Knowledge

Autapse

Source 📝

194:. This suggests that autapses may play a role in mediating positive feedback. The B31/B32 autapse was unable to play a role in initiating the neuron's activity, although it is believed to have helped sustain the neuron's depolarized state. The extent to which autapses maintain depolarization remains unclear, particularly since other components of the neural circuit (i.e. B63 neurons) are also capable of providing strong synaptic input throughout the depolarization. Additionally, it has been suggested that autapses provide B31/B32 neurons with the ability to quickly 306:(AR) compared to both non-epileptic tissue and other types of synapses involving FS neurons. The study found similar results using a rat model as well. An increase in residual Ca2+ concentration in addition to the action potential amplitude in FS neurons was suggested to cause this increase in AR of epileptic tissue. Anti-epileptic drugs could potentially target this AR of GABA that seems to rampantly occur at FS neuron autapses. 220:
patterns of burst firing without autapses. Upon the introduction of an electrical autapse, the periodic state switches to the chaotic state and displays an alternating behavior that increases in frequency with a greater autaptic intensity and time delay. On the other hand, excitatory chemical
95:
behavior typically found in cerebral neurons. In 2009, autapses were, for the first time, associated with sustained activation. This proposed a possible function for excitatory autapses within a neural circuit. In 2014, electrical autapses were shown to generate stable
176:
step increased following a first depolarization step. This suggests that autapses act by suppressing the second of two closely timed depolarization steps and therefore, they may provide feedback inhibition onto these cells. This mechanism may also potentially explain
221:
autapses enhanced the overall chaotic state. The chaotic state was reduced and suppressed in the neurons with inhibitory chemical autapses. In HR model neurons without autapses, the pattern of firing altered from quiescent to periodic and then to chaotic as
130:
Recently, it has been proposed that autapses could possibly form as a result of neuronal signal transmission blockage, such as in cases of axonal injury induced by poisoning or impeding ion channels. Dendrites from the
198:. Bekkers (2009) has proposed that specifically blocking the contribution of autapses and then assessing the differences with or without blocked autapses could better illuminate the function of autapses. 1354:
Cobb, S.R; Halasy, K; Vida, I; Nyı́ri, G; Tamás, G; Buhl, E.H; Somogyi, P (1997). "Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus".
1459:"Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class" 603:
Peters, A.; Proskauer, C. C. (April 1980). "Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex. A combined Golgi-electron microscope study".
256:, suggesting that the degree of neuron self-innervation is cell-specific. Additionally, dendrite-targeting cell autapses were, on average, further from the soma compared to basket cell autapses. 303: 275:. The dendritic positions of synaptic connections of the same cell type were similar to those of autapses, suggesting that autaptic and synaptic networks share a common mechanism of formation. 101: 97: 346:
Seung, H. Sebastian; Lee, Daniel D.; Reis, Ben Y.; Tank, David W. (2000-09-01). "The Autapse: A Simple Illustration of Short-Term Analog Memory Storage by Tuned Synaptic Feedback".
108:. This indicated that they played a significant role in stimulating and regulating the collective behavior of neurons in the network. In 2016, a model of resonance was offered. 91:, which was absent in the same model neuron without autapse. More specifically, the neuron oscillated between high firing rates and firing suppression, reflecting the spike 213: 217: 241: 205: 315: 172:
of neocortical slices, they have been shown to impact excitability. Upon using a GABA-antagonist to block autapses, the likelihood of an immediate subsequent second
249: 552:
Preston, R.J.; Bishop, G.A.; Kitai, S.T. (1980-02-10). "Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study".
322:
microcultures has been shown to significantly increase the number of autapses per neuron compared to a control. This suggests that glia-derived soluble,
185: 291:
discharges has been suggested to be primarily dependent on autaptic activity for solitary excitatory hippocampal rat neurons grown in microculture.
225:
was increased. Generally, HR model neurons with autapses have the ability to swap into any firing pattern, regardless of the prior firing pattern.
468:
Van der Loos, H.; Glaser, E. M. (1972-12-24). "Autapses in neocortex cerebri: synapses between a pyramidal cell's axon and its own dendrites".
299: 154:
Broadly speaking, negative feedback in autapses tends to inhibit excitable neurons whereas positive feedback can stimulate quiescent neurons.
1516:
Segal, M. M. (October 1994). "Endogenous bursts underlie seizurelike activity in solitary excitatory hippocampal neurons in microcultures".
1233:
Wang, Hengtong; Ma, Jun; Chen, Yueling; Chen, Yong (2014). "Effect of an autapse on the firing pattern transition in a bursting neuron".
