Knowledge

Back-arc basin

Source đź“ť

178:
argument put forward is that the process of seafloor spreading is the same in both cases, but the movement of seafloor spreading centers in the basin causes the asymmetry in the magnetic anomalies. This process can be seen in the Lau back-arc basin. Though the magnetic anomalies are more complex to decipher, the rocks sampled from back-arc basin spreading centers do not differ very much from those at mid-ocean ridges. In contrast, the volcanic rocks of the nearby island arc differ significantly from those in the basin.
2250: 433: 20: 3138: 3159: 182: 229:). As the subduction zone and its associated trench pull backward, the overriding plate is stretched, thinning the crust and forming a back-arc basin. In some cases, extension is triggered by the entrance of a buoyant feature in the subduction zone, which locally slows down subduction and induces the subducting plate to rotate adjacent to it. This rotation is associated with trench retreat and overriding plate extension. 2239: 71: 3148: 499:
theory, geologists thought that convergent plate margins were zones of compression, thus zones of strong extension above subduction zones (back-arc basins) were not expected. The hypothesis that some convergent plate margins were actively spreading was developed by Dan Karig in 1970, while a graduate
411:
is the most common sediment type recovered from the back-arc basins of the western Pacific. This sediment type made up 23.8% of the total thickness of sediment recovered by the DSDP. The pelagic carbonates consist of ooze, chalk, and limestone. Nanofossils and foraminifera make up the majority of the
189:
Back-arc basins are different from normal mid-ocean ridges because they are characterized by asymmetric seafloor spreading, but this is quite variable even within single basins. For example, in the central Mariana Trough, current spreading rates are 2–3 times greater on the western flank, whereas at
84:
Back-arc basins are typically very long and relatively narrow, often thousands of kilometers long while only being a few hundred kilometers wide at most. For back-arc extension to form, a subduction zone is required, but not all subduction zones have a back-arc extension feature. Back-arc basins are
74:
Cross-section sketch showing the development of a back-arc basin by rifting the arc longitudinally. The rift matures to the point of seafloor spreading, allowing a new magmatic arc to form on the trenchward side of the basin (to the right in this image) and stranding a remnant arc on the far side of
232:
The age of the subducting crust needed to establish back-arc spreading has been found to be 55 million years old or older. This is why back-arc spreading centers appear concentrated in the western Pacific. The dip angle of the subducting slab may also be significant, as is shown to be greater
193:
Other back-arc basins such as the Lau Basin have undergone large rift jumps and propagation events (sudden changes in relative rift motion) that have transferred spreading centers from arc-distal to more arc-proximal positions. Conversely, study of recent spreading rates appear to be relatively
173:
of the crust that had formed in back-arc basins deviated in form from the crust formed at mid-ocean ridges. In many areas the anomalies do not appear parallel, as well as the profiles of the magnetic anomalies in the basin lacking symmetry or a central anomaly as a traditional ocean basin does,
210:
it sheds water, causing mantle melting, volcanism, and the formation of island arcs. Another result of this is a convection cell is formed. The rising magma and heat along with the outwards tension in the crust in contact with the convection cell cause a region of melt to form, resulting in a
177:
This has prompted some to characterize the spreading in back-arc basins to be more diffused and less uniform than at mid-ocean ridges. The idea that back-arc basin spreading is inherently different from mid-ocean ridge spreading is controversial and has been debated through the years. Another
190:
the southern end of the Mariana Trough the position of the spreading center adjacent to the volcanic front suggests that overall crustal accretion has been nearly entirely asymmetric there. This situation is mirrored to the north where a large spreading asymmetry is also developed.
194:
symmetric with perhaps small rift jumps. The cause of asymmetric spreading in back-arc basins remains poorly understood. General ideas invoke asymmetries relative to the spreading axis in arc melt generation processes and heat flow, hydration gradients with distance from the slab,
412:
sediment. Resedimented carbonates made up 9.5% of the total thickness of sediment recovered by the DSDP. This sediment type had the same composition as the biogenic pelagic carbonated, but it had been reworked with well-developed sedimentary structures. Pyroclastics consisting of
89:
is very old. The restricted width of back-arc basins is due to magmatic activity being reliant on water and induced mantle convection, limiting their formation to along subduction zones. Spreading rates vary from only a few centimeters per year (as in the
215:. This process drives the island arc toward the subduction zone and the rest of the plate away from the subduction zone. The backward motion of the subduction zone relative to the motion of the plate which is being subducted is called 316:
style. These systems are inner and midfan subsystem and the outer fan subsystem. The inner and midfan system contains interbedded thin to medium bedded sandstones and mudstones. Structures that are found in these sandstones include
168:
that collected in the basin decreased toward the center of the basin, indicating a younger surface. The idea that thickness and age of sediment on the sea floor is related to the age of the oceanic crust was proposed by Harry Hess.
341:
and mudstones are found in this system. Sedimentary structures found in this system include parallel laminae, micro-cross laminae, and graded bedding. Partial Bouma sequences can be identified in this subsystem.
424:, quartz, plant debris, and glass made up 9.5% of the sediment recovered. These volcanic sediments were sourced form the regional tectonic controlled volcanism and the nearby island arc sources. 1626:
Parson, L.M.; Pearce, J.A.; Murton, B.J.; Hodkinson, R.A. (1990). "Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, southwest Pacific".
337:
can be found within the subsystem. The outer fan subsystem generally consists of finer sediments when compared to the inner and midfan system. Well sorted volcanoclastic sandstones,
1093: 67:, as convergent boundaries were expected to universally be zones of compression. However, in 1970, Dan Karig published a model of back-arc basins consistent with plate tectonics. 255:
is strongly asymmetric, with most of the sediment supplied from the active volcanic arc which regresses in step with the rollback of the trench. From cores collected during the
23:
Cross-section through the shallow part of a subduction zone showing the relative positions of an active magmatic arc and back-arc basin, such as the southern part of the
1495:
Klein, G.D. (1985). "The Control of Depositional Depth, Tectonic Uplift, and Volcanism on Sedimentation Processes in the Back-Arc Basins of the Western Pacific Ocean".
