Knowledge

BCS theory

Source 📝

177:. Cooper showed such binding will occur in the presence of an attractive potential, no matter how weak. In conventional superconductors, an attraction is generally attributed to an electron-lattice interaction. The BCS theory, however, requires only that the potential be attractive, regardless of its origin. In the BCS framework, superconductivity is a macroscopic effect which results from the condensation of Cooper pairs. These have some bosonic properties, and bosons, at sufficiently low temperature, can form a large 2249: 2834: 3262: 17: 3286: 3298: 781:, and C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt. The choice of isotope ordinarily has little effect on the electrical properties of a material, but does affect the frequency of lattice vibrations. This effect suggests that superconductivity is related to vibrations of the lattice. This is incorporated into BCS theory, where lattice vibrations yield the binding energy of electrons in a Cooper pair. 3274: 161:. It is experimentally very well known that the transition temperature strongly depends on pressure. In general, it is believed that BCS theory alone cannot explain this phenomenon and that other effects are in play. These effects are still not yet fully understood; it is possible that they even control superconductivity at low temperatures for some materials. 133:. John Bardeen then argued in the 1955 paper, "Theory of the Meissner Effect in Superconductors", that such a modification naturally occurs in a theory with an energy gap. The key ingredient was Leon Cooper's calculation of the bound states of electrons subject to an attractive force in his 1956 paper, "Bound Electron Pairs in a Degenerate Fermi Gas". 202:
electron pairs in a superconductor, these pairs overlap very strongly and form a highly collective condensate. In this "condensed" state, the breaking of one pair will change the energy of the entire condensate - not just a single electron, or a single pair. Thus, the energy required to break any single pair is related to the energy required to break
611:) at low temperatures, there being no thermal excitations left. However, before reaching the transition temperature, the specific heat of the superconductor becomes even higher than that of the normal conductor (measured immediately above the transition) and the ratio of these two values is found to be universally given by 2.5. 393:
small amount of energy). This energy gap is highest at low temperatures but vanishes at the transition temperature when superconductivity ceases to exist. The BCS theory gives an expression that shows how the gap grows with the strength of the attractive interaction and the (normal phase) single particle
263:
for the wave function is proposed. This ansatz was later shown to be exact in the dense limit of pairs. Note that the continuous crossover between the dilute and dense regimes of attracting pairs of fermions is still an open problem, which now attracts a lot of attention within the field of ultracold
258:
BCS is able to give an approximation for the quantum-mechanical many-body state of the system of (attractively interacting) electrons inside the metal. This state is now known as the BCS state. In the normal state of a metal, electrons move independently, whereas in the BCS state, they are bound into
201:
An electron moving through a conductor will attract nearby positive charges in the lattice. This deformation of the lattice causes another electron, with opposite spin, to move into the region of higher positive charge density. The two electrons then become correlated. Because there are a lot of such
392:
for the electrons, from which they are constructed. Therefore, in order to break a pair, one has to change energies of all other pairs. This means there is an energy gap for single-particle excitation, unlike in the normal metal (where the state of an electron can be changed by adding an arbitrarily
373:
exists but it is gradually weakened as the temperature increases toward the critical temperature. A binding energy suggests two or more particles or other entities that are bound together in the superconducting state. This helped to support the idea of bound particles – specifically electron pairs –
595:
which is of the form suggested the previous year by M. J. Buckingham based on the fact that the superconducting phase transition is second order, that the superconducting phase has a mass gap and on Blevins, Gordy and Fairbank's experimental results the previous year on the absorption of millimeter
136:
In 1957 Bardeen and Cooper assembled these ingredients and constructed such a theory, the BCS theory, with Robert Schrieffer. The theory was first published in April 1957 in the letter, "Microscopic theory of superconductivity". The demonstration that the phase transition is second order, that it
206:
of the pairs (or more than just two electrons). Because the pairing increases this energy barrier, kicks from oscillating atoms in the conductor (which are small at sufficiently low temperatures) are not enough to affect the condensate as a whole, or any individual "member pair" within the
401:. Furthermore, it describes how the density of states is changed on entering the superconducting state, where there are no electronic states any more at the Fermi level. The energy gap is most directly observed in tunneling experiments and in reflection of microwaves from superconductors. 383:
BCS derived several important theoretical predictions that are independent of the details of the interaction, since the quantitative predictions mentioned below hold for any sufficiently weak attraction between the electrons and this last condition is fulfilled for many low temperature
207:
condensate. Thus the electrons stay paired together and resist all kicks, and the electron flow as a whole (the current through the superconductor) will not experience resistance. Thus, the collective behavior of the condensate is a crucial ingredient necessary for superconductivity.
625:(above which the superconductor can no longer expel the field but becomes normal conducting) with temperature. BCS theory relates the value of the critical field at zero temperature to the value of the transition temperature and the density of states at the Fermi level. 20:
A commemorative plaque placed in the Bardeen Engineering Quad at the University of Illinois at Urbana-Champaign. It commemorates the Theory of Superconductivity developed here by John Bardeen and his students, for which they won a Nobel Prize for Physics in
328:
of phonons in a lattice is proportional to the inverse of the square root of the mass of lattice ions. It was shown that the superconducting transition temperature of mercury indeed showed the same dependence, by substituting the most abundant natural
593: 748: 156:
was discovered in La-Ba-Cu-O, at temperatures up to 30 K. Following experiments determined more materials with transition temperatures up to about 130 K, considerably above the previous limit of about
482: 192:
In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the
618:, i.e. the expulsion of a magnetic field from the superconductor and the variation of the penetration depth (the extent of the screening currents flowing below the metal's surface) with temperature. 487: 106:
Rapid progress in the understanding of superconductivity gained momentum in the mid-1950s. It began with the 1948 paper, "On the Problem of the Molecular Theory of Superconductivity", where
415:. The ratio between the value of the energy gap at zero temperature and the value of the superconducting transition temperature (expressed in energy units) takes the universal value 255:
Extensions of BCS theory exist to describe these other cases, although they are insufficient to completely describe the observed features of high-temperature superconductivity.
