Knowledge

Anti-greenhouse effect

Source đź“ť

932:). Increasing temperatures would also increase the carbon dioxide loss through weathering due to an assumed increase in precipitation, leading to decrease carbon dioxide concentrations. This would lead to a higher methane to carbon dioxide ratio and would stimulate the production of the organic haze. This increase in organic haze production would lead to increased opacity of the atmosphere to sunlight, decreased amounts of solar energy reaching the surface, and thus decreases in surface temperature, thus negating the initial increase in surface temperature. One estimation of the anti-greenhouse effect on Archean Earth calculated the impact to be up to about 20 K in surface cooling. 911:, where a reduced solar output in the past must be reconciled with the existence of liquid water on Earth at that time. In order to explain how water could remain in liquid form, it has been proposed that greenhouse gases helped keep Earth warm enough to prevent water from completely freezing. While one hypothesis suggests that only carbon dioxide was responsible for the additional warmth, another hypothesis includes the presence of both carbon dioxide and methane. One model found that methane in the postbiotic Archean could have existed at a 812: 148: 107: 885:(PAHs) and polyacetylene. The distribution of these polymers is not vertically uniform in Titan's atmosphere, however. The nitrile and polyacetylene polymers are formed in the upper atmosphere while the PAH polymers are created in the stratosphere. These polymers then aggregate to form haze particles. The 940:
In the modern state of Earth's atmosphere, there are a few sources of an anti-greenhouse effect. It has been suggested that stratospheric ozone and Earth's thermosphere create a partial anti-greenhouse effect due to their low thermal opacity and high temperatures. Additionally, ejected dust like that
773:
or 0.84. This means that the surface temperature is reduced from the effective mean radiating temperature by 16%, which is a potentially significant cooling effect. This is an ideal case and represents the maximum impact the anti-greenhouse effect can have and will not be the impact for a real planet
889:
to sunlight of this organic haze on Titan is determined primarily by the haze production rate. If haze production increases, opacity of the haze increases, resulting in more cooling of the surface temperature. Additionally, the presence of this organic haze is the cause of the temperature inversion
915:
of 1,000 ppm or higher, while the carbon dioxide could be as low as 5,000 ppm to still prevent Earth from freezing over, about 12 times the amount in 2022. However, at this 0.2 ratio of methane to carbon dioxide, products deriving from methane photolysis can polymerize to form long-chain molecules
802:
is a phenomenon that can produce localized, rather than planetary, cooling. Whereas the anti-greenhouse effect involves an overall temperature inversion in the stratosphere, the negative greenhouse effect involves a localized temperature inversion in the troposphere. Both effects increase outgoing
69:
and is nearly transparent to infrared energy from Titan's surface. This acts to reduce solar energy reaching the surface and lets infrared energy escape, cooling Titan's surface. Titan has both a greenhouse and an anti-greenhouse effect which compete with one another. The greenhouse effect warms
310:
is the outgoing longwave radiation from the haze in the upper atmosphere. Since the haze is not a good absorber of this longwave radiation, it can be assumed to all pass through out to space. The incoming solar energy must be scaled down to account for the amount of energy that is lost by being
835:, the anti-greenhouse effect due to the haze reduces the surface temperature by 9 K. Because the greenhouse effect due to other atmospheric components increases it by 21 K, the net effect is that the real surface temperature of Titan (94 K) is 12 K warmer than the 949:
emissions has been seen to have a cooling effect on Earth that lasts approximately 1 to 2 years. All of these sources act to create a temperature structure where a hot upper layer lies above a cold surface, which typifies the anti-greenhouse effect.
160:, since the haze is not a good absorber of infrared radiation, the haze will also not be a good emitter of infrared radiation and will emit a small amount in this part of the spectrum both out to space and towards the planet's surface. By the 81:
eon, causing an anti-greenhouse effect. It is theorized that this haze helped to regulate and stabilize early Earth's climate. Other atmospheric phenomena besides organic hazes act similarly to the anti-greenhouse effect, such as Earth's
416: 155:
In the most extreme case, suppose that a planet's upper atmosphere contained a haze that absorbed all sunlight which was not reflected back to space, but at the same time was nearly transparent to infrared longwave radiation. By
126:
and remain at a constant temperature. If one energy contributor is larger than the other, there is an energy imbalance and the temperature of an object will change to reestablish a balance. Energy sources across the whole
965:
Studies using computer simulations have investigated the impact of photochemical hazes on exoplanets' thermal structure. Applying this model to hot Jupiters, scientists found that the inclusion of haze for
1055: 675: 782:
Earlier discussions in the scientific community pre-dating the current definition established by Dr. Christopher McKay in 1991 referred to the anti-greenhouse effect as a precursor to the Late
1817:
Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; HĂ©brard, Eric; Trainer, Melissa G. (November 2016).