1231:
Klein, G.D. (1985). "The Control of Depositional Depth, Tectonic Uplift, and Volcanism on Sedimentation Processes in the Back-Arc Basins of the Western Pacific Ocean".
206:
The extension of the crust behind volcanic arcs is believed to be caused by processes in association with subduction. As the subducting plate descends into the
233:
than 30° in areas of back-arc spreading; this is most likely because as oceanic crust gets older it becomes denser, resulting in a steeper angle of descent.
2878: 118:
O). The high water contents of back-arc basin basalt magmas is derived from water carried down the subduction zone and released into the overlying
1597:
Molnar, P.; Atwater, T. (1978). "Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere".
1145:
Molnar, P.; Atwater, T. (1978). "Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere".
2868: 1927: 1422:
Gill, J.B. (1976). "Composition and age of Lau Basin and Ridge volcanic rocks: Implications for evolution of an interarc basin and remnant arc".
809:
Gill, J.B. (1976). "Composition and age of Lau Basin and Ridge volcanic rocks: Implications for evolution of an interarc basin and remnant arc".
263:
account for 1.2% of sediments collected by the DSDP. The average size of the sediments in the conglomerates are pebble sized but can range from
300:
made up 20% of the total thickness of sediment recovered by the DSDP. The fans can be divided into two sub-systems based on the differences in
236:
The thinning of the overriding plate from back-arc rifting can lead to the formation of new oceanic crust (i.e., back-arc spreading). As the
1121: 259:(DSDP) nine sediment types were found in the back-arc basins of the western Pacific. Debris flows of thick to medium bedded massive 2784: 151: 3151: 2199: 1967: 2431: 1796:"Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings" 326: 464:
regions, but most are found in the western Pacific. Not all subduction zones have back-arc basins; some, like the central
400:
at each site it was found. This sediment type consisted of 4.2% of the total thickness of sediment recovered by the DSDP.
1920: 501: 63:, where a subduction zone moves towards the subducting plate. Back-arc basins were initially an unexpected phenomenon in 2321: 3026: 2453: 2341: 2873: 2144: 1706: 2331: 2291: 1532:
Martinez, F.; Fryer, P.; Baker, N.A.; Yamazaki, T. (1995). "Evolution of backarc rifting: Mariana Trough, 20–24N".
971:"Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, southwest Pacific" 3061: 2047: 1647: 994: 3141: 2734: 1913: 1443: 830: 445: 1721:
Taylor, B.; Zellmer, K.; Martinez, F.; Goodliffe, A. (1996). "Sea-floor spreading in the Lau back-arc basin".
24: 2189: 771:
Taylor, B; Zellmer, K; Martinez, F; Goodliffe, A (1996). "Sea-floor spreading in the Lau back-arc basin".
2249: 2386: 1791: 2921: 2326: 2286: 1787: 256: 3194: 3184: 3051: 2426: 2416: 2356: 1992: 1962: 1358:
Deschamps, A.; Fujiwara, T. (2003). "Asymmetric accretion along the slow-spreading Mariana Ridge".
970: 844:
Deschamps, A.; Fujiwara, T. (2003). "Asymmetric accretion along the slow-spreading Mariana Ridge".
469: 3189: 3088: 3071: 2908: 2401: 2266: 2204: 2194: 2087: 475:
There are a number of extinct or fossil back-arc basins, such as the Parece Vela-Shikoku Basin,
3199: 3083: 3021: 2448: 2134: 309: 260: 217: 60: 240:
stretches, the asthenosphere below rises to shallow depths and partially melts as a result of
2916: 2898: 2406: 2301: 1936: 397: 1734: 1610: 1158: 784: 712: 3103: 2936: 2639: 2496: 2361: 2072: 1873: 1842: 1807: 1759: 1730: 1668: 1635: 1606: 1575: 1541: 1504: 1475: 1431: 1400: 1367: 1330: 1287: 1240: 1154: 1105: 1058: 1021: 1009: 982: 937: 896: 853: 818: 780: 708: 659: 609: 565: 8: 3098: 2983: 2978: 2704: 2376: 2336: 2052: 1864:
Zellmer, K.E.; Taylor, B. (2001). "A three-plate kinematic model for Lau Basin opening".
114:
O), whereas mid-ocean ridge basalt magmas are very dry (typically <0.3 weight % H
40: 1877: 1846: 1831:"Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22 N" 1811: 1763: 1672: 1639: 1579: 1545: 1508: 1479: 1435: 1404: 1371: 1334: 1291: 1244: 1109: 1062: 1025: 986: 941: 926:"Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22 N" 900: 857: 822: 663: 613: 569: 3041: 2754: 2744: 2709: 2609: 2594: 2491: 1899: 1829:
Yamazaki, T.; Seama, N.; Okino, K.; Kitada, K.; Joshima, M.; Oda, H.; Naka, J. (2003).
1775: 1686: 1520: 1413: 1388: 1346: 1256: 1074: 966: 924:
Yamazaki, T.; Seama, N.; Okino, K.; Kitada, K.; Joshima, M.; Oda, H.; Naka, J. (2003).
677: 578: 553: 157: 3123: 3113: 3056: 3036: 2719: 2684: 2619: 2599: 2589: 2471: 2159: 2017: 1779: 1742: 1710: 1702: 1690: 1618: 1524: 1466:
Karig, Daniel E (1970). "Ridges and basins of the Tonga-Kermadec island arc system".