765:, which is the experimental observation that for a given superconducting material, the critical temperature is inversely proportional to the square-root of the mass of the 2748: 259:
Cooper pairs by the attractive interaction. The BCS formalism is based on the reduced potential for the electrons' attraction. Within this potential, a variational
304:. The site comments that "a drastic change in conductivity demanded a drastic change in electron behavior". Conceivably, pairs of electrons might perhaps act like 653: 357:
is warmed toward its critical temperature, its heat capacity increases greatly in a very few degrees; this suggests an energy gap being bridged by thermal energy.
353:
An exponential increase in heat capacity near the critical temperature also suggests an energy bandgap for the superconducting material. As superconducting
1616:
Schmidt, Vadim Vasil'evich. The physics of superconductors: Introduction to fundamentals and applications. Springer Science & Business Media, 2013.
248:
superconducting state, which is the rule among low-temperature superconductors but is not realized in many unconventional superconductors such as the
778: 1679: 2613: 418: 2741: 2102: 1912: 769:
used in the material. The isotope effect was reported by two groups on 24 March 1950, who discovered it independently working with different
220:. In most materials (in low temperature superconductors), this attraction is brought about indirectly by the coupling of electrons to the 2283: 1994: 1953: 2346: 1634: 1333:
Little, W. A.; Parks, R. D. (1962). "Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder".
3278: 2734: 1732: 129:, motivated by penetration experiments, proposed that this would modify the London equations via a new scale parameter called the 1757: 2092: 1861: 1652: 1607: 1210: 2705: 2443: 2321: 1984: 1672: 1722: 2553: 1840: 153: 3266: 2641: 2252: 1582: 1565: 1548: 1647:
in E. Pavarini, E. Koch, J. van den Brink, and G. Sawatzky: Quantum materials: Experiments and Theory, JĂźlich 2016,
1298:
Reynolds, C. A.; Serin, B.; Wright, W. H.; Nesbitt, L. B. (1950-05-15). "Superconductivity of Isotopes of Mercury".
2362: 2182: 1989: 1932: 1752: 130: 111: 2558: 2276: 2142: 2045: 2025: 1785: 1665: 1186: 374:
and together with the above helped to paint a general picture of paired electrons and their lattice interactions.
2341: 2311: 1948: 1707: 1702: 773:
isotopes, although a few days before publication they learned of each other's results at the ONR conference in
145:
and penetration depths appeared in the December 1957 article, "Theory of superconductivity". They received the
216:
BCS theory starts from the assumption that there is some attraction between electrons, which can overcome the
3302: 3247: 2858: 2682: 2534: 2478: 2453: 2793: 2584: 2513: 2221: 2097: 1747: 309: 178: 72: 2529: 2448: 2216: 2010: 588:{\displaystyle \Delta (T\to T_{\rm {c}})\approx 3.06\,k_{\rm {B}}T_{\rm {c}}{\sqrt {1-(T/T_{\rm {c}})}}} 292:
the existence of a critical temperature and critical magnetic field implied a band gap, and suggested a
3324: 3038: 2947: 2636: 2631: 2316: 2269: 1790: 1370:"Little-Parks Oscillations in a Single Ring in the vicinity of the Superconductor-Insulator Transition" 384:
superconductors - the so-called weak-coupling case. These have been confirmed in numerous experiments:
2987: 2962: 2589: 2336: 1958: 389: 301: 228:
depend on the origin of the attractive interaction. For instance, Cooper pairs have been observed in
186: 3157: 2911: 2901: 2757: 2372: 2194: 273: 3003: 2715: 2574: 2506: 2423: 2066: 1922: 1891: 1866: 1805: 1570: 808: 784: 2626: 2599: 2579: 2501: 2233: 2157: 2152: 2087: 2015: 1917: 1820: 1810: 1795: 1712: 146: 95: 68: 56: 1644: 3054: 3033: 2967: 2496: 2206: 2201: 2040: 2035: 1968: 1871: 1835: 1825: 1780: 1626: 1126: 832:
London, F. (September 1948). "On the Problem of the Molecular Theory of Superconductivity".
3023: 2798: 2700: 2656: 2147: 1881: 1717: 1688: 1631: 1593: 1511: 1476: 1441: 1391: 1342: 1307: 1272: 1237: 1160: 1092: 1049: 1008: 964: 915: 876: 841: 622: 71:
1911 discovery. The theory describes superconductivity as a microscopic effect caused by a
8: 2977: 2957: 2942: 2891: 2211: 2177: 2112: 2030: 2020: 1815: 330: 1515: 1480: 1445: 1395: 1346: 1311: 1276: 1241: 1226:
Buckingham, M. J. (February 1956). "Very High Frequency Absorption in Superconductors".
1164: 1096: 1053: 1012: 968: 919: 880: 845: 3124: 3114: 2952: 2863: 2687: 2438: 2398: 1845: 1407: 1381: 1065: 797: 340: 241: 182: 60: 3285: 3232: 3197: 3104: 3028: 2463: 2292: 1896: 1648: 1603: 1578: 1561: 1544: 1411: 1369: 1263:
Maxwell, Emanuel (1950-05-15). "Isotope Effect in the Superconductivity of Mercury".
1206: 1108: 1083:
Mann, A. (July 2011). "High Temperature Superconductivity at 25: Still In Suspense".
