left and on the right.
356: 4177: 1090: 1014: 4510: 4160: 2208: 1873:
then one can decompose a bilinear form into a symmetric and a skew-symmetric part as follows
1827: 1382: 739: 4506: 1131: 1055: 4786: 3326: 2574: 294: 66: 53: 4373: 4236: 4130: 4041: 8: 4752: 4690: 4404: 3853: 2352: 1579: 1165:
The corresponding notion for a module over a commutative ring is that a bilinear form is
306: 58: 2684:, this correspondence between quadratic forms and symmetric bilinear forms breaks down. 4864: 4777: 4644: 3319: 2693: 1583: 1563: 625: 298: 3008:
pairing. A pairing can be nondegenerate without being a perfect pairing, for instance
4757: 4322: 4300: 4282: 4255: 4222: 4193: 4146: 4116: 4087: 4069: 4027: 3909: 3878: 3066: 966: 770: 326: 4762: 4680: 4649: 4629: 4614: 4609: 4604: 4268: 4232: 4126: 4048: 4037: 3863: 3054:
discusses "eight types of inner product". To define them he uses diagonal matrices
2950: 1865:
are equal, and skew-symmetric if and only if they are negatives of one another. If
1823: 1668: 1353: 330: 4441: 2559:{\displaystyle B(\mathbf {u} ,\mathbf {u} )\geq c\left\|\mathbf {u} \right\|^{2}.} 4624: 4578: 4526: 4521: 4492: 4243: 4218: 4112: 4023: 3569: 3282: 3051: 2886: 1005: 965:
where the dot ( ⋅ ) indicates the slot into which the argument for the resulting
4451: 3243:
Some of the real symmetric cases are very important. The positive definite case
4813: 4665: 4466: 4142: 4137:
Harvey, F. Reese (1990), "Chapter 2: The Eight Types of Inner Product Spaces",
4100: 3873: 2907: 2697: 2598: 1819: 317: 4874: 4818: 4742: 4471: 4456: 4446: 3888: 3061:
having only +1 or −1 for non-zero elements. Some of the "inner products" are
2199:
is nonsingular, and thus if and only if the bilinear form is nondegenerate.
4808: 4461: 4431: 4182: 3843: 45: 28: 4737: 4727: 4634: 4436: 4206: 3868: 3858: 3824: 3338: 3090: 1575: 258: 20: 729:{\displaystyle \mathbf {f} _{j}=\sum _{i=1}^{n}S_{i,j}\mathbf {e} _{i},} 4860: 4670: 4502: 4365: 2835: 819: 302: 89: 4360: 2773:
is a linear map the corresponding bilinear form is given by composing
4065: 3199:{\displaystyle \sum _{k=1}^{p}x_{k}y_{k}-\sum _{k=p+1}^{n}x_{k}y_{k}} 2319: 2877:
Likewise, symmetric bilinear forms may be thought of as elements of
1607: 970: 3239:. Then he articulates the connection to traditional terminology: 2167:, is in the radical of a bilinear form with matrix representation 2007: 2308:
For a non-degenerate form on a finite-dimensional space, the map
2700:, there is a canonical correspondence between bilinear forms on 3050:
Terminology varies in coverage of bilinear forms. For example,
2953:
from two vector spaces over the same base field to that field
3955: 3037:
is nondegenerate, but induces multiplication by 2 on the map
1202:
is nondegenerate but not unimodular, as the induced map from
293:
The definition of a bilinear form can be extended to include
4060:
Cooperstein, Bruce (2010), "Ch 8: Bilinear Forms and Maps",
776:. Then, the matrix of the bilinear form on the new basis is 4403: 4250:, Cambridge Studies in Advanced Mathematics, vol. 50, 1818:
A bilinear form is symmetric (respectively skew-symmetric)
4315:
Principal Structures and Methods of Representation Theory
2660:
is determined by the symmetric part of the bilinear form
4267: 998:
is an isomorphism, then both are, and the bilinear form
4295:
Shilov, Georgi E. (1977), Silverman, Richard A. (ed.),
3931: 4859:
This article incorporates material from Unimodular on
3991: 3919: 3910:"Chapter 3. Bilinear forms — Lecture notes for MA1212" 2343: 1944: 1894: 3104: 2848:, so bilinear forms may be thought of as elements of 2504: 2392: 2217: 1879: 1841:
A bilinear form is symmetric if and only if the maps
1134: 1093: 1058: 1017: 742: 658: 498: 267: 2864:
is finite-dimensional) is canonically isomorphic to
4192:, vol. I (2nd ed.), Courier Corporation, 3979: 3967: 1574:, a bilinear form is degenerate if and only if the 4733:Spectral theory of ordinary differential equations 3198: 2944: 2558: 2452: 2298: 1984: 1146: 1120: 1070: 1044: 761: 728: 614: 282: 4014:Adkins, William A.; Weintraub, Steven H. (1992), 1822:its coordinate matrix (relative to any basis) is 70:). In other words, a bilinear form is a function 4872: 4865:Creative Commons Attribution/Share-Alike License 4215:Ergebnisse der Mathematik und ihrer Grenzgebiete 4205: 3943: 2976:Here we still have induced linear mappings from 2895:) and alternating bilinear forms as elements of 1608:Symmetric, skew-symmetric, and alternating forms 793: 4013: 3961: 2008:Reflexive bilinear forms and orthogonal vectors 1549:This form will be nondegenerate if and only if 473:with respect to this basis, and similarly, the 2687: 329:, which are similar to bilinear forms but are 4389: 2568: 1229:is finite-dimensional then one can identify 336: 4317:, Translations of Mathematical Monographs, 4059: 2193:. It is trivial if and only if the matrix 4396: 4382: 4312: 4248:Clifford Algebras and the Classical Groups 3937: 2728:the corresponding linear map is given by 2465:A bilinear form on a normed vector space 1764:Every alternating form is skew-symmetric. 