Knowledge

Baroclinity

Source đź“ť

980:. Similar waves can be generated between a layer of water and a layer of oil. When the interface between these two surfaces is not horizontal and the system is close to hydrostatic equilibrium, the gradient of the pressure is vertical but the gradient of the density is not. Therefore the baroclinic vector is nonzero, and the sense of the baroclinic vector is to create vorticity to make the interface level out. In the process, the interface overshoots, and the result is an oscillation which is an internal gravity wave. Unlike surface gravity waves, internal gravity waves do not require a sharp interface. For example, in bodies of water, a gradual gradient in temperature or salinity is sufficient to support internal gravity waves driven by the baroclinic vector. 142: 746: 2400: 134: 448: 3288: 3309: 25: 2389: 3298: 741:{\displaystyle {\frac {D{\vec {\omega }}}{Dt}}\equiv {\frac {\partial {\vec {\omega }}}{\partial t}}+\left({\vec {u}}\cdot {\vec {\nabla }}\right){\vec {\omega }}=\left({\vec {\omega }}\cdot {\vec {\nabla }}\right){\vec {u}}-{\vec {\omega }}\left({\vec {\nabla }}\cdot {\vec {u}}\right)+\underbrace {{\frac {1}{\rho ^{2}}}{\vec {\nabla }}\rho \times {\vec {\nabla }}p} _{\text{baroclinic contribution}}} 122: 146: 144: 149: 148: 143: 150: 147: 327:. The Rossby number is a measure of the departure of the vorticity from that of solid body rotation. The Rossby number must be small for the concept of baroclinic instability to be relevant. When the Rossby number is large, other kinds of instabilities, often referred to as inertial, become more relevant. 361:
on baroclinic instability in the late 1940s, most theories trying to explain the structure of mid-latitude eddies took as their starting points the high Rossby number or small Richardson number instabilities familiar to fluid dynamicists at that time. The most important feature of baroclinic
145: 395:
and twisting (as vortex tubes are pulled or twisted by the flow) and baroclinic vorticity generation, which occurs whenever there is a density gradient along surfaces of constant pressure. Baroclinic flows can be contrasted with
246:, where density surfaces and pressure surfaces are both nearly level, whereas in higher latitudes the flow is more baroclinic. These midlatitude belts of high atmospheric baroclinity are characterized by the frequent formation of 960:
as well as unstable Rayleigh–Taylor modes can be analyzed from the perspective of the baroclinic vector. It is also of interest in the creation of vorticity by the passage of shocks through inhomogeneous media, such as in the
951: 837: 1032:, p. 179: ″In general, a barotropic situation is one in which surfaces of constant pressure and surfaces of constant density coincide; a baroclinic situation is one in which they intersect.″ 403:
The study of the evolution of these baroclinic instabilities as they grow and then decay is a crucial part of developing theories for the fundamental characteristics of midlatitude weather.
391:
is generated. Vorticity is the curl of the velocity field. In general, the evolution of vorticity can be broken into contributions from advection (as vortex tubes move with the flow),
222: 340:
The strength of the stratification is measured by asking how large the vertical shear of the horizontal winds has to be in order to destabilize the flow and produce the classic
1077: 778: 1317:
Fujisawa, K.; Jackson, T. L.; Balachandar, S. (2019-02-22). "Influence of baroclinic vorticity production on unsteady drag coefficient in shock–particle interaction".
881: 377:
of the fluid is lowered. In growing waves in the atmosphere, cold air moving downwards and equatorwards displaces the warmer air moving polewards and upwards.
861: 956:
This vector, sometimes called the solenoidal vector, is of interest both in compressible fluids and in incompressible (but inhomogeneous) fluids. Internal
889: 1626: 3028: 259: 384:. The annulus is heated at the outer wall and cooled at the inner wall, and the resulting fluid flows give rise to baroclinically unstable waves. 3018: 2077: 783: 174:
a baroclinic flow is one in which the density depends on both temperature and pressure (the fully general case). A simpler case,
2934: 1020:, p. 122: ″The strict meaning of the term ′barotropic′ is that the pressure is constant on surfaces of constant density...″ 3301: 2349: 2117: 1619: 170:) of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In 1768: 1590: 1567: 1541: 1514: 1487: 2581: 1122:
Houze, Robert A. (2014-01-01), Houze, Robert A. (ed.), "Chapter 11 - Clouds and Precipitation in Extratropical Cyclones",
89: 2070: 319:, which is a measure of how close the flow is to solid body rotation. More precisely, a flow in solid body rotation has 137:
Visualization of a (fictive) formation of isotherms (red-orange) and isobars (blue) in a baroclinic atmospheric layering.
2471: 61: 3176: 2603: 2491: 3023: 2294: 1788: 1612: 1139: 1098: 962: 108: 2481: 2441: 1936: 412: 341: 68: 3211: 2197: 195: 1376:
Boris, J. P.; Picone, J. M. (April 1988). "Vorticity generation by shock propagation through bubbles in a gas".
1180: 1155: 330:
The simplest example of a stably stratified flow is an incompressible flow with density decreasing with height.