1069: 933: 770: 608: 394: 388:
The electrons are bound into Cooper pairs, and these pairs are correlated due to the
217: 118: 64: 3202: 3094: 3074: 3069: 3064: 3059: 2916: 2896: 2853: 2818: 2788: 2672: 2646: 2418: 2393: 2326: 2167: 1599: 1519: 1484: 1449: 1399: 1350: 1315: 1280: 1245: 1168: 1100: 1057: 1016: 972: 923: 884: 849: 404:
BCS theory predicts the dependence of the value of the energy gap Δ at temperature
293: 114: 754:(0) is the electronic density of states at the Fermi level. For more details, see 484:
independent of material. Near the critical temperature the relation asymptotes to
3227: 3182: 2848: 2765: 2695: 2428: 2189: 1927: 1876: 1638: 1553: 1228: 787:- One of the first indications to the importance of the Cooper-pairing principle. 640: 615: 325: 221: 138: 80: 1368:
Gurovich, Doron; Tikhonov, Konstantin; Mahalu, Diana; Shahar, Dan (2014-11-20).
3290: 3237: 3119: 3008: 2433: 2377: 2367: 2331: 2132: 2107: 1886: 1403: 1151:
Maxwell, Emanuel (1950). "Isotope Effect in the Superconductivity of Mercury".
370: 249: 245: 237: 229: 88: 1187:
http://nobelprize.org/nobel_prizes/physics/laureates/1973/giaever-lecture.html
867:
Bardeen, J. (March 1955). "Theory of the Meissner Effect in Superconductors".
94:
It was proposed by Bardeen, Cooper, and Schrieffer in 1957; they received the
3318: 3162: 3144: 3129: 3109: 3013: 2982: 2813: 2228: 2162: 2137: 1737: 1524: 1499: 1454: 1429: 1249: 1021: 996: 937: 928: 903: 803: 604: 344: 170: 142: 126: 122: 1489: 1464: 1354: 977: 952: 888: 743:{\displaystyle k_{\rm {B}}\,T_{\rm {c}}=1.134E_{\rm {D}}\,{e^{-1/N(0)\,V}},} 3099: 2921: 2823: 2726: 2468: 2458: 2413: 2408: 2172: 2082: 1800: 1742: 1727: 1319: 1284: 1172: 1112: 853: 755: 628:
In its simplest form, BCS gives the superconducting transition temperature
318:
Isotope effect on the critical temperature, suggesting lattice interactions
107: 48: 3219: 2937: 2906: 2886: 2833: 2594: 2403: 1830: 1657: 1589: 812: 398: 363:
The lessening of the measured energy gap towards the critical temperature
174: 76: 52: 3134: 2808: 1061: 16: 3192: 3018: 2803: 1963: 1185:
Ivar Giaever - Nobel Lecture. Nobelprize.org. Retrieved 16 Dec 2010.
994: 950: 2261: 1104: 2621: 2061: 354: 297: 282: 1386: 3242: 3209: 3187: 3167: 774: 766: 233: 84: 29: 3177: 3172: 2778: 995:
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (December 1957).
260: 194: 158: 1641:
of BCS theory as explained by Bob Schrieffer (audio recording)
300:
are forbidden from condensing to the same energy level by the
3152: 2773: 2677: 2651: 1588: 305: 244:. The original results of BCS (discussed below) described an 1367: 951:
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (April 1957).
224:(as explained above). However, the results of BCS theory do 2710: 1036:
Bednorz, J. G.; MĂźller, K. A. (June 1986). "Possible high T
477:{\displaystyle \Delta (T=0)=1.764\,k_{\rm {B}}T_{\rm {c}},} 1297: 2783: 597: 811:, one of the first indications of the importance of the 276:
summarize some key background to BCS theory as follows:
1497: 1462: 1498:
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (1957).
1463:
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (1957).
347:
near the critical temperature for some superconductors
656: 490: 421: 369:
This suggests a type of situation where some kind of
169:
At sufficiently low temperatures, electrons near the
1035: 181:. Superconductivity was simultaneously explained by 635:in terms of the electron-phonon coupling potential 1196: 1194: 742: 587: 476: 197:). Roughly speaking the picture is the following: 3316: 1430:"Bound Electron Pairs in a Degenerate Fermi Gas" 904:"Bound Electron Pairs in a Degenerate Fermi Gas" 1191: 607:of the superconductor is suppressed strongly ( 2742: 2277: 1673: 1040:superconductivity in the Ba−La−Cu−O system". 2756: 990: 988: 83:to describe the pairing interaction between 1332: 2832: 2749: 2735: 2284: 2270: 1687: 1680: 1666: 1225: 1144: 1042:Zeitschrift fĂźr Physik B: Condensed Matter 287:(described as "a key piece in the puzzle") 1523: 1488: 1465:"Microscopic Theory of Superconductivity" 1453: 1385: 1020: 985: 976: 953:"Microscopic Theory of Superconductivity" 927: 730: 700: 669: 524: 446: 173:become unstable against the formation of 15: 1645:Mean-Field Theory: Hartree-Fock and BCS 1262: 1200: 1179: 1150: 866: 621:It also describes the variation of the 25:Microscopic theory of superconductivity 3317: 1758:Two-dimensional conformal field theory 1575:Superconductivity of Metals and Alloys 1427: 1326: 901: 831: 267: 2730: 2291: 2265: 1661: 3273: 1082: 312:and do not have the same limitation. 