1693: 111:
Autapses have been used to simulate "same cell" conditions to help researchers make quantitative comparisons, such as studying how
1559:
Jiang, Man; Zhu, Jie; Liu, Yaping; Yang, Mingpo; Tian, Cuiping; Jiang, Shan; Wang, Yonghong; Guo, Hui; Wang, Kaiyan (2012-05-08).
233:
Neurons from several brain regions, such as the neocortex, substantia nigra, and hippocampus have been found to contain autapses.
780:"Autaptic muscarinic excitation underlies a plateau potential and persistent activity in a neuron of known behavioral function" 60:
The term "autapse" was first coined in 1972 by Van der Loos and Glaser, who observed them in Golgi preparations of the rabbit
528: 151:(inhibitory), just like their traditional synapse counterparts. Similarly, autapses can be electrical or chemical by nature. 1119:"Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex" 2522: 827:
Qin, H.; Ma, J.; Wang, C.; Chu, R. (2014). "Autapse-induced target wave, spiral wave in regular network of neurons".
161: 135:
in addition to an auxiliary axon may develop to form an autapse to help remediate the neuron's signal transmission.
2317: 2247: 654:
DiFiglia, M.; Pasik, P.; Pasik, T. (1976-09-17). "A Golgi study of neuronal types in the neostriatum of monkeys".
2312: 2242: 1857: 1268:
Park, Melburn R.; Lighthall, James W.; Kitai, Stephen T. (1980). "Recurrent inhibition in the rat neostriatum".
2517: 1932: 1082:
Qin, Huixin; Wu, Ying; Wang, Chunni; Ma, Jun (2015). "Emitting waves from defects in network with autapses".
284: 929:"Memantine Preferentially Blocks Extrasynaptic over Synaptic NMDA Receptor Currents in Hippocampal Autapses" 2532: 1927: 1915: 1686: 705:
Scheibel, M.E.; Scheibel, A.B. (1971). "Inhibition and the Renshaw Cell A Structural Critique; pp. 73–93".
144: 1967: 1905: 158: 1561:"Enhancement of Asynchronous Release from Fast-Spiking Interneuron in Human and Rat Epileptic Neocortex" 1311:
Karabelas, Athanasios B.; Purrura, Dominick P. (1980). "Evidence for autapses in the substantia nigra".
1962: 2472: 2322: 2257: 1885: 84: 2512: 2252: 1978: 201: 984:
Wang, Chunni; Guo, Shengli; Xu, Ying; Ma, Jun; Tang, Jun; Alzahrani, Faris; Hobiny, Aatef (2017).
2527: 1951: 1679: 105: 2419: 1946: 1710: 209: 2277: 2267: 2202: 1620:"Glia-derived signals induce synapse formation in neurones of the rat central nervous system" 319: 148: 263:
in developing rat neocortices contained autaptic connections, which were located more so on
2402: 2299: 2229: 2055: 1910: 1242: 1189: 1091: 1038: 883: 836: 749: 413: 295: 8: 2442: 2287: 2282: 1817: 1750: 178: 119: 1246: 1193: 1095: 1042: 887: 840: 753: 417: 2477: 2447: 2378: 2347: 2337: 2332: 2327: 2272: 2048: 1958: 1812: 1652: 1619: 1595: 1560: 1493: 1475: 1458: 1434: 1416: 1399: 1380: 1336: 1293: 1215: 1153: 1135: 1118: 961: 928: 904: 871: 852: 809: 687: 636: 585: 534: 442: 401: 379: 184:
In cell culture, autapses have been shown to contribute to the prolonged activation of
88: 25: 1368: 927:
Xia, Peng; Chen, Huei-sheng Vincent; Zhang, Dongxian; Lipton, Stuart A. (2010-08-18).
872:"Autapse-induced multiple coherence resonance in single neurons and neuronal networks" 402:"Autapse-induced multiple coherence resonance in single neurons and neuronal networks" 2462: 2452: 2437: 2342: 2207: 1988: 1940: 1745: 1740: 1657: 1639: 1635: 1600: 1582: 1541: 1533: 1498: 1480: 1439: 1421: 1372: 1328: 1324: 1285: 1281: 1207: 1158: 1140: 1064: 1056: 1007: 966: 948: 909: 856: 801: 722: 679: 671: 667: 628: 620: 577: 569: 565: 524: 493: 485: 481: 447: 429: 371: 363: 260: 1384: 1340: 1297: 1219: 813: 691: 640: 538: 2429: 2392: 2387: 1735: 1647: 1631: 1590: 1572: 1525: 1488: 1470: 1429: 1411: 1364: 1320: 1277: 1250: 1197: 1148: 1130: 1099: 1046: 997: 956: 944: 940: 899: 891: 844: 791: 757: 714: 663: 612: 589: 561: 516: 477: 437: 421: 355: 268: 61: 21: 383: 2197: 2166: 2161: 2043: 2038: 1862: 1577: 513:
Neurons and Interneuronal Connections of the Central Visual System | SpringerLink
272: 69: 1254: 1103: 2487: 2457: 2414: 2234: 2192: 2170: 2090: 1973: 1797: 1702: 264: 253: 222: 195: 173: 132: 1529: 1202: 1177: 1051: 1026: 848: 796: 779: 761: 740:
Herrmann, Christoph S. (August 2004). "Autapse Turns Neuron Into Oscillator".