3291: 2884: 2063: 1983: 350:. When the Richardson number is large, the stratification is strong enough to prevent this shear instability. 46: 3339: 1815: 1783: 1730: 75: 1265: 2339: 42: 400:
flows in which density and pressure surfaces coincide and there is no baroclinic generation of vorticity.
2044: 2399: 57: 2536: 1978: 1735: 1582: 362:
instability is that it exists even in the situation of rapid rotation (small Rossby number) and strong
247: 3071: 2476: 2436: 1958: 1892: 1720: 1047: 3201: 2576: 2566: 2506: 2142: 2112: 1825: 1677: 333:
In a compressible gas such as the atmosphere, the relevant measure is the vertical gradient of the
3334: 3238: 3221: 3058: 2551: 2416: 2354: 2344: 2237: 2026: 1948: 1559: 1479: 183: 35: 754: 3233: 3171: 2598: 2284: 1880: 1840: 1793: 1778: 1760: 3066: 3048: 2556: 2451: 2086: 1927: 1820: 1810: 1773: 1044:, p. 74: ″A barotropic atmosphere is one in which density depends only on the pressure, 381: 363: 996:
Marshall, J., and R.A. Plumb. 2007. Atmosphere, Ocean, and Climate Dynamics. Academic Press,
380:
Baroclinic instability can be investigated in the laboratory using a rotating, fluid filled
3253: 3086: 2789: 2646: 2511: 2222: 2006: 1973: 1875: 1870: 1835: 1448: 1436: 1385: 1326: 1204: 1167: 866: 126: 304:(100 km or smaller) that play various roles in oceanic dynamics and the transport of 8: 3248: 3133: 3128: 2854: 2526: 2486: 2202: 1968: 1953: 1093:. Henderson-Sellers, A. (Second ed.). Oxfordshire, England: Routledge. p. 151. 439: 280:
Baroclinic instability is a fluid dynamical instability of fundamental importance in the
82: 1440: 1389: 1330: 1208: 1171: 3191: 2904: 2894: 2859: 2759: 2744: 2641: 1740: 1499: 1409: 1358: 1216: 1131: 846: 427: 416: 263: 179: 1474:
Holton, James R. (2004). Dmowska, Renata; Holton, James R.; Rossby, H. Thomas (eds.).
3273: 3263: 3206: 3186: 2869: 2834: 2769: 2749: 2739: 2621: 2309: 2167: 2021: 1917: 1805: 1647: 1586: 1563: 1537: 1526: 1510: 1483: 1452: 1413: 1401: 1362: 1350: 1342: 1135: 1104: 1094: 392: 346: 1604: 3228: 3196: 3166: 2975: 2960: 2829: 2764: 2656: 2571: 2501: 2426: 2207: 2177: 2107: 2102: 1444: 1393: 1334: 1243: 1212: 1175: 1127: 946:{\displaystyle {\frac {1}{\rho ^{2}}}{\vec {\nabla }}\rho \times {\vec {\nabla }}p} 370: 324: 301: 968:
Experienced divers are familiar with the very slow waves that can be excited at a
3033: 2929: 2879: 2844: 2804: 2696: 2666: 2516: 2466: 2376: 2334: 2267: 2192: 2152: 1672: 1533: 1269: 1579:
Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation
1478:. International Geophysics Series. Vol. 88 (4th ed.). Burlington, MA: 16:
Measure of misalignment between the gradients of pressure and density in a fluid
3143: 3138: 3043: 3038: 2874: 2814: 2809: 2541: 2431: 2252: 2187: 2162: 1963: 1506: 374: 159: 2388: 1397: 3328: 3313: 3161: 3081: 2970: 2889: 2864: 2799: 2729: 2636: 2531: 2408: 2329: 2289: 2262: 2172: 2122: 1745: 1551: 1456: 1405: 1346: 1108: 426:
In a fluid that is not all of the same density, a source term appears in the
316: 1248: 1231: 435: 227:
which is proportional to the sine of the angle between surfaces of constant
133: 3268: 3216: 3156: 3107: 2985: 2980: 2955: 2939: 2914: 2631: 2521: 2461: 2247: 2157: 2132: 1922: 1897: 1830: 1707: 957: 354: 239:
fluid (which is defined by zero baroclinity), these surfaces are parallel.
1232:"A Tabletop Demonstration of Atmospheric Dynamics: Baroclinic Instability" 3258: 2990: 2919: 2784: 2724: 2691: 2681: 2676: 2561: 2496: 2456: 2446: 2304: 2277: 2257: 2217: 2182: 1850: 1750: 969: 305: 293: 171: 2055: 337:, which must increase with height for the flow to be stably stratified. 242:
In Earth's atmosphere, barotropic flow is a better approximation in the
154:
A rotating tank experiment modelling baroclinic eddies in the atmosphere
3076: 2924: 2899: 2794: 2774: 2701: 2686: 2671: 2661: 2626: 2546: 2366: 2361: 2324: 2319: 2314: 2212: 2016: 1988: 1902: 1697: 1682: 1662: 1427:
Brouillette, Martin (2002-01-01). "The richtmyer-meshkov instability".