1455: 1260: 1166: 792: 746: 720: 696: 681: 504:. This was the result of several marine geologic expeditions to the western Pacific. 305: 264: 241: 135: 56: 407:, and chert. It makes up 4.3% of the sediment thickness recovered. Biogenic pelagic 3078: 3046: 3016: 2825: 2810: 2679: 2614: 2506: 2421: 2351: 2276: 2057: 2027: 1957: 1952: 1881: 1850: 1815: 1767: 1738: 1676: 1643: 1614: 1583: 1567: 1549: 1512: 1483: 1439: 1408: 1375: 1350: 1338: 1321: 1295: 1248: 1162: 1113: 1078: 1066: 1049: 1029: 990: 945: 904: 888: 861: 826: 788: 716: 667: 617: 600:
Karig, Daniel (1970). "Ridges and basins of the Tonga-Kermadec island arc system".
573: 457: 349: 345: 268: 170: 36: 2883: 2779: 2729: 2694: 2654: 2546: 2516: 2366: 2316: 2226: 2184: 2117: 2042: 2002: 1750:
Uyeda S (1984). "Subduction zones: their diversity, mechanism and human impact".
523: 513: 496: 479:, and Kurile Basin. Compressional back-arc basins are found, for example, in the 441: 373: 322: 103: 86: 64: 2993: 2988: 2893: 2888: 2724: 2664: 2659: 2391: 2281: 2102: 2037: 2012: 461: 432: 408: 404: 393: 369: 334: 330: 139: 123: 107: 91: 2238: 3178: 3163: 3011: 2931: 2820: 2739: 2714: 2649: 2579: 2486: 2381: 2258: 2179: 2139: 2112: 2022: 1972: 313: 252: 207: 185:
The islands of Japan were separated from mainland Asia by back-arc spreading.
52: 19: 1487: 1319:
Barker, P.F.; Hill, I.A. (1980). "Asymmetric spreading in back-arc basins".
1047:
Barker, P.F.; Hill, I.A. (1980). "Asymmetric spreading in back-arc basins".
621: 3118: 3066: 3006: 2957: 2835: 2830: 2805: 2789: 2764: 2481: 2371: 2311: 2097: 2007: 1982: 1902:
in EGU GIFT2017: Shaping the Mediterranean from the Inside Out, via YouTube
476: 453: 449: 413: 385: 283: 195: 119: 750: 134:
in the subducting slab. Similar to mid-ocean ridges, back-arc basins have
106:; the main difference being back-arc basin basalts are often very rich in 3108: 2840: 2769: 2634: 2574: 2541: 2531: 2526: 2411: 2346: 2306: 2296: 2271: 2154: 2127: 2107: 2067: 2032: 1885: 1855: 1830: 1820: 1795: 1714: 1681: 1656: 1588: 1562: 1379: 1300: 1275: 1033: 950: 925: 909: 883: 865: 672: 647: 357: 289: 244:
decompression melting. As this melt nears the surface, spreading begins.
237: 161: 1905: 2926: 2774: 2749: 2644: 2624: 2551: 2536: 2521: 2511: 2476: 2396: 2216: 2211: 2174: 2169: 2164: 2062: 1771: 1459: 484: 361: 48: 44: 43:. Presently all back-arc basins are submarine features associated with 3158: 1553: 1117: 2998: 2860: 2845: 2759: 2604: 2443: 2438: 2221: 2149: 2077: 1997: 1987: 1944: 1900:
Animation of subduction, trench rollback and back-arc basin expansion
1563:"Geophysical Characteristics of the Southern Mariana Trough, 11N–13N" 1342: 1070: 884:"Geophysical Characteristics of the Southern Mariana Trough, 11N–13N" 365: 338: 318: 301: 293: 280: 272: 127: 95: 3093: 2815: 2674: 2566: 2556: 2501: 1977: 1516: 1389:"On the Relative Importance of the Driving Forces of Plate Motion*" 1252: 480: 381: 297: 181: 165: 16:
Submarine features associated with island arcs and subduction zones
554:"On the Relative Importance of the Driving Forces of Plate Motion" 2962: 2952: 2122: 2092: 1276:"Kinematics of back-arc inversion of the Western Black Sea Basin" 518: 70: 2669: 2082: 421: 389: 377: 353: 99: 1720: 770: 694: 3031: 2850: 2629: 2584: 695:
Taylor, B.; Zellmer, K.; Martinez, F.; Goodliffe, A. (1996).
465: 276: 2463: 1648:
10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2
1625: 1092:
Martinez, F.; Fryer, P.; Baker, N.A.; Yamazaki, T. (1995).