220: 771: 728: 1562:
Atreya, Sushil K.; Adams, Elena Y.; Niemann, Hasso B.; Demick-Montelara, Jaime E.; Owen, Tobias C.; Fulchignoni, Marcello; Ferri, Francesca; Wilson, Eric H. (2006-10-01).
605: 519: 282: 861: 565: 458: 242: 151:
Ideal anti-greenhouse effect energy balance assuming one upper atmosphere layer and a planetary albedo of 0. See text for an explanation of symbols and abbreviations.
489: 545: 308: 438: 316: 958:
There has been discussion about a weak anti-greenhouse effect on Mars, where storms carry dust into the upper atmosphere. Evidence for this effect came from
907:
atmosphere was first suggested in 1983 and could have been responsible for an anti-greenhouse effect. This hypothesis stems from attempts at resolving the
1892:
Stenchikov, Georgiy L.; Kirchner, Ingo; Robock, Alan; Graf, Hans-F.; Antuña, Juan Carlos; Grainger, R. G.; Lambert, Alyn; Thomason, Larry (1998-06-27).
122:
can be calculated, similar to how it is done for Earth. For each component in the system, incoming energy needs to equal outgoing energy to uphold the
962:
measurements made in 1976-77 when in the aftermath of a global storm, the average daytime temperature above the ground dropped by 5 degrees Celsius.
970:
led to an expansion of the atmosphere, helping to explain an observed steep transit signature in the electromagnetic spectrum. Also, the model for
790:
process. This is no longer the current usage of the term, which emphasizes surface cooling due to high-altitude absorption of solar radiation.
164:, the planet emits energy directly proportional to the fourth power of surface temperature. At the surface, the energy balance is as follows, 1060:
Astrobiology Magazine – earth science – evolution distribution Origin of life universe – life beyond :: Astrobiology is study of earth
831:
occurring from roughly 16.5 to 25 micrometers. Although a large greenhouse effect does keep Titan at a much higher temperature than the
941:
from volcanoes and nuclear fallout after a nuclear war has been suggested to typify an anti-greenhouse effect. Also, the formation of
131:
need to be accounted for when calculating the energy balance. In the case of Earth, for example, a balance is struck between incoming
1110: 311:
reflected to space since it is not within the planet-atmosphere system. In the upper atmosphere, the energy balance is as follows,
118:
To understand how the anti-greenhouse effect impacts a planet or large moon with its host star as an external source of energy, an
93:
Outside of the Solar system, calculations of the impact of these hazes on the thermal structure of exoplanets have been conducted.
157: 924:
to stabilize the climate on Archean Earth. If temperatures increased in Archean Earth, methane production would increase due to
803:
thermal emissions—locally in the case of a negative greenhouse effect and globally in the case of the anti-greenhouse effect.
1243: 1199: 1026: 916:
that can aggregate into particles, forming the anti-greenhouse organic haze. The haze is formed when the ratio of methane to
43:(heat) energy from the surface, the surface temperature would be reduced by 16%, which is a significant amount of cooling. 612: 881:, meaning the products combine into longer chains and bigger molecules. These methane-derived polymers can be made of 495:. The incoming solar flux is divided by four to account for time and spatial averaging over the entire planet and the 139:
from the surface and the atmosphere. After establishing a component's energy balance, a temperature can be derived.
827:
reaching Titan, but is inefficient at trapping infrared radiation generated by the surface. This is due to Titan's
843:). In the ideal anti-greenhouse case described above, the maximum impact of the organic haze on Titan is (1-0.84) 1620:. Development and interactions of the Precambrian atmosphere, lithosphere and biosphere: results and challenges. 882: 799: 1949: 1570:. Surfaces and Atmospheres of the Outer Planets, their Satellites and Ring Systems from Cassini-Huygens Data. 70:
Titan by 21 K while the anti-greenhouse effect cools Titan by 9 K, so the net warming is 12 K (= 21 K - 9 K).