397: 281: 275: 175: 3308: 1354: 1338: 3148: 3010: 2995: 2909: 2754: 2593: 2588: 2371: 2299: 2227: 2147: 2137: 2094: 1858: 1687: 1667: 1652: 973: 840: 431: 420: 388: 358: 320: 411:
Beginning with the equation of motion for a frictionless fluid (the
24: 3243: 2965: 2824: 2716: 2706: 2651: 2127: 2036: 1998: 1912: 1657: 1126:, Cloud Dynamics, vol. 104, Academic Press, pp. 329–367, 1079:, so that isobaric surfaces are also surfaces of constant density.″ 228: 178:
flow, allows for density dependence only on pressure, so that the
121: 1577:
Vallis, Geoffrey K. (2007) . "Vorticity and Potential Vorticity".
832:{\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {u}}} 366:(large Richardson's number) typically observed in the atmosphere. 254:, although these are not really dependent on the baroclinity term 3112: 3102: 2272: 2242: 1907: 1505:. International Geophysical Series. Vol. 30. San Diego, CA: 1263:"Lab demos from MIT's Programmes in Atmosphere, Ocean and Climate 1262: 334: 297: 289: 251: 243: 232: 2819: 2232: 285: 288:. In the atmosphere it is the dominant mechanism shaping the 3181: 3000: 2779: 2734: 1715: 1156:"The dynamics of long waves in a baroclinic westerly current" 883:
is the density). The baroclinic contribution is the vector:
2613: 1692: 1195:
Eady, E. T. (August 1949). "Long Waves and Cyclone Waves".
1181:
10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
1316: 373:
in the environmental flow. As the instability grows, the
1725: 300:
in mid-latitudes. In the ocean it generates a field of
387:
The term "baroclinic" refers to the mechanism by which
1274: 1634: 1298: 1050: 1023: 892: 869: 849: 786: 757: 451: 417:
equation of motion for the curl of the fluid velocity
198: 369:
The energy source for baroclinic instability is the
262:
iso-surfaces where that term has no contribution to
1286: 1035: 999: 49:. Unsourced material may be challenged and removed. 1525: 1498: 1071: 1011: 945: 875: 855: 831: 772: 740: 216: 3029:North West Shelf Operational Oceanographic System 3326: 1497:Gill, Adrian E. (1982). Donn, William L. (ed.). 3019:Deep-ocean Assessment and Reporting of Tsunamis 2071: 1620: 434:surfaces) and surfaces of constant pressure ( 258:: for instance, they are commonly studied on 1769:Convective available potential energy (CAPE) 1229: 1426: 1375: 217:{\displaystyle \nabla p\times \nabla \rho } 2078: 2064: 1627: 1613: 415:) and taking the curl, one arrives at the 2085: 1247: 1179: 269: 109:Learn how and when to remove this message 1523: 1280: 1088: 140: 132: 120: 1550: 1153: 1029: 430:whenever surfaces of constant density ( 129:cross vertically in a baroclinic fluid. 3327: 2350:one-dimensional Saint-Venant equations 1576: 1476:An Introduction to Dynamic Meteorology 1473: 1449:10.1146/annurev.fluid.34.090101.162238 1304: 1041: 1005: 2059: 1608: 1230:Nadiga, B. T.; Aurnou, J. M. (2008). 1121: 315:is determined in this context by the 3297: 1496: 1292: 1194: 1017: 442:of the local vorticity is given by: 406: 47:adding citations to reliable sources 18: 1731:Convective condensation level (CCL) 13: 3177:National Oceanographic Data Center 2604:World Ocean Circulation Experiment 2492:Global Ocean Data Analysis Project 1937:Equivalent potential temperature ( 1217:10.1111/j.2153-3490.1949.tb01265.x 1132:10.1016/b978-0-12-374266-7.00011-1 931: 913: 805: 714: 696: 640: 591: 539: 504: 487: 208: 199: 14: 3351: 3024:Global Sea Level Observing System 1789:Conditional symmetric instability 1635:Meteorological data and variables 1600: 3307: 3296: 3287: 3286: 2482:Geochemical Ocean Sections Study 2398: 2387: 1736:Lifting condensation level (LCL) 1429:Annual Review of Fluid Mechanics 189:Baroclinity is proportional to: 23: 3212:Ocean thermal energy conversion 2935:Vine–Matthews–Morley hypothesis 1721:Cloud condensation nuclei (CCN) 1467: 1420: 1369: 1310: 1256: 1223: 438:surfaces) are not aligned. The 34:needs additional citations for 1984:Wet-bulb potential temperature 1826:Level of free convection (LFC) 1558:(2nd ed.). New York, NJ: 1188: 1147: 1115: 1082: 1072:{\displaystyle \rho =\rho (p)} 1066: 