3297: 333:, Hg, with a different isotope, Hg. 13: 1533: 1421: 1205:. Dover Publications. p. 63. 694: 676: 663: 614:BCS theory correctly predicts the 574: 543: 531: 509: 491: 465: 453: 422: 272:The hyperphysics website pages at 252:high-temperature superconductors. 154:high-temperature superconductivity 14: 3336: 2253:Template:Quantum mechanics topics 1620: 1558:Introduction to Superconductivity 1203:Introduction to Superconductivity 1127:"BCS Theory of Superconductivity" 800:, considered a BCS superconductor 3296: 3284: 3272: 3261: 3260: 2248: 2247: 1592:; Feldman, Dmitri, eds. (2010). 1361: 1291: 1256: 1219: 378: 1119: 1076: 1029: 944: 902:Cooper, Leon (November 1956). 895: 860: 825: 761:The BCS theory reproduces the 727: 721: 580: 557: 515: 500: 494: 437: 425: 1: 2859:Spontaneous symmetry breaking 1500:"Theory of Superconductivity" 1131:hyperphysics.phy-astr.gsu.edu 997:"Theory of Superconductivity" 819: 79:. The theory is also used in 408:on the critical temperature 308:instead, which are bound by 7: 2217:Quantum information science 1541:Theory of Superconductivity 791: 603:Due to the energy gap, the 164: 117:may be consequences of the 10: 3341: 3039:Spin gapless semiconductor 2948:Nearly free electron model 2614:Technological applications 1404:10.1103/PhysRevB.91.174505 310:different condensate rules 211: 187:Bogoliubov transformations 101: 98:for this theory in 1972. 3256: 3218: 3143: 3087: 3047: 2996: 2988:Density functional theory 2963:electronic band structure 2930: 2879: 2872: 2841: 2830: 2764: 2665: 2612: 2567: 2543: 2522: 2486: 2477: 2386: 2356:Characteristic parameters 2355: 2299: 2242: 2125: 2075: 2054: 2003: 1977: 1941: 1905: 1854: 1773: 1766: 1695: 1627:Hyperphysics page on BCS 1201:Tinkham, Michael (1996). 596:waves by superconducting 390:Pauli exclusion principle 302:Pauli exclusion principle 149:in 1972 for this theory. 37:Bardeen–Cooper–Schrieffer 3158:Bogoliubov quasiparticle 2902:Quantum spin Hall effect 2794:Bose–Einstein condensate 2758:Condensed matter physics 2373:London penetration depth 1539:John Robert Schrieffer, 1525:10.1103/PhysRev.108.1175 1455:10.1103/PhysRev.104.1189 1428:Cooper, Leon N. (1956). 1250:10.1103/PhysRev.101.1431 1022:10.1103/PhysRev.108.1175 929:10.1103/PhysRev.104.1189 274:Georgia State University 240:has been tuned to their 179:Bose–Einstein condensate 141:and the calculations of 69:Heike Kamerlingh Onnes's 2666:List of superconductors 2544:By critical temperature 1913:2D free massless scalar 1806:Quantum electrodynamics 1733:QFT in curved spacetime 1571:Pierre-Gilles de Gennes 1490:10.1103/PhysRev.106.162 1355:10.1103/PhysRevLett.9.9 1335:Physical Review Letters 978:10.1103/PhysRev.106.162 889:10.1103/PhysRev.97.1724 785:Little–Parks experiment 623:critical magnetic field 2234:Quantum thermodynamics 2158:On shell and off shell 2153:Loop quantum cosmology 1995:N = 4 super Yang–Mills 1954:N = 1 super Yang–Mills 1821:Scalar electrodynamics 1811:Quantum chromodynamics 1713:Conformal field theory 1689:Quantum field theories 1320:10.1103/PhysRev.78.487 1285:10.1103/PhysRev.78.477 1173:10.1103/PhysRev.78.477 854:10.1103/PhysRev.74.562 744: 589: 478: 209: 147:Nobel Prize in Physics 96:Nobel Prize in Physics 57:John Robert Schrieffer 22: 3034:Topological insulator 2968:Anderson localization 2312:Bean's critical state 2207:Quantum hydrodynamics 2202:Quantum hadrodynamics 1826:Scalar chromodynamics 777:. The two groups are 745: 590: 479: 199: 19: 2912:Aharonov–Bohm effect 2799:Fermionic condensate 2487:By magnetic response 2178:Quantum fluctuations 2148:Loop quantum gravity 1718:Lattice field theory 1595:BCS: 50 Years (book) 654: 488: 419: 236:where a homogeneous 3303:Physics WikiProject 2978:tight binding model 2958:Fermi liquid theory 2943:Free electron model 2892:Quantum Hall effect 2873:Electrons in solids 2439:persistent currents 2424:Little–Parks effect 2212:Quantum information 1816:Quartic interaction 1516:1957PhRv..108.1175B 1481:1957PhRv..106..162B 1446:1956PhRv..104.1189C 1396:2015PhRvB..91q4505G 1347:1962PhRvL...9....9L 1312:1950PhRv...78..487R 1277:1950PhRv...78..477M 1242:1956PhRv..101.1431B 1165:1950PhRv...78..477M 1097:2011Natur.475..280M 1054:1986ZPhyB..64..189B 1013:1957PhRv..108.1175B 969:1957PhRv..106..162B 920:1956PhRv..104.1189C 881:1955PhRv...97.1724B 846:1948PhRv...74..562L 809:Little–Parks effect 268:Underlying evidence 2864:Critical phenomena 2399:Andreev reflection 2394:Abrikosov vortices 2098:Nambu–Jona-Lasinio 2026:Higher dimensional 1933:Wess–Zumino–Witten 1723:Noncommutative QFT 1637:2011-06-29 at the 1062:10.1007/BF01303701 