995:
10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2
965:
Parson, L.M.; Pearce, J.A.; Murton, B.J.; Hodkinson, R.A.;
964: 417: 212: 131: 1531: 1444:
10.1130/0016-7606(1976)87<1384:caaolb>2.0.co;2
1091: 831:
10.1130/0016-7606(1976)87<1384:CAAOLB>2.0.CO;2
1828: 1452:
Petrological Studies: A Volume to Honor A .F. Buddington
923: 743:
Petrological Studies: A Volume to Honor A .F. Buddington
420:
and a host of other constituents including nanofossils,
1094:"Evolution of backarc rifting: Mariana Trough, 20–24N" 1010:"A three-plate kinematic model for Lau Basin opening" 85:
found in areas where the subducting plate of oceanic
1560: 881: 1450:Hess, Henry H. (1962). "History of Ocean Basins". 333:, and gradational tops of sandstone beds. Partial 198:effects, and evolution from rifting to spreading. 2879:North West Shelf Operational Oceanographic System 1357: 843: 741:Hess, Henry H (1962). "History of Ocean Basins". 405:radiolarian, diatomaceous, silicoflagellate oozes 3176: 1786: 2869:Deep-ocean Assessment and Reporting of Tsunamis 1312: 697:"Sea-floor Spreading in the Lau Back-arc Basin" 1654: 645: 1921: 1863: 1596: 1144: 1007: 403:Biogenic pelagic silica sediments consist of 79: 1561:Martinez, F.; Fryer, P.; Becker, N. (2000). 1386: 882:Martinez, F.; Fryer, P.; Becker, N. (2000). 551: 122:. Additional sources of water could be the 102:that are similar to those erupted from the 98:. Spreading ridges within the basins erupt 1928: 1914: 1318: 1046: 201: 174:indicating asymmetric seafloor spreading. 1935: 1854: 1819: 1680: 1587: 1412: 1299: 949: 908: 671: 577: 1699:Backarc Basins: Tectonics and Magmatism. 1273: 440:Active back-arc basins are found in the 431: 180: 69: 18: 1749: 1657:"Controls on back-arc basin formations" 648:"Controls on back-arc basin formations" 436:The active back-arc basins of the world 3177: 2200:one-dimensional Saint-Venant equations 1226: 1224: 1222: 1220: 1218: 1216: 1214: 1212: 1210: 1208: 1206: 1204: 1202: 1200: 1198: 1196: 75:the basin (to the left in this image). 51:zones, with many found in the western 1909: 1494: 1465: 1230: 1194: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 1176: 1140: 1138: 599: 490: 164:of the basin floor. The thickness of 145: 3147: 1800:Geochemistry, Geophysics, Geosystems 1661:Geochemistry, Geophysics, Geosystems 1421: 877: 875: 808: 804: 802: 766: 764: 762: 760: 740: 652:Geochemistry, Geophysics, Geosystems 641: 639: 637: 635: 633: 631: 595: 593: 591: 589: 547: 545: 543: 541: 539: 1723:Earth and Planetary Science Letters 1655:Sdrolias, M.; Muller, R.D. (2006). 773:Earth and Planetary Science Letters 701:Earth and Planetary Science Letters 502:Scripps Institution of Oceanography 13: 3027:National Oceanographic Data Center 2454:World Ocean Circulation Experiment 2342:Global Ocean Data Analysis Project 1414:10.1111/j.1365-246x.1975.tb00631.x 1274:Munteanu, I.; et al. (2011). 1173: 1135: 1008:Zellmer, K.E.; Taylor, B. (2001). 646:Sdrolias, M; Muller, R.D. (2006). 579:10.1111/j.1365-246X.1975.tb00631.x 14: 3211: 2874:Global Sea Level Observing System 1893: 1393:Geophysical Journal International 872: 799: 757: 628: 586: 558:Geophysical Journal International 536: 3157: 3146: 3137: 3136: 2332:Geochemical Ocean Sections Study 2248: 2237: 247: 110:(typically 1–1.5 weight % H 3062:Ocean thermal energy conversion 2785:Vine–Matthews–Morley hypothesis 1468:Journal of Geophysical Research 1387:Forsyth, D.; Uyeda, S. (1975). 1267: 1085: 1040: 1001: 958: 917: 602:Journal of Geophysical Research 152:Vine–Matthews–Morley hypothesis 59:, caused by a process known as 837: 734: 688: 271:. Accessory materials include 1: 552:Forsyth, D; Uyeda, S (1975). 94:), to 15 cm/year in the 2322:El Niño–Southern Oscillation 2292:Craik–Leibovich vortex force 2048:Luke's variational principle 1743:10.1016/0012-821x(96)00148-3 1619:10.1016/0012-821X(78)90187-5 1313:General and cited references 1167:10.1016/0012-821X(78)90187-5 793:10.1016/0012-821x(96)00148-3 721:10.1016/0012-821X(96)00148-3 529: 427: 279:, shallow water fossils and 7: 507: 55:. Most of them result from 41:convergent plate boundaries 10: 3216: 2387:Ocean dynamical thermostat 2235: 348:containing iron-manganese 149: 80:Structural characteristics 3132: 2971: 2945: 2922:Ocean acoustic tomography 2907: 2859: 2798: 2735:MohoroviÄŤić discontinuity 2693: 2565: 2462: 2327:General circulation model 2257: 1963:Benjamin–Feir instability 1943: 1866:Geochem. Geophys. Geosyst 1835:Geochem. Geophys. Geosyst 1360:Geochem. Geophys. Geosyst 1014:Geochem. Geophys. Geosyst 969:Scientific Party (1990). 930:Geochem. Geophys. Geosyst 846:Geochem. Geophys. Geosyst 329:, dewatering structures, 257:Deep Sea Drilling Project 3052:Ocean surface topography 2427:Thermohaline circulation 2417:Subsurface ocean current 2357:Hydrothermal circulation 2190:Wave–current interaction 1968:Boussinesq approximation 1701:New York: Plenum Press. 