532: 270: 4686:Group algebra of a locally compact group 4242: 4187: 4047: 3997: 3925: 3280:, then Lorentzian space is also called 4873: 4313:Zhelobenko, Dmitriĭ Petrovich (2006), 4294: 4136: 4099: 4016:Algebra: An Approach via Module Theory 3985: 3973: 2949:Much of the theory is available for a 2187:. The radical is always a subspace of 976:For a finite-dimensional vector space 4377: 4158: 4081: 3949: 3258:, while the case of a single minus, 3098:are spelled out. The bilinear form 2344:Bounded and elliptic bilinear forms 814:defines a pair of linear maps from 13: 4109:Undergraduate Texts in Mathematics 3313: 3077:, the instances with real numbers 2939: 325:, one is often more interested in 290:is an example of a bilinear form. 64:(the elements of which are called 51:(the elements of which are called 14: 4907: 4335: 2575:Quadratic form § Definitions 1309:to be the bilinear form given by 4842: 4841: 4768:Topological quantum field theory 4105:Finite-dimensional vector spaces 2539: 2520: 2512: 2439: 2426: 2408: 2400: 2278: 2259: 2251: 2237: 1612:We define a bilinear form to be 713: 661: 542: 526: 514: 506: 283:{\displaystyle \mathbb {R} ^{n}} 2945:Pairs of distinct vector spaces 1929: 1512:one can obtain a bilinear form 1381:is finite-dimensional then the 16:Scalar-valued bilinear function 4863:, which is licensed under the 3902: 3073:. Rather than a general field 2543: 2535: 2524: 2508: 2443: 2435: 2430: 2422: 2412: 2396: 2263: 2247: 2103:be a reflexive bilinear form. 1976: 1955: 1926: 1905: 1770:This can be seen by expanding 1109: 1097: 1033: 1021: 518: 502: 1: 4564:Uniform boundedness principle 4319:American Mathematical Society 4020:Graduate Texts in Mathematics 4007: 2597:, there exists an associated 2161:, with matrix representation 1429:are linear isomorphisms from 1403:. If this number is equal to 1265:is infinite-dimensional then 794:Non-degenerate bilinear forms 788: 92:in each argument separately: 3895: 3884:System of bilinear equations 3725:Conversely, a bilinear form 7: 4348:Encyclopedia of Mathematics 4274:Linear Algebra and Geometry 4166:Encyclopedia of Mathematics 4163:, in Hazewinkel, M. (ed.), 3962:Adkins & Weintraub 1992 3836: 3305:will be referred to as the 2820:The set of all linear maps 2755:In the other direction, if 2688:Relation to tensor products 2206:is a subspace. Define the 2117:orthogonal with respect to 1283:restricted to the image of 429:matrix of the bilinear form 10: 4912: 4707:Invariant subspace problem 4252:Cambridge University Press 4171:Kluwer Academic Publishers 3683:induces the bilinear form 3617:induces the bilinear form 2572: 797: 486:represents another vector 4837: 4796: 4720: 4699: 4658: 4597: 4539: 4485: 4427: 4420: 4209:; Husemoller, D. (1973), 4188:Jacobson, Nathan (2009), 2569:Associated quadratic form 2481:, if there is a constant 2366:, if there is a constant 1445:is nondegenerate. By the 1239:. One can then show that 916:This is often denoted as 337:Coordinate representation 4676:Spectrum of a C*-algebra 4271:; A. O. Remizov (2012), 4211:Symmetric Bilinear Forms 4139:Spinors and calibrations 4082:Grove, Larry C. (1997), 1394:is equal to the rank of 1222:is multiplication by 2. 1121:{\displaystyle B(x,y)=0} 1045:{\displaystyle B(x,y)=0} 800:Degenerate bilinear form 4773:Noncommutative geometry 4062:Advanced Linear Algebra 3575:canonical bilinear form 2322:, and the dimension of 1566:then, relative to some 762:{\displaystyle S_{i,j}} 4829:Tomita–Takesaki theory 4804:Approximation property 4748:Calculus of variations 4086:, Wiley-Interscience, 3849:Category:Bilinear maps 3311: 3200: 3175: 3125: 2777:with the bilinear map 2724:is a bilinear form on 2579:For any bilinear form 2560: 2454: 2300: 1986: 1148: 1147:{\displaystyle x\in V} 1122: 1072: 1071:{\displaystyle y\in V} 1046: 763: 730: 694: 616: 575: 284: 4824:Banach–Mazur distance 4787:Generalized functions 4159:Popov, V. L. (1987), 4084:Groups and characters 3241: 3201: 3149: 3105: 2656:, the quadratic form 2573:Further information: 2561: 2455: 2351:A bilinear form on a 2301: 2209:orthogonal complement 1987: 1498:Given any linear map 1233:with its double dual 1149: 1123: 1073: 1047: 969:is to be placed (see 798:Further information: 764: 731: 674: 628:. More precisely, if 617: 549: 285: 4569:Kakutani fixed-point 4554:Riesz representation 4111:, Berlin, New York: 3102: 2885:(dual of the second 2502: 2390: 2215: 1998:is the transpose of 1877: 1447:rank–nullity theorem 1274:is the transpose of 1132: 1091: 1056: 1015: 804:Every bilinear form 740: 656: 648:is another basis of 496: 467:represents a vector 307:module homomorphisms 265: 4896:Multilinear algebra 4753:Functional calculus 4712:Mahler's conjecture 4691:Von Neumann algebra 4405:Functional analysis 4068:, pp. 249–88, 3854:Inner product space 3656:, and a linear map 3290:. The special case 3288:Minkowski spacetime 3208:real symmetric case 2353:normed vector space 2274: for all  1604:over the integers. 