1060: 990: 934: 916: 823: 808: 793: 764: 717: 699: 658: 643: 626: 611: 594: 579: 559: 542: 527: 496: 464: 1: 2027:Pressure-gradient force (PGF) 1949:Sea surface temperature (SST) 1784:Convective momentum transport 983: 963:Richtmyer–Meshkov instability 344:. This measure is called the 2472:El Niño–Southern Oscillation 2442:Craik–Leibovich vortex force 2198:Luke's variational principle 1841:Bulk Richardson number (BRN) 342:Kelvin–Helmholtz instability 323:that is proportional to its 7: 2045:Maximum potential intensity 1811:Free convective layer (FCL) 1774:Convective inhibition (CIN) 353:Before the classic work of 10: 3356: 2537:Ocean dynamical thermostat 2385: 1979:Wet-bulb globe temperature 1836:Maximum parcel level (MPL) 1583:Cambridge University Press 1532:(2nd ed.). New York: 1528:Geophysical Fluid Dynamics 1524:Pedlosky, Joseph (1987) . 1378:Journal of Fluid Mechanics 1319:Journal of Applied Physics 773:{\displaystyle {\vec {u}}} 311:Whether a fluid counts as 273: 3282: 3121: 3095: 3072:Ocean acoustic tomography 3057: 3009: 2948: 2885:MohoroviÄŤić discontinuity 2843: 2715: 2612: 2477:General circulation model 2407: 2113:Benjamin–Feir instability 2093: 2035: 1997: 1959:Thermodynamic temperature 1893:Forest fire weather index 1849: 1759: 1706: 1640: 1501:Atmosphere-Ocean Dynamics 1398:10.1017/S0022112088000904 231:and surfaces of constant 3202:Ocean surface topography 2577:Thermohaline circulation 2567:Subsurface ocean current 2507:Hydrothermal circulation 2340:Wave–current interaction 2118:Boussinesq approximation 1881:Equivalent temperature ( 1794:Convective temperature ( 1678:Surface weather analysis 1124:International Geophysics 1091:Contemporary climatology 1089:Robinson, J. P. (1999). 3239:Sea surface temperature 3222:Outline of oceanography 2417:Atmospheric circulation 2355:shallow water equations 2345:Waves and shallow water 2238:Significant wave height 1928:Potential temperature ( 1673:Surface solar radiation 1560:Oxford University Press 1556:Physical Fluid Dynamics 1480:Elsevier Academic Press 1249:10.5670/oceanog.2008.24 1154:Charney, J. G. (1947). 734:baroclinic contribution 184:pressure-gradient force 3234:Sea surface microlayer 2599:Wind generated current 1918:Relative humidity (RH) 1806:Equilibrium level (EL) 1779:Convective instability 1160:Journal of Meteorology 1073: 947: 877: 857: 833: 774: 742: 419:, that is to say, the 270:Baroclinic instability 218: 155: 138: 130: 3067:Deep scattering layer 3049:World Geodetic System 2557:Princeton Ocean Model 2437:Coriolis–Stokes force 2087:Physical oceanography 1074: 976:, which are known as 948: 878: 876:{\displaystyle \rho } 863:is the pressure, and 858: 834: 775: 743: 364:stable stratification 219: 153: 136: 124: 3340:Atmospheric dynamics 3087:Underwater acoustics 2647:Perigean spring tide 2512:Langmuir circulation 2223:Rossby-gravity waves 2007:Atmospheric pressure 1974:Wet-bulb temperature 1876:Dry-bulb temperature 1871:Dew point depression 1048: 890: 867: 847: 784: 780:is the velocity and 755: 449: 196: 43:improve this article 3249:Science On a Sphere 2855:Convergent boundary 2527:Modular Ocean Model 2487:Geostrophic current 2203:Mild-slope equation 1969:Virtual temperature 1954:Temperature anomaly 1648:Adiabatic processes 1441:2002AnRFM..34..445B 1390:1988JFM...189...23P 1331:2019JAP...125h4901F 1209:1949Tell....1c..33E 1172:1947JAtS....4..136C 440:material derivative 260:pressure coordinate 2905:Seafloor spreading 2895:Outer trench swell 2860:Divergent boundary 2760:Continental margin 2745:Carbonate platform 2642:Lunitidal interval 1741:Precipitable water 1268:2011-05-26 at the 1069: 943: 873: 853: 829: 770: 738: 737: 730: 428:vorticity equation 214: 156: 139: 131: 125:Density lines and 3322: 3321: 3314:Oceans portal 3274:World Ocean Atlas 3264:Underwater glider 3207:Ocean temperature 2870:Hydrothermal vent 2835:Submarine volcano 2770:Continental shelf 2750:Coastal geography 2740:Bathymetric chart 2622:Amphidromic point 2310:Wave nonlinearity 2168:Infragravity wave 2053: 2052: 2022:Pressure gradient 1831:Lifted index (LI) 