798:Magnesium diboride 740: 585: 474: 285:at the Fermi level 242:Feshbach resonance 185:, by means of the 183:Nikolay Bogolyubov 110:proposed that the 61:microscopic theory 23: 3325:Superconductivity 3312: 3311: 3198:Exciton-polariton 3083: 3082: 3055:Thermoelectricity 2724: 2723: 2642:quantum computing 2608: 2607: 2464:superdiamagnetism 2293:Superconductivity 2259: 2258: 2121: 2120: 1653:978-3-95806-159-0 1609:978-981-4304-64-1 1374:Physical Review B 1212:978-0-486-43503-9 583: 395:density of states 218:Coulomb repulsion 65:superconductivity 3332: 3300: 3299: 3288: 3276: 3275: 3264: 3263: 3203:Phonon polariton 3095:Amorphous magnet 3075:Electrostriction 3070:Flexoelectricity 3065:Ferroelectricity 3060:Piezoelectricity 2917:Josephson effect 2897:Spin Hall effect 2877: 2876: 2854:Phase transition 2836: 2819:Luttinger liquid 2766:States of matter 2751: 2744: 2737: 2728: 2727: 2673:bilayer graphene 2647:Rutherford cable 2559:room temperature 2554:high temperature 2484: 2483: 2444:proximity effect 2419:Josephson effect 2363:coherence length 2286: 2279: 2272: 2263: 2262: 2251: 2250: 2168:Quantum dynamics 1841:Yang–Mills–Higgs 1796:Non-linear sigma 1786:Euler–Heisenberg 1771: 1770: 1682: 1675: 1668: 1659: 1658: 1613: 1600:World Scientific 1529: 1527: 1510:(5): 1175–1204. 1494: 1492: 1459: 1457: 1440:(4): 1189–1190. 1416: 1415: 1389: 1365: 1359: 1358: 1330: 1324: 1323: 1295: 1289: 1288: 1260: 1254: 1253: 1236:(4): 1431–1432. 1223: 1217: 1216: 1198: 1189: 1183: 1177: 1176: 1148: 1142: 1141: 1139: 1137: 1123: 1117: 1116: 1080: 1074: 1073: 1033: 1027: 1026: 1024: 1007:(5): 1175–1204. 992: 983: 982: 980: 948: 942: 941: 931: 914:(4): 1189–1190. 899: 893: 892: 875:(6): 1724–1725. 864: 858: 857: 829: 749: 747: 746: 741: 736: 735: 734: 717: 699: 698: 697: 681: 680: 679: 668: 667: 666: 594: 592: 591: 586: 584: 579: 578: 577: 567: 550: 548: 547: 546: 536: 535: 534: 514: 513: 512: 483: 481: 480: 475: 470: 469: 468: 458: 457: 456: 341:exponential rise 294:phase transition 131:coherence length 115:London equations 112:phenomenological 3340: 3339: 3335: 3334: 3333: 3331: 3330: 3329: 3315: 3314: 3313: 3308: 3252: 3233:Granular matter 3228:Amorphous solid 3214: 3139: 3125:Antiferromagnet 3115:Superparamagnet 3088:Magnetic phases 3079: 3043: 2992: 2953:Bloch's theorem 2926: 2868: 2849:Order parameter 2842:Phase phenomena 2837: 2828: 2760: 2755: 2725: 2720: 2691: 2661: 2604: 2563: 2550:low temperature 2539: 2518: 2473: 2429:Meissner effect 2382: 2378:Silsbee current 2351: 2317:Ginzburg–Landau 2295: 2290: 2260: 2255: 2238: 2190:Quantum gravity 2117: 2076:Particle theory 2071: 2050: 1999: 1973: 1937: 1901: 1855:Low dimensional 1850: 1791:Ginzburg–Landau 1762: 1753:Topological QFT 1691: 1686: 1639:Wayback Machine 1623: 1610: 1554:Michael Tinkham 1536: 1534:Further reading 1504:Physical Review 1469:Physical Review 1434:Physical Review 1424: 1422:Primary sources 1419: 1366: 1362: 1331: 1327: 1300:Physical Review 1296: 1292: 1265:Physical Review 1261: 1257: 1229:Physical Review 1224: 1220: 1213: 1199: 1192: 1184: 1180: 1153:Physical Review 1149: 1145: 1135: 1133: 1125: 1124: 1120: 1105:10.1038/475280a 1091:(7356): 280–2. 1081: 1077: 1039: 1034: 1030: 1001:Physical Review 993: 986: 957:Physical Review 949: 945: 908:Physical Review 900: 896: 869:Physical Review 865: 861: 834:Physical Review 830: 826: 822: 794: 779:Emanuel Maxwell 713: 706: 702: 701: 693: 692: 688: 675: 674: 670: 662: 661: 657: 655: 652: 651: 649: 634: 616:Meissner effect 573: 572: 568: 563: 549: 542: 541: 537: 530: 529: 525: 508: 507: 503: 489: 486: 485: 464: 463: 459: 452: 451: 447: 420: 417: 416: 414: 381: 331:mercury isotope 326:Debye frequency 270: 230:ultracold gases 222:crystal lattice 214: 167: 139:Meissner effect 137:reproduces the 104: 81:nuclear physics 59:) is the first 26: 12: 11: 5: 3338: 3328: 3327: 3310: 3309: 3307: 3306: 3294: 3291:Physics Portal 3282: 3270: 3257: 3254: 3253: 3251: 3250: 3245: 3240: 3238:Liquid crystal 3235: 3230: 3224: 3222: 3216: 3215: 3213: 3212: 3207: 3206: 3205: 3200: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3149: 3147: 3145:Quasiparticles 3141: 3140: 3138: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3105:Superdiamagnet 3102: 3097: 3091: 3089: 3085: 3084: 3081: 3080: 3078: 3077: 3072: 3067: 3062: 3057: 3051: 3049: 3045: 3044: 3042: 3041: 3036: 3031: 3029:Superconductor 3026: 3021: 3016: 3011: 3009:Mott insulator 3006: 3000: 2998: 2994: 2993: 2991: 2990: 2985: 2980: 2975: 2970: 2965: 2960: 2955: 2950: 2945: 2940: 2934: 2932: 2928: 2927: 2925: 2924: 2919: 2914: 2909: 2904: 2899: 2894: 2889: 