495:With the development of 3089:Sea surface temperature 3072:Outline of oceanography 2267:Atmospheric circulation 2205:shallow water equations 2195:Waves and shallow water 2088:Significant wave height 1735:1996E&PSL.144...35T 1611:1978E&PSL..41..330M 1599:Earth Planet. Sci. Lett 1488:10.1029/JB075i002p00239 1159:1978E&PSL..41..330M 1147:Earth Planet. Sci. Lett 785:1996E&PSL.144...35T 713:1996E&PSL.144...35T 622:10.1029/JB075i002p00239 292:systems of interbedded 202:Formation and tectonics 61:oceanic trench rollback 3084:Sea surface microlayer 2449:Wind generated current 1697:Taylor, Brian (1995). 468:, are associated with 437: 396:made up the uppermost 310:sedimentary structures 186: 76: 35:is a type of geologic 28: 2917:Deep scattering layer 2899:World Geodetic System 2407:Princeton Ocean Model 2287:Coriolis–Stokes force 1937:Physical oceanography 1794:; Mann, Paul (2009). 435: 398:stratigraphic section 386:foraminiferal remains 327:convolute laminations 184: 150:Further information: 73: 25:Izu–Bonin–Mariana Arc 22: 2937:Underwater acoustics 2497:Perigean spring tide 2362:Langmuir circulation 2073:Rossby-gravity waves 1886:10.1029/2000GC000106 1856:10.1029/2002GC000492 1821:10.1029/2008gc002220 1682:10.1029/2005GC001090 1589:10.1029/2000JB900117 1380:10.1029/2003GC000537 1301:10.1029/2011tc002865 1034:10.1029/2000GC000106 951:10.1029/2002GC000492 910:10.1029/2000JB900117 866:10.1029/2003GC000537 745:. pp. 599–620. 673:10.1029/2005GC001090 470:rear-arc compression 3099:Science On a Sphere 2705:Convergent boundary 2377:Modular Ocean Model 2337:Geostrophic current 2053:Mild-slope equation 1878:2001GGG.....2.1020Z 1847:2003GGG.....4.1075Y 1812:2009GGG....10.5001W 1764:1984GeoJo...8..381U 1673:2006GGG.....7.4016S 1640:1990Geo....18..470P 1580:2000JGR...10516591M 1574:(B7): 16591–16607. 1546:1995JGR...100.3807M 1509:1985JG.....93....1D 1480:1970JGR....75..239K 1436:1976GSAB...87.1384G 1405:1975GeoJ...43..163F 1372:2003GGG.....4.8622D 1335:1980Natur.285..652B 1292:2011Tecto..30.5004M 1245:1985JG.....93....1D 1110:1995JGR...100.3807M 1063:1980Natur.285..652B 1026:2001GGG.....2.1020Z 987:1990Geo....18..470P 942:2003GGG.....4.1075Y 901:2000JGR...10516591M 895:(B7): 16591–16607. 858:2003GGG.....4.8622D 823:1976GSAB...87.1384G 664:2006GGG.....7.4016S 614:1970JGR....75..239K 570:1975GeoJ...43..163F 2755:Seafloor spreading 2745:Outer trench swell 2710:Divergent boundary 2610:Continental margin 2595:Carbonate platform 2492:Lunitidal interval 1772:10.1007/BF00185938 1497:Journal of Geology 1233:Journal of Geology 967:RRS Charles Darwin 491:History of thought 438: 187: 171:Magnetic anomalies 158:seafloor spreading 146:Seafloor spreading 136:hydrothermal vents 77: 29: 3172: 3171: 3164:Oceans portal 3124:World Ocean Atlas 3114:Underwater glider 3057:Ocean temperature 2720:Hydrothermal vent 2685:Submarine volcano 2620:Continental shelf 2600:Coastal geography 2590:Bathymetric chart 2472:Amphidromic point 2160:Wave nonlinearity 2018:Infragravity wave 1788:Wallace, Laura M. 1554:10.1029/94JB02466 1540:(B3): 3807–3827. 1430:(10): 1384–1395. 1329:(5767): 652–654. 1118:10.1029/94JB02466 1104:(B3): 3807–3827. 1057:(5767): 652–654. 817:(10): 1384–1395. 160:has been seen in 3207: 3162: 3161: 3150: 3149: 3140: 3139: 3079:Pelagic sediment 3017:Marine pollution 2811:Deep ocean water 2680:Submarine canyon 2615:Continental rise 2507:Rule of twelfths 2422:Sverdrup balance 2352:Humboldt Current 2277:Boundary current 2252: 2241: 2058:Radiation stress 2028:Iribarren number 2003:Equatorial waves 1958:Ballantine scale 1953:Airy wave theory 1930: 1923: 1916: 1907: 1906: 1889: 1860: 1858: 1825: 1823: 1783: 1746: 1694: 1684: 1651: 1622: 1593: 1591: 1568:J. Geophys. Res. 1557: 1528: 1491: 1447: 1418: 1416: 1383: 1354: 1343:10.1038/285652a0 1306: 1305: 1303: 1271: 1265: 1264: 1228: 1171: 1170: 1142: 1133: 1132: 1130: 1129: 1120:. Archived from 1089: 1083: 1082: 1071:10.1038/285652a0 1044: 1038: 1037: 1005: 999: 998: 962: 956: 955: 953: 921: 915: 914: 912: 889:J. Geophys. Res. 879: 870: 869: 841: 835: 834: 806: 797: 796: 768: 755: 754: 738: 732: 731: 729: 727: 692: 686: 685: 675: 643: 626: 625: 597: 584: 583: 581: 549: 104:mid-ocean ridges 57:tensional forces 39:, found at some 3215: 3214: 3210: 3209: 3208: 3206: 3205: 3204: 3195:Plate tectonics 3185:Back-arc basins 3175: 3174: 3173: 3168: 3156: 3128: 2967: 2941: 2903: 2884:Sea-level curve 2855: 2794: 2780:Transform fault 2730:Mid-ocean ridge 2696: 2689: 2655:Oceanic plateau 2561: 2547:Tidal resonance 2517:Theory of tides 2458: 2367:Longshore drift 2317:Ekman transport 2253: 2247: 2246: 2245: 2244: 2243: 2242: 2233: 2185:Wave turbulence 2118:Trochoidal wave 2043:Longshore drift 1939: 1934: 1896: 1534:J. Geophys. Res 1315: 1310: 1309: 1272: 1268: 1229: 1174: 1143: 1136: 1127: 1125: 1098:J. Geophys. Res 1090: 1086: 1045: 1041: 1036:. 