1555:is an isomorphism. 1299:one can define the 4778:Riemann hypothesis 4477:Topological vector 4269:Shafarevich, I. R. 4173:, pp. 390–392 4145:, pp. 19–40, 3573:, also called the 3196: 3083:, complex numbers 3067:sesquilinear forms 2694:universal property 2556: 2488:such that for all 2450: 2372:such that for all 2296: 1982: 1953: 1903: 1564:finite-dimensional 1453:of nondegeneracy: 1252:of the linear map 1144: 1118: 1068: 1042: 759: 726: 612: 355:vector space with 327:sesquilinear forms 280: 223:    219:    143:    139:    4855: 4854: 4758:Integral operator 4535: 4534: 4288:978-3-642-30993-9 4261:978-0-521-55177-9 4199:978-0-486-47189-1 4122:978-0-387-90093-3 4093:978-0-471-16340-4 4075:978-1-4398-2966-0 4022:, vol. 136, 3879:Sesquilinear form 2275: 2173:, if and only if 2004:(defined above). 1970: 1952: 1920: 1902: 967:linear functional 771:invertible matrix 534: 333:in one argument. 4903: 4881:Abstract algebra 4845: 4844: 4763:Jones polynomial 4681:Operator algebra 4425: 4424: 4398: 4391: 4384: 4375: 4374: 4370: 4356: 4331: 4309: 4291: 4264: 4244:Porteous, Ian R. 4239: 4217:, vol. 73, 4202: 4174: 4155: 4133: 4096: 4078: 4056: 4044: 4001: 3995: 3989: 3983: 3977: 3971: 3965: 3959: 3953: 3947: 3941: 3935: 3929: 3923: 3917: 3916: 3914: 3906: 3864:Multilinear form 3832: 3822: 3816: 3781: 3742: 3721: 3682: 3655: 3616: 3586: 3567:is known as the 3566: 3531: 3517: 3503: 3487: 3456: 3412: 3363: 3345: 3336: 3329: 3324: 3304: 3279: 3271:Lorentzian space 3268: 3253: 3238: 3224: 3205: 3203: 3202: 3197: 3195: 3194: 3185: 3184: 3174: 3169: 3145: 3144: 3135: 3134: 3124: 3119: 3097: 3088: 3082: 3076: 3063:symplectic forms 3046: 3036: 3021: 3000:is said to be a 2995: 2989: 2985: 2979: 2972: 2951:bilinear mapping 2935: 2923: 2915: 2905: 2894: 2884: 2873: 2863: 2859: 2847: 2833: 2816: 2806: 2794: 2772: 2752: 2727: 2723: 2717: 2704:and linear maps 2703: 2683: 2675: 2655: 2644: 2613: 2596: 2565: 2563: 2562: 2557: 2552: 2551: 2546: 2542: 2523: 2515: 2497: 2487: 2472: 2459: 2457: 2456: 2451: 2446: 2442: 2433: 2429: 2411: 2403: 2385: 2371: 2361: 2339: 2327: 2317: 2305: 2303: 2302: 2297: 2292: 2288: 2281: 2276: 2273: 2262: 2254: 2240: 2227: 2226: 2205: 2198: 2192: 2186: 2172: 2166: 2160: 2145: 2140:A bilinear form 2136: 2102: 2066: 2051: 2032: 2015:A bilinear form 2003: 1997: 1991: 1989: 1988: 1983: 1972: 1971: 1968: 1966: 1954: 1945: 1939: 1938: 1922: 1921: 1918: 1916: 1904: 1895: 1889: 1888: 1872: 1864: 1837: 1814: 1806: 1792: 1757: 1753: 1747: 1741: 1713: 1712: 1705: 1704: 1696: 1692: 1686: 1663: 1659: 1653: 1647: 1603: 1573: 1561: 1554: 1511: 1494: 1480: 1444: 1439:. In this case 1438: 1432: 1428: 1419: 1410: 1402: 1393: 1380: 1373: 1364: 1351: 1308: 1298: 1292: 1286: 1282: 1273: 1264: 1260: 1247: 1238: 1232: 1228: 1221: 1211: 1201: 1182: 1171: 1170: 1160: 1153: 1151: 1150: 1145: 1127: 1125: 1124: 1119: 1084: 1077: 1075: 1074: 1069: 1051: 1049: 1048: 1043: 1003: 997: 988: 979: 962: 939: 913: 882: 850: 826: 817: 813: 809: 784: 775: 768: 766: 765: 760: 758: 757: 735: 733: 732: 727: 722: 721: 716: 710: 709: 693: 688: 670: 669: 664: 651: 647: 621: 619: 618: 613: 608: 607: 598: 597: 585: 584: 574: 569: 545: 537: 536: 535: 529: 517: 509: 491: 485: 479: 472: 466: 460: 450: 426: 390: 377: 350: 346: 331:conjugate linear 324: 316:is the field of 315: 289: 287: 286: 281: 279: 278: 273: 253: 224: 220: 217: 173: 144: 140: 137: 87: 50: 43: 4911: 4910: 4906: 4905: 4904: 4902: 4901: 4900: 4871: 4870: 4856: 4851: 4833: 4797:Advanced topics 4792: 4716: 4695: 4654: 4620:Hilbert–Schmidt 4593: 4584:Gelfand–Naimark 4531: 4481: 4416: 4402: 4361:"Bilinear form" 4359: 4343:"Bilinear form" 4341: 4338: 4329: 4307: 4289: 4262: 4229: 4219:Springer-Verlag 4200: 4169:, vol. 1, 4161:"Bilinear form" 4153: 4123: 4113:Springer-Verlag 4101:Halmos, Paul R. 4094: 4076: 4034: 4024:Springer-Verlag 4010: 4005: 4004: 3996: 3992: 3984: 3980: 3972: 3968: 3960: 3956: 3948: 3944: 3938:Zhelobenko 2006 3936: 3932: 3924: 3920: 3912: 3908: 3907: 3903: 3898: 3893: 3839: 3828: 3818: 3783: 3748: 3726: 3684: 3657: 3618: 3591: 3578: 3570:natural pairing 3536: 3519: 3505: 3491: 3488: 3459: 3457: 3415: 3413: 3371: 3347: 3341: 3332: 3327: 3322: 3316: 3314:General modules 3291: 3283:Minkowski space 3274: 3259: 3256:Euclidean space 3244: 3226: 3211: 3190: 3186: 3180: 3176: 3170: 3153: 3140: 3136: 3130: 3126: 3120: 3109: 3103: 3100: 3099: 3093: 3084: 3078: 3074: 3071:Hermitian forms 3059: 3052:F. Reese Harvey 3038: 3023: 3009: 3002:perfect pairing 2991: 2987: 2981: 2977: 2974: 2956: 2947: 2942: 2940:Generalizations 2925: 2917: 2911: 2896: 2890: 2887:symmetric power 2878: 2865: 2861: 2849: 2839: 2821: 2808: 2796: 2778: 2756: 2753: 2731: 2725: 2719: 2705: 2701: 2690: 2677: 2669: 2649: 2615: 2601: 2580: 2577: 2571: 2547: 2538: 2534: 2533: 2519: 2511: 2503: 2500: 2499: 2489: 2482: 2466: 2438: 2434: 2425: 2421: 2407: 2399: 2391: 2388: 2387: 2373: 2367: 2355: 2346: 2329: 2323: 2309: 2277: 2272: 2258: 2250: 2236: 2235: 2231: 2222: 2218: 2216: 2213: 2212: 2203: 2194: 