1954: 1080: 942: 245: 169: 36: 733: 31:, preventing that energy from reaching the surface, which results in surface cooling – the opposite of the 1737:
Haqq-Misra, Jacob D.; Domagal-Goldman, Shawn D.; Kasting, Patrick J.; Kasting, James F. (December 2008).
136: 1563: 682: 1437:
Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas (2015-12-16).
161: 128: 119: 1535: 569: 908: 839:
82 K (which would be the surface temperature in the absence of any atmosphere, assuming constant
1276:
Courtin, R.; McKay, C. P.; Pollack, J. (May 1992). "L'effet de serre dans le systeme solaire".
995: 921: 498: 123: 251: 846: 836: 550: 492: 443: 227: 1579: 1307: 1018: 1905: 1840: 1750: 1685: 1625: 1575: 1491: 1395: 1357: 1285: 1125: 1006: 787: 467: 8: 832: 524: 287: 132: 1909: 1844: 1754: 1689: 1629: 1495: 1399: 1289: 1129: 1010: 411:{\displaystyle {\frac {S}{4}}(1-\alpha )\equiv \sigma T_{e}^{4}=OLR+\sigma T_{surf}^{4}} 1869: 1830: 1818: 1714: 1673: 1512: 1479: 1419: 1319: 1157: 1074: 828: 423: 1738: 1613: 811: 1928: 1874: 1856: 1774: 1766: 1719: 1701: 1651: 1637: 1591: 1517: 1460: 1411: 1339: 1249: 1239: 1205: 1195: 1149: 1141: 1032: 1022: 111: 32: 1439:"How increasing CO 2 leads to an increased negative greenhouse effect in Antarctica" 1423: 1308:"Impact of photochemical hazes and gases on exoplanet atmospheric thermal structure" 1161: 1923: 1913: 1864: 1848: 1758: 1709: 1693: 1641: 1633: 1583: 1507: 1499: 1450: 1403: 1329: 1133: 1014: 920:
exceeds roughly 0.1. It is posited that the organic haze allowed the creation of a
886: 521:
factor is the fraction of the solar energy that is absorbed by the haze. Replacing
59: 28: 24: 1238:. James F. Kasting, Robert G. Crane (3rd ed.). San Francisco: Prentice Hall. 824: 87: 66: 35:. In an ideal case where the upper atmosphere absorbs all sunlight and is nearly 1536:"Titan's Greenhouse Effect and Climate: Lessons from the Earth's Cooler Cousin" 946: 917: 867: 147: 1587: 1503: 1943: 1860: 1770: 1705: 1655: 1595: 1464: 1415: 1343: 1253: 1209: 1145: 1137: 1334: 1878: 1778: 1723: 1697: 1521: 1383: 1153: 912: 820: 51: 1852: 1819:"The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth" 1762: 1233: 1189: 106: 1646: 1455: 1438: 971: 967: 929: 783: 83: 1736: 1109:
McKay, Christopher P.; Pollack, James B.; Courtin, RĂ©gis (1991-09-06).
925: 874: 1918: 1893: 1036: 1480:"Unmasking the negative greenhouse effect over the Antarctic Plateau" 1407: 1793: 1835: 1436: 1324: 959: 40: 1894:"Radiative forcing from the 1991 Mount Pinatubo volcanic eruption" 1561: 904: 878: 871: 78: 62: 1816: 840: 461: 86:
and thermosphere, particles formed and emitted from volcanoes,
47: 1794:"Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases" 1612:
Kasting, J. F.; Zahnle, K. J.; Walker, J. C. G. (1983-06-01).
994:
Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V. (2013),
777: 74: 1891: 1194:. James F. Kasting. West Nyack: Cambridge University Press. 1614:"Photochemistry of methane in the Earth's early atmosphere" 974:
predicted both photochemical haze and objects like clouds.