520: 359: 2506: 2136: 2121: 1802: 1643: 1586: 1537: 1484: 1425: 1400:"Massive autaptic self-innervation of GABAergic neurons in cat visual cortex" 1144: 1060: 1011: 952: 726: 675: 624: 573: 489: 433: 367: 245: 112: 2382: 2304: 2217: 2098: 2028: 1807: 1730: 1661: 1604: 1211: 1162: 1068: 1002: 985: 970: 913: 805: 451: 375: 326:-sensitive factors induce autapse formation in rat retinal ganglion cells. 323: 1545: 1502: 1443: 1376: 1332: 1289: 632: 581: 497: 68:
circuitry. Also in the 1970s, autapses have been described in dog and rat
2397: 2212: 2116: 2074: 2006: 2001: 1822: 1760: 1755: 1725: 683: 237: 165: 77: 73: 236:
Autapses have been observed to be relatively more abundant in GABAergic
2467: 2156: 2033: 1996: 616: 986:"Formation of Autapse Connected to Neuron and Its Biological Function" 895: 718: 425: 400:
Yilmaz, Ergin; Ozer, Mahmut; Baysal, Veli; Perc, Matjaž (2016-08-02).
2482: 2016: 1867: 1840: 1832: 65: 37: 2146: 2131: 2126: 1850: 1845: 1772: 1767: 1117:
Bacci, Alberto; Huguenard, John R.; Prince, David A. (2003-02-01).
92: 48: 2370: 2262: 1671: 1457:
Lübke, J.; Markram, H.; Frotscher, M.; Sakmann, B. (1996-05-15).
190: 169: 42: 32:
onto itself. It can also be described as a synapse formed by the
1618:
Nägler, Karl; Mauch, Daniela H; Pfrieger, Frank W (2001-06-15).
2069: 2024: 1789: 157:
Although the stimulation of inhibitory autapses did not induce
29: 83:
In 2000, they were first modeled as supporting persistence in
1178:"Synaptic Transmission: Excitatory Autapses Find a Function?" 294:
More recently, in human neocortical tissues of patients with
288: 1456: 1235:
Communications in Nonlinear Science and Numerical Simulation
1084:
Communications in Nonlinear Science and Numerical Simulation
870:
Yilmaz, E.; Ozer, M.; Baysal, V.; Perc, M. (2 August 2016).
778:
Saada, R.; Miller, N.; Hurwitz, I.; Susswein, A. J. (2009).
2108: 188:, which significantly contribute food-response behavior in 33: 777: 64:
while originally conducting a quantitative analysis of
1353: 1116: 869: 399: 1617: 1398:Tamás, G.; Buhl, E. H.; Somogyi, P. (1997-08-15). 1267: 926: 653: 551: 467: 2504: 1397: 1310: 829:Science China Physics, Mechanics & Astronomy 704: 510: 345: 1558: 602: 1232: 742:International Journal of Bifurcation and Chaos 302:(FS) neurons have been shown to have stronger 87:. In 2004, they were modeled as demonstrating 1687: 1025:Ikeda, Kaori; Bekkers, John M. (2006-05-09). 773: 771: 122:affect synaptic versus extrasynaptic NMDARs. 1024: 826: 733: 1081: 983: 244:of the cat visual cortex compared to spiny 1694: 1680: 820: 768: 1651: 1594: 1576: 1492: 1474: 1433: 1415: 1201: 1152: 1134: 1050: 1001: 960: 903: 863: 795: 441: 138: 739: 1175: 511:Shkol’nik-Yarros, Ekaterina G. (1971). 278: 2505: 1675: 1515: 348:Journal of Computational Neuroscience 204:(HR) model neurons have demonstrated 463: 461: 395: 393: 341: 339: 309: 298:, the GABAergic output autapses of 162:inhibitory post-synaptic potentials 13: 1701: 1476:10.1523/JNEUROSCI.16-10-03209.1996 1417:10.1523/JNEUROSCI.17-16-06352.1997 1136:10.1523/JNEUROSCI.23-03-00859.2003 14: 2544: 458: 390: 336: 1636:10.1111/j.1469-7793.2001.00665.x 318:to treat glia-free purified rat 1858:Oligodendrocyte progenitor cell 1611: 1552: 1509: 1450: 1391: 1347: 1304: 1261: 1226: 1169: 1110: 1075: 1018: 977: 920: 945:10.1523/JNEUROSCI.2488-10.2010 698: 