2188: 2174: 2168: 2162: 2156: 2141: 2138: 2123: 2086: 2080: 2053: 2038: 2016: 2010: 1999: 1993: 1967: 1965: 1964: 1943: 1934: 1930: 1917: 1915: 1914: 1893: 1884: 1880: 1878: 1875: 1874: 1866: 1855: 1848: 1842: 1831: 1808: 1804: 1771: 1755: 1749: 1743: 1716: 1710: 1709: 1702: 1701: 1694: 1688: 1673: 1661: 1655: 1649: 1622: 1610: 1587: 1571: 1559: 1550: 1547: 1499: 1496: 1486: 1467: 1440: 1434: 1430: 1427: 1421: 1418: 1412: 1404: 1401: 1395: 1392: 1386: 1378: 1372: 1366: 1363: 1357: 1347: 1336: 1304: 1294: 1288: 1284: 1281: 1275: 1272: 1266: 1262: 1259: 1253: 1246: 1240: 1234: 1230: 1226: 1213: 1203: 1185: 1174: 1168: 1167: 1155: 1133: 1130: 1129: 1092: 1089: 1088: 1079: 1057: 1054: 1053: 1016: 1013: 1012: 999: 996: 990: 987: 981: 980:, if either of 977: 963: 948: 942: 940: 925: 919: 914: 891: 885: 883: 860: 854: 841: 834: 828: 822: 815: 811: 805: 802: 796: 791: 777: 773: 747: 743: 741: 738: 737: 717: 712: 711: 699: 695: 689: 678: 665: 660: 659: 657: 654: 653: 649: 645: 636: 629: 603: 599: 590: 586: 580: 576: 570: 553: 541: 531: 530: 525: 524: 513: 505: 497: 494: 493: 487: 481: 474: 468: 462: 455: 448: 439: 432: 424: 415: 401: 396: 382: 375: 366: 359: 348: 342: 339: 320: 318:complex numbers 313: 274: 269: 268: 266: 263: 262: 225: 222: 218: 176: 145: 142: 138: 96: 71: 48: 31: 17: 12: 11: 5: 4909: 4899: 4898: 4893: 4891:Linear algebra 4888: 4886:Bilinear forms 4883: 4853: 4852: 4850: 4849: 4838: 4835: 4834: 4832: 4831: 4826: 4821: 4816: 4814:Choquet theory 4811: 4806: 4800: 4798: 4794: 4793: 4791: 4790: 4780: 4775: 4770: 4765: 4760: 4755: 4750: 4745: 4740: 4735: 4730: 4724: 4722: 4718: 4717: 4715: 4714: 4709: 4703: 4701: 4697: 4696: 4694: 4693: 4688: 4683: 4678: 4673: 4668: 4666:Banach algebra 4662: 4660: 4656: 4655: 4653: 4652: 4647: 4642: 4637: 4632: 4627: 4622: 4617: 4612: 4607: 4601: 4599: 4595: 4594: 4592: 4591: 4589:Banach–Alaoglu 4586: 4581: 4576: 4571: 4566: 4561: 4556: 4551: 4545: 4543: 4537: 4536: 4533: 4532: 4530: 4529: 4524: 4519: 4517:Locally convex 4514: 4500: 4495: 4489: 4487: 4483: 4482: 4480: 4479: 4474: 4469: 4464: 4459: 4454: 4449: 4444: 4439: 4434: 4428: 4422: 4418: 4417: 4401: 4400: 4393: 4386: 4378: 4372: 4371: 4357: 4337: 4336:External links 4334: 4333: 4332: 4327: 4310: 4305: 4297:Linear Algebra 4292: 4287: 4265: 4260: 4240: 4227: 4203: 4198: 4185: 4156: 4151: 4143:Academic Press 4134: 4121: 4097: 4092: 4079: 4074: 4057: 4045: 4032: 4009: 4006: 4003: 4002: 4000:, p. 233. 3990: 3978: 3966: 3964:, p. 359. 3954: 3942: 3930: 3928:, p. 346. 3918: 3900: 3899: 3897: 3894: 3892: 3891: 3886: 3881: 3876: 3874:Quadratic form 3871: 3866: 3861: 3856: 3851: 3846: 3840: 3838: 3835: 3458: 3414: 3370: 3315: 3312: 3206:is called the 3193: 3189: 3183: 3179: 3173: 3168: 3165: 3162: 3159: 3156: 3152: 3148: 3143: 3139: 3133: 3129: 3123: 3118: 3115: 3112: 3108: 3057: 2955: 2946: 2943: 2941: 2938: 2908:exterior power 2730: 2698:tensor product 2689: 2686: 2599:quadratic form 2570: 2567: 2555: 2550: 2545: 2541: 2537: 2532: 2529: 2526: 2522: 2518: 2514: 2510: 2507: 2449: 2445: 2441: 2437: 2432: 2428: 2424: 2420: 2417: 2414: 2410: 2406: 2402: 2398: 2395: 2345: 2342: 2295: 2291: 2287: 2284: 2280: 2271: 2268: 2265: 2261: 2257: 2253: 2249: 2246: 2243: 2239: 2234: 2230: 2225: 2221: 2081: 2011: 2009: 2006: 1981: 1978: 1975: 1963: 1960: 1957: 1951: 1948: 1942: 1937: 1933: 1928: 1925: 1913: 1910: 1907: 1901: 1898: 1892: 1887: 1883: 1853: 1846: 1828:skew-symmetric 1826:(respectively 1820:if and only if 1801:characteristic 1797: 1796: 1795: 1794: 1768: 1765: 1762: 1703:skew-symmetric 1698: 1665: 1609: 1606: 1522: 1455: 1425: 1416: 1399: 1390: 1370: 1361: 1311: 1279: 1270: 1257: 1244: 1163: 1162: 1143: 1140: 1137: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1086: 1067: 1064: 1061: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1004:is said to be 994: 985: 946: 941: 923: 918: 889: 884: 858: 853: 839: 832: 795: 792: 790: 787: 756: 753: 750: 746: 725: 720: 715: 708: 705: 702: 698: 692: 687: 684: 681: 677: 673: 668: 663: 641: 634: 611: 606: 602: 596: 593: 589: 583: 579: 573: 568: 565: 562: 559: 556: 552: 548: 544: 540: 528: 523: 520: 516: 512: 508: 504: 501: 444: 437: 427:is called the 420: 411: 399: 371: 364: 338: 335: 277: 272: 255: 254: 174: 15: 9: 6: 4: 3: 2: 4908: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4878: 4876: 4869: 4868: 4866: 4862: 4848: 4840: 4839: 4836: 4830: 4827: 4825: 4822: 4820: 4819:Weak topology 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4801: 4799: 4795: 4788: 4784: 4781: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4743:Index theorem 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4725: 4723: 4719: 4713: 4710: 4708: 4705: 4704: 4702: 4700:Open problems 4698: 4692: 4689: 4687: 4684: 4682: 4679: 4677: 4674: 4672: 4669: 4667: 4664: 4663: 4661: 4657: 4651: 4648: 4646: 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4608: 4606: 4603: 4602: 4600: 4596: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4546: 4544: 4542: 4538: 4528: 4525: 4523: 4520: 4518: 4515: 