1592:978-0-521-84969-2 1569:978-0-19-854493-7 1543:978-0-387-96387-7 1516:978-0-12-283522-3 1489:978-0-12-354015-7 1339:10.1063/1.5055002 937: 919: 908: 856:{\displaystyle p} 826: 811: 796: 767: 735: 720: 702: 691: 674: 672: 661: 646: 629: 614: 597: 582: 562: 545: 530: 511: 499: 479: 467: 407:Baroclinic vector 347:Richardson number 151: 119: 118: 111: 93: 3347: 3312: 3311: 3300: 3299: 3290: 3289: 3229:Pelagic sediment 3167:Marine pollution 2961:Deep ocean water 2830:Submarine canyon 2765:Continental rise 2657:Rule of twelfths 2572:Sverdrup balance 2502:Humboldt Current 2427:Boundary current 2402: 2391: 2208:Radiation stress 2178:Iribarren number 2153:Equatorial waves 2108:Ballantine scale 2103:Airy wave theory 2080: 2073: 2066: 2057: 2056: 1629: 1622: 1615: 1606: 1605: 1596: 1573: 1547: 1531: 1520: 1504: 1493: 1461: 1460: 1424: 1418: 1417: 1373: 1367: 1366: 1314: 1308: 1302: 1296: 1290: 1284: 1278: 1272: 1260: 1254: 1253: 1251: 1227: 1221: 1220: 1192: 1186: 1185: 1183: 1151: 1145: 1144: 1119: 1113: 1112: 1086: 1080: 1078: 1076: 1075: 1070: 1039: 1033: 1027: 1021: 1015: 1009: 1003: 997: 994: 952: 950: 949: 944: 939: 938: 930: 921: 920: 912: 909: 907: 906: 894: 882: 880: 879: 874: 862: 860: 859: 854: 838: 836: 835: 830: 828: 827: 819: 813: 812: 804: 798: 797: 789: 779: 777: 776: 771: 769: 768: 760: 747: 745: 744: 739: 736: 733: 731: 726: 722: 721: 713: 704: 703: 695: 692: 690: 689: 677: 668: 664: 663: 662: 654: 648: 647: 639: 631: 630: 622: 616: 615: 607: 604: 600: 599: 598: 590: 584: 583: 575: 564: 563: 555: 552: 548: 547: 546: 538: 532: 531: 523: 512: 510: 502: 501: 500: 492: 485: 480: 478: 470: 469: 468: 460: 453: 371:potential energy 325:angular velocity 313:rapidly rotating 302:mesoscale eddies 223: 221: 220: 215: 152: 114: 107: 103: 100: 94: 92: 51: 27: 19: 3355: 3354: 3350: 3349: 3348: 3346: 3345: 3344: 3325: 3324: 3323: 3318: 3306: 3278: 3117: 3091: 3053: 3034:Sea-level curve 3005: 2944: 2930:Transform fault 2880:Mid-ocean ridge 2846: 2839: 2805:Oceanic plateau 2711: 2697:Tidal resonance 2667:Theory of tides 2608: 2517:Longshore drift 2467:Ekman transport 2403: 2397: 2396: 2395: 2394: 2393: 2392: 2383: 2335:Wave turbulence 2268:Trochoidal wave 2193:Longshore drift 2089: 2084: 2054: 2049: 2031: 1993: 1943: 1887: 1865: 1845: 1800: 1755: 1702: 1636: 1633: 1603: 1593: 1570: 1544: 1534:Springer-Verlag 1517: 1490: 1470: 1465: 1464: 1425: 1421: 1374: 1370: 1315: 1311: 1303: 1299: 1291: 1287: 1281:Pedlosky (1987) 1279: 1275: 1270:Wayback Machine 1261: 1257: 1228: 1224: 1193: 1189: 1152: 1148: 1142: 1120: 1116: 1101: 1087: 1083: 1049: 1046: 1045: 1040: 1036: 1028: 1024: 1016: 1012: 1004: 1000: 995: 991: 986: 929: 928: 911: 910: 902: 898: 893: 891: 888: 887: 868: 865: 864: 848: 845: 844: 818: 817: 803: 802: 788: 787: 785: 782: 781: 759: 758: 756: 753: 752: 732: 712: 711: 694: 693: 685: 681: 676: 675: 673: 653: 652: 638: 637: 636: 632: 621: 620: 606: 605: 589: 588: 574: 573: 572: 568: 554: 553: 537: 536: 522: 521: 520: 516: 503: 491: 490: 486: 484: 471: 459: 458: 454: 452: 450: 447: 446: 413:Euler equations 409: 278: 272: 197: 194: 193: 141: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 3353: 3343: 3342: 3337: 3335:Fluid dynamics 3320: 3319: 3317: 3316: 3304: 3294: 3283: 3280: 3279: 3277: 3276: 3271: 3266: 3261: 3256: 3254:Stratification 3251: 3246: 3241: 3236: 3231: 3226: 3225: 3224: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3146: 3144:Color of water 3141: 3139:Benthic lander 3136: 3131: 3125: 3123: 3119: 3118: 3116: 3115: 3110: 3105: 3099: 3097: 3093: 3092: 3090: 3089: 3084: 3079: 3074: 3069: 3063: 3061: 3055: 3054: 3052: 3051: 3046: 3044:Sea level rise 3041: 3039:Sea level drop 3036: 3031: 3026: 3021: 3015: 3013: 3007: 3006: 3004: 3003: 2998: 2993: 2988: 2983: 2978: 2973: 2968: 2963: 2958: 2952: 2950: 2946: 2945: 2943: 2942: 2937: 2932: 2927: 2922: 2917: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2877: 2875:Marine geology 2872: 2867: 2862: 2857: 2851: 2849: 2841: 2840: 2838: 2837: 2832: 2827: 2822: 2817: 2815:Passive margin 2812: 2810:Oceanic trench 2807: 2802: 2797: 2792: 