647: 596: 545: 504: 1: 1369:10.1016/s0306-4522(97)00055-9 707:Brain, Behavior and Evolution 329: 285:paroxysmal depolarizing shift 1578:10.1371/journal.pbio.1001324 1325:10.1016/0006-8993(80)90935-x 1282:10.1016/0006-8993(80)91217-2 668:10.1016/0006-8993(76)90669-7 566:10.1016/0006-8993(80)90462-X 482:10.1016/0006-8993(72)90189-8 125: 116:-methyl-D-aspartate receptor 7: 1968:Postganglionic nerve fibers 1463:The Journal of Neuroscience 1404:The Journal of Neuroscience 1255:10.1016/j.cnsns.2014.02.018 1123:The Journal of Neuroscience 1104:10.1016/j.cnsns.2014.11.008 228: 10: 2549: 2523:Computational neuroscience 1963:Preganglionic nerve fibers 1518:Journal of Neurophysiology 55: 2473:Olfactory receptor neuron 2428: 2369: 2362: 2298: 2228: 2185: 2145: 2137:Neurofibril/neurofilament 2107: 2089: 2082: 2068: 2015: 1987: 1893: 1884: 1831: 1788: 1781: 1718: 1709: 1624:The Journal of Physiology 1530:10.1152/jn.1994.72.4.1874 1203:10.1016/j.cub.2009.02.010 1176:Bekkers, John M. (2009). 1052:10.1016/j.cub.2006.03.085 849:10.1007/s11433-014-5466-5 797:10.1016/j.cub.2009.01.060 762:10.1142/S0218127404009338 521:10.1007/978-1-4684-0715-0 85:recurrent neural networks 605:Journal of Neurocytology 242:dendrite-targeting cells 933:Journal of Neuroscience 360:10.1023/A:1008971908649 316:glia-conditioned medium 289:interictal epileptiform 143:Autapses can be either 36:of a neuron on its own 2420:Neuromuscular junction 2283:III or Aδ or fast pain 139:Structure and function 2518:Cellular neuroscience 2438:Meissner's corpuscle 2403:Postsynaptic density 2300:Efferent nerve fiber 2288:IV or C or slow pain 2230:Afferent nerve fiber 2056:Satellite glial cell 1003:10.1155/2017/5436737 304:asynchronous release 296:intractable epilepsy 279:Disease implications 106:neural model network 89:oscillatory behavior 2533:Signal transduction 2443:Merkel nerve ending 1247:2014CNSNS..19.3242W 1194:2009CBio...19.R296B 1096:2015CNSNS..23..164Q 1043:2006CBio...16.R308I 939:(33): 11246–11250. 888:2016NatSR...630914Y 841:2014SCPMA..57.1918Q 754:2004IJBC...14..623H 418:2016NatSR...630914Y 179:shunting inhibition 145:glutamate-releasing 2478:Photoreceptor cell 2448:Pacinian corpuscle 2379:Electrical synapse 2333:Lower motor neuron 2328:Upper motor neuron 2049:Internodal segment 1989:Connective tissues 1959:Autonomic ganglion 876:Scientific Reports 617:10.1007/bf01205156 406:Scientific Reports 26:electrical synapse 2500: 2499: 2496: 2495: 2463:Free nerve ending 2430:Sensory receptors 2358: 2357: 2273:Ib or Golgi or Aα 2181: 2180: 2064: 2063: 1941:Ramus communicans 1880: 1879: 1876: 1875: 1746:Commissural fiber 1741:Association fiber 1736:Projection fibers 1630:(Pt 3): 665–679. 1469:(10): 3209–3218. 1410:(16): 6352–6364. 896:10.1038/srep30914 835:(10): 1918–1926. 719:10.1159/000125425 530:978-1-4684-0717-4 426:10.1038/srep30914 271:rather than main 269:oblique dendrites 261:pyramidal neurons 2540: 2393:Synaptic vesicle 2388:Chemical synapse 2367: 2366: 2087: 2086: 2080: 2079: 1891: 1890: 1786: 1785: 1716: 1715: 1696: 1689: 1682: 1673: 1672: 1666: 1665: 1655: 1615: 1609: 1608: 1598: 1580: 1556: 1550: 1549: 1524:(4): 1874–1884. 1513: 1507: 1506: 1496: 1478: 1454: 1448: 1447: 1437: 1419: 1395: 1389: 1388: 1351: 1345: 1344: 1308: 1302: 1301: 1265: 1259: 1258: 1241:(9): 3242–3254. 1230: 1224: 1223: 1205: 1188:(7): R296–R298. 