4512: 4508: 4504: 4501: 4499: 4496: 4494: 4491: 4490: 4488: 4484: 4478: 4475: 4473: 4470: 4468: 4465: 4463: 4460: 4458: 4455: 4453: 4450: 4448: 4445: 4443: 4440: 4438: 4435: 4433: 4430: 4429: 4426: 4423: 4419: 4414: 4410: 4406: 4399: 4394: 4392: 4387: 4385: 4380: 4379: 4376: 4368: 4367: 4362: 4358: 4354: 4350: 4349: 4344: 4340: 4339: 4330: 4328:0-8218-3731-1 4324: 4320: 4316: 4311: 4308: 4306:0-486-63518-X 4302: 4298: 4293: 4290: 4284: 4280: 4276: 4275: 4270: 4266: 4263: 4257: 4253: 4249: 4245: 4241: 4238: 4234: 4230: 4228:3-540-06009-X 4224: 4220: 4216: 4212: 4208: 4204: 4201: 4195: 4191: 4190:Basic Algebra 4186: 4184: 4181:, p. 390, at 4180: 4179: 4178:Bilinear form 4172: 4168: 4167: 4162: 4157: 4154: 4152:0-12-329650-1 4148: 4144: 4140: 4135: 4132: 4128: 4124: 4118: 4114: 4110: 4106: 4102: 4098: 4095: 4089: 4085: 4080: 4077: 4071: 4067: 4063: 4058: 4054: 4050: 4046: 4043: 4039: 4035: 4033:3-540-97839-9 4029: 4025: 4021: 4017: 4012: 4011: 3999: 3998:Bourbaki 1970 3994: 3988:, p. 23. 3987: 3982: 3976:, p. 22. 3975: 3970: 3963: 3958: 3951: 3946: 3940:, p. 11. 3939: 3934: 3927: 3926:Jacobson 2009 3922: 3915:. 2021-01-16. 3911: 3905: 3901: 3890: 3889:Metric tensor 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3841: 3834: 3831: 3826: 3821: 3814: 3810: 3806: 3802: 3798: 3794: 3790: 3786: 3779: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3747:-linear maps 3746: 3741: 3737: 3733: 3729: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3687: 3680: 3676: 3672: 3668: 3664: 3660: 3653: 3649: 3645: 3641: 3637: 3633: 3629: 3625: 3621: 3614: 3610: 3606: 3602: 3598: 3594: 3590:A linear map 3588: 3585: 3581: 3576: 3572: 3571: 3564: 3560: 3556: 3552: 3548: 3544: 3540: 3537:⟨⋅,⋅⟩ : 3533: 3530: 3526: 3522: 3516: 3512: 3508: 3502: 3498: 3494: 3486: 3482: 3478: 3474: 3470: 3466: 3462: 3454: 3450: 3446: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3410: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3378: 3374: 3369: 3367: 3366:bilinear form 3362: 3358: 3354: 3350: 3344: 3340: 3335: 3331: 3321: 3310: 3308: 3302: 3298: 3294: 3289: 3285: 3284: 3277: 3272: 3266: 3262: 3257: 3251: 3247: 3240: 3237: 3233: 3229: 3222: 3218: 3214: 3209: 3191: 3187: 3181: 3177: 3171: 3166: 3163: 3160: 3157: 3154: 3150: 3146: 3141: 3137: 3131: 3127: 3121: 3116: 3113: 3110: 3106: 3096: 3092: 3087: 3081: 3072: 3068: 3065:and some are 3064: 3060: 3053: 3048: 3045: 3041: 3035: 3031: 3027: 3020: 3016: 3012: 3005: 3003: 2999: 2994: 2984: 2971: 2967: 2963: 2959: 2954: 2952: 2937: 2933: 2929: 2921: 2914: 2909: 2904: 2900: 2893: 2888: 2882: 2875: 2872: 2868: 2857: 2853: 2846: 2842: 2837: 2832: 2828: 2824: 2818: 2815: 2811: 2804: 2800: 2793: 2789: 2785: 2781: 2776: 2771: 2767: 2763: 2759: 2750: 2746: 2742: 2738: 2734: 2729: 2722: 2716: 2712: 2708: 2699: 2695: 2685: 2681: 2673: 2666: 2663: 2659: 2653: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2618: 2612: 2608: 2604: 2600: 2595: 2591: 2587: 2583: 2576: 2566: 2553: 2548: 2530: 2527: 2516: 2505: 2496: 2492: 2485: 2480: 2476: 2470: 2464: 2460: 2447: 2418: 2415: 2404: 2393: 2384: 2380: 2376: 2370: 2365: 2359: 2354: 2350: 2341: 2337: 2333: 2326: 2321: 2316: 2312: 2306: 2293: 2289: 2285: 2282: 2269: 2266: 2255: 2244: 2241: 2232: 2228: 2223: 2219: 2211: 2210: 2200: 2197: 2191: 2184: 2181: 2177: 2171: 2165: 2159: 2154: 2150: 2144: 2134: 2130: 2126: 2121: 2120: 2114: 2110: 2106: 2101: 2097: 2093: 2089: 2084: 2078: 2074: 2070: 2064: 2060: 2056: 2049: 2045: 2041: 2036: 2031: 2027: 2023: 2019: 2014: 2005: 2002: 1996: 1979: 1973: 1961: 1958: 1949: 1946: 1940: 1935: 1931: 1923: 1911: 1908: 1899: 1896: 1890: 1885: 1881: 1870: 1863: 1859: 1852: 1845: 1839: 1835: 1829: 1825: 1821: 1816: 1812: 1802: 1790: 1786: 1782: 1778: 1774: 1769: 1766: 1763: 1760: 1759: 1752: 1746: 1739: 1735: 1731: 1727: 1723: 1719: 1714: 1711:antisymmetric 1706: 1699: 1691: 1684: 1680: 1676: 1671: 1670: 1666: 1658: 1652: 1645: 1641: 1637: 1633: 1629: 1625: 1620: 1619: 1615: 1614: 1613: 1605: 1602: 1598: 1594: 1590: 1585: 1581: 1577: 1569: 1565: 1556: 1553: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1519: 1515: 1510: 1506: 1502: 1493: 1489: 1484: 1478: 1474: 1470: 1465: 1464:nondegenerate 1461: 1458: 1454: 1452: 1448: 1443: 1437: 1424: 1415: 1408: 1398: 1389: 1384: 1375: 1369: 1360: 1355: 1350: 1345: 1344:right radical 1341: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1307: 1302: 1297: 1291: 1278: 1269: 1256: 1251: 1243: 1237: 1223: 1220: 1216: 1210: 1206: 1200: 1196: 1192: 1188: 1181: 1177: 1172: 1158: 1154:implies that 1141: 1138: 1135: 1115: 1112: 1106: 1103: 1100: 1094: 1087: 1082: 1078:implies that 1065: 1062: 1059: 1039: 1036: 1030: 1027: 1024: 1018: 1011: 1010: 1009: 1007: 1006:nondegenerate 1002: 993: 984: 974: 972: 968: 960: 956: 952: 945: 937: 933: 929: 922: 917: 911: 907: 903: 899: 895: 888: 880: 876: 872: 868: 864: 857: 852: 849: 845: 838: 831: 825: 821: 808: 801: 786: 783: 780: 772: 754: 751: 748: 744: 723: 718: 706: 703: 700: 696: 690: 685: 682: 679: 675: 671: 666: 644: 640: 633: 627: 622: 