2000GC000106. 1006: 1002: 963: 959: 922: 918: 880: 873: 842: 838: 807: 800: 769: 758: 739: 735: 725: 723: 693: 689: 644: 629: 598: 587: 550: 537: 532: 524:Intra-arc basin 514:Back-arc region 510: 500:student at the 493: 430: 394:sponge spicules 374:montmorillonite 335:Bouma sequences 325:, slump folds, 250: 221:(also known as 218:trench rollback 204: 154: 148: 138:and associated 117: 113: 82: 65:plate tectonics 17: 12: 11: 5: 3213: 3203: 3202: 3197: 3192: 3190:Marine geology 3187: 3170: 3169: 3167: 3166: 3154: 3144: 3133: 3130: 3129: 3127: 3126: 3121: 3116: 3111: 3106: 3104:Stratification 3101: 3096: 3091: 3086: 3081: 3076: 3075: 3074: 3064: 3059: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3019: 3014: 3009: 3004: 2996: 2994:Color of water 2991: 2989:Benthic lander 2986: 2981: 2975: 2973: 2969: 2968: 2966: 2965: 2960: 2955: 2949: 2947: 2943: 2942: 2940: 2939: 2934: 2929: 2924: 2919: 2913: 2911: 2905: 2904: 2902: 2901: 2896: 2894:Sea level rise 2891: 2889:Sea level drop 2886: 2881: 2876: 2871: 2865: 2863: 2857: 2856: 2854: 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2802: 2800: 2796: 2795: 2793: 2792: 2787: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2725:Marine geology 2722: 2717: 2712: 2707: 2701: 2699: 2691: 2690: 2688: 2687: 2682: 2677: 2672: 2667: 2665:Passive margin 2662: 2660:Oceanic trench 2657: 2652: 2647: 2642: 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2597: 2592: 2587: 2582: 2577: 2571: 2569: 2563: 2562: 2560: 2559: 2554: 2549: 2544: 2539: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2468: 2466: 2460: 2459: 2457: 2456: 2451: 2446: 2441: 2436: 2435: 2434: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2392:Ocean dynamics 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2284: 2282:Coriolis force 2279: 2274: 2269: 2263: 2261: 2255: 2254: 2236: 2234: 2232: 2231: 2230: 2229: 2219: 2214: 2209: 2208: 2207: 2202: 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2142: 2137: 2132: 2131: 2130: 2120: 2115: 2110: 2105: 2103:Stokes problem 2100: 2095: 2090: 2085: 2080: 2075: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2038:Kinematic wave 2035: 2030: 2025: 2020: 2015: 2010: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1949: 1947: 1941: 1940: 1933: 1932: 1925: 1918: 1910: 1904: 1903: 1895: 1894:External links 1892: 1891: 1890: 1861: 1826: 1784: 1758:(1): 381–406. 1747: 1729:(1–2): 35–40. 1718: 1695: 1652: 1634:(5): 470–473. 1623: 1605:(3): 330–340. 1594: 1558: 1529: 1517:10.1086/628916 1492: 1474:(2): 239–254. 1463: 1448: 1419: 1399:(1): 163–200. 1384: 1355: 1314: 1311: 1308: 1307: 1266: 1253:10.1086/628916 1172: 1153:(3): 330–340. 1134: 1084: 1039: 1000: 981:(5): 470–473. 957: 916: 871: 836: 798: 779:(1–2): 35–40. 756: 733: 707:(1–2): 35–40. 687: 627: 608:(2): 239–254. 585: 564:(4): 163–200. 534: 533: 531: 528: 527: 526: 521: 516: 509: 506: 497:plate tectonic 492: 489: 462:Tyrrhenian Sea 446:Kermadec-Tonga 429: 426: 370:volcanic glass 331:graded bedding 296:sandstone and 249: 246: 223:hinge rollback 203: 200: 147: 144: 140:chemosynthetic 124:eclogitization 115: 111: 108:magmatic water 92:Mariana Trough 81: 78: 33:back-arc basin 15: 9: 6: 4: 3: 2: 3212: 3201: 3200:Sedimentology 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3182: 3180: 3165: 3160: 3155: 3153: 3145: 3143: 3135: 3134: 3131: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3097: 3095: 3092: 3090: 3087: 3085: 3082: 3080: 3077: 3073: 3070: 3069: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3012:Marine energy 3010: 3008: 3005: 3003: 3002: 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2979:Acidification 2977: 2976: 2974: 2970: 2964: 2961: 2959: 2956: 2954: 2951: 2950: 2948: 2944: 2938: 2935: 2933: 2932:SOFAR channel 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2914: 2912: 2910: 2906: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2867: 2866: 2864: 2862: 2858: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2803: 2801: 2797: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2740:Oceanic crust 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2715:Fracture zone 2713: 2711: 2708: 2706: 2703: 2702: 2700: 2698: 2692: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2650:Oceanic basin 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2583: 2581: 2580:Abyssal plain 2578: 2576: 2573: 2572: 2570: 2568: 2564: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2487:Internal tide 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2469: 2467: 2465: 2461: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2433: 2430: 