Knowledge

Evoked potential

Source đź“ť

217:
several check sizes. In the original demonstration of the technique the sine and cosine products were fed through lowpass filters (as when recording a SSEP ) while viewing a pattern of fine checks whose black and white squares exchanged place six times per second. Then the size of the squares was progressively increased so as to give a plot of evoked potential amplitude versus check size (hence "sweep"). Subsequent authors have implemented the sweep technique by using computer software to increment the spatial frequency of a grating in a series of small steps and to compute a time-domain average for each discrete spatial frequency. A single sweep may be adequate or it may be necessary to average the graphs obtained in several sweeps with the averager triggered by the sweep cycle. Averaging 16 sweeps can improve the signal-to-noise ratio of the graph by a factor of four. The sweep technique has proved useful in measuring rapidly adapting visual processes and also for recording from babies, where recording duration is necessarily short. Norcia and Tyler have used the technique to document the development of visual acuity and contrast sensitivity through the first years of life. They have emphasized that, in diagnosing abnormal visual development, the more precise the developmental norms, the more sharply can the abnormal be distinguished from the normal, and to that end have documented normal visual development in a large group of infants. For many years the sweep technique has been used in paediatric ophthalmology (
190:
signals to a two-pen recorder via lowpass filters. This allowed him to demonstrate that the brain attained a steady-state regime in which the amplitude and phase of the harmonics (frequency components) of the response were approximately constant over time. By analogy with the steady-state response of a resonant circuit that follows the initial transient response he defined an idealized steady-state evoked potential (SSEP) as a form of response to repetitive sensory stimulation in which the constituent frequency components of the response remain constant with time in both amplitude and phase. Although this definition implies a series of identical temporal waveforms, it is more helpful to define the SSEP in terms of the frequency components that are an alternative description of the time-domain waveform, because different frequency components can have quite different properties. For example, the properties of the high-frequency flicker SSEP (whose peak amplitude is near 40–50 Hz) correspond to the properties of the subsequently discovered magnocellular neurons in the retina of the macaque monkey, while the properties of the medium-frequency flicker SSEP ( whose amplitude peak is near 15–20 Hz) correspond to the properties of parvocellular neurons. Since a SSEP can be completely described in terms of the amplitude and phase of each frequency component it can be quantified more unequivocally than an averaged transient evoked potential.
208:
analyzers. For example, when two unpatterned lights are modulated at slightly different frequencies (F1 and F2) and superimposed, multiple nonlinear cross-modulation components of frequency (mF1 ± nF2) are created in the SSEP, where m and n are integers. These components allow nonlinear processing in the brain to be investigated. By frequency-tagging two superimposed gratings, spatial frequency and orientation tuning properties of the brain mechanisms that process spatial form can be isolated and studied. Stimuli of different sensory modalities can also be tagged. For example, a visual stimulus was flickered at Fv Hz and a simultaneously presented auditory tone was amplitude modulated at Fa Hz. The existence of a (2Fv + 2Fa) component in the evoked magnetic brain response demonstrated an audio-visual convergence area in the human brain, and the distribution of this response over the head allowed this brain area to be localized. More recently, frequency tagging has been extended from studies of sensory processing to studies of selective attention and of consciousness.
808:
central nervous system during surgeries which place these structures at risk. These motor pathways, including the lateral corticospinal tract, are located in the lateral and ventral funiculi of the spinal cord. Since the ventral and dorsal spinal cord have separate blood supply with very limited collateral flow, an anterior cord syndrome (paralysis or paresis with some preserved sensory function) is a possible surgical sequela, so it is important to have monitoring specific to the motor tracts as well as dorsal column monitoring.
199:
and Regan discovered that the amplitude and phase variability of the SSEP can be sufficiently small that the bandwidth of the SSEP's constituent frequency components can be at the theoretical limit of spectral resolution up to at least a 500-second recording duration (0.002 Hz in this case). Repetitive sensory stimulation elicits a steady-state magnetic brain response that can be analysed in the same way as the SSEP.
776:
antidromic stimulation of sensory tracts—even when the recording was from muscles (antidromic sensory tract stimulation triggers myogenic responses through synapses at the root entry level). TCMEP, whether electrical or magnetic, is the most practical way to ensure pure motor responses, since stimulation of sensory cortex cannot result in descending impulses beyond the first synapse (synapses cannot be backfired).
566:(ERPs). ERPs are brain responses that are time-locked to some "event", such as a sensory stimulus, a mental event (such as recognition of a target stimulus), or the omission of a stimulus. For AEPs, the "event" is a sound. AEPs (and ERPs) are very small electrical voltage potentials originating from the brain recorded from the scalp in response to an auditory stimulus, such as different tones, speech sounds, etc. 451: 592: 181:(ERP), although the terms are sometimes used synonymously, because ERP has higher latency, and is associated with higher cognitive processing. Evoked potentials are mainly classified by the type of stimulus: somatosensory, auditory, visual. But they could also be classified according to stimulus frequency, wave latencies, potential origin, location, and derivation. 638:
consciousness, if used early in comatose patient, it can predict outcome reliably and efficiently. For example, comatose patients with no responses bilaterally has 95% chance of not recovering from coma. But care should be taken analyzing the result. For example, increased sedation and other CNS injuries such as the spinal cord can affect SEP.
230:
below some predetermined value, and to decrease luminance if it rises above this value. The amplitude of the SSEP then hovers about this predetermined value. Now the wavelength (colour) of the stimulus is progressively changed. The resulting plot of stimulus luminance versus wavelength is a plot of the spectral sensitivity of the visual system.