609: 604: 600: 594: 591: 587: 581: 577: 571: 566: 563: 560: 557: 554: 550: 546: 538: 521: 510: 499: 490: 484: 477: 471: 465: 458: 452: 447: 443: 436: 431:on the basis 430: 423: 419: 414: 410: 406: 402: 395:, defined by 394: 389: 385: 379: 374: 370: 363: 358: 354: 345: 334: 332: 328: 323: 319: 310: 308: 304: 300: 296: 291: 275: 260: 251: 247: 243: 239: 236: 232: 228: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 152: 148: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 95: 94: 93: 91: 86: 82: 78: 74: 69: 68: 63: 60: 56: 55: 47: 42: 38: 34: 30: 26: 25:bilinear form 22: 4858: 4857: 4809:Balanced set 4783:Distribution 4721:Applications 4574:Krein–Milman 4559:Closed graph 4364: 4346: 4314: 4296: 4273: 4247: 4210: 4189: 4183:Google Books 4176: 4164: 4138: 4104: 4083: 4061: 4052: 4049:Bourbaki, N. 4015: 3993: 3981: 3969: 3957: 3945: 3933: 3921: 3904: 3844:Bilinear map 3829: 3823:denotes the 3819: 3812: 3808: 3804: 3800: 3796: 3792: 3788: 3784: 3777: 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3744: 3743:induces the 3739: 3735: 3731: 3727: 3724: 3717: 3713: 3709: 3705: 3701: 3697: 3693: 3689: 3685: 3678: 3674: 3670: 3666: 3662: 3658: 3651: 3647: 3643: 3639: 3635: 3631: 3627: 3623: 3619: 3612: 3608: 3604: 3600: 3596: 3592: 3589: 3583: 3579: 3574: 3568: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3535:The mapping 3534: 3528: 3524: 3520: 3514: 3510: 3506: 3500: 3496: 3492: 3489: 3484: 3480: 3476: 3472: 3468: 3464: 3460: 3452: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3408: 3404: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3372: 3365: 3364:is called a 3360: 3356: 3352: 3348: 3346:, a mapping 3342: 3333: 3325:and a right 3317: 3306: 3300: 3296: 3292: 3287: 3281: 3275: 3270: 3264: 3260: 3255: 3249: 3245: 3242: 3235: 3231: 3227: 3220: 3216: 3212: 3210:and labeled 3207: 3094: 3085: 3079: 3055: 3049: 3043: 3039: 3033: 3029: 3025: 3018: 3014: 3010: 3006: 3001: 2997: 2992: 2982: 2975: 2969: 2965: 2961: 2957: 2948: 2931: 2927: 2919: 2912: 2906:(the second 2902: 2898: 2891: 2880: 2876: 2870: 2866: 2860:which (when 2855: 2851: 2844: 2840: 2830: 2826: 2822: 2819: 2813: 2809: 2802: 2798: 2791: 2787: 2783: 2779: 2774: 2769: 2765: 2761: 2757: 2754: 2748: 2744: 2740: 2736: 2732: 2720: 2714: 2710: 2706: 2691: 2679: 2671: 2667: 2661: 2657: 2651: 2647: 2640: 2636: 2632: 2628: 2624: 2620: 2616: 2610: 2606: 2602: 2593: 2589: 2585: 2581: 2578: 2494: 2490: 2483: 2474: 2468: 2462: 2461: 2382: 2378: 2374: 2368: 2363: 2357: 2348: 2347: 2335: 2331: 2324: 2314: 2310: 2307: 2207: 2201: 2195: 2189: 2182: 2179: 2175: 2169: 2163: 2157: 2152: 2148: 2142: 2139: 2132: 2128: 2124: 2118: 2116: 2112: 2108: 2104: 2099: 2095: 2091: 2087: 2082: 2076: 2072: 2068: 2062: 2058: 2054: 2047: 2043: 2039: 2034: 2029: 2025: 2021: 2017: 2012: 2000: 1994: 1868: 1861: 1857: 1850: 1843: 1840: 1833: 1817: 1810: 1798: 1788: 1784: 1780: 1776: 1772: 1750: 1744: 1737: 1733: 1729: 1725: 1721: 1717: 1708: 1700: 1689: 1682: 1678: 1674: 1667: 1656: 1650: 1643: 1639: 1635: 1631: 1627: 1623: 1616: 1611: 1600: 1596: 1592: 1588: 1580:non-singular 1557: 1551: 1548: 1543: 1539: 1535: 1531: 1527: 1523: 1517: 1513: 1508: 1504: 1500: 1497: 1491: 1487: 1482: 1476: 1472: 1468: 1463: 1459: 1456: 1450: 1441: 1435: 1422: 1413: 1406: 1396: 1387: 1376: 1367: 1358: 1348: 1346:of the form 1343: 1340:left radical 1339: 1337: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1300: 1295: 1289: 1276: 1267: 1254: 1241: 1235: 1224: 1218: 1214: 1208: 1204: 1198: 1194: 1190: 1186: 1179: 1175: 1166: 1164: 1156: 1080: 1000: 991: 982: 975: 964: 958: 954: 950: 943: 935: 931: 927: 920: 915: 909: 905: 901: 897: 893: 886: 878: 874: 870: 866: 862: 855: 847: 843: 836: 829: 823: 806: 803: 781: 778: 642: 638: 631: 623: 488: 482: 475: 469: 463: 456: 453: 445: 441: 434: 428: 421: 417: 412: 408: 404: 397: 392: 387: 383: 380: 372: 368: 361: 343: 340: 321: 311: 305:replaced by 292: 256: 249: 245: 241: 237: 234: 230: 226: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 169: 165: 161: 157: 153: 150: 146: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 84: 80: 76: 72: 65: 61: 52: 46:vector space 40: 36: 32: 29:bilinear map 24: 18: 4738:Heat kernel 4728:Hardy space 4635:Trace class 4549:Hahn–Banach 4511:Topological 3986:Harvey 1990 3974:Harvey 1990 3869:Polar space 3859:Linear form 3825:double dual 3339:dual module 3091:quaternions 2986:, and from 2795:that sends 2614:defined by 2463:Definition: 2349:Definition: 2083:Definition: 2013:Definition: 1761:Proposition 1669:alternating 1576:determinant 1457:Definition: 353:dimensional 303:linear maps 259:dot product 21:mathematics 4875:Categories 4861:PlanetMath 4671:C*-algebra 4486:Properties 4366:PlanetMath 4237:0292.10016 4207:Milnor, J. 4131:0288.15002 4055:, Springer 4042:0768.00003 4008:References 3950:Grove 1997 3307:split-case 3269:is called 3254:is called 2836:dual space 2033:is called 1451:definition 1169:unimodular 820:dual space 789:Properties 736:where the 4645:Unbounded 4640:Transpose 4598:Operators 