2787: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2721: 2719: 2713: 2712: 2710: 2709: 2704: 2699: 2694: 2689: 2684: 2679: 2674: 2669: 2664: 2659: 2654: 2649: 2644: 2639: 2634: 2629: 2624: 2618: 2616: 2610: 2609: 2607: 2606: 2601: 2596: 2591: 2586: 2585: 2584: 2574: 2569: 2564: 2559: 2554: 2549: 2544: 2542:Ocean dynamics 2539: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2434: 2432:Coriolis force 2429: 2424: 2419: 2413: 2411: 2405: 2404: 2386: 2384: 2382: 2381: 2380: 2379: 2369: 2364: 2359: 2358: 2357: 2352: 2342: 2337: 2332: 2327: 2322: 2317: 2312: 2307: 2302: 2297: 2292: 2287: 2282: 2281: 2280: 2270: 2265: 2260: 2255: 2253:Stokes problem 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2188:Kinematic wave 2185: 2180: 2175: 2170: 2165: 2160: 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2105: 2099: 2097: 2091: 2090: 2083: 2082: 2075: 2068: 2060: 2051: 2050: 2048: 2047: 2041: 2039: 2033: 2032: 2030: 2029: 2024: 2019: 2014: 2009: 2003: 2001: 1995: 1994: 1992: 1991: 1986: 1981: 1976: 1971: 1966: 1964:Vapor pressure 1961: 1956: 1951: 1946: 1941: 1934: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1878: 1873: 1868: 1863: 1855: 1853: 1847: 1846: 1844: 1843: 1838: 1833: 1828: 1823: 1818: 1813: 1808: 1803: 1798: 1791: 1786: 1781: 1776: 1771: 1765: 1763: 1757: 1756: 1754: 1753: 1748: 1743: 1738: 1733: 1728: 1723: 1718: 1712: 1710: 1704: 1703: 1701: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1644: 1642: 1638: 1637: 1632: 1631: 1624: 1617: 1609: 1602: 1601:External links 1599: 1598: 1597: 1591: 1574: 1568: 1548: 1542: 1521: 1515: 1507:Academic Press 1494: 1488: 1469: 1466: 1463: 1462: 1435:(1): 445–468. 1419: 1368: 1309: 1307:, p. 166. 1297: 1295:, p. 238. 1285: 1273: 1255: 1242:(4): 196–201. 1222: 1187: 1166:(5): 136–162. 1146: 1140: 1114: 1099: 1081: 1068: 1065: 1062: 1059: 1056: 1053: 1034: 1030:Tritton (1988) 1022: 1010: 998: 988: 987: 985: 982: 978:internal waves 954: 953: 942: 936: 933: 927: 924: 918: 915: 905: 901: 897: 872: 852: 825: 822: 816: 810: 807: 801: 795: 792: 766: 763: 749: 748: 729: 725: 719: 716: 710: 707: 701: 698: 688: 684: 680: 671: 667: 660: 657: 651: 645: 642: 635: 628: 625: 619: 613: 610: 603: 596: 593: 587: 581: 578: 571: 567: 561: 558: 551: 544: 541: 535: 529: 526: 519: 515: 509: 506: 498: 495: 489: 483: 477: 474: 466: 463: 457: 408: 405: 375:center of mass 296:that dominate 271: 268: 235:. Thus, in a 225: 224: 213: 210: 207: 204: 201: 166:(often called 160:fluid dynamics 117: 116: 99:September 2009 31: 29: 22: 15: 9: 6: 4: 3: 2: 3352: 3341: 3338: 3336: 3333: 3332: 3330: 3315: 3310: 3305: 3303: 3295: 3293: 3285: 3284: 3281: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3232: 3230: 3227: 3223: 3220: 3219: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3162:Marine energy 3160: 3158: 3155: 3153: 3152: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3129:Acidification 3127: 3126: 3124: 3120: 3114: 3111: 3109: 3106: 3104: 3101: 3100: 3098: 3094: 3088: 3085: 3083: 3082:SOFAR channel 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3064: 3062: 3060: 3056: 3050: 3047: 3045: 3042: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3016: 3014: 3012: 3008: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2953: 2951: 2947: 2941: 2938: 2936: 2933: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2890:Oceanic crust 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2865:Fracture zone 2863: 2861: 2858: 2856: 2853: 2852: 2850: 2848: 2842: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2801: 2800:Oceanic basin 2798: 2796: 2793: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2730:Abyssal plain 2728: 2726: 2723: 2722: 2720: 2718: 2714: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2637:Internal tide 2635: 2633: 2630: 2628: 2625: 2623: 2620: 2619: 2617: 2615: 2611: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2583: 2580: 2579: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2532:Ocean current 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2414: 2412: 2410: 2406: 2401: 2390: 2378: 2375: 2374: 2373: 2370: 2368: 