2429: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2382:Ocean current 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2264: 2262: 2260: 2256: 2251: 2240: 2228: 2225: 2224: 2223: 2220: 2218: 2215: 2213: 2210: 2206: 2203: 2201: 2198: 2197: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2180:Wave shoaling 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2140:Ursell number 2138: 2136: 2133: 2129: 2126: 2125: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2023:Internal wave 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1973:Breaking wave 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1950: 1948: 1946: 1942: 1938: 1931: 1926: 1924: 1919: 1917: 1912: 1911: 1908: 1901: 1898: 1897: 1887: 1883: 1879: 1875: 1871: 1867: 1862: 1857: 1852: 1848: 1844: 1840: 1836: 1832: 1827: 1822: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1724: 1719: 1716: 1712: 1708: 1707:9780306449376 1704: 1700: 1696: 1692: 1688: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1595: 1590: 1585: 1581: 1577: 1573: 1570: 1569: 1564: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1464: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1420: 1415: 1410: 1406: 1402: 1398: 1394: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1323: 1317: 1316: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1270: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1227: 1225: 1223: 1221: 1219: 1217: 1215: 1213: 1211: 1209: 1207: 1205: 1203: 1201: 1199: 1197: 1195: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1177: 1168: 1164: 1160: 1156: 1152: 1148: 1141: 1139: 1124:on 2011-08-27 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1051: 1043: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1004: 996: 992: 988: 984: 980: 976: 972: 968: 961: 952: 947: 943: 939: 935: 931: 927: 920: 911: 906: 902: 898: 894: 891: 890: 885: 878: 876: 867: 863: 859: 855: 851: 847: 840: 832: 828: 824: 820: 816: 812: 805: 803: 794: 790: 786: 782: 778: 774: 767: 765: 763: 761: 752: 748: 744: 737: 722: 718: 714: 710: 706: 702: 698: 691: 683: 679: 674: 669: 665: 661: 658:(4): Q04016. 657: 653: 649: 642: 640: 638: 636: 634: 632: 623: 619: 615: 611: 607: 603: 596: 594: 592: 590: 580: 575: 571: 567: 563: 559: 555: 548: 546: 544: 542: 540: 535: 525: 522: 520: 519:Forearc basin 517: 515: 512: 511: 505: 503: 498: 488: 486: 482: 478: 473: 471: 467: 463: 459: 455: 451: 447: 443: 434: 425: 423: 419: 415: 410: 406: 401: 399: 395: 391: 387: 383: 379: 375: 371: 367: 363: 359: 355: 351: 347: 346:Pelagic clays 343: 340: 336: 332: 328: 324: 320: 315: 311: 307: 303: 299: 295: 291: 290:Submarine fan 287: 285: 282: 278: 274: 270: 266: 262: 261:conglomerates 258: 254: 253:Sedimentation 248:Sedimentation 245: 243: 239: 234: 230: 228: 227:hinge retreat 224: 220: 219: 214: 209: 208:asthenosphere 199: 197: 191: 183: 179: 175: 172: 167: 163: 159: 153: 143: 142:communities. 141: 137: 133: 129: 125: 121: 109: 105: 101: 97: 93: 88: 72: 68: 66: 62: 58: 54: 53:Pacific Ocean 50: 46: 42: 38: 34: 26: 21: 3119:Water column 3067:Oceanography 3042:Observations 3037:Explorations 3007:Marginal sea 3000: 2958:OSTM/Jason-2 2790:Volcanic arc 2765:Slab suction 2482:Head of tide 2372:Loop Current 2312:Ekman spiral 2098:Stokes drift 2008:Gravity wave 1983:Cnoidal wave 1869: 1865: 1838: 1834: 1803: 1799: 1792:Ellis, Susan 1755: 1751: 1726: 1722: 1698: 1664: 1660: 1631: 1627: 1602: 1598: 1571: 1566: 1537: 1533: 1500: 1496: 1471: 1467: 1451: 1427: 1424:GSA Bulletin 1423: 1396: 1392: 1366:(10): 8622. 1363: 1359: 1326: 1320: 1283: 1279: 1269: 1236: 1232: 1150: 1146: 1126:. Retrieved 1122:the original 1101: 1097: 1087: 1054: 1048: 1042: 1017: 1013: 1003: 978: 974: 960: 933: 929: 919: 892: 887: 852:(10): 8622. 849: 845: 839: 814: 811:GSA Bulletin 810: 776: 772: 742: 736: 724:. Retrieved 704: 700: 690: 655: 651: 605: 601: 561: 557: 494: 477:Sea of Japan 474: 450:South Scotia 439: 414:volcanic ash 402: 350:micronodules 344: 288: 251: 235: 231: 226: 222: 216: 205: 196:mantle wedge 192: 188: 176: 156:Evidence of 155: 120:mantle wedge 83: 32: 30: 3109:Thermocline 2826:Mesopelagic 2799:Ocean zones 2770:Slab window 2635:Hydrography 2575:Abyssal fan 2542:Tidal range 2532:Tidal power 2527:Tidal force 2412:Rip current 2347:Gulf Stream 2307:Ekman layer 2297:Downwelling 2272:Baroclinity 2259:Circulation 2155:Wave height 2145:Wave action 2128:megatsunami 2108:Stokes wave 2068:Rossby wave 2033:Kelvin wave 2013:Green's law 1872:(5): 1020. 1841:(9): 1075. 1667:(4): 1–40. 1503:(1): 1–25. 1454:. 599–620. 1239:(1): 1–25. 1020:(5): 1020. 936:(9): 1075. 