4527:Separable 4522:Reflexive 4507:Algebraic 4493:Barrelled 4353:EMS Press 4299:, Dover, 4066:CRC Press 3896:Citations 3817:. Here, 3787:′ : 3700: : ( 3634: : ( 3549: : ( 3151:∑ 3147:− 3107:∑ 2528:≥ 2416:≤ 2320:bijective 2283:∈ 2242:∣ 2224:⊥ 2035:reflexive 1962:− 1936:− 1824:symmetric 1618:symmetric 1301:transpose 1293:). Given 1250:transpose 1139:∈ 1063:∈ 827:. Define 676:∑ 626:congruent 551:∑ 57:) over a 4847:Category 4659:Algebras 4541:Theorems 4498:Complete 4467:Schwartz 4413:glossary 4279:Springer 4246:(1995), 4175:. Also: 4103:(1974), 4051:(1970), 3837:See also 3795: : 3760: : 3752: : 3730: : 3688: : 3669: : 3661: : 3622: : 3603: : 3595: : 3518:and all 3490:for all 3351: : 3337:and its 3318:Given a 3225:, where 2960: : 2930:) ≃ Sym( 2760: : 2627: : 2619: : 2605: : 2584: : 2544:‖ 2536:‖ 2479:coercive 2475:elliptic 2444:‖ 2436:‖ 2431:‖ 2423:‖ 2334:) − dim( 2202:Suppose 2090: : 2067:for all 2052:implies 2020: : 1742:for all 1687:for all 1648:for all 1503: : 1485:implies 1481:for all 1352:are the 1128:for all 1052:for all 971:Currying 769:form an 492:, then: 88:that is 75: : 4650:Unitary 4630:Nuclear 4615:Compact 4610:Bounded 4605:Adjoint 4579:Min–max 4472:Sobolev 4457:Nuclear 4447:Hilbert 4442:Fréchet 4407: ( 4355:, 2001 4053:Algebra 3330:-module 2834:is the 2696:of the 2692:By the 2364:bounded 2153:radical 2151:or the 1799:If the 1354:kernels 1248:is the 818:to its 652:, then 480:matrix 461:matrix 454:If the 391:matrix 301:, with 297:over a 295:modules 67:scalars 54:vectors 4625:Normal 4462:Orlicz 4452:Hölder 4432:Banach 4421:Spaces 4409:topics 4325:  4303:  4285:  4258:  4235:  4225:  4196:  4149:  4129:  4119:  4090:  4072:  4040:  4030:  3504:, all 3267:−1, 1) 3089:, and 2916:). If 2682:> 1 2486:> 0 2471:, ‖⋅‖) 2360:, ‖⋅‖) 2178:= 0 ⇔ 2149:kernel 1992:where 347:be an 90:linear 4437:Besov 3913:(PDF) 3708:) ↦ ⟨ 3642:) ↦ ⟨ 3273:. If 3032:) ↦ 2 2901:) ≃ Λ 2718:. If 2674:) = 2 2670:char( 2668:When 2654:) ≠ 2 2650:char( 2648:When 2477:, or 2135:) = 0 2065:) = 0 2050:) = 0 1871:) ≠ 2 1867:char( 1836:) ≠ 2 1832:char( 1813:) = 2 1809:char( 1767:Proof 1728:) = − 1685:) = 0 1599:) = 2 1568:basis 1479:) = 0 1411:then 1197:) = 2 637:, …, 440:, …, 367:, …, 357:basis 312:When 59:field 44:on a 27:is a 4785:(or 4503:Dual 4323:ISBN 4301:ISBN 4283:ISBN 4256:ISBN 4223:ISBN 4194:ISBN 4147:ISBN 4117:ISBN 4088:ISBN 4070:ISBN 4028:ISBN 3782:and 3557:) ↦ 3471:) = 3443:) + 3431:) = 3399:) + 3387:) = 3320:ring 3252:, 0) 3022:via 2926:(Sym 2918:char 2879:(Sym 2678:dim 2676:and 2330:dim( 2115:are 2085:Let 1634:) = 1584:unit 1570:for 1534:) = 1520:via 1420:and 1405:dim( 1383:rank 1365:and 1342:and 1338:The 1323:) = 1261:(if 957:(⋅, 953:) = 938:, ⋅) 930:) = 900:) = 869:) = 381:The 341:Let 299:ring 257:The 240:) = 221:and 204:) + 192:) = 160:) = 141:and 124:) + 112:) = 23:, a 4233:Zbl 4127:Zbl 4038:Zbl 3827:of 3799:↦ ( 3764:↦ ( 3650:), 3577:on 3368:if 3286:or 3278:= 4 3069:or 2990:to 2980:to 2922:≠ 2 2910:of 2889:of 2838:of 2807:to 2473:is 2362:is 2328:is 2318:is 2311:V/W 2185:= 0 2122:if 2111:in 2075:in 2037:if 1838:). 1803:of 1754:in 1715:if 1707:or 1693:in 1672:if 1660:in 1621:if 1562:is 1558:If 1516:on 1466:if 1462:is 1433:to 1385:of 1377:If 1356:of 1303:of 1287:in 1225:If 1212:to 1173:if 1159:= 0 1085:and 1083:= 0 989:or 973:). 851:by 810:on 478:× 1 459:× 1 261:on 19:In 4877:: 4411:– 4363:. 4351:, 4345:, 4321:, 4281:, 4277:, 4254:, 4231:, 4221:, 4213:, 4141:, 4125:, 4115:, 4107:, 4064:, 4036:, 4026:, 4018:, 3833:. 3815:)) 3811:, 3803:↦ 3791:→ 3780:)) 3776:, 3768:↦ 3756:→ 3738:→ 3734:× 3722:. 3720:)⟩ 3712:, 3704:, 3696:→ 3692:× 3673:↦ 3665:→ 3638:, 3630:→ 3626:× 3607:↦ 3599:→ 3587:. 3582:× 3553:, 3545:→ 3541:× 3532:. 3527:∈ 3523:, 3513:∈ 3509:, 3499:∈ 3495:, 3479:, 3473:αB 3469:xβ 3467:, 3465:αu 3451:, 3439:, 3427:+ 3423:, 3407:, 3395:, 3383:, 3379:+ 3359:→ 3355:× 3309:. 3299:, 3234:= 3230:+ 3219:, 3058:ij 3047:. 3042:→ 3034:xy 3028:, 3017:→ 3013:× 3004:. 2968:→ 2964:× 2936:. 2924:, 2897:(Λ 2874:. 2869:⊗ 2854:⊗ 2843:⊗ 2829:→ 2825:⊗ 2817:. 2801:, 2790:⊗ 2786:→ 2782:× 2768:→ 2764:⊗ 2747:, 2739:↦ 2735:⊗ 2713:→ 2709:⊗ 2645:. 2639:, 2631:↦ 2623:→ 2609:→ 2592:→ 2588:× 2498:, 2493:∈ 2386:, 2381:∈ 2377:, 2340:. 2313:→ 2176:Ax 2131:, 2107:, 2098:→ 2094:× 2071:, 2061:, 2046:, 2028:→ 2024:× 1860:→ 1856:: 1849:, 1787:+ 1783:, 1779:+ 1758:; 1748:, 1736:, 1724:, 1681:, 1654:, 1642:, 1630:, 1601:xy 1595:, 1546:). 1542:)( 1530:, 1507:→ 1490:= 1475:, 1335:). 1331:, 1319:, 1217:= 1207:= 1199:xy 1193:, 1178:→ 908:, 896:)( 877:, 865:)( 846:→ 842:: 835:, 785:. 782:AS 451:. 416:, 403:= 400:ij 386:× 378:. 309:. 248:, 242:λB 233:, 212:, 200:, 188:+ 184:, 168:, 162:λB 156:, 132:, 120:, 108:, 104:+ 83:→ 79:× 39:→ 35:× 4867:. 4789:) 4513:) 4509:/ 4505:( 4415:) 4397:e 4390:t 4383:v 4369:. 3952:. 