1173: 1167: 1166: 1156: 1138: 1114: 1108: 1107: 1090:(1–3): 164–174. 1079: 1073: 1072: 1054: 1022: 1016: 1015: 1005: 981: 975: 974: 964: 924: 918: 917: 907: 867: 861: 860: 824: 818: 817: 799: 775: 766: 765: 737: 731: 730: 702: 696: 695: 651: 645: 644: 600: 594: 593: 549: 543: 542: 508: 502: 501: 465: 456: 455: 445: 397: 388: 387: 343: 320:retinal ganglion 310:Effects of drugs 273:apical dendrites 147:(excitatory) or 62:occipital cortex 2548: 2547: 2543: 2542: 2541: 2539: 2538: 2537: 2513:Neurophysiology 2503: 2502: 2501: 2492: 2424: 2354: 2303: 2294: 2278:II or Aβ and Aγ 2233: 2224: 2177: 2167:Apical dendrite 2162:Dendritic spine 2141: 2103: 2073: 2060: 2044:Node of Ranvier 2039:Myelin incisure 2011: 1983: 1872: 1863:Oligodendrocyte 1846:Ependymal cells 1827: 1777: 1705: 1700: 1670: 1669: 1616: 1612: 1571:(5): e1001324. 1557: 1553: 1514: 1510: 1455: 1451: 1396: 1392: 1352: 1348: 1309: 1305: 1266: 1262: 1231: 1227: 1182:Current Biology 1174: 1170: 1115: 1111: 1080: 1076: 1031:Current Biology 1023: 1019: 982: 978: 925: 921: 868: 864: 825: 821: 784:Current Biology 776: 769: 738: 734: 703: 699: 652: 648: 601: 597: 550: 546: 531: 509: 505: 466: 459: 398: 391: 344: 337: 332: 312: 281: 265:basal dendrites 259:80% of layer V 254:pyramidal cells 231: 186:B31/B32 neurons 159:hyperpolarizing 141: 128: 70:cerebral cortex 58: 12: 11: 5: 2546: 2536: 2535: 2530: 2528:Cell signaling 2525: 2520: 2515: 2498: 2497: 2494: 2493: 2491: 2490: 2488:Taste receptor 2485: 2480: 2475: 2470: 2465: 2460: 2458:Muscle spindle 2455: 2453:Ruffini ending 2450: 2445: 2440: 2434: 2432: 2426: 2425: 2423: 2422: 2417: 2415:Ribbon synapse 2412: 2407: 2406: 2405: 2400: 2395: 2385: 2375: 2373: 2364: 2360: 2359: 2356: 2355: 2353: 2352: 2351: 2350: 2345: 2340: 2330: 2325: 2320: 2315: 2309: 2307: 2296: 2295: 2293: 2292: 2291: 2290: 2285: 2280: 2275: 2270: 2260: 2255: 2250: 2245: 2239: 2237: 2235:Sensory neuron 2226: 2225: 2223: 2222: 2221: 2220: 2210: 2205: 2203:Pseudounipolar 2200: 2195: 2189: 2187: 2183: 2182: 2179: 2178: 2176: 2175: 2174: 2173: 2171:Basal dendrite 2164: 2159: 2151: 2149: 2143: 2142: 2140: 2139: 2134: 2129: 2124: 2122:Axon terminals 2119: 2113: 2111: 2105: 2104: 2102: 2101: 2095: 2093: 2084: 2077: 2066: 2065: 2062: 2061: 2059: 2058: 2053: 2052: 2051: 2046: 2041: 2036: 2021: 2019: 2013: 2012: 2010: 2009: 2004: 1999: 1993: 1991: 1985: 1984: 1982: 1981: 1976: 1974:Nerve fascicle 1971: 1965: 1956: 1955: 1954: 1949: 1937: 1936: 1935: 1930: 1920: 1919: 1918: 1913: 1908: 1897: 1895: 1888: 1882: 1881: 1878: 1877: 1874: 1873: 1871: 1870: 1865: 1860: 1855: 1854: 1853: 1843: 1837: 1835: 1829: 1828: 1826: 1825: 1820: 1815: 1810: 1805: 1800: 1794: 1792: 1783: 1779: 1778: 1776: 1775: 1770: 1765: 1764: 1763: 1758: 1753: 1748: 1743: 1738: 1728: 1722: 1720: 1713: 1707: 1706: 1703:Nervous tissue 1699: 1698: 1691: 1684: 1676: 1668: 1667: 1610: 1551: 1508: 1449: 1390: 1363:(3): 629–648. 1346: 1319:(2): 467–473. 1313:Brain Research 1303: 1276:(2): 359–369. 1270:Brain Research 1260: 1225: 1168: 1129:(3): 859–866. 1109: 1074: 1017: 976: 919: 862: 819: 790:(6): 479–484. 767: 748:(2): 623–633. 732: 697: 662:(2): 245–256. 656:Brain Research 646: 611:(2): 163–183. 595: 560:(2): 253–263. 554:Brain Research 544: 529: 503: 470:Brain Research 457: 389: 354:(2): 171–185. 