793: 55: 1739:"A Revised, Hazy Methane Greenhouse for the Archean Earth" 1384:"Late Precambrian Glaciation: an Anti-Greenhouse Effect?" 863:
82 K = 13 K. This is higher than the 9 K found on Titan.
1191:
Atmospheric Evolution on Inhabited and Lifeless Worlds
993: 1791: 849: 736: 685: 670:{\displaystyle \sigma T_{e}^{4}=2\sigma T_{surf}^{4}} 615: 572: 553: 527: 501: 470: 446: 426: 319: 290: 254: 230: 172: 1111:"The Greenhouse and Antigreenhouse Effects on Titan" 1611: 1275: 1108: 1672:Catling, David C.; Zahnle, Kevin J. (2020-02-28). 855: 765: 722: 669: 599: 559: 539: 513: 483: 452: 432: 410: 302: 276: 236: 214: 1312:Monthly Notices of the Royal Astronomical Society 928:possible preference for warmer temperatures (see 16:Atmosopheric phenomenon causing planetary cooling 1941: 142: 1477: 1003:Comparative Climatology of Terrestrial Planets 1671: 996:"The Greenhouse Effect and Climate Feedbacks" 27:sun is absorbed or scattered by the object's 1898:Journal of Geophysical Research: Atmospheres 1478:Sejas, S.A.; Taylor, P. C.; Cai, M. (2018). 1305: 1062:. Archived from the original on 22 July 2020 46:This effect has been discovered to exist on 23:is a process that occurs when energy from a 903:The presence of an organic haze in Earth's 778:Outdated concept of anti-greenhouse effect 1927: 1917: 1868: 1834: 1713: 1645: 1511: 1454: 1333: 1323: 810: 794:Comparison to negative greenhouse effect 146: 105: 96: 1381: 1187: 1056:"Titan: Greenhouse and Anti-greenhouse" 1019:10.2458/azu_uapress_9780816530595-ch007 866:The organic haze is formed through the 215:{\displaystyle \sigma T_{surf}^{4}=OLR} 90:, and dust in Mars's upper atmosphere. 1942: 766:{\displaystyle \left(0.5\right)^{1/4}} 77:potentially had a similar haze in the 1667: 1665: 1607: 1605: 1557: 1555: 1471: 110:Energy flows on Titan lead to both a 1430: 1301: 1299: 1271: 1269: 1267: 1265: 1263: 1231: 1227: 1225: 1223: 1221: 1219: 1183: 1181: 1179: 1177: 1175: 1173: 1171: 1104: 1102: 1100: 1098: 1096: 1094: 1092: 1090: 989: 987: 786:glaciation, describing it more as a 493:effective mean radiating temperature 1730: 1358:"Climate and Earth's Energy Budget" 1306:Lavvas, P; Arfaux, A (2021-03-04). 953: 440:is the incoming solar energy flux, 13: 1662: 1602: 1552: 14: 1966: 1792:US Department of Commerce, NOAA. 1296: 1260: 1216: 1168: 1087: 984: 607:in the second equation, we have, 101: 65:particles simultaneously absorbs 1382:Roberts, J. D. (November 1971). 883:polycyclic aromatic hydrocarbons 823:stratosphere absorbs 90% of the 284:is the surface temperature, and 1885: 1810: 1785: 1528: 1005:, University of Arizona Press, 1375: 1350: 1048: 723:{\displaystyle T_{surf}/T_{e}} 342: 330: 114:and an anti-greenhouse effect. 1: 977: 943:stratospheric sulfur aerosols 54:. In Titan's stratosphere, a 1638:10.1016/0301-9268(83)90069-4 1443:Geophysical Research Letters 600:{\displaystyle T_{surf}^{4}} 143:Ideal anti-greenhouse effect 7: 1568:Planetary and Space Science 893: 806: 137:outgoing longwave radiation 73:It has been suggested that 10: 1971: 1188:Catling, David C. (2017). 