721:
As in the adult, SEP findings in combination with the clinical assessment and EEG findings can contribute to the determination of prognosis in comatose children. In high risk newborns, tracking SEP findings over time can be helpful for outcome prognostication. Several neurodegenerative disorders have
660:
The two most looked at aspects of an SSEP are the amplitude and latency of the peaks. The most predominant peaks have been studied and named in labs. Each peak is given a letter and a number in its name. For example, N20 refers to a negative peak (N) at 20ms. This peak is recorded from the cortex
295:
Short latency EPs such as SSEP, VEP, and BAEP can be used to indicate prognosis for traumatic and anoxic brain injury. Early after anoxic brain injury, no response indicates mortality accurately. In traumatic brain injury, abnormal responses indicates failure to recover from coma. In both types of
198:
of the SSEP, high frequency stimulation can produce a near-sinusoidal SSEP waveform, but this is not germane to the definition of a SSEP. By using zoom-FFT to record SSEPs at the theoretical limit of spectral resolution ΔF (where ΔF in Hz is the reciprocal of the recording duration in seconds) Regan
730:
Conventional SSEPs monitor the functioning of the part of the somatosensory system involved in sensations such as touch and vibration. The part of the somatosensory system that transmits pain and temperature signals is monitored using laser evoked potentials (LEP). LEPs are evoked by applying finely
420:
were the largest. In 1965, Spehlmann used a checkerboard stimulation to describe human VEPs. An attempt to localize structures in the primary visual pathway was completed by Szikla and colleagues. Halliday and colleagues completed the first clinical investigations using VEP by recording delayed VEPs
415:
In 1934, Adrian and Matthew noticed potential changes of the occipital EEG can be observed under stimulation of light. Ciganek developed the first nomenclature for occipital EEG components in 1961. During that same year, Hirsch and colleagues recorded a visual evoked potential (VEP) on the occipital
216:
The sweep technique is a hybrid frequency domain/time domain technique. A plot of, for example, response amplitude versus the check size of a stimulus checkerboard pattern plot can be obtained in 10 seconds, far faster than when time-domain averaging is used to record an evoked potential for each of
207:
This technique allows several (e.g., four) SSEPs to be recorded simultaneously from any given location on the scalp. Different sites of stimulation or different stimuli can be tagged with slightly different frequencies that are virtually identical to the brain, but easily separated by Fourier series
775:
During the 1990s, there were attempts to monitor "motor evoked potentials", including "neurogenic motor evoked potentials" recorded from peripheral nerves, following direct electrical stimulation of the spinal cord. It has become clear that these "motor" potentials were almost entirely elicited by
803:
Somatosensory evoked potentials provide monitoring for the dorsal columns of the spinal cord. Sensory evoked potentials may also be used during surgeries which place brain structures at risk. They are effectively used to determine cortical ischemia during carotid endarterectomy surgeries and for
229:
This technique allows the SSEP to directly control the stimulus that elicits the SSEP without the conscious intervention of the experimental subject. For example, the running average of the SSEP can be arranged to increase the luminance of a checkerboard stimulus if the amplitude of the SSEP falls
458:
The VEP nomenclature is determined by using capital letters stating whether the peak is positive (P) or negative (N) followed by a number which indicates the average peak latency for that particular wave. For example, P100 is a wave with a positive peak at approximately 100 ms following stimulus
807:
Electrical stimulation of the scalp can produce an electric current within the brain that activates the motor pathways of the pyramidal tracts. This technique is known as transcranial electrical motor potential (TcMEP) monitoring. This technique effectively evaluates the motor pathways in the
693:
SEP findings do not by themselves lead to a specific diagnosis, and organic diseases cannot necessarily be excluded with normal SEP findings. Findings must be interpreted in the context of the patient’s clinical presentation. Evaluating the peripheral responses with SEPs could contribute to the
411:
The P100 component of VEP response, which is the positive peak with the delay about 100 ms, has a major clinical importance. The visual pathway dysfunction anterior to the optic chiasm maybe where VEPs are most useful. For example, patients with acute severe optic neuritis often lose the P100
429:
The diffuse-light flash stimulus is rarely used nowadays due to the high variability within and across subjects. However, it is beneficial to use this type of stimulus when testing infants, animals or individuals with poor visual acuity. The checkerboard and grating patterns use light and dark
189:
An evoked potential is the electrical response of the brain to a sensory stimulus. Regan constructed an analogue Fourier series analyzer to record harmonics of the evoked potential of flickering (sinusoidally modulated) light. Rather than integrating the sine and cosine products, Regan fed the
811:
Transcranial magnetic stimulation versus electrical stimulation is generally regarded as unsuitable for intraoperative monitoring because it is more sensitive to anesthesia. Electrical stimulation is too painful for clinical use in awake patients. The two modalities are thus complementary,
637:
Although stimuli such as touch, vibration, and pain can be used for SSEP, electrical stimuli are most common because of ease and reliability. SSEP can be used for prognosis in patients with severe traumatic head injury. Because SSEP with latency less than 50 ms is relatively independent of
794:
system when seeing someone's else actions. In addition, MEPs are used as a reference to adjust the intensity of stimulation that needs to be delivered by TMS when targeting cortical regions whose response might not be as easily measurable, e.g., in the context of TMS-based therapy.
412:
response or have highly attenuated responses. Clinical recovery and visual improvement come with P100 restoration but with an abnormal increased latency that continues indefinitely, and hence, it maybe useful as an indicator of previous or subclinical optic neuritis.
193:
It is sometimes said that SSEPs are elicited only by stimuli of high repetition frequency, but this is not generally correct. In principle, a sinusoidally modulated stimulus can elicit a SSEP even when its repetition frequency is low. Because of the high-frequency
786:. Because MEP amplitude is correlated with motor excitability, they offer a quantitative way to test the role of various types of intervention on the motor system (pharmacological, behavioral, lesion, etc.). TMS-induced MEPs may thus serve as an index of covert 771:
or electrical. Transcranial magnetic MEP (TCmMEP) potentially offer clinical diagnostic applications. Transcranial electrical MEP (TCeMEP) has been in widespread use for several years for intraoperative monitoring of pyramidal tract functional integrity.
684:
will increase latencies and decrease amplitudes of responses, sometimes to the point where a response can no longer be detected. For this reason, an anesthetic utilizing less halogenated agent and more intravenous hypnotic and narcotic is typically used.
340:
and a gray field is presented alternately with a checkerboard or grating pattern. If the checker's boxes or stripes are large enough to be detected, VEP is generated; otherwise, none is generated. It's an objective way to measure infant's visual acuity.
170:. Usually the term "evoked potential" is reserved for responses involving either recording from, or stimulation of, central nervous system structures. Thus evoked compound motor action potentials (CMAP) or sensory nerve action potentials (SNAP) as used in 665:. When used in intraoperative monitoring, the latency and amplitude of the peak relative to the patient's post-intubation baseline is a crucial piece of information. Dramatic increases in latency or decreases in amplitude are indicators of neurological 708:
In the acute stage after a traumatic spinal injury or brain trauma, the absence of SEP responses do not correlate with prognosis. However, an early return to normal or preserved cortical responses in the subacute stage correlate with a positive outcome.
712:
SEPs can be helpful to evaluate subcortical and cortical function in comatose patients and are less sensitive to sedative drugs than EEG. SEP´s and BAEP´s together are the best tools to assist in the confirmation of brain death in comatose patients
722:
abnormal findings in spinal and cortical SEP components. Moreover, compressive lesions on the spine (e.g. Arnold-Chiari malformation or mucopolysaccharidosis) are associated with abnormal SEPs, which may precede abnormalities on MRI.
2429:
Lew, HL; Dikman, S; Slimp, J; Temkin, N; Lee, EH; Newell, D; et al. (2003). "Use of somatosensory evoked potentials and cognitive event related potentials in predicting outcome in patients with severe traumatic brain injury".
421:
in a patient with retrobulbar neuritis in 1972. A wide variety of extensive research to improve procedures and theories has been conducted from the 1970s to today and the method has also been described in animals.