334: 333: 331: 328: 311: 308: 283:In the 1990s, 280: 277: 250:double bouquet 230: 227: 202:Hindmarsh–Rose 174:depolarization 149:GABA-releasing 140: 137: 127: 124: 57: 54: 9: 6: 4: 3: 2: 2545: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2510: 2508: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2435: 2433: 2431: 2427: 2421: 2418: 2416: 2413: 2411: 2408: 2404: 2401: 2399: 2396: 2394: 2391: 2390: 2389: 2386: 2384: 2380: 2377: 2376: 2374: 2372: 2368: 2365: 2361: 2349: 2348:γ motorneuron 2346: 2344: 2343:β motorneuron 2341: 2339: 2338:α motorneuron 2336: 2335: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2310: 2308: 2306: 2301: 2297: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2265: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2240: 2238: 2236: 2231: 2227: 2219: 2216: 2215: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2190: 2188: 2184: 2172: 2168: 2165: 2163: 2160: 2158: 2155: 2154: 2153: 2152: 2150: 2148: 2144: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2114: 2112: 2110: 2106: 2100: 2097: 2096: 2094: 2092: 2088: 2085: 2081: 2078: 2076: 2071: 2067: 2057: 2054: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2031: 2030: 2026: 2023: 2022: 2020: 2018: 2014: 2008: 2005: 2003: 2000: 1998: 1995: 1994: 1992: 1990: 1986: 1980: 1977: 1975: 1972: 1969: 1966: 1964: 1960: 1957: 1953: 1950: 1948: 1945: 1944: 1943: 1942: 1938: 1934: 1931: 1929: 1926: 1925: 1924: 1921: 1917: 1914: 1912: 1909: 1907: 1904: 1903: 1902: 1899: 1898: 1896: 1892: 1889: 1887: 1883: 1869: 1866: 1864: 1861: 1859: 1856: 1852: 1849: 1848: 1847: 1844: 1842: 1839: 1838: 1836: 1834: 1830: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1795: 1793: 1791: 1787: 1784: 1780: 1774: 1771: 1769: 1766: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1733: 1732: 1729: 1727: 1724: 1723: 1721: 1717: 1714: 1712: 1708: 1704: 1697: 1692: 1690: 1685: 1683: 1678: 1677: 1674: 1663: 1659: 1654: 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1614: 1606: 1602: 1597: 1592: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1555: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1512: 1504: 1500: 1495: 1490: 1486: 1482: 1477: 1472: 1468: 1464: 1460: 1453: 1445: 1441: 1436: 1431: 1427: 1423: 1418: 1413: 1409: 1405: 1401: 1394: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1350: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1307: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1264: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1221: 1217: 1213: 1209: 1204: 1199: 1195: 1191: 1187: 1183: 1179: 1172: 1164: 1160: 1155: 1150: 1146: 1142: 1137: 1132: 1128: 1124: 1120: 1113: 1105: 1101: 1097: 1093: 1089: 1085: 1078: 1070: 1066: 1062: 1058: 1053: 1048: 1044: 1040: 1036: 1032: 1028: 1021: 1013: 1009: 1004: 999: 995: 991: 987: 980: 972: 968: 963: 958: 954: 950: 946: 942: 938: 934: 930: 923: 915: 911: 906: 901: 897: 893: 889: 885: 881: 877: 873: 866: 858: 854: 850: 846: 842: 838: 834: 830: 823: 815: 811: 807: 803: 798: 793: 789: 785: 781: 774: 772: 763: 759: 755: 751: 747: 743: 736: 728: 724: 720: 716: 712: 708: 701: 693: 689: 685: 681: 677: 673: 669: 665: 661: 657: 650: 642: 638: 634: 630: 626: 622: 618: 614: 610: 606: 599: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 548: 540: 536: 532: 526: 522: 518: 514: 507: 499: 495: 491: 487: 483: 479: 475: 471: 464: 462: 453: 449: 444: 439: 435: 431: 427: 423: 419: 415: 411: 