935: 800:negative greenhouse effect 464:(i.e., reflectivity), and 1929:21.11116/0000-0004-ECBD-E 1588:10.1016/j.pss.2006.05.028 1504:10.1038/s41612-018-0031-y 1362:earthobservatory.nasa.gov 1079:: CS1 maint: unfit URL ( 890:in Titan's stratosphere. 514:{\displaystyle 1-\alpha } 246:Stefan–Boltzmann constant 84:stratospheric ozone layer 1674:"The Archean atmosphere" 1138:10.1126/science.11538492 277:{\displaystyle T_{surf}} 129:electromagnetic spectrum 1580:2006P&SS...54.1177A 1564:"Titan's methane cycle" 909:faint young Sun paradox 898: 856:{\displaystyle \times } 560:{\displaystyle \sigma } 453:{\displaystyle \alpha } 237:{\displaystyle \sigma } 1698:10.1126/sciadv.aax1420 922:negative feedback loop 857: 816: 767: 724: 671: 601: 561: 541: 515: 485: 454: 434: 412: 304: 278: 238: 216: 152: 124:conservation of energy 115: 21:anti-greenhouse effect 1950:Planetary atmospheres 1853:10.1089/ast.2015.1422 1763:10.1089/ast.2007.0197 1335:10.1093/mnras/stab456 1232:Kump, Lee R. (2010). 858: 837:effective temperature 814: 768: 725: 672: 602: 562: 542: 516: 486: 484:{\displaystyle T_{e}} 455: 435: 413: 305: 279: 239: 217: 150: 109: 97:Energy balance theory 1955:Atmospheric dynamics 1904:(D12): 13837–13857. 1618:Precambrian Research 1456:10.1002/2015GL066749 847: 819:The organic haze in 788:carbon sequestration 734: 683: 613: 570: 551: 525: 499: 468: 444: 424: 317: 288: 252: 228: 170: 162:Stefan–Boltzmann law 1910:1998JGR...10313837S 1845:2016AsBio..16..873A 1755:2008AsBio...8.1127H 1690:2020SciA....6.1420C 1630:1983PreR...20..121K 1496:2018npCAS...1...17S 1400:1971Natur.234..216R 1290:1992Rech...23..542C 1130:1991Sci...253.1118M 1124:(5024): 1118–1121. 1011:2013cctp.book..163C 833:thermal equilibrium 815:The "haze" on Titan 666: 633: 596: 540:{\displaystyle OLR} 407: 365: 303:{\displaystyle OLR} 199: 133:shortwave radiation 1484:npj Clim Atmos Sci 853: 829:atmospheric window 817: 763: 720: 667: 643: 619: 597: 573: 557: 537: 511: 481: 450: 430: 408: 384: 351: 300: 274: 234: 212: 176: 153: 116: 25:celestial object's 1919:10.1029/98JD00693 1574:(12): 1177–1187. 1394:(5326): 216–217. 1245:978-0-321-59779-3 1201:978-1-139-02055-8 1028:978-0-8165-3059-5 433:{\displaystyle S} 328: 135:from the Sun and 112:greenhouse effect 33:greenhouse effect 1962: 1934: 1933: 1931: 1921: 1889: 1883: 1882: 1872: 1838: 1814: 1808: 1807: 1805: 1804: 1789: 1783: 1782: 1749:(6): 1127–1137. 1734: 1728: 1727: 1717: 1678:Science Advances 1669: 1660: 1659: 1649: 1609: 1600: 1599: 1559: 1550: 1549: 1547: 1545: 1540: 1532: 1526: 1525: 1515: 1475: 1469: 1468: 1458: 1434: 1428: 1427: 1408:10.1038/234216a0 1379: 1373: 1372: 1370: 1369: 1354: 1348: 1347: 1337: 1327: 1318:(4): 5643–5657. 1303: 1294: 1293: 1273: 1258: 1257: 1235:The earth system 1229: 1214: 1213: 1185: 1166: 1165: 1115: 1106: 1085: 1084: 1078: 1070: 1068: 1067: 1052: 1046: 1045: 1044: 1043: 1000: 991: 954:On other planets 862: 860: 859: 854: 772: 770: 769: 764: 762: 761: 757: 748: 729: 727: 726: 721: 719: 718: 709: 704: 703: 676: 674: 673: 668: 665: 660: 632: 627: 606: 604: 603: 598: 595: 590: 566: 564: 563: 558: 546: 544: 543: 538: 520: 518: 517: 512: 490: 488: 487: 482: 480: 479: 459: 457: 456: 451: 439: 437: 436: 431: 417: 415: 414: 409: 406: 401: 364: 359: 329: 321: 309: 307: 306: 301: 283: 281: 280: 275: 273: 272: 243: 241: 240: 235: 221: 219: 218: 213: 198: 193: 29:upper atmosphere 1970: 1969: 1965: 1964: 1963: 1961: 1960: 1959: 1940: 1939: 1938: 1937: 1890: 1886: 1829:(11): 873–899. 