531:
Auditory evoked potentials (AEP) can be used to trace the signal generated by a sound through the ascending auditory pathway. The evoked potential is generated in the cochlea, goes through the
1905:
O'Shea, R. P., Roeber, U., & Bach, M. (2010). Evoked potentials: Vision. In E. B. Goldstein (Ed.), Encyclopedia of Perception (Vol. 1, pp. 399-400, xli). Los Angeles: Sage.
1044:
Sugerman, Richard A (2014). "CHAPTER 15 - Structure and Function of the Neurologic System". In McCance, Kathryn L; Huether, Sue E; Brashers, Valentina L; Rote, Neal S (eds.).
933: 583:. They can be used to diagnose learning disabilities in children, aiding in the development of tailored educational programs for those with hearing and or cognition problems. 316:
Visual evoked potential (VEP) is an evoked potential elicited by presenting light flash or pattern stimulus which can be used to confirm damage to visual pathway including
438:
Electrode placement is extremely important to elicit a good VEP response free of artifact. In a typical (one channel) setup, one electrode is placed 2.5 cm above the
344:
VEP can be sensitive to visual dysfunctions that may not be found with just physical examinations or MRI, even if it cannot indicate etiologies. VEP may be abnormal in
767:
Motor evoked potentials (MEP) are recorded from muscles following direct stimulation of exposed motor cortex, or transcranial stimulation of motor cortex, either
442:
and a reference electrode is placed at Fz. For a more detailed response, two additional electrodes can be placed 2.5  cm to the right and left of Oz.
300:
Long and Allen were the first investigators to report the abnormal brainstem auditory evoked potentials (BAEPs) in an alcoholic woman who recovered from
269:
There are three kinds of evoked potentials in widespread clinical use: auditory evoked potentials, usually recorded from the scalp but originating at
139:. To resolve these low-amplitude potentials against the background of ongoing EEG, ECG, EMG, and other biological signals and ambient noise, signal 1262:
Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier, 672 pp.
430:
squares and stripes, respectively. These squares and stripes are equal in size and are presented, one image at a time, via a computer screen.
2111:
Aminoff, Michael J (2001). Braunwald, Eugene; Fauci, Anthony S; Kasper, Dennis L; Hauser, Stephen L; Longo, Dan L; Jameson, J Larry (eds.).
1445:
Regan D.; Regan M.P. (1987). "Nonlinearity in human visual responses to two–dimensional patterns and a limitation of Fourier methods".
301: 17: 124:
that include detections of disease and drug-related sensory dysfunction and intraoperative monitoring of sensory pathway integrity.
1736:
Regan D (1975). "Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques".
1402:
Regan D.; Regan M.P. (1988). "Objective evidence for phase–independent spatial frequency analysis in the human visual pathway".
657:. Typically, in the operating room, over 100 and up to 1,000 averages must be used to adequately resolve the evoked potential. 266:
medicine since the 1970s, and also in intraoperative neurophysiology monitoring (IONM), also known as surgical neurophysiology.
520: 1668:
Norcia A. M.; Tyler C. W. (1985). "Infant VEP acuity measurements: Analysis of individual differences and measurement error".
2350: 2069: 2024: 1966: 1910: 1134: 1098: 1053: 1008: 408:. It can be used to examine infant's visual impairment for abnormal visual pathways which may be due to delayed maturation. 1779:
Nelson J. I.; Seiple W. H.; Kupersmith M. J.; Carr R. E. (1984). "A rapid evoked potential index of cortical adaptation".
645:
of the signal once it reaches the patient's scalp and the relatively high amount of electrical noise caused by background
569: 1863:
Norcia A. M.; Tyler C. W.; Allen D. (1986). "Electrophysiological assessment of contrast sensitivity in human infants".
135:
to several microvolts, compared to tens of microvolts for EEG, millivolts for EMG, and often close to 20 millivolts for
992: 506: 296:
injury, normal responses may indicate good outcome. Moreover, recovery in responses often indicates clinical recovery.
602:(SSEPs) are EP recorded from the brain or spinal cord when stimulating peripheral nerve repeatedly. SSEPs are used in 2120: 1315:
Regan M.P.; Regan D. (1988). "A frequency domain technique for characterizing nonlinearities in biological systems".
1272:
Regan D.; Lee B.B. (1993). "A comparison of the human 40 Hz response with the properties of macaque ganglion cells".
779: 768: 731:
focused, rapidly rising heat to bare skin using a laser. In the central nervous system they can detect damage to the
1175:
Regan D (1966). "Some characteristics of average steady–state and transient responses evoked by modulated light".
2645: 943: 274: 963: 841: 812:
electrical stimulation being the choice for intraoperative monitoring, and magnetic for clinical applications.
599: 1817:
Norcia A. M.; Tyler C. W. (1985). "Spatial frequency sweep VEP: Visual acuity during the first year of life".
831: 787: 705:
or vitamin E deficiency. In patients with MS, evoked potential findings often complement findings on MRI.
572:
are small AEPs that are recorded in response to an auditory stimulus from electrodes placed on the scalp.
258:
evoked potential (SSEP) elicited by tactile or electrical stimulation of a sensory or mixed nerve in the
2635: 336:. One application is in measuring infant's visual acuity. Electrodes are placed on infant's head over 117: 2528:
Treede RD, Lorenz J, Baumgärtner U (December 2003). "Clinical usefulness of laser-evoked potentials".
2279:"Auditory evoked potential: a proposal for further evaluation in children with learning disabilities" 259: 163: 2514: 2411: 2372: 2142: 2046: 1988: 1704: 1156: 1075: 1030: 2640: 2619: 1922:
Long KJ, Allen N (1984). "Abnormal Brainstem Auditory Evoked Potentials Following Ondine's Curse".
906: 846: 836: 653:
or electrical devices in the room, the signal must be averaged. The use of averaging improves the
563: 540: 277:, which are elicited by electrical stimulation of peripheral nerve. Examples of SEP usage include: 174:(NCS) are generally not thought of as evoked potentials, though they do meet the above definition. 38: 938: 876: 851: 701:(MS), hereditary spinocerebellar degenerations, hereditary spastic paraplegia, AIDS and vitamin B 361: 178: 2650: 2007:
Hammond, Flora; Grafton, Lori (2011). Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce (eds.).
861: 824: 783: 552: 467: 365: 239: 171: 105: 2615: 654: 353: 147:
occurs randomly, allowing the noise to be averaged out with averaging of repeated responses.
121: 93: 661:
when the median nerve is stimulated. It most likely corresponds to the signal reaching the
2390:
Lew, HL; Lee, EH; Pan, SS L; Chiang, JYP (2007). Zasler, ND; Katz, DL; Zafonte, RD (eds.).