407: 403: 396: 394: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 342: 340: 335: 327: 325: 321: 317: 307: 305: 301: 297: 292: 290: 286: 276: 274: 270: 266: 262: 257: 255: 251: 247: 243: 239: 234: 226: 224: 219: 215: 211: 207: 203: 199: 197: 193: 192: 187: 182: 180: 175: 171: 167: 163: 160: 155: 152: 150: 146: 136: 134: 123: 121: 117: 115: 109: 107: 103: 99: 94: 90: 86: 81: 79: 75: 71: 67: 63: 53: 51: 50: 45: 44: 39: 35: 31: 27: 23: 19: 2409: 2383:Gap junction 2305:Motor neuron 2099:Axon hillock 2075:nerve fibers 2029:Schwann cell 1939: 1922: 1900: 1818:Medium spiny 1731:White matter 1719:Tissue Types 1627: 1623: 1613: 1568: 1565:PLOS Biology 1564: 1554: 1521: 1517: 1511: 1466: 1462: 1452: 1407: 1403: 1393: 1360: 1357:Neuroscience 1356: 1349: 1316: 1312: 1306: 1273: 1269: 1263: 1238: 1234: 1228: 1185: 1181: 1171: 1126: 1122: 1112: 1087: 1083: 1077: 1034: 1030: 1020: 993: 989: 979: 936: 932: 922: 879: 875: 865: 832: 828: 822: 787: 783: 745: 741: 735: 713:(1): 73–93. 710: 706: 700: 659: 655: 649: 608: 604: 598: 557: 553: 547: 512: 506: 473: 469: 412:(1): 30914. 409: 405: 351: 347: 324:proteinase K 313: 300:fast-spiking 293: 282: 258: 235: 232: 200: 189: 183: 166:interneurons 156: 153: 142: 129: 113: 110: 102:spiral waves 82: 59: 47: 41: 17: 15: 2398:Active zone 2363:Termination 2213:Interneuron 2117:Telodendron 2025:Myelination 2007:Endoneurium 2002:Perineurium 1823:Interneuron 1813:Von Economo 1761:Decussation 1756:Nerve tract 1726:Grey matter 1037:(9): R308. 476:: 355–360. 267:and apical 120:antagonists 78:spinal cord 74:neostriatum 2507:Categories 2468:Nociceptor 2208:Multipolar 2157:Nissl body 2034:Neurilemma 1997:Epineurium 1782:Cell Types 1027:"Autapses" 990:Complexity 330:References 223:DC current 208:, regular 196:repolarize 76:, and cat 2483:Hair cell 2017:Neuroglia 1979:Funiculus 1868:Microglia 1841:Astrocyte 1798:Pyramidal 1751:Lemniscus 1644:0022-3751 1587:1545-7885 1538:0022-3077 1485:0270-6474 1426:0270-6474 1145:1529-2401 1061:0960-9822 1012:1076-2787 953:0270-6474 882:: 30914. 857:120661751 727:0006-8977 676:0006-8993 625:0300-4864 574:0006-8993 490:0006-8993 434:2045-2322 368:0929-5313 214:quiescent 126:Formation 72:, monkey 66:neocortex 38:dendrites 2268:Ia or Aα 2198:Unipolar 2147:Dendrite 2132:Axolemma 2127:Axoplasm 1911:Ganglion 1851:Tanycyte 1803:Purkinje 1790:Neuronal 1773:Meninges 1768:Neuropil 1662:11410625 1605:22589699 1385:15479304 1341:35517474 1298:29451737 1220:15821336 1212:19368875 1163:12574414 1069:16682332 971:20720132 914:27480120 814:15990017 806:19269179 692:40311354 641:34203892 539:37317913 452:27480120 376:11030520 314:Using a 246:stellate 229:Location 218:periodic 118:(NMDAR) 93:bursting 49:in vitro 22:chemical 2410:Autapse 2371:Synapse 2218:Renshaw 2193:Bipolar 2070:Neurons 1923:Ventral 1894:General 1808:Granule 1653:2278670 1596:3348166 1546:7823106 1503:8627359 1494:6579140 1444:9236244 1435:6568358 1377:9219929 1333:6158366 1290:7388619 1243:Bibcode 1190:Bibcode 1154:6741939 1092:Bibcode 1039:Bibcode 996:: 1–9. 