1815: 1811: 1802: 1800: 1790: 1786: 1735: 1731: 1684:(9): eaax1420. 1670: 1663: 1610: 1603: 1560: 1553: 1543: 1541: 1538: 1534: 1533: 1529: 1476: 1472: 1435: 1431: 1380: 1376: 1367: 1365: 1356: 1355: 1351: 1304: 1297: 1274: 1261: 1246: 1230: 1217: 1202: 1186: 1169: 1113: 1107: 1088: 1072: 1071: 1065: 1063: 1054: 1053: 1049: 1041: 1039: 1029: 998: 992: 985: 980: 956: 938: 901: 896: 848: 845: 844: 825:solar radiation 809: 796: 780: 774:or large moon. 753: 749: 738: 737: 735: 732: 731: 714: 710: 705: 690: 686: 684: 681: 680: 661: 647: 628: 623: 614: 611: 610: 591: 577: 571: 568: 567: 552: 549: 548: 526: 523: 522: 500: 497: 496: 475: 471: 469: 466: 465: 445: 442: 441: 425: 422: 421: 402: 388: 360: 355: 320: 318: 315: 314: 289: 286: 285: 259: 255: 253: 250: 249: 229: 226: 225: 194: 180: 171: 168: 167: 158:Kirchhoff's law 145: 104: 99: 88:nuclear fallout 67:solar radiation 17: 12: 11: 5: 1968: 1958: 1957: 1952: 1936: 1935: 1884: 1809: 1784: 1729: 1661: 1624:(2): 121–148. 1601: 1551: 1527: 1470: 1429: 1374: 1349: 1295: 1284:(243): 542–9. 1259: 1244: 1215: 1200: 1167: 1086: 1047: 1027: 982: 981: 979: 976: 955: 952: 947:sulfur dioxide 945:from volcanic 937: 934: 918:carbon dioxide 900: 897: 895: 892: 868:polymerization 852: 808: 805: 795: 792: 779: 776: 760: 756: 752: 747: 744: 741: 717: 713: 708: 702: 699: 696: 693: 689: 679:and the ratio 664: 659: 656: 653: 650: 646: 642: 639: 636: 631: 626: 622: 618: 594: 589: 586: 583: 580: 576: 556: 536: 533: 530: 510: 507: 504: 478: 474: 449: 429: 405: 400: 397: 394: 391: 387: 383: 380: 377: 374: 371: 368: 363: 358: 354: 350: 347: 344: 341: 338: 335: 332: 327: 324: 299: 296: 293: 271: 268: 265: 262: 258: 233: 211: 208: 205: 202: 197: 192: 189: 186: 183: 179: 175: 144: 141: 103: 102:Energy balance 100: 98: 95: 15: 9: 6: 4: 3: 2: 1967: 1956: 1953: 1951: 1948: 1947: 1945: 1930: 1925: 1920: 1915: 1911: 1907: 1903: 1899: 1895: 1888: 1880: 1876: 1871: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1837: 1832: 1828: 1824: 1820: 1813: 1799: 1795: 1788: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1725: 1721: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1668: 1666: 1657: 1653: 1648: 1647:2027.42/25194 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1606: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1556: 1537: 1531: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1474: 1466: 1462: 1457: 1452: 1448: 1444: 1440: 1433: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1378: 1363: 1359: 1353: 1345: 1341: 1336: 1331: 1326: 1321: 1317: 1313: 1309: 1302: 1300: 1291: 1287: 1283: 1279: 1272: 1270: 1268: 1266: 1264: 1255: 1251: 1247: 1241: 1237: 1236: 1228: 1226: 1224: 1222: 1220: 1211: 1207: 1203: 1197: 1193: 1192: 1184: 1182: 1180: 1178: 1176: 1174: 1172: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1105: 1103: 1101: 1099: 1097: 1095: 1093: 1091: 1082: 1076: 1061: 1057: 1051: 1038: 1034: 1030: 1024: 1020: 1016: 1012: 1008: 1004: 997: 990: 988: 983: 975: 973: 969: 963: 961: 951: 948: 944: 