Knowledge

Arithmetic of abelian varieties

Source đź“ť

22: 508: 469: 39: 343:, are known to reveal very interesting information. As often happens in number theory, the 'bad' primes play a rather active role in the theory. 569:
allow one to do this for the field of rational numbers. This generalises, but in some sense with loss of explicit information (as is typical of
514:
that singles out the richest class. These are special in their arithmetic. This is seen in their L-functions in rather favourable terms – the
86: 58: 511: 438: 65: 418: 72: 340: 186: 54: 660:
Arithmetic and geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. Vol. I: Arithmetic
287: 702: 105: 226: 411: 390:
of such local functions; to understand the finite number of factors for the 'bad' primes one has to refer to the
43: 745: 421:
is posed. It is just one particularly interesting aspect of the general theory about values of L-functions L(
79: 550: 403: 371: 582: 689:
Roessler, Damian (2005). "A note on the Manin-Mumford conjecture". In van der Geer, Gerard; Moonen, Ben;
740: 523: 257: 655: 570: 562: 359: 190: 474: 336: 202: 279: 32: 358:— cannot always be avoided. In the case of an elliptic curve there is an algorithm of 146:
both in terms of results and conjectures. Most of these can be posed for an abelian variety
712: 667: 627: 444: 278:
plays a prominent role in the arithmetic of abelian varieties. For instance, the canonical
206: 720: 675: 662:. Progress in Mathematics (in French). Vol. 35. Birkhäuser-Boston. pp. 327–352. 8: 407: 383: 182: 143: 395: 558: 535: 519: 454: 698: 611: 554: 515: 716: 671: 604: 539: 230: 135: 708: 663: 543: 471:
with extra automorphisms, and more generally endomorphisms. In terms of the ring
414:(which was proven in 2001) was just a special case, so that's hardly surprising. 275: 269: 174: 131: 647: 596: 546:). In those problems the special situation is more demanding than the general. 283: 139: 690: 355: 734: 651: 592: 566: 527: 387: 347: 127: 399: 325: 253: 158: 151: 697:. Progress in Mathematics. Vol. 239. Birkhäuser. pp. 311–318. 650:(1983). "Sous-variĂ©tĂ©s d'une variĂ©tĂ© abĂ©lienne et points de torsion". In 391: 306: 119: 610:
can only contain a finite number of points that are of finite order (a
588: 329: 242: 21: 386:
available. To get an L-function for A itself, one takes a suitable
134:, or a family of abelian varieties. It goes back to the studies of 451:
case) the special role has been known of those abelian varieties
402:
action on it. In this way one gets a respectable definition of
286:
with remarkable properties that appear in the statement of the
249: 526:. That reflects a good understanding of their Tate modules as 260:, the latter (conjecturally finite) being difficult to study. 695:
Number fields and function fields — two parallel worlds
630:
which generalizes the statement to non-torsion points.
196: 429:, and there is much empirical evidence supporting it. 164: 626:. There are other more general versions, such as the 477: 457: 161:
or more general finitely-generated rings or fields).
46:. Unsourced material may be challenged and removed. 557:proposed, to use elliptic curves of CM-type to do 502: 463: 229:. A great deal of information about its possible 732: 169:There is some tension here between concepts: 335:. The 'bad' primes, for which the reduction 142:; and has become a very substantial area of 576: 439:Complex multiplication of abelian varieties 417:It is in terms of this L-function that the 406:for A. In general its properties, such as 237:is an elliptic curve. The question of the 534:to deal with in terms of the conjectural 432: 106:Learn how and when to remove this message 688: 646: 522:type, rather than needing more general 419:conjecture of Birch and Swinnerton-Dyer 346:Here a refined theory of (in effect) a 733: 549:In the case of elliptic curves, the 288:Birch and Swinnerton-Dyer conjecture 197:Rational points on abelian varieties 44:adding citations to reliable sources 15: 187:Siegel's theorem on integral points 165:Integer points on abelian varieties 13: 486: 483: 480: 317:— to get an abelian variety 293: 14: 757: 55:"Arithmetic of abelian varieties" 587:The Manin–Mumford conjecture of 376:For abelian varieties such as A 301:Reduction of an abelian variety 227:finitely-generated abelian group 20: 241:is thought to be bound up with 124:arithmetic of abelian varieties 31:needs additional citations for 682: 640: 503:{\displaystyle {\rm {End}}(A)} 497: 491: 410:, are still conjectural – the 365: 138:on what are now recognized as 1: 633: 394:of A, which is (dual to) the 185:. The basic results, such as 313:— say, a prime number 7: 524:automorphic representations 510:, there is a definition of 412:Taniyama–Shimura conjecture 382:, there is a definition of 10: 762: 580: 563:imaginary quadratic fields 512:abelian variety of CM-type 436: 369: 267: 263: 217:), the group of points on 189:, come from the theory of 571:several complex variables 252:theory here leads to the 191:diophantine approximation 181:is inherently defined