2883: 2881: 2874: 2870: 2869: 2867: 2866: 2861: 2856: 2851: 2845: 2843: 2839: 2838: 2831: 2829: 2827: 2826: 2821: 2816: 2811: 2806: 2801: 2796: 2791: 2786: 2781: 2776: 2770: 2768: 2762: 2761: 2754: 2753: 2746: 2739: 2731: 2722: 2721: 2719: 2718: 2713: 2708: 2703: 2698: 2693: 2689: 2685: 2680: 2675: 2669: 2667: 2663: 2662: 2660: 2659: 2654: 2649: 2644: 2639: 2634: 2629: 2627:electromagnets 2624: 2618: 2616: 2610: 2609: 2606: 2605: 2603: 2602: 2597: 2592: 2587: 2582: 2577: 2571: 2569: 2568:By composition 2565: 2564: 2562: 2561: 2556: 2551: 2547: 2545: 2541: 2540: 2538: 2537: 2535:unconventional 2532: 2526: 2524: 2523:By explanation 2520: 2519: 2517: 2516: 2511: 2510: 2509: 2504: 2499: 2490: 2488: 2481: 2479:Classification 2475: 2474: 2472: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2390: 2388: 2384: 2383: 2381: 2380: 2375: 2370: 2368:critical field 2365: 2359: 2357: 2353: 2352: 2350: 2349: 2344: 2339: 2337:Mattis–Bardeen 2334: 2329: 2324: 2322:Kohn–Luttinger 2319: 2314: 2309: 2303: 2301: 2297: 2296: 2289: 2288: 2281: 2274: 2266: 2257: 2256: 2243: 2240: 2239: 2237: 2236: 2231: 2226: 2225: 2224: 2214: 2209: 2204: 2199: 2198: 2197: 2187: 2186: 2185: 2175: 2170: 2165: 2160: 2155: 2150: 2145: 2140: 2135: 2133:Casimir effect 2129: 2127: 2123: 2122: 2119: 2118: 2116: 2115: 2110: 2108:Standard Model 2105: 2100: 2095: 2090: 2085: 2079: 2077: 2073: 2072: 2070: 2069: 2064: 2058: 2056: 2052: 2051: 2049: 2048: 2043: 2038: 2033: 2028: 2023: 2018: 2013: 2007: 2005: 2001: 2000: 1998: 1997: 1992: 1987: 1981: 1979: 1978:Superconformal 1975: 1974: 1972: 1971: 1966: 1961: 1959:Seiberg–Witten 1956: 1951: 1945: 1943: 1942:Supersymmetric 1939: 1938: 1936: 1935: 1930: 1925: 1920: 1915: 1909: 1907: 1903: 1902: 1900: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1858: 1856: 1852: 1851: 1849: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1813: 1808: 1803: 1798: 1793: 1788: 1783: 1777: 1775: 1768: 1764: 1763: 1761: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1725: 1720: 1715: 1710: 1705: 1699: 1697: 1693: 1692: 1685: 1684: 1677: 1670: 1662: 1656: 1655: 1642: 1629: 1622: 1621:External links 1619: 1618: 1617: 1614: 1608: 1590:Cooper, Leon N 1586: 1568: 1551: 1535: 1532: 1531: 1530: 1495: 1475:(1): 162–164. 1460: 1423: 1420: 1418: 1417: 1380:(17): 174505. 1360: 1325: 1290: 1255: 1218: 1211: 1190: 1178: 1143: 1118: 1075: 1048:(2): 189–193. 1037: 1028: 984: 963:(1): 162–164. 943: 894: 859: 840:(5): 562–573. 823: 821: 818: 817: 816: 813:Cooper pairing 806: 801: 793: 790: 789: 788: 782: 763:isotope effect 759: 739: 733: 729: 726: 723: 720: 716: 712: 709: 705: 696: 691: 687: 684: 678: 673: 665: 660: 647: 643:cutoff energy 632: 626: 619: 612: 601: 582: 576: 571: 566: 562: 559: 556: 553: 545: 540: 533: 528: 523: 520: 517: 511: 506: 502: 499: 496: 493: 473: 467: 462: 455: 450: 445: 442: 439: 436: 433: 430: 427: 424: 412: 402: 380: 377: 376: 375: 371:binding energy 366: 365: 359: 358: 350: 349: 335: 334: 321: 320: 314: 313: 289: 288: 281:Evidence of a 269: 266: 238:magnetic field 213: 210: 166: 163: 143:specific heats 103: 100: 89:atomic nucleus 24: 9: 6: 4: 3: 2: 3337: 3326: 3323: 3322: 3320: 3305: 3304: 3295: 3293: 3292: 3287: 3283: 3281: 3280: 3271: 3269: 3268: 3259: 3258: 3255: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3225: 3223: 3221: 3217: 3211: 3208: 3204: 3201: 3199: 3196: 3195: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3150: 3148: 3146: 3142: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3092: 3090: 3086: 3076: 3073: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3053: 3052: 3050: 3046: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3014:Semiconductor 3012: 3010: 3007: 3005: 3002: 3001: 2999: 2995: 2989: 2986: 2984: 2983:Hubbard model 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2935: 2933: 2929: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2884: 2882: 2878: 2875: 2871: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2846: 2844: 2840: 2835: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2771: 2769: 2767: 2763: 2759: 2752: 2747: 2745: 2740: 2738: 2733: 2732: 2729: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2670: 2668: 2664: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2633: 2630: 2628: 2625: 2623: 2620: 2619: 2617: 2615: 2611: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2585:heavy fermion 2583: 2581: 2578: 2576: 2573: 2572: 2570: 2566: 2560: 2557: 2555: 2552: 2549: 2548: 2546: 2542: 2536: 2533: 2531: 2528: 2527: 2525: 2521: 2515: 2514:ferromagnetic 2512: 2508: 2505: 2503: 2500: 2498: 2495: 2494: 2492: 2491: 2489: 