2365: 2363: 2360: 2356: 2353: 2351: 2348: 2347: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2330:Wave shoaling 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2291: 2290:Ursell number 2288: 2286: 2283: 2279: 2276: 2275: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2173:Internal wave 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2123:Breaking wave 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2100: 2098: 2096: 2092: 2088: 2081: 2076: 2074: 2069: 2067: 2062: 2061: 2058: 2046: 2043: 2042: 2040: 2038: 2034: 2028: 2025: 2023: 2020: 2018: 2017:Barotropicity 2015: 2013: 2010: 2008: 2005: 2004: 2002: 2000: 1996: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1940: 1935: 1933: 1931: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1884: 1879: 1877: 1874: 1872: 1869: 1867: 1862: 1857: 1856: 1854: 1852: 1848: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1797: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1766: 1764: 1762: 1758: 1752: 1749: 1747: 1746:Precipitation 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1713: 1711: 1709: 1705: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1645: 1643: 1639: 1630: 1625: 1623: 1618: 1616: 1611: 1610: 1607: 1594: 1588: 1584: 1581:. Cambridge: 1580: 1575: 1571: 1565: 1561: 1557: 1553: 1552:Tritton, D.J. 1549: 1545: 1539: 1535: 1530: 1529: 1522: 1518: 1512: 1508: 1503: 1502: 1495: 1491: 1485: 1481: 1477: 1472: 1471: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1423: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1325:(8): 084901. 1324: 1320: 1313: 1306: 1305:Vallis (2007) 1301: 1294: 1289: 1283:, p. 22. 1282: 1277: 1271: 1267: 1264: 1259: 1250: 1245: 1241: 1237: 1233: 1226: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1182: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1143: 1141:9780123742667 1137: 1133: 1129: 1125: 1118: 1110: 1106: 1102: 1100:9781315842660 1096: 1092: 1085: 1063: 1057: 1054: 1051: 1043: 1042:Holton (2004) 1038: 1031: 1026: 1019: 1014: 1008:, p. 77. 1007: 1006:Holton (2004) 1002: 993: 989: 981: 979: 975: 971: 966: 964: 959: 958:gravity waves 940: 925: 922: 903: 899: 895: 886: 885: 884: 870: 850: 842: 820: 814: 799: 790: 761: 727: 723: 708: 705: 686: 682: 678: 669: 665: 655: 649: 633: 623: 617: 608: 601: 585: 576: 569: 565: 556: 549: 533: 524: 517: 513: 507: 493: 481: 475: 472: 461: 455: 445: 444: 443: 441: 437: 433: 429: 424: 422: 418: 414: 404: 401: 399: 394: 390: 385: 383: 378: 376: 372: 367: 365: 360: 356: 351: 349: 348: 343: 338: 336: 331: 328: 326: 322: 318: 317:Rossby number 314: 309: 307: 303: 299: 295: 291: 287: 283: 277: 267: 265: 261: 257: 253: 249: 245: 240: 238: 234: 230: 211: 205: 202: 192: 191: 190: 187: 185: 181: 177: 173: 169: 168:baroclinicity 165: 161: 135: 128: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 58:"Baroclinity" 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 3269:Water column 3217:Oceanography 3192:Observations 3187:Explorations 3157:Marginal sea 3150: 3108:OSTM/Jason-2 2940:Volcanic arc 2915:Slab suction 2632:Head of tide 2522:Loop Current 2462:Ekman spiral 2421: 2248:Stokes drift 2158:Gravity wave 2133:Cnoidal wave 2011: 1938: 1929: 1923:Mixing ratio 1898:Haines Index 1882: 1860: 1795: 1708:Condensation 1578: 1555: 1527: 1500: 1475: 1468:Bibliography 1432: 1428: 1422: 1381: 1377: 1371: 1322: 1318: 1312: 1300: 1288: 1276: 1258: 1239: 1236:Oceanography 1235: 1225: 1203:(3): 33–52. 1200: 1196: 1190: 1163: 1159: 1149: 1123: 1117: 1090: 1084: 1037: 1025: 1013: 1001: 992: 977: 967: 955: 750: 425: 410: 402: 386: 379: 368: 355:Jule Charney 352: 345: 339: 332: 329: 312: 310: 294:anticyclones 279: 266:production. 