726:26 December 358:plagioclase 319:load clasts 275:fragments, 238:lithosphere 45:island arcs 3179:Categories 3047:Reanalysis 2946:Satellites 2927:Sofar bomb 2775:Subduction 2750:Ridge push 2645:Ocean bank 2625:Contourite 2552:Tide gauge 2537:Tidal race 2522:Tidal bore 2512:Slack tide 2477:Earth tide 2397:Ocean gyre 2217:Wind setup 2212:Wind fetch 2175:Wave setup 2170:Wave radar 2165:Wave power 2063:Rogue wave 1993:Dispersion 1806:(5): n/a. 1752:GeoJournal 1286:(5): n/a. 1128:2010-05-08 485:Swiss Alps 458:North Fiji 409:carbonates 362:orthoclase 339:siltstones 128:amphiboles 49:subduction 2909:Acoustics 2861:Sea level 2760:Slab pull 2697:tectonics 2605:Cold seep 2567:Landforms 2444:Whirlpool 2439:Upwelling 2222:Wind wave 2150:Wave base 2078:Sea state 1998:Edge wave 1988:Cross sea 1780:128986436 1691:129068818 1525:129527339 1280:Tectonics 1261:129527339 682:129068818 530:Citations 428:Locations 366:magnetite 302:lithology 294:turbidite 281:sandstone 273:limestone 242:adiabatic 96:Lau Basin 3142:Category 3094:Seawater 2821:Littoral 2816:Deep sea 2675:Seamount 2557:Tideline 2502:Rip tide 2432:shutdown 2402:Overflow 2135:Undertow 1978:Clapotis 1715:32464941 508:See also 483:and the 481:Pyrenees 442:Marianas 382:smectite 321:, micro- 298:mudstone 265:granules 166:sediment 3152:Commons 3022:Mooring 2972:Related 2963:Jason-3 2953:Jason-1 2836:Pelagic 2831:Oceanic 2806:Benthic 2123:Tsunami 2093:Soliton 1874:Bibcode 1843:Bibcode 1808:Bibcode 1760:Bibcode 1731:Bibcode 1669:Bibcode 1636:Bibcode 1628:Geology 1607:Bibcode 1576:Bibcode 1542:Bibcode 1505:Bibcode 1476:Bibcode 1432:Bibcode 1401:Bibcode 1368:Bibcode 1351:4233630 1331:Bibcode 1288:Bibcode 1241:Bibcode 1155:Bibcode 1106:Bibcode 1079:4233630 1059:Bibcode 1022:Bibcode 983:Bibcode 975:Geology 938:Bibcode 897:Bibcode 854:Bibcode 819:Bibcode 781:Bibcode 709:Bibcode 660:Bibcode 610:Bibcode 566:Bibcode 390:diatoms 314:bedding 306:texture 269:cobbles 100:basalts 2841:Photic 2670:Seabed 2083:Seiche 1778:  1713:  1705:  1689:  1523:  1460:881288 1458:  1349:  1322:Nature 1259:  1077:  1050:Nature 751:881288 749:  680:  460:, and 422:pyrite 392:, and 378:illite 354:quartz 323:faults 312:, and 284:clasts 3032:Ocean 3001:Alvin 2851:Swash 2695:Plate 2640:Knoll 2630:Guyot 2585:Atoll 2464:Tides 2227:model 2113:Swell 1945:Waves 1776:S2CID 1687:S2CID 1521:S2CID 1347:S2CID 1257:S2CID 1075:S2CID 678:S2CID 466:Andes 454:Manus 277:chert 162:cores 132:micas 87:crust 37:basin 2999:DSV 2984:Argo 2846:Surf 2302:Eddy 1711:OCLC 1703:ISBN 1456:OCLC 747:OCLC 728:2016 418:tuff 213:rift 130:and 47:and 1882:doi 1851:doi 1816:doi 1768:doi 1739:doi 1727:144 1677:doi 1644:doi 1615:doi 1584:doi 1572:105 1550:doi 1538:100 1513:doi 1484:doi 1440:doi 1409:doi 1376:doi 1339:doi 1327:285 1296:doi 1249:doi 1163:doi 1114:doi 1102:100 1067:doi 1055:285 1030:doi 991:doi 946:doi 905:doi 893:105 862:doi 827:doi 789:doi 777:144 717:doi 705:144 668:doi 618:doi 574:doi 472:. 267:to 225:or 126:of 3181:: 1880:. 1868:. 1849:. 1837:. 1833:. 1814:. 1804:10 1802:. 1798:. 1790:; 1774:. 1766:. 1754:. 1737:. 1725:. 1709:. 1685:. 1675:. 1663:. 1659:. 1642:. 1632:18 1630:. 1613:. 1603:41 1601:. 1582:. 1565:. 1548:. 1536:. 1519:. 1511:. 1501:93 1499:. 1482:. 1472:75 1470:. 1438:. 1428:87 1426:. 1407:. 1397:43 1395:. 1391:. 1374:. 1362:. 1345:. 1337:. 1325:. 1294:. 1284:30 1282:. 1278:. 1255:. 1247:. 1237:93 1235:. 1175:^ 1161:. 1151:41 1149:. 1137:^ 1112:. 1100:. 1096:. 1073:. 1065:. 1053:. 1028:. 1016:. 1012:. 989:. 979:18 977:. 973:. 944:. 932:. 928:. 903:. 886:. 874:^ 860:. 848:. 825:. 815:87 813:. 801:^ 787:. 775:. 759:^ 715:. 703:. 699:. 676:. 666:. 654:. 650:. 630:^ 616:. 606:75 604:. 588:^ 572:. 560:. 556:. 538:^ 487:. 456:, 452:, 448:, 444:, 416:, 388:, 384:, 380:, 376:, 372:, 368:, 364:, 360:, 356:, 352:, 308:, 304:, 286:. 31:A 1929:e 1922:t 1915:v 1888:. 1884:: 1876:: 1870:2 1859:. 1853:: 1845:: 1839:4 1824:. 1818:: 1810:: 1782:. 1770:: 1762:: 1756:8 1745:. 1741:: 1733:: 1717:. 1693:. 1679:: 1671:: 1665:7 1650:. 1646:: 1638:: 1621:. 1617:: 1609:: 1592:. 1586:: 1578:: 1556:. 1552:: 1544:: 1527:. 1515:: 1507:: 1490:. 1486:: 1478:: 1462:. 1446:. 1442:: 1434:: 1417:. 1411:: 1403:: 1382:. 1378:: 1370:: 1364:4 1353:. 1341:: 1333:: 1304:. 1298:: 1290:: 1263:. 1251:: 1243:: 1169:. 1165:: 1157:: 1131:. 1116:: 1108:: 1081:. 1069:: 1061:: 1032:: 1024:: 1018:2 997:. 993:: 985:: 954:. 948:: 940:: 934:4 913:. 907:: 899:: 868:. 864:: 856:: 850:4 833:. 829:: 821:: 795:. 791:: 783:: 753:. 730:. 719:: 711:: 684:. 670:: 662:: 656:7 624:. 620:: 612:: 582:. 576:: 568:: 562:7 116:2 112:2 27:.

Index


Izu–Bonin–Mariana Arc
basin
convergent plate boundaries
island arcs
subduction
Pacific Ocean
tensional forces
oceanic trench rollback
plate tectonics

crust
Mariana Trough
Lau Basin
basalts
mid-ocean ridges
magmatic water
mantle wedge
eclogitization
amphiboles
micas
hydrothermal vents
chemosynthetic
Vine–Matthews–Morley hypothesis
seafloor spreading
cores
sediment
Magnetic anomalies

mantle wedge

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