933: 931: 927: 923: 919: 914: 910: 906: 891: 888: 884: 880: 877:products and 876: 873: 869: 864: 850: 842: 838: 834: 830: 826: 822: 813: 804: 801: 791: 789: 785: 775: 758: 754: 750: 745: 742: 739: 715: 711: 706: 700: 697: 694: 691: 687: 677: 662: 657: 654: 651: 648: 644: 640: 637: 634: 629: 624: 620: 616: 608: 592: 587: 584: 581: 578: 574: 554: 534: 531: 528: 508: 505: 502: 494: 476: 472: 463: 460:is planetary 447: 427: 418: 403: 398: 395: 392: 389: 385: 381: 378: 375: 372: 369: 366: 361: 356: 352: 348: 345: 339: 336: 333: 325: 322: 312: 297: 294: 291: 269: 266: 263: 260: 256: 247: 231: 222: 209: 206: 203: 200: 195: 190: 187: 184: 181: 177: 173: 165: 163: 159: 149: 140: 138: 134: 130: 125: 121: 120:energy budget 113: 108: 94: 91: 89: 85: 80: 76: 71: 68: 64: 61: 57: 53: 49: 44: 42: 38: 34: 30: 26: 22: 1901: 1897: 1887: 1826: 1823:Astrobiology 1822: 1812: 1801:. Retrieved 1798:gml.noaa.gov 1797: 1787: 1746: 1743:Astrobiology 1742: 1732: 1681: 1677: 1621: 1617: 1571: 1567: 1542:. Retrieved 1530: 1487: 1483: 1473: 1446: 1442: 1432: 1391: 1387: 1377: 1366:. Retrieved 1364:. 2009-01-14 1361: 1352: 1315: 1311: 1281: 1278:La Recherche 1277: 1234: 1190: 1121: 1117: 1064:. Retrieved 1059: 1050: 1040:, retrieved 1002: 964: 957: 939: 930:thermophiles 926:methanogens' 913:mixing ratio 902: 865: 818: 797: 781: 678: 609: 419: 313: 223: 166: 154: 117: 92: 72: 58:composed of 45: 20: 18: 1544:24 February 972:HD 209458 b 968:HD 189733 b 784:Precambrian 37:transparent 1944:Categories 1836:1610.04515 1803:2022-06-03 1490:(17): 17. 1368:2022-06-03 1325:2102.05763 1066:2010-10-15 1042:2022-06-02 978:References 875:photolysis 1861:1531-1074 1771:1531-1074 1706:2375-2548 1656:0301-9268 1596:0032-0633 1465:0094-8276 1416:1476-4687 1344:0035-8711 1254:268789401 1210:982451455 1146:0036-8075 1075:cite news 851:× 641:σ 617:σ 555:σ 509:α 506:− 448:α 382:σ 349:σ 346:≡ 340:α 337:− 232:σ 174:σ 1879:27792417 1779:19093801 1724:32133393 1522:33102742 1424:34163139 1162:10384331 1154:11538492 960:Viking 1 894:On Earth 879:nitriles 807:On Titan 50:'s moon 41:infrared 1906:Bibcode 1870:5148108 1841:Bibcode 1751:Bibcode 1715:7043912 1686:Bibcode 1626:Bibcode 1576:Bibcode 1513:7580794 1492:Bibcode 1396:Bibcode 1286:Bibcode 1126:Bibcode 1118:Science 1037:1240051 1007:Bibcode 936:Present 905:Archean 887:opacity 872:methane 821:Titan's 730:equals 491:is the 244:is the 79:Archean 63:aerosol 60:organic 1877:  1867:  1859:  1777:  1769:  1722:  1712:  1704:  1654:  1594:  1520:  1510:  1463:  1449:(23). 1422:  1414:  1388:Nature 1342:  1252:  1242:  1208:  1198:  1160:  1152:  1144:  1035:  1025:  841:albedo 462:albedo 420:where 224:where 48:Saturn 1831:arXiv 1539:(PDF) 1420:S2CID 1320:arXiv 1158:S2CID 1114:(PDF) 999:(PDF) 547:with 75:Earth 52:Titan 1875:PMID 1857:ISSN 1775:PMID 1767:ISSN 1720:PMID 1702:ISSN 1652:ISSN 1592:ISSN 1546:2017 1518:PMID 1461:ISSN 1412:ISSN 1340:ISSN 1250:OCLC 1240:ISBN 1206:OCLC 1196:ISBN 1150:PMID 1142:ISSN 1081:link 1033:OSTI 1023:ISBN 899:Past 798:The 56:haze 19:The 1924:hdl 1914:doi 1902:103 1865:PMC 1849:doi 1759:doi 1710:PMC 1694:doi 1642:hdl 1634:doi 1584:doi 1508:PMC 1500:doi 1451:doi 1404:doi 1392:234 1330:doi 1316:502 1134:doi 1