255: 241: 236: 226: 188: 167: 163: 157: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 3259:Thermocline 2976:Mesopelagic 2949:Ocean zones 2920:Slab window 2785:Hydrography 2725:Abyssal fan 2692:Tidal range 2682:Tidal power 2677:Tidal force 2562:Rip current 2497:Gulf Stream 2457:Ekman layer 2447:Downwelling 2422:Baroclinity 2409:Circulation 2305:Wave height 2295:Wave action 2278:megatsunami 2258:Stokes wave 2218:Rossby wave 2183:Kelvin wave 2163:Green's law 2012:Baroclinity 1859:Dew point ( 1851:Temperature 1751:Water vapor 1293:Gill (1982) 1018:Gill (1982) 970:thermocline 284:and in the 172:meteorology 164:baroclinity 3329:Categories 3197:Reanalysis 3096:Satellites 3077:Sofar bomb 2925:Subduction 2900:Ridge push 2795:Ocean bank 2775:Contourite 2702:Tide gauge 2687:Tidal race 2672:Tidal bore 2662:Slack tide 2627:Earth tide 2547:Ocean gyre 2367:Wind setup 2362:Wind fetch 2325:Wave setup 2320:Wave radar 2315:Wave power 2213:Rogue wave 2143:Dispersion 1989:Wind chill 1903:Heat index 1761:Convection 1698:Wind shear 1683:Visibility 1663:Lapse rate 984:References 398:barotropic 393:stretching 282:atmosphere 276:Eady model 274:See also: 237:barotropic 186:vanishes. 176:barotropic 69:newspapers 3059:Acoustics 3011:Sea level 2910:Slab pull 2847:tectonics 2755:Cold seep 2717:Landforms 2594:Whirlpool 2589:Upwelling 2372:Wind wave 2300:Wave base 2228:Sea state 2148:Edge wave 2138:Cross sea 1688:Vorticity 1668:Lightning 1653:Advection 1554:(1988) . 1457:0066-4189 1414:121116029 1406:1469-7645 1384:: 23–51. 1363:127387592 1347:0021-8979 1109:893676683 1058:ρ 1052:ρ 974:halocline 935:→ 932:∇ 926:× 923:ρ 917:→ 914:∇ 900:ρ 871:ρ 841:vorticity 824:→ 815:× 809:→ 806:∇ 794:→ 791:ω 765:→ 728:⏟ 718:→ 715:∇ 709:× 706:ρ 700:→ 697:∇ 683:ρ 659:→ 650:⋅ 644:→ 641:∇ 627:→ 624:ω 618:− 612:→ 595:→ 592:∇ 586:⋅ 580:→ 577:ω 560:→ 557:ω 543:→ 540:∇ 534:⋅ 528:→ 505:∂ 497:→ 494:ω 488:∂ 482:≡ 465:→ 462:ω 432:isopycnic 421:vorticity 389:vorticity 359:Eric Eady 321:vorticity 264:vorticity 212:ρ 209:∇ 206:× 200:∇ 3292:Category 3244:Seawater 2971:Littoral 2966:Deep sea 2825:Seamount 2707:Tideline 2652:Rip tide 2582:shutdown 2552:Overflow 2285:Undertow 2128:Clapotis 2037:Velocity 1999:Pressure 1913:Humidity 1816:Helicity 1658:Buoyancy 1266:Archived 436:isobaric 290:cyclones 252:cyclones 248:synoptic 229:pressure 3302:Commons 3172:Mooring 3122:Related 3113:Jason-3 3103:Jason-1 2986:Pelagic 2981:Oceanic 2956:Benthic 2273:Tsunami 2243:Soliton 1908:Humidex 1821:K Index 1641:General 1437:Bibcode 1386:Bibcode 1355:1614518 1327:Bibcode 1205:Bibcode 1168:Bibcode 839:is the 751:(where 382:annulus 335:entropy 306:tracers 298:weather 250:-scale 244:tropics 233:density 182:of the 127:isobars 83:scholar 2991:Photic 2820:Seabed 2233:Seiche 1589:  1566:  1540:  1513:  1486:  1455:  1412:  1404:  1361:  1353:  1345:  1197:Tellus 1138:  1107:  1097:  286:oceans 256:per se 162:, the 85:  78:  71:  64:  56:  3182:Ocean 3151:Alvin 3001:Swash 2845:Plate 2790:Knoll 2780:Guyot 2735:Atoll 2614:Tides 2377:model 2263:Swell 2095:Waves 1716:Cloud 1410:S2CID 1359:S2CID 972:or a 90:JSTOR 76:books 3149:DSV 3134:Argo 2996:Surf 2452:Eddy 1693:Wind 1587:ISBN 1564:ISBN 1538:ISBN 1511:ISBN 1484:ISBN 1453:ISSN 1402:ISSN 1351:OSTI 1343:ISSN 1136:ISBN 1105:OCLC 1095:ISBN 357:and 292:and 180:curl 62:news 1726:Fog 1445:doi 1394:doi 1382:189 1335:doi 1323:125 1244:doi 1213:doi 1176:doi 1128:doi 158:In 45:by 3331:: 1585:. 1562:. 1536:. 1509:. 1482:. 1451:. 1443:. 1433:34 1431:. 1408:. 1400:. 1392:. 1380:. 1357:. 1349:. 1341:. 1333:. 1321:. 1240:21 1238:. 1234:. 1211:. 1199:. 1174:. 1162:. 1158:. 1134:, 1103:. 965:. 843:, 423:. 308:. 2079:e 2072:t 2065:v 1944:) 1942:e 1939:θ 1932:) 1930:θ 1888:) 1886:e 1883:T 1866:) 1864:d 1861:T 1801:) 1799:c 1796:T 1628:e 1621:t 1614:v 1595:. 1572:. 1546:. 1519:. 1492:. 1459:. 1447:: 1439:: 1416:. 1396:: 1388:: 1365:. 1337:: 1329:: 1252:. 1246:: 1219:. 1215:: 1207:: 1201:1 1184:. 1178:: 1170:: 1164:4 1130:: 1111:. 1067:) 1064:p 1061:( 1055:= 941:p 904:2 896:1 851:p 821:u 800:= 762:u 724:p 687:2 679:1 670:+ 666:) 656:u 634:( 609:u 602:) 570:( 566:= 550:) 525:u 518:( 514:+ 508:t 476:t 473:D 456:D 203:p 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Baroclinity"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

isobars

fluid dynamics
meteorology
barotropic
curl
pressure-gradient force
pressure
density
tropics
synoptic
cyclones
pressure coordinate
vorticity
Eady model
atmosphere
oceans
cyclones

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