2485: 2482: 2480: 2476: 2470: 2467: 2465: 2462: 2460: 2459:supercurrents 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2391: 2389: 2385: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2360: 2358: 2354: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2304: 2302: 2298: 2294: 2287: 2282: 2280: 2275: 2273: 2268: 2267: 2264: 2254: 2246: 2241: 2235: 2232: 2230: 2229:Quantum logic 2227: 2223: 2220: 2219: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2196: 2193: 2192: 2191: 2188: 2184: 2181: 2180: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2163:Quantum chaos 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2138:Cosmic string 2136: 2134: 2131: 2130: 2128: 2124: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2080: 2078: 2074: 2068: 2065: 2063: 2060: 2059: 2057: 2053: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2011:Pure 4D N = 1 2009: 2008: 2006: 2002: 1996: 1993: 1991: 1988: 1986: 1983: 1982: 1980: 1976: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1946: 1944: 1940: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1910: 1908: 1904: 1898: 1895: 1893: 1892:Thirring–Wess 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1867:Bullough–Dodd 1865: 1863: 1862:2D Yang–Mills 1860: 1859: 1857: 1853: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1778: 1776: 1772: 1769: 1765: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1738:String theory 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1708:Axiomatic QFT 1706: 1704: 1703:Algebraic QFT 1701: 1700: 1698: 1694: 1690: 1683: 1678: 1676: 1671: 1669: 1664: 1663: 1660: 1654: 1650: 1646: 1643: 1640: 1636: 1633: 1632:Dance analogy 1630: 1628: 1625: 1624: 1615: 1611: 1605: 1601: 1597: 1596: 1591: 1587: 1584: 1583:0-7382-0101-4 1580: 1576: 1572: 1569: 1567: 1566:0-486-43503-2 1563: 1559: 1555: 1552: 1550: 1549:0-7382-0120-0 1546: 1542: 1538: 1537: 1526: 1521: 1517: 1513: 1509: 1505: 1501: 1496: 1491: 1486: 1482: 1478: 1474: 1470: 1466: 1461: 1456: 1451: 1447: 1443: 1439: 1435: 1431: 1426: 1425: 1413: 1409: 1405: 1401: 1397: 1393: 1388: 1383: 1379: 1375: 1371: 1364: 1356: 1352: 1348: 1344: 1340: 1336: 1329: 1321: 1317: 1313: 1309: 1305: 1301: 1294: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1251: 1247: 1243: 1239: 1235: 1231: 1230: 1222: 1214: 1208: 1204: 1197: 1195: 1188: 1182: 1174: 1170: 1166: 1162: 1158: 1154: 1147: 1132: 1128: 1122: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1079: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1032: 1023: 1018: 1014: 1010: 1006: 1002: 998: 991: 989: 979: 974: 970: 966: 962: 958: 954: 947: 939: 935: 930: 925: 921: 917: 913: 909: 905: 898: 890: 886: 882: 878: 874: 870: 863: 855: 851: 847: 843: 839: 835: 828: 824: 814: 810: 807: 805: 804:Quasiparticle 802: 799: 796: 795: 786: 783: 780: 776: 772: 768: 764: 760: 757: 753: 737: 731: 724: 718: 714: 710: 707: 703: 689: 685: 682: 671: 658: 646: 642: 638: 631: 627: 624: 620: 617: 613: 610: 609:exponentially 606: 605:specific heat 602: 599: 569: 564: 560: 554: 551: 538: 526: 521: 518: 504: 497: 471: 460: 448: 443: 440: 434: 431: 428: 411: 407: 403: 400: 396: 391: 387: 386: 385: 372: 368: 367: 364: 361: 360: 356: 352: 351: 348: 346: 345:heat capacity 342: 337: 336: 332: 327: 323: 322: 319: 316: 315: 311: 307: 303: 299: 296:, but single 295: 291: 290: 286: 284: 279: 278: 277: 275: 265: 262: 256: 253: 251: 247: 243: 239: 235: 231: 227: 223: 219: 208: 205: 198: 196: 190: 188: 184: 180: 176: 172: 171:Fermi surface 162: 160: 155: 150: 148: 144: 140: 134: 132: 128: 127:Brian Pippard 124: 123:quantum state 120: 116: 113: 109: 99: 97: 92: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 47:(named after 46: 42: 38: 35: 31: 18: 3301: 3289: 3277: 3265: 3183:Pines' demon 2972: 2922:Kondo effect 2824:Time crystal 2595:oxypnictides 2530:conventional 2469:superstripes 2414:flux pumping 2409:flux pinning 2404:Cooper pairs 2306: 2244: 2173:Quantum foam 2113:Stueckelberg 2067:Chern–Simons 2004:Supergravity 1743:Supergravity 1728:Gauge theory 1594: 1574: 1557: 1540: 1507: 1503: 1472: 1468: 1437: 1433: 1377: 1373: 1363: 1338: 1334: 1328: 1303: 1299: 1293: 1268: 1264: 1258: 1233: 1227: 1221: 1202: 1181: 1156: 1152: 1146: 1134:. Retrieved 1130: 1121: 1088: 1084: 1078: 1045: 1041: 1031: 1004: 1000: 960: 956: 946: 911: 907: 897: 872: 868: 862: 837: 833: 827: 762: 756:Cooper pairs 751: 644: 636: 629: 409: 405: 382: 379:Implications 362: 338: 317: 280: 271: 257: 254: 225: 215: 203: 200: 191: 175:Cooper pairs 168: 151: 135: 108:Fritz London 105: 93: 77:Cooper pairs 73:condensation 49:John Bardeen 44: 40: 36: 33: 27: 3220:Soft matter 3120:Ferromagnet 2938:Drude model 2907:Berry phase 2887:Hall effect 2454:SU(2) color 2434:Homes's law 2055:Topological 1969:Wess–Zumino 1882:Sine-Gordon 1872:Gross–Neveu 1781:Born–Infeld 1748:Thermal QFT 1341:(1): 9–12. 