3830:M 3820:M 3813:x 3809:u 3807:( 3805:B 3801:u 3797:x 3793:M 3789:M 3785:T 3778:x 3774:u 3772:( 3770:B 3766:x 3762:u 3758:M 3754:M 3750:S 3745:R 3740:R 3736:M 3732:M 3728:B 3718:x 3716:( 3714:T 3710:u 3706:x 3702:u 3698:R 3694:M 3690:M 3686:B 3681:) 3679:x 3677:( 3675:T 3671:x 3667:M 3663:M 3659:T 3654:⟩ 3652:x 3648:u 3646:( 3644:S 3640:x 3636:u 3632:R 3628:M 3624:M 3620:B 3615:) 3613:u 3611:( 3609:S 3605:u 3601:M 3597:M 3593:S 3584:M 3580:M 3565:) 3563:x 3561:( 3559:u 3555:x 3551:u 3547:R 3543:M 3539:M 3529:R 3525:β 3521:α 3515:M 3511:y 3507:x 3501:M 3497:v 3493:u 3485:β 3483:) 3481:x 3477:u 3475:( 3463:( 3461:B 3455:) 3453:y 3449:u 3447:( 3445:B 3441:x 3437:u 3435:( 3433:B 3429:y 3425:x 3421:u 3419:( 3417:B 3411:) 3409:x 3405:v 3403:( 3401:B 3397:x 3393:u 3391:( 3389:B 3385:x 3381:v 3377:u 3375:( 3373:B 3361:R 3357:M 3353:M 3349:B 3343:M 3334:M 3328:R 3323:R 3303:) 3301:p 3297:p 3295:( 3293:R 3276:n 3265:n 3263:( 3261:R 3250:n 3248:( 3246:R 3236:n 3232:q 3228:p 3223:) 3221:q 3217:p 3215:( 3213:R 3192:k 3188:y 3182:k 3178:x 3172:n 3167:1 3164:+ 3161:p 3158:= 3155:k 3142:k 3138:y 3132:k 3128:x 3122:p 3117:1 3114:= 3111:k 3095:H 3086:C 3080:R 3075:K 3056:A 3044:Z 3040:Z 3030:y 3026:x 3024:( 3019:Z 3015:Z 3011:Z 2998:B 2993:V 2988:W 2983:W 2978:V 2973:. 2970:K 2966:W 2962:V 2958:B 2934:) 2932:V 2928:V 2920:K 2913:V 2903:V 2899:V 2892:V 2883:) 2881:V 2871:V 2867:V 2862:V 2858:) 2856:V 2852:V 2850:( 2845:V 2841:V 2831:K 2827:V 2823:V 2814:w 2812:⊗ 2810:v 2805:) 2803:w 2799:v 2797:( 2792:V 2788:V 2784:V 2780:V 2775:F 2770:K 2766:V 2762:V 2758:F 2751:) 2749:w 2745:v 2743:( 2741:B 2737:w 2733:v 2726:V 2721:B 2715:K 2711:V 2707:V 2702:V 2680:V 2672:K 2662:B 2658:Q 2652:K 2643:) 2641:v 2637:v 2635:( 2633:B 2629:v 2625:K 2621:V 2617:Q 2611:K 2607:V 2603:Q 2594:K 2590:V 2586:V 2582:B 2554:. 2549:2 2540:u 2531:c 2525:) 2521:u 2517:, 2513:u 2509:( 2506:B 2495:V 2491:u 2484:c 2469:V 2467:( 2448:. 2440:v 2427:u 2419:C 2413:) 2409:v 2405:, 2401:u 2397:( 2394:B 2383:V 2379:v 2375:u 2369:C 2358:V 2356:( 2338:) 2336:W 2332:V 2325:W 2315:W 2294:. 2290:} 2286:W 2279:w 2270:0 2267:= 2264:) 2260:w 2256:, 2252:v 2248:( 2245:B 2238:v 2233:{ 2229:= 2220:W 2204:W 2196:A 2190:V 2183:A 2180:x 2170:A 2164:x 2158:v 2143:B 2137:. 2133:w 2129:v 2127:( 2125:B 2119:B 2113:V 2109:w 2105:v 2100:K 2096:V 2092:V 2088:B 2079:. 2077:V 2073:w 2069:v 2063:v 2059:w 2057:( 2055:B 2048:w 2044:v 2042:( 2040:B 2030:K 2026:V 2022:V 2018:B 2001:B 1995:B 1980:, 1977:) 1974:B 1969:t 1959:B 1956:( 1950:2 1947:1 1941:= 1932:B 1927:) 1924:B 1919:t 1912:+ 1909:B 1906:( 1900:2 1897:1 1891:= 1886:+ 1882:B 1869:K 1862:V 1858:V 1854:2 1851:B 1847:1 1844:B 1834:K 1811:K 1805:K 1793:. 1791:) 1789:w 1785:v 1781:w 1777:v 1775:( 1773:B 1756:V 1751:w 1745:v 1740:) 1738:v 1734:w 1732:( 1730:B 1726:w 1722:v 1720:( 1718:B 1697:; 1695:V 1690:v 1683:v 1679:v 1677:( 1675:B 1664:; 1662:V 1657:w 1651:v 1646:) 1644:v 1640:w 1638:( 1636:B 1632:w 1628:v 1626:( 1624:B 1597:y 1593:x 1591:( 1589:B 1572:V 1560:V 1552:A 1544:w 1540:v 1538:( 1536:A 1532:w 1528:v 1526:( 1524:B 1518:V 1514:B 1509:V 1505:V 1501:A 1495:. 1492:0 1488:v 1483:w 1477:w 1473:v 1471:( 1469:B 1460:B 1442:B 1436:V 1431:V 1426:2 1423:B 1417:1 1414:B 1409:) 1407:V 1400:2 1397:B 1391:1 1388:B 1379:V 1371:2 1368:B 1362:1 1359:B 1349:B 1333:v 1329:w 1327:( 1325:B 1321:w 1317:v 1315:( 1313:B 1306:B 1296:B 1290:V 1285:V 1280:1 1277:B 1271:2 1268:B 1263:V 1258:1 1255:B 1245:2 1242:B 1236:V 1231:V 1227:V 1219:Z 1215:V 1209:Z 1205:V 1195:y 1191:x 1189:( 1187:B 1180:V 1176:V 1161:. 1157:y 1142:V 1136:x 1116:0 1113:= 1110:) 1107:y 1104:, 1101:x 1098:( 1095:B 1081:x 1066:V 1060:y 1040:0 1037:= 1034:) 1031:y 1028:, 1025:x 1022:( 1019:B 1001:B 995:2 992:B 986:1 983:B 978:V 961:) 959:v 955:B 951:v 949:( 947:2 944:B 936:v 934:( 932:B 928:v 926:( 924:1 921:B 912:) 910:v 906:w 904:( 902:B 898:w 894:v 892:( 890:2 887:B 881:) 879:w 875:v 873:( 871:B 867:w 863:v 861:( 859:1 856:B 848:V 844:V 840:2 837:B 833:1 830:B 824:V 816:V 812:V 807:B 779:S 774:S 755:j 752:, 749:i 745:S 724:, 719:i 714:e 707:j 704:, 701:i 697:S 691:n 686:1 683:= 680:i 672:= 667:j 662:f 650:V 646:} 643:n 639:f 635:1 632:f 630:{ 610:. 605:j 601:y 595:j 592:i 588:A 582:i 578:x 572:n 567:1 564:= 561:j 558:, 555:i 547:= 543:y 539:A 533:T 527:x 522:= 519:) 515:y 511:, 507:x 503:( 500:B 489:y 483:y 476:n 470:x 464:x 457:n 449:} 446:n 442:e 438:1 435:e 433:{ 425:) 422:j 418:e 413:i 409:e 407:( 405:B 398:A 393:A 388:n 384:n 376:} 373:n 369:e 365:1 362:e 360:{ 351:- 349:n 344:V 322:C 314:K 276:n 271:R 252:) 250:v 246:u 244:( 238:v 235:λ 231:u 229:( 227:B 216:) 214:w 210:u 208:( 206:B 202:v 198:u 196:( 194:B 190:w 186:v 182:u 180:( 178:B 172:) 170:v 166:u 164:( 158:v 154:u 151:λ 149:( 147:B 136:) 134:w 130:v 128:( 126:B 122:w 118:u 116:( 114:B 110:w 106:v 102:u 100:( 98:B 85:K 81:V 77:V 73:B 62:K 49:V 41:K 37:V 33:V

Index

mathematics
bilinear map
vector space
vectors
field
scalars
linear
dot product
modules
ring
linear maps
module homomorphisms
complex numbers
sesquilinear forms
conjugate linear
dimensional
basis
congruent
invertible matrix
Degenerate bilinear form
dual space
linear functional
Currying
nondegenerate
transpose
kernels
rank
rank–nullity theorem
finite-dimensional
basis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.