962:2932667 905:4969620 884:Bibcode 837:Bibcode 750:Bibcode 633:6160209 590:1827091 582:7353139 498:4645210 443:4969620 414:Bibcode 210:spiking 206:chaotic 191:Aplysia 170:layer V 56:History 43:in vivo 28:from a 18:autapse 2263:fibers 1901:Dorsal 1660:  1650:  1642:  1603:  1593:  1585:  1544:  1536:  1501:  1491:  1483:  1442:  1432:  1424:  1383:  1375:  1339:  1331:  1296:  1288:  1218:  1210:  1161:  1151:  1143:  1067:  1059:  1010:  969:  959:  951:  912:  902:  855:  812:  804:  725:  690:  684:822916 682:  674:  639:  631:  623:  588:  580:  572:  537:  527:  496:  488:  450:  440:  432:  384:547421 382:  374:  366:  287:-type 252:, and 238:basket 216:, and 98:target 30:neuron 2186:Types 2083:Parts 1952:White 1933:Ramus 1916:Ramus 1833:Glial 1381:S2CID 1337:S2CID 1294:S2CID 1216:S2CID 853:S2CID 810:S2CID 688:S2CID 637:S2CID 586:S2CID 535:S2CID 380:S2CID 104:in a 20:is a 2109:Axon 2091:Soma 1947:Gray 1928:Root 1906:Root 1658:PMID 1640:ISSN 1601:PMID 1583:ISSN 1542:PMID 1534:ISSN 1499:PMID 1481:ISSN 1440:PMID 1422:ISSN 1373:PMID 1329:PMID 1286:PMID 1208:PMID 1159:PMID 1141:ISSN 1065:PMID 1057:ISSN 1008:ISSN 994:2017 967:PMID 949:ISSN 910:PMID 802:PMID 723:ISSN 680:PMID 672:ISSN 629:PMID 621:ISSN 578:PMID 570:ISSN 525:ISBN 494:PMID 486:ISSN 448:PMID 430:ISSN 372:PMID 364:ISSN 240:and 133:soma 100:and 34:axon 2323:SVE 2318:GVE 2313:GSE 2258:SVA 2253:SSA 2248:GVA 2243:GSA 1886:PNS 1711:CNS 1648:PMC 1632:doi 1628:533 1591:PMC 1573:doi 1526:doi 1489:PMC 1471:doi 1430:PMC 1412:doi 1365:doi 1321:doi 1317:200 1278:doi 1274:194 1251:doi 1198:doi 1149:PMC 1131:doi 1100:doi 1047:doi 998:doi 957:PMC 941:doi 900:PMC 892:doi 845:doi 792:doi 758:doi 715:doi 664:doi 660:114 613:doi 562:doi 558:183 517:doi 478:doi 438:PMC 422:doi 356:doi 168:of 164:in 46:or 24:or 16:An 2509:: 2027:: 1656:. 1646:. 1638:. 1626:. 1622:. 1599:. 1589:. 1581:. 1569:10 1567:. 1563:. 1540:. 1532:. 1522:72 1520:. 1497:. 1487:. 1479:. 1467:16 1465:. 1461:. 1438:. 1428:. 1420:. 1408:17 1406:. 1402:. 1379:. 1371:. 1361:79 1359:. 1335:. 1327:. 1315:. 1292:. 1284:. 1272:. 1249:. 1239:19 1237:. 1214:. 1206:. 1196:. 1186:19 1184:. 1180:. 1157:. 1147:. 1139:. 1127:23 1125:. 1121:. 1098:. 1088:23 1086:. 1063:. 1055:. 1045:. 1035:16 1033:. 1029:. 1006:. 992:. 988:. 965:. 955:. 947:. 937:30 935:. 931:. 908:. 898:. 890:. 878:. 874:. 851:. 843:. 833:57 831:. 808:. 800:. 788:19 786:. 782:. 770:^ 756:. 744:. 721:. 709:. 686:. 678:. 670:. 658:. 635:. 627:. 619:. 607:. 584:. 576:. 568:. 556:. 533:. 523:. 515:. 492:. 484:. 474:48 472:. 460:^ 446:. 436:. 428:. 420:. 408:. 404:. 392:^ 378:. 370:. 362:. 350:. 338:^ 248:, 212:, 181:. 80:. 52:. 40:, 2381:/ 2302:/ 2232:/ 2169:/ 2072:/ 1970:) 1961:( 1695:e 1688:t 1681:v 1664:. 1634:: 1607:. 1575:: 1548:. 1528:: 1505:. 1473:: 1446:. 1414:: 1387:. 1367:: 1343:. 1323:: 1300:. 1280:: 1257:. 1253:: 1245:: 1222:. 1200:: 1192:: 1165:. 1133:: 1106:. 1102:: 1094:: 1071:. 1049:: 1041:: 1014:. 1000:: 973:. 943:: 916:. 894:: 886:: 880:9 859:. 847:: 839:: 816:. 794:: 764:. 760:: 752:: 746:4 729:. 717:: 711:4 694:. 666:: 643:. 615:: 609:9 592:. 564:: 541:. 519:: 500:. 480:: 454:. 424:: 416:: 410:6 386:. 358:: 352:9 114:N

Index

chemical
electrical synapse
neuron
axon
dendrites
in vivo
in vitro
occipital cortex
neocortex
cerebral cortex
neostriatum
spinal cord
recurrent neural networks
oscillatory behavior
bursting
target
spiral waves
neural model network
N-methyl-D-aspartate receptor
antagonists
soma
glutamate-releasing
GABA-releasing
hyperpolarizing
inhibitory post-synaptic potentials
interneurons
layer V
depolarization
shunting inhibition
B31/B32 neurons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.