399:Fermi level 125:. In 1953, 53:Leon Cooper 3135:Spin glass 3130:Metamagnet 3110:Paramagnet 2997:Conduction 2973:BCS theory 2814:Superfluid 2809:Supersolid 2590:iron-based 2449:reentrance 1836:Yang–Mills 1543:, (1964), 1306:(4): 487. 1271:(4): 477. 1159:(4): 477. 820:References 815:principle. 3193:Polariton 3100:Diamagnet 3048:Couplings 3024:Conductor 3019:Semimetal 3004:Insulator 2880:Phenomena 2804:Fermi gas 2387:Phenomena 2245:See also: 1964:Super QCD 1918:Liouville 1906:Conformal 1877:Schwinger 1412:119268649 1387:1411.5640 1070:118314311 938:0031-899X 708:− 555:− 519:≈ 501:→ 492:Δ 423:Δ 298:electrons 152:In 1986, 119:coherence 3319:Category 3267:Category 3248:Colloids 2622:cryotron 2580:cuprates 2575:covalent 2332:Matthias 2300:Theories 2041:Type IIB 2036:Type IIA 2021:4D N = 8 2016:4D N = 1 1985:6D (2,0) 1949:4D N = 1 1928:Polyakov 1887:Thirring 1696:Theories 1635:Archived 1136:16 April 1113:21776057 792:See also 639:and the 355:vanadium 283:band gap 234:fermions 165:Overview 157:30  85:nucleons 3279:Commons 3243:Polymer 3210:Polaron 3188:Plasmon 3168:Exciton 2716:more... 2600:organic 2143:History 2126:Related 1923:Minimal 1774:Regular 1512:Bibcode 1477:Bibcode 1442:Bibcode 1392:Bibcode 1343:Bibcode 1308:Bibcode 1273:Bibcode 1238:Bibcode 1161:Bibcode 1093:Bibcode 1050:Bibcode 1009:Bibcode 965:Bibcode 916:Bibcode 877:Bibcode 842:Bibcode 775:Atlanta 771:mercury 767:isotope 397:at the 264:gases. 212:Details 195:phonons 102:History 30:physics 3178:Phonon 3173:Magnon 2931:Theory 2789:Plasma 2779:Liquid 2493:Types 2327:London 2083:Chiral 2031:Type I 1846:Yukawa 1767:Models 1651:  1606:  1581:  1564:  1547:  1410:  1209:  1111:  1085:Nature 1068:  936:  750:where 306:bosons 261:ansatz 250:d-wave 246:s-wave 87:in an 67:since 55:, and 45:theory 3153:Anyon 2774:Solid 2706:TBCCO 2678:BSCCO 2657:wires 2652:SQUID 2222:links 2195:links 2183:links 2103:NMSSM 2088:Fermi 1831:Soler 1801:Proca 1408:S2CID 1382:arXiv 1066:S2CID 686:1.134 641:Debye 444:1.764 121:of a 21:1972. 3163:Hole 2711:YBCO 2701:NbTi 2696:NbSn 2683:LBCO 2093:MSSM 1990:ABJM 1897:Toda 1649:ISBN 1604:ISBN 1579:ISBN 1562:ISBN 1545:ISBN 1207:ISBN 1138:2018 1109:PMID 934:ISSN 522:3.06 324:The 2784:Gas 2688:MgB 2637:NMR 2632:MRI 2507:1.5 2347:WHH 2342:RVB 2307:BCS 2046:11D 1520:doi 1508:108 1485:doi 1473:106 1450:doi 1438:104 1400:doi 1351:doi 1316:doi 1281:doi 1246:doi 1234:101 1169:doi 1101:doi 1089:475 1058:doi 1017:doi 1005:108 973:doi 961:106 924:doi 912:104 885:doi 850:doi 598:tin 343:in 339:An 232:of 226:not 204:all 75:of 63:of 41:BCS 34:the 28:In 3321:: 2502:II 2062:BF 1602:. 1598:. 1577:, 1573:, 1560:, 1556:, 1518:. 1506:. 1502:. 1483:. 1471:. 1467:. 1448:. 1436:. 1432:. 1406:. 1398:. 1390:. 1378:91 1376:. 1372:. 1349:. 1337:. 1314:. 1304:78 1302:. 1279:. 1269:78 1267:. 1244:. 1232:. 1193:^ 1167:. 1157:78 1155:. 1129:. 1107:. 1099:. 1087:. 1064:. 1056:. 1046:64 1044:. 1015:. 1003:. 999:. 987:^ 971:. 959:. 955:. 932:. 922:. 910:. 906:. 883:. 873:97 871:. 848:. 838:74 836:. 650:: 189:. 91:. 51:, 43:) 32:, 2750:e 2743:t 2736:v 2690:2 2497:I 2285:e 2278:t 2271:v 1681:e 1674:t 1667:v 1612:. 1585:. 1528:. 1522:: 1514:: 1493:. 1487:: 1479:: 1458:. 1452:: 1444:: 1414:. 1402:: 1394:: 1384:: 1357:. 1353:: 1345:: 1339:9 1322:. 1318:: 1310:: 1287:. 1283:: 1275:: 1252:. 1248:: 1240:: 1215:. 1175:. 1171:: 1163:: 1140:. 1115:. 1103:: 1095:: 1072:. 1060:: 1052:: 1038:c 1025:. 1019:: 1011:: 981:. 975:: 967:: 940:. 926:: 918:: 891:. 887:: 879:: 856:. 852:: 844:: 758:. 752:N 738:, 732:V 728:) 725:0 722:( 719:N 715:/ 711:1 704:e 695:D 690:E 683:= 677:c 672:T 664:B 659:k 648:D 645:E 637:V 633:c 630:T 600:. 581:) 575:c 570:T 565:/ 561:T 558:( 552:1 544:c 539:T 532:B 527:k 516:) 510:c 505:T 498:T 495:( 472:, 466:c 461:T 454:B 449:k 441:= 438:) 435:0 432:= 429:T 426:( 413:c 410:T 406:T 159:K 39:(

Index


physics
John Bardeen
Leon Cooper
John Robert Schrieffer
microscopic theory
superconductivity
Heike Kamerlingh Onnes's
condensation
Cooper pairs
nuclear physics
nucleons
atomic nucleus
Nobel Prize in Physics
Fritz London
phenomenological
London equations
coherence
quantum state
Brian Pippard
coherence length
Meissner effect
specific heats
Nobel Prize in Physics
high-temperature superconductivity
K
Fermi surface
Cooper pairs
Bose–Einstein condensate
Nikolay Bogolyubov

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