in 157:; or more generally (for 577:Manin–Mumford conjecture 372:Hasse–Weil zeta function 233:is known, at least when 518:required is all of the 425:) at integer values of 599:, states that a curve 504: 465: 433:Complex multiplication 258:Tate–Shafarevich group 201:The basic result, the 173:belongs in a sense to 583:André–Oort conjecture 551:Kronecker Jugendtraum 530:. It also makes them 505: 466: 404:Hasse–Weil L-function 309:of (the integers of) 746:Diophantine geometry 628:Bogomolov conjecture 475: 455: 445:Carl Friedrich Gauss 398:group H(A), and the 207:Diophantine geometry 203:Mordell–Weil theorem 126:is the study of the 40:improve this article 449:lemniscate function 408:functional equation 384:local zeta-function 183:projective geometry 144:arithmetic geometry 565:– in the way that 559:class field theory 553:was the programme 536:algebraic geometry 520:Pontryagin duality 500: 461: 443:Since the time of 328:, is possible for 741:Abelian varieties 555:Leopold Kronecker 516:harmonic analysis 464:{\displaystyle A} 447:(who knew of the 350:to reduction mod 280:NĂ©ron–Tate height 231:torsion subgroups 116: 115: 108: 90: 753: 725: 724: 686: 680: 679: 644: 605:Jacobian variety 540:Hodge conjecture 509: 507: 506: 501: 490: 489: 470: 468: 467: 462: 396:Ă©tale cohomology 136:Pierre de Fermat 111: 104: 100: 97: 91: 89: 48: 24: 16: 761: 760: 756: 755: 754: 752: 751: 750: 731: 730: 729: 728: 705: 687: 683: 648:Raynaud, Michel 645: 641: 636: 585: 579: 561:explicitly for 544:Tate conjecture 479: 478: 476: 473: 472: 456: 453: 452: 441: 435: 381: 374: 368: 362:describing it. 341:singular points 322: 299: 272: 270:Height function 266: 199: 179:abelian variety 175:affine geometry 167: 140:elliptic curves 132:abelian variety 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 759: 749: 748: 743: 727: 726: 703: 681: 652:Artin, Michael 638: 637: 635: 632: 597:Michel Raynaud 578: 575: 567:roots of unity 528:Galois modules 499: 496: 493: 488: 485: 482: 460: 437:Main article: 434: 431: 377: 370:Main article: 367: 364: 320: 298: 294:Reduction mod 292: 284:quadratic form 274:The theory of 268:Main article: 265: 262: 198: 195: 166: 163: 114: 113: 28: 26: 19: 9: 6: 4: 3: 2: 758: 747: 744: 742: 739: 738: 736: 722: 718: 714: 710: 706: 704:0-8176-4397-4 700: 696: 692: 685: 677: 673: 669: 665: 661: 657: 653: 649: 643: 639: 631: 629: 625: 621: 617: 613: 612:torsion point 609: 606: 602: 598: 594: 593:David Mumford 590: 584: 574: 572: 568: 564: 560: 556: 552: 547: 545: 541: 537: 533: 529: 525: 521: 517: 513: 494: 458: 450: 446: 440: 430: 428: 424: 420: 415: 413: 409: 405: 401: 397: 393: 389: 388:Euler product 385: 380: 373: 363: 361: 357: 353: 349: 348:right adjoint 344: 342: 339:by acquiring 338: 334: 331: 327: 323: 316: 312: 308: 304: 297: 291: 289: 285: 281: 277: 271: 261: 259: 255: 251: 246: 245:(see below). 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 194: 192: 188: 184: 180: 176: 172: 171:integer point 162: 160: 159:global fields 156: 153: 149: 145: 141: 137: 133: 129: 128:number theory 125: 121: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: â€“  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 694: 691:Schoof, RenĂ© 684: 659: 642: 623: 619: 615: 607: 600: 595:, proved by 586: 548: 531: 448: 442: 426: 422: 416: 400:Galois group 378: 375: 354:— the 351: 345: 332: 326:finite field 318: 314: 310: 302: 300: 295: 273: 254:Selmer group 247: 238: 234: 222: 218: 214: 210: 209:, says that 200: 178: 170: 168: 154: 152:number field 147: 123: 117: 102: 96:October 2013 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 392:Tate module 366:L-functions 356:NĂ©ron model 337:degenerates 307:prime ideal 243:L-functions 120:mathematics 735:Categories 721:1098.14030 676:0581.14031 656:Tate, John 634:References 589:Yuri Manin 581:See also: 330:almost all 66:newspapers 618:, unless 360:John Tate 305:modulo a 693:(eds.). 658:(eds.). 177:, while 713:2176757 668:0717600 603:in its 324:over a 276:heights 264:Heights 225:, is a 150:over a 80:scholar 719:  711:  701:  674:  666:  532:harder 250:torsor 130:of an 122:, the 82:  75:  68:  61:  53:  614:) in 282:is a 221:over 87:JSTOR 73:books 699:ISBN 591:and 542:and 256:and 248:The 239:rank 59:news 717:Zbl 672:Zbl 573:). 205:in 118:In 42:by 737:: 715:. 709:MR 707:. 670:. 664:MR 654:; 622:= 290:. 193:. 723:. 678:. 624:J 620:C 616:J 608:J 601:C 538:( 498:) 495:A 492:( 487:d 484:n 481:E 459:A 427:s 423:s 379:p 352:p 333:p 321:p 319:A 315:p 311:K 303:A 296:p 235:A 223:K 219:A 215:K 213:( 211:A 155:K 148:A 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Arithmetic of abelian varieties"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
mathematics
number theory
abelian variety
Pierre de Fermat
elliptic curves
arithmetic geometry
number field
global fields
affine geometry
projective geometry
Siegel's theorem on integral points
diophantine approximation
Mordell–Weil theorem
Diophantine geometry
finitely-generated abelian group
torsion subgroups
L-functions
torsor
Selmer group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