1324: 1224: 871: 662: 401: 73: 254:
evoked potentials by a click or tone stimulus presented through earphones), or tactile or
8: 1935: 948: 926: 914: 897: 885: 881: 866: 732: 548: 381: 2392:
Electrophysiological assessment techniques: Evoked potentials and electroencephalography
1328: 1228: 2553: 2502: 2455: 2399: 2360: 2305: 2278: 2254: 2221: 2174: 2157: 2130: 2034: 1976: 1888: 1842: 1761: 1610: 1600: 1583: 1513: 1488:
Regan M.P.; He P.; Regan D. (1995). "An audio–visual convergence area in human brain".
1470: 1427: 1297: 1236: 1144: 1063: 1018: 953: 698: 357: 289: 263: 2486: 1533:"Selective attention to stimulus location modulates the steady-state evoked potential" 1415: 1379: 1354: 1336: 459:
onset. The average amplitude for VEP waves usually falls between 5 and 20 microvolts.
2594: 2545: 2490: 2447: 2443: 2346: 2333:
McElligott, Jacinta (2011). Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce (eds.).
2310: 2259: 2241: 2187: 2179: 2116: 2065: 2020: 1962: 1939: 1906: 1880: 1876: 1834: 1830: 1796: 1792: 1753: 1749: 1685: 1681: 1645: 1615: 1564: 1559: 1532: 1505: 1462: 1458: 1419: 1384: 1289: 1240: 1192: 1188: 1130: 1117:
Kwasnica, Christina (2011). Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce (eds.).
1094: 1049: 1004: 544: 417: 136: 113: 101: 2557: 2459: 1892: 1846: 1765: 1517: 1431: 1355:"Clinical investigation of lesions of the visual pathway: a new objective technique" 416:
lobe (externally and internally), and they discovered amplitudes recorded along the
2584: 2537: 2482: 2439: 2338: 2300: 2290: 2249: 2233: 2169: 2012: 1931: 1872: 1826: 1788: 1745: 1705:"A digital fast sweep technique for studying steady-state visual evoked potentials" 1677: 1605: 1595: 1554: 1544: 1497: 1474: 1454: 1411: 1374: 1366: 1332: 1301: 1281: 1232: 1184: 1122: 996: 958: 650: 536: 463: 349: 333: 329: 218: 109: 104:
and types. Evoked potential is distinct from spontaneous potentials as detected by
1778: 1584:"Increased synchronization of neuromagnetic responses during conscious perception" 666: 2541: 2064:(9th ed.). WADSWORTH: CENGAGE Learning. Method: Peferential looking, p. 46. 759:
is located in these small fibers as opposed to larger (touch, vibration) fibers.
747:. In the peripheral nervous system pain and heat signals are carried along thin ( 744: 603: 580: 576: 556: 393: 251: 250:
evoked potentials elicited by a flashing light or changing pattern on a monitor,
151: 44: 2237: 2222:"Enhanced auditory evoked potentials in musicians: A review of recent findings" 532: 345: 143:
is usually required. The signal is time-locked to the stimulus and most of the
77: 2589: 2572: 2342: 2016: 1285: 1126: 2629: 2295: 2245: 2183: 2113:
357. ELECTROPHYSIOLOGIC STUDIES OF THE CENTRAL AND PERIPHERAL NERVOUS SYSTEMS
2090: 791: 752: 681: 462:
Normal values are depending on used stimulation hardware (flash stimulus vs.
373: 337: 255: 1636:
Regan D (1973). "Rapid objective refraction using evoked brain potentials".
1549: 2598: 2549: 2494: 2451: 2314: 2263: 1619: 856: 619: 615: 405: 325: 285: 281:
SSEP can be used to locate lesions such as peripheral nerve or spinal cord.
2191: 1943: 1884: 1838: 1800: 1757: 1689: 1649: 1568: 1509: 1466: 1423: 1388: 1370: 1293: 1196: 1244: 755:) fibers to the spinal cord, and LEPs can be used to determine whether a 677: 623: 614:. They are recorded by stimulating peripheral nerves, most commonly the 607: 321: 243: 159: 676:
gases used can affect the amplitude and latencies of SSEPs. Any of the
1501: 756: 736: 673: 627: 155: 2060:
Goldstein, E Bruce (2013). "Chapter 2: The Beginning of Perceptions".
1530: 1000: 54: 2156:
Strain, George M.; Jackson, Rose M.; Tedford, Bruce L. (1990-07-01).
901: 697:
Furthermore, SEPs could be abnormal in different pathologies such as
642: 397: 305: 270: 202: 140: 132: 128: 97: 1215:
Regan D (1979). "Electrical responses evoked from the human brain".
740: 389: 385: 377: 100:. Different types of potentials result from stimuli of different 748: 611: 195: 167: 89: 1862: 317: 247: 1581: 1088: 934:
International Society for Clinical Electrophysiology of Vision
1702: 804:
mapping the sensory areas of the brain during brain surgery.
631: 450: 439: 144: 85: 81: 739:, and fibers carrying pain and temperature signals from the 630:
stimulus. The response is then recorded from the patient's
308:
was poisoned, but not destroyed, by her chronic alcoholism.
2481:. Vol. 15. Philadelphia: WB Saunders. pp. 43–61. 910: 893: 889: 76:
in a specific pattern recorded from a specific part of the
2573:"Sensorimotor learning configures the human mirror system" 2432:
American Journal of Physical Medicine & Rehabilitation
591: 2570: 922: 918: 646: 304:. These investigators hypothesized that their patient's 2527: 2158:"Visual Evoked Potentials in the Clinically Normal Dog" 1858: 1856: 1816: 1667: 1582:
Srinivasan R, Russell DP, Edelman GM, Tononi G (1999).
1487: 380:, ischemic disease, tumor compressing the optic nerve, 1865:
American Journal of Optometry and Physiological Optics
262:. Sensory evoked potentials have been widely used in 238:
Sensory evoked potentials (SEP) are recorded from the
2002: 2000: 1998: 716: 2428: 2155: 1853: 782:-induced MEPs have been used in many experiments in 595:
Normal somatosensory evoked potential (tibial nerve)
575:
AEPs serve for assessment of the functioning of the
562:
Auditory evoked potentials (AEPs) are a subclass of
2477:Robinson, L. R. (2004). Kraft, GL; Lew, HL (eds.). 2204: 1670:
Electroencephalography and Clinical Neurophysiology
1537:
Proceedings of the National Academy of Sciences USA
1531:Morgan S. T.; Hansen J. C.; Hillyard S. A. (1996). 1258: 1256: 1254: 1177:
Electroencephalography and Clinical Neurophysiology
1995: 1444: 1401: 1359:Journal of Neurology, Neurosurgery, and Psychiatry 1352: 1314: 211: 2479:Somatosensory evoked potentials in coma prognosis 2328: 2326: 2324: 2115:(15th ed.). McGraw-Hill. EVOKED POTENTIALS. 1170: 1168: 1166: 586: 116:recording method. Such potentials are useful for 27:Electrical potential evoked in the nervous system 2627: 1781:Investigative Ophthalmology & Visual Science 1271: 1251: 288:as part of workups to diagnose diseases such as 184: 2389: 982: 980: 2321: 2084: 2006: 1961:(9th ed.). Elsevier Mosby. p. 1880. 1163: 1112: 1110: 2220:Sanju, Himanshu Kumar; Kumar, Prawin (2016). 1348: 1346: 1210: 1208: 1206: 977: 822: 798: 526: 233: 224: 2104: 1107: 2472: 2424: 2385: 2332: 2219: 1812: 1810: 1731: 1729: 1727: 1725: 1712:Journal of Electrophysiological Techniques 1575: 1343: 762: 433: 311: 2618:at the U.S. National Library of Medicine 2588: 2304: 2294: 2253: 2213: 2173: 2059: 1921: 1899: 1663: 1661: 1659: 1609: 1599: 1558: 1548: 1524: 1378: 1203: 1089:Karl E. Misulis; Toufic Fakhoury (2001). 986: 725: 302:acquired central hypoventilation syndrome 131:tend to be low, ranging from less than a 2476: 1703:Strasburger, H.; Rentschler, I. (1986). 1631: 1629: 1116: 1043: 590: 482:Monocular pattern reversal (most common) 449: 203:The "simultaneous stimulation" technique 2162:Journal of Veterinary Internal Medicine 2110: 2091:"Clinical utility of evoked potentials" 1956: 1807: 1735: 1722: 1635: 1214: 1174: 517:Stereo-elicited visual evoked potential 514:Multi-frequency visual evoked potential 14: 2628: 2571:Catmur C.; Walsh V.; Heyes C. (2007). 2521: 2276: 2088: 1656: 790:or facilitation, e.g., induced by the 694:diagnosis of peripheral nerve damage. 606:to assess the function of a patient's 521:Steady state visually evoked potential 2209:. Boston, MA: Pearson Education, Inc. 1626: 672:During surgery, the large amounts of 511:Multi-channel visual evoked potential 273:level; visual evoked potentials, and 1936:10.1001/archneur.1984.04050210111028 570:Brainstem auditory evoked potentials 2205:Musiek, FE & Baran, JA (2007). 1091:Spehlmann's Evoked Potential Primer 177:Evoked potential is different from 24: 2277:Frizzo, Ana C. F. (10 June 2015). 2175:10.1111/j.1939-1676.1990.tb00901.x 1601:10.1523/JNEUROSCI.19-13-05435.1999 1237:10.1038/scientificamerican1279-134 993:American Psychological Association 717:Clinical consideration in children 507:Multifocal visual evoked potential 500:LED Goggle visual evoked potential 494:Hemi-field visual evoked potential 470:, checkerboard field size, etc.). 25: 2662: 2609: 491:Chromatic visual evoked potential 488:Binocular visual evoked potential 2444:10.1097/00002060-200301000-00009 2337:. Springer. pp. 2319–2320. 1877:10.1097/00006324-198601000-00003 991:(2nd ed.). Washington, DC: 688: 2564: 2466: 2418: 2379: 2335:Somatosensory Evoked Potentials 2270: 2198: 2149: 2078: 2053: 1950: 1915: 1772: 1696: 1481: 1438: 1395: 987:VandenBos, Gary R, ed. (2015). 944:Lateralized readiness potential 600:Somatosensory evoked potentials 473: 275:somatosensory evoked potentials 1957:O’Toole, Marie T, ed. (2013). 1317:Journal of Theoretical Biology 1308: 1265: 1082: 1037: 964:Somatosensory evoked potential 842:Early left anterior negativity 587:Somatosensory evoked potential 503:Motion visual evoked potential 454:Normal visual evoked potential 424: 13: 1: 2487:10.1016/s1047-9651(03)00102-5 1959:visual-evoked potential (VEP) 1416:10.1016/S0042-6989(88)80018-X 1353:Regan D.; Heron J.R. (1969). 1337:10.1016/S0022-5193(88)80323-0 970: 832:Contingent negative variation 497:Flash visual evoked potential 485:Sweep visual evoked potential 185:Steady-state evoked potential 150:Signals can be recorded from 2542:10.1016/j.neucli.2003.10.009 2085:Hammond & Grafton (2011) 1831:10.1016/0042-6989(85)90217-2 1793:10.1016/0168-5597(84)90004-2 1750:10.1016/0042-6989(75)90205-9 1682:10.1016/0013-4694(85)91026-0 1459:10.1016/0042-6989(87)90132-5 1189:10.1016/0013-4694(66)90088-5 445: 284:VEP and BAEP can supplement 92:following presentation of a 7: 1638:Investigative Ophthalmology 1490:Experimental Brain Research 815: 551:in the midbrain, on to the 96:such as a light flash or a 10: 2667: 2238:10.1016/j.joto.2016.04.002 2011:. Springer. p. 2628. 396:, aluminum neurotoxicity, 2590:10.1016/j.cub.2007.08.006 2343:10.1007/978-0-387-79948-3 2017:10.1007/978-0-387-79948-3 1286:10.1017/S0952523800004661 1127:10.1007/978-0-387-79948-3 1121:. Springer. p. 986. 1093:. Butterworth-heinemann. 799:Intraoperative monitoring 527:Auditory evoked potential 242:following stimulation of 234:Sensory evoked potentials 225:Evoked potential feedback 51: 37: 32: 18:Auditory evoked potential 2620:Medical Subject Headings 2296:10.3389/fpsyg.2015.00788 2062:Sensation and Perception 2009:Visual Evoked Potentials 847:Error-related negativity 837:Difference due to memory 564:event-related potentials 541:superior olivary complex 478:Some specific VEPs are: 172:nerve conduction studies 2283:Frontiers in Psychology 1588:Journal of Neuroscience 1550:10.1073/pnas.93.10.4770 1048:(7th ed.). Mosby. 939:Late positive component 877:Event-related potential 852:Event-related potential 763:Motor evoked potentials 434:VEP Electrode Placement 312:Visual evoked potential 179:event-related potential 2646:Electroencephalography 862:Electroencephalography 825:Bereitschaftspotential 823: 784:cognitive neuroscience 726:Laser evoked potential 596: 553:medial geniculate body 468:liquid crystal display 455: 398:manganese intoxication 240:central nervous system 106:electroencephalography 1371:10.1136/jnnp.32.5.479 989:evoked potential (EP) 655:signal-to-noise ratio 594: 555:, and finally to the 453: 354:demyelinating disease 221:) clinics worldwide. 212:The "sweep" technique 872:Slow vertex response 663:somatosensory cortex 626:, typically with an 402:retrobulbar neuritis 74:electrical potential 2207:The Auditory system 1329:1988JThBi.133..293R 1274:Visual Neuroscience 1229:1979SciAm.241f.134R 1217:Scientific American 949:Mismatch negativity 927:P600 (neuroscience) 867:Electroretinography 733:spinothalamic tract 641:Because of the low 549:inferior colliculus 382:ocular hypertension 362:Friedreich’s ataxia 264:clinical diagnostic 2226:Journal of Otology 2089:Huszar, L (2006). 1502:10.1007/bf00231071 954:Neural oscillation 699:multiple sclerosis 597: 456: 358:multiple sclerosis 290:multiple sclerosis 114:electrophysiologic 2636:Evoked potentials 2616:Evoked+Potentials 2583:(17): 1527–1531. 2530:Neurophysiol Clin 2473:McElligott (2011) 2425:McElligott (2011) 2386:McElligott (2011) 2352:978-0-387-79947-6 2071:978-1-133-95849-9 2026:978-0-387-79947-6 1968:978-0-323-08541-0 1930:(10): 1109–1110. 1911:978-1-4129-4081-8 1825:(10): 1399–1408. 1543:(10): 4770–4774. 1136:978-0-387-79947-6 1119:Evoked Potentials 1100:978-0-7506-7333-4 1055:978-0-323-08854-1 1046:Evoked Potentials 1010:978-1-4338-1944-5 1001:10.1037/14646-000 788:motor preparation 545:lateral lemniscus 418:calcarine fissure 164:peripheral nerves 127:Evoked potential 80:, especially the 62: 61: 16:(Redirected from 2658: 2603: 2602: 2592: 2568: 2562: 2561: 2525: 2519: 2518: 2512: 2508: 2506: 2498: 2470: 2464: 2463: 2422: 2416: 2415: 2409: 2405: 2403: 2395: 2383: 2377: 2376: 2370: 2366: 2364: 2356: 2330: 2319: 2318: 2308: 2298: 2274: 2268: 2267: 2257: 2217: 2211: 2210: 2202: 2196: 2195: 2177: 2153: 2147: 2146: 2140: 2136: 2134: 2126: 2108: 2102: 2101: 2099: 2098: 2082: 2076: 2075: 2057: 2051: 2050: 2044: 2040: 2038: 2030: 2004: 1993: 1992: 1986: 1982: 1980: 1972: 1954: 1948: 1947: 1919: 1913: 1903: 1897: 1896: 1860: 1851: 1850: 1814: 1805: 1804: 1776: 1770: 1769: 1733: 1720: 1719: 1709: 1700: 1694: 1693: 1665: 1654: 1653: 1633: 1624: 1623: 1613: 1603: 1579: 1573: 1572: 1562: 1552: 1528: 1522: 1521: 1485: 1479: 1478: 1442: 1436: 1435: 1399: 1393: 1392: 1382: 1350: 1341: 1340: 1312: 1306: 1305: 1269: 1263: 1260: 1249: 1248: 1212: 1201: 1200: 1172: 1161: 1160: 1154: 1150: 1148: 1140: 1114: 1105: 1104: 1086: 1080: 1079: 1073: 1069: 1067: 1059: 1041: 1035: 1034: 1028: 1024: 1022: 1014: 984: 959:Oddball paradigm 828: 537:cochlear nucleus 464:cathode ray tube 350:optic neuropathy 334:occipital cortex 330:optic radiations 219:electrodiagnosis 118:electrodiagnosis 112:(EMG), or other 110:electromyography 66:evoked potential 55:edit on Wikidata 47: 33:Evoked potential 30: 29: 21: 2666: 2665: 2661: 2660: 2659: 2657: 2656: 2655: 2641:Neuropsychology 2626: 2625: 2612: 2607: 2606: 2569: 2565: 2526: 2522: 2510: 2509: 2500: 2499: 2471: 2467: 2423: 2419: 2407: 2406: 2397: 2396: 2384: 2380: 2368: 2367: 2358: 2357: 2353: 2331: 2322: 2275: 2271: 2218: 2214: 2203: 2199: 2154: 2150: 2138: 2137: 2128: 2127: 2123: 2109: 2105: 2096: 2094: 2083: 2079: 2072: 2058: 2054: 2042: 2041: 2032: 2031: 2027: 2005: 1996: 1984: 1983: 1974: 1973: 1969: 1955: 1951: 1920: 1916: 1904: 1900: 1861: 1854: 1819:Vision Research 1815: 1808: 1777: 1773: 1738:Vision Research 1734: 1723: 1707: 1701: 1697: 1666: 1657: 1634: 1627: 1594:(13): 5435–48. 1580: 1576: 1529: 1525: 1486: 1482: 1447:Vision Research 1443: 1439: 1404:Vision Research 1400: 1396: 1351: 1344: 1313: 1309: 1270: 1266: 1261: 1252: 1213: 1204: 1173: 1164: 1152: 1151: 1142: 1141: 1137: 1115: 1108: 1101: 1087: 1083: 1071: 1070: 1061: 1060: 1056: 1042: 1038: 1026: 1025: 1016: 1015: 1011: 995:. p. 390. 985: 978: 973: 968: 818: 801: 765: 728: 719: 704: 691: 649:, scalp muscle 604:neuromonitoring 589: 581:neuroplasticity 577:auditory system 529: 476: 448: 436: 427: 394:toxic amblyopia 369: 314: 246:, for example, 236: 227: 214: 205: 187: 152:cerebral cortex 70:evoked response 58: 43: 28: 23: 22: 15: 12: 11: 5: 2664: 2654: 2653: 2648: 2643: 2638: 2624: 2623: 2611: 2610:External links 2608: 2605: 2604: 2563: 2520: 2465: 2417: 2378: 2351: 2320: 2269: 2212: 2197: 2168:(4): 222–225. 2148: 2121: 2103: 2077: 2070: 2052: 2025: 1994: 1967: 1949: 1914: 1898: 1852: 1806: 1787:(6): 454–464. 1771: 1744:(2): 175–183. 1721: 1695: 1676:(5): 359–369. 1655: 1625: 1574: 1523: 1480: 1453:(12): 2181–3. 1437: 1410:(1): 187–191. 1394: 1342: 1323:(3): 293–317. 1307: 1280:(3): 439–445. 1264: 1250: 1202: 1162: 1135: 1106: 1099: 1081: 1054: 1036: 1009: 975: 974: 972: 969: 967: 966: 961: 956: 951: 946: 941: 936: 931: 930: 929: 904: 874: 869: 864: 859: 854: 849: 844: 839: 834: 829: 819: 817: 814: 800: 797: 764: 761: 727: 724: 718: 715: 702: 690: 687: 588: 585: 535:, through the 533:cochlear nerve 528: 525: 524: 523: 518: 515: 512: 509: 504: 501: 498: 495: 492: 489: 486: 483: 475: 472: 447: 444: 435: 432: 426: 423: 367: 346:optic neuritis 313: 310: 298: 297: 293: 282: 235: 232: 226: 223: 213: 210: 204: 201: 186: 183: 78:nervous system 60: 59: 52: 49: 48: 41: 35: 34: 26: 9: 6: 4: 3: 2: 2663: 2652: 2651:Medical tests 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2633: 2631: 2621: 2617: 2614: 2613: 2600: 2596: 2591: 2586: 2582: 2578: 2574: 2567: 2559: 2555: 2551: 2547: 2543: 2539: 2536:(6): 303–14. 2535: 2531: 2524: 2516: 2504: 2496: 2492: 2488: 2484: 2480: 2474: 2469: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2421: 2413: 2401: 2393: 2387: 2382: 2374: 2362: 2354: 2348: 2344: 2340: 2336: 2329: 2327: 2325: 2316: 2312: 2307: 2302: 2297: 2292: 2288: 2284: 2280: 2273: 2265: 2261: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2208: 2201: 2193: 2189: 2185: 2181: 2176: 2171: 2167: 2163: 2159: 2152: 2144: 2132: 2124: 2122:0-07-007272-8 2118: 2114: 2107: 2092: 2086: 2081: 2073: 2067: 2063: 2056: 2048: 2036: 2028: 2022: 2018: 2014: 2010: 2003: 2001: 1999: 1990: 1978: 1970: 1964: 1960: 1953: 1945: 1941: 1937: 1933: 1929: 1925: 1918: 1912: 1908: 1902: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1859: 1857: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1813: 1811: 1802: 1798: 1794: 1790: 1786: 1782: 1775: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1732: 1730: 1728: 1726: 1718:(5): 265–278. 1717: 1713: 1706: 1699: 1691: 1687: 1683: 1679: 1675: 1671: 1664: 1662: 1660: 1651: 1647: 1644:(9): 669–79. 1643: 1639: 1632: 1630: 1621: 1617: 1612: 1607: 1602: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1561: 1556: 1551: 1546: 1542: 1538: 1534: 1527: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1484: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1390: 1386: 1381: 1376: 1372: 1368: 1365:(5): 479–83. 1364: 1360: 1356: 1349: 1347: 1338: 1334: 1330: 1326: 1322: 1318: 1311: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1268: 1259: 1257: 1255: 1246: 1242: 1238: 1234: 1230: 1226: 1223:(6): 134–46. 1222: 1218: 1211: 1209: 1207: 1198: 1194: 1190: 1186: 1183:(3): 238–48. 1182: 1178: 1171: 1169: 1167: 1158: 1146: 1138: 1132: 1128: 1124: 1120: 1113: 1111: 1102: 1096: 1092: 1085: 1077: 1065: 1057: 1051: 1047: 1040: 1032: 1020: 1012: 1006: 1002: 998: 994: 990: 983: 981: 976: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 928: 924: 920: 916: 912: 908: 905: 903: 899: 895: 891: 887: 883: 880: 879: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 827: 826: 821: 820: 813: 809: 805: 796: 793: 792:mirror neuron 789: 785: 781: 777: 773: 770: 760: 758: 754: 750: 746: 742: 738: 734: 723: 714: 710: 706: 700: 695: 689:Clinical Uses 686: 683: 682:nitrous oxide 679: 675: 670: 668: 664: 658: 656: 652: 648: 644: 639: 635: 633: 629: 625: 621: 617: 613: 609: 605: 601: 593: 584: 582: 578: 573: 571: 567: 565: 560: 558: 554: 550: 546: 542: 538: 534: 522: 519: 516: 513: 510: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 480: 479: 471: 469: 465: 460: 452: 443: 441: 431: 422: 419: 413: 409: 407: 403: 399: 395: 391: 387: 383: 379: 375: 374:neurosyphilis 371: 363: 359: 355: 351: 347: 342: 339: 338:visual cortex 335: 331: 327: 323: 319: 309: 307: 303: 294: 291: 287: 283: 280: 279: 278: 276: 272: 267: 265: 261: 257: 256:somatosensory 253: 249: 245: 241: 231: 222: 220: 209: 200: 197: 191: 182: 180: 175: 173: 169: 165: 161: 157: 153: 148: 146: 142: 138: 134: 130: 125: 123: 119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 56: 50: 46: 42: 40: 36: 31: 19: 2580: 2576: 2566: 2533: 2529: 2523: 2478: 2468: 2438:(1): 53–61. 2435: 2431: 2420: 2391: 2381: 2334: 2286: 2282: 2272: 2232:(2): 63–72. 2229: 2225: 2215: 2206: 2200: 2165: 2161: 2151: 2112: 2106: 2095:. Retrieved 2080: 2061: 2055: 2008: 1958: 1952: 1927: 1924:Arch. Neurol 1923: 1917: 1901: 1871:(1): 12–15. 1868: 1864: 1822: 1818: 1784: 1780: 1774: 1741: 1737: 1715: 1711: 1698: 1673: 1669: 1641: 1637: 1591: 1587: 1577: 1540: 1536: 1526: 1496:(3): 485–7. 1493: 1489: 1483: 1450: 1446: 1440: 1407: 1403: 1397: 1362: 1358: 1320: 1316: 1310: 1277: 1273: 1267: 1220: 1216: 1180: 1176: 1118: 1090: 1084: 1045: 1039: 988: 857:Evoked field 810: 806: 802: 778: 774: 766: 729: 720: 711: 707: 696: 692: 671: 659: 640: 636: 620:median nerve 616:tibial nerve 598: 574: 568: 561: 530: 477: 474:Types of VEP 461: 457: 437: 428: 414: 410: 406:brain injury 343: 326:optic chiasm 315: 299: 286:neuroimaging 268: 244:sense organs 237: 228: 215: 206: 192: 188: 176: 149: 126: 69: 65: 63: 2511:|work= 2408:|work= 2369:|work= 2139:|work= 2093:. eMedicine 2043:|work= 1985:|work= 1153:|work= 1072:|work= 1027:|work= 678:halogenated 667:dysfunction 624:ulnar nerve 608:spinal cord 425:VEP Stimuli 322:optic nerve 160:spinal cord 2630:Categories 2577:Curr. Biol 2097:2007-07-09 971:References 757:neuropathy 737:brain stem 735:, lateral 680:agents or 674:anesthetic 628:electrical 370:deficiency 156:brain stem 129:amplitudes 122:monitoring 102:modalities 2513:ignored ( 2503:cite book 2410:ignored ( 2400:cite book 2371:ignored ( 2361:cite book 2246:1672-2930 2184:1939-1676 2141:ignored ( 2131:cite book 2045:ignored ( 2035:cite book 1987:ignored ( 1977:cite book 1155:ignored ( 1145:cite book 1074:ignored ( 1064:cite book 1029:ignored ( 1019:cite book 907:C1 and P1 902:Visual N1 643:amplitude 547:, to the 446:VEP Waves 366:vitamin B 306:brainstem 271:brainstem 260:periphery 141:averaging 133:microvolt 98:pure tone 88:or other 2599:17716898 2558:18486576 2550:14678844 2495:15029898 2475:อ้างอิง 2460:45096294 2452:12510186 2315:26113833 2264:29937812 1893:19809242 1847:23557430 1766:42218073 1620:10377353 1518:27044876 1432:21369518 816:See also 769:magnetic 741:thalamus 390:diabetes 386:glaucoma 378:migraine 252:auditory 94:stimulus 2306:4461809 2289:: 788. 2255:6002589 2192:2401969 1944:6477223 1885:3942183 1839:4090273 1801:6209112 1758:1129975 1690:2412787 1650:4742063 1611:6782339 1569:8643478 1510:8983992 1475:3175111 1467:3447366 1424:3413995 1389:5360055 1325:Bibcode 1302:3132361 1294:8494797 1225:Bibcode 1197:4160391 753:A delta 743:to the 612:surgery 610:during 196:rolloff 168:muscles 108:(EEG), 90:animals 84:, of a 45:D005071 2622:(MeSH) 2597:  2556:  2548:  2493:  2458:  2450:  2427:cited 2388:cited 2349:  2313:  2303:  2262:  2252:  2244:  2190:  2182:  2119:  2087:cited 2068:  2023:  1965:  1942:  1909:  1891:  1883:  1845:  1837:  1799:  1764:  1756:  1688:  1648:  1618:  1608:  1567:  1557:  1516:  1508:  1473:  1465:  1430:  1422:  1387:  1380:496563 1377:  1300:  1292:  1245:504980 1243:  1195:  1133:  1097:  1052:  1007:  745:cortex 557:cortex 404:, and 332:, and 318:retina 248:visual 72:is an 2554:S2CID 2456:S2CID 1889:S2CID 1843:S2CID 1762:S2CID 1708:(PDF) 1560:39354 1514:S2CID 1471:S2CID 1428:S2CID 1298:S2CID 632:scalp 440:inion 145:noise 86:human 82:brain 53:[ 2595:PMID 2546:PMID 2515:help 2491:PMID 2448:PMID 2412:help 2373:help 2347:ISBN 2311:PMID 2260:PMID 2242:ISSN 2188:PMID 2180:ISSN 2143:help 2117:ISBN 2066:ISBN 2047:help 2021:ISBN 1989:help 1963:ISBN 1940:PMID 1907:ISBN 1881:PMID 1835:PMID 1797:PMID 1754:PMID 1686:PMID 1646:PMID 1616:PMID 1565:PMID 1506:PMID 1463:PMID 1420:PMID 1385:PMID 1290:PMID 1241:PMID 1193:PMID 1157:help 1131:ISBN 1095:ISBN 1076:help 1050:ISBN 1031:help 1005:ISBN 915:P300 911:P200 898:N400 894:N170 890:N2pc 886:N200 882:N100 751:and 579:and 166:and 120:and 39:MeSH 2585:doi 2538:doi 2483:doi 2440:doi 2339:doi 2301:PMC 2291:doi 2250:PMC 2234:doi 2170:doi 2013:doi 1932:doi 1873:doi 1827:doi 1789:doi 1746:doi 1678:doi 1606:PMC 1596:doi 1555:PMC 1545:doi 1498:doi 1494:106 1455:doi 1412:doi 1375:PMC 1367:doi 1333:doi 1321:133 1282:doi 1233:doi 1221:241 1185:doi 1123:doi 997:doi 923:P3b 919:P3a 780:TMS 651:EMG 647:EEG 622:or 466:or 137:ECG 68:or 64:An 2632:: 2593:. 2581:17 2579:. 2575:. 2552:. 2544:. 2534:33 2532:. 2507:: 2505:}} 2501:{{ 2489:. 2454:. 2446:. 2436:82 2434:. 2404:: 2402:}} 2398:{{ 2365:: 2363:}} 2359:{{ 2345:. 2323:^ 2309:. 2299:. 2285:. 2281:. 2258:. 2248:. 2240:. 2230:11 2228:. 2224:. 2186:. 2178:. 2164:. 2160:. 2135:: 2133:}} 2129:{{ 2039:: 2037:}} 2033:{{ 2019:. 1997:^ 1981:: 1979:}} 1975:{{ 1938:. 1928:41 1926:. 1887:. 1879:. 1869:63 1867:. 1855:^ 1841:. 1833:. 1823:25 1821:. 1809:^ 1795:. 1785:59 1783:. 1760:. 1752:. 1742:15 1740:. 1724:^ 1716:13 1714:. 1710:. 1684:. 1674:61 1672:. 1658:^ 1642:12 1640:. 1628:^ 1614:. 1604:. 1592:19 1590:. 1586:. 1563:. 1553:. 1541:93 1539:. 1535:. 1512:. 1504:. 1492:. 1469:. 1461:. 1451:27 1449:. 1426:. 1418:. 1408:28 1406:. 1383:. 1373:. 1363:32 1361:. 1357:. 1345:^ 1331:. 1319:. 1296:. 1288:. 1278:10 1276:. 1253:^ 1239:. 1231:. 1219:. 1205:^ 1191:. 1181:20 1179:. 1165:^ 1149:: 1147:}} 1143:{{ 1129:. 1109:^ 1068:: 1066:}} 1062:{{ 1023:: 1021:}} 1017:{{ 1003:. 979:^ 925:, 921:, 917:, 913:, 909:, 900:, 896:, 892:, 888:, 884:, 703:12 669:. 634:. 618:, 559:. 543:, 539:, 400:, 392:, 388:, 384:, 376:, 372:, 368:12 364:, 360:, 356:, 352:, 348:, 328:, 324:, 320:, 162:, 158:, 154:, 2601:. 2587:: 2560:. 2540:: 2517:) 2497:. 2485:: 2462:. 2442:: 2414:) 2394:. 2375:) 2355:. 2341:: 2317:. 2293:: 2287:6 2266:. 2236:: 2194:. 2172:: 2166:4 2145:) 2125:. 2100:. 2074:. 2049:) 2029:. 2015:: 1991:) 1971:. 1946:. 1934:: 1895:. 1875:: 1849:. 1829:: 1803:. 1791:: 1768:. 1748:: 1692:. 1680:: 1652:. 1622:. 1598:: 1571:. 1547:: 1520:. 1500:: 1477:. 1457:: 1434:. 1414:: 1391:. 1369:: 1339:. 1335:: 1327:: 1304:. 1284:: 1247:. 1235:: 1227:: 1199:. 1187:: 1159:) 1139:. 1125:: 1103:. 1078:) 1058:. 1033:) 1013:. 999:: 749:C 292:. 57:] 20:)

Index

Auditory evoked potential
MeSH
D005071
edit on Wikidata
electrical potential
nervous system
brain
human
animals
stimulus
pure tone
modalities
electroencephalography
electromyography
electrophysiologic
electrodiagnosis
monitoring
amplitudes
microvolt
ECG
averaging
noise
cerebral cortex
brain stem
spinal cord
peripheral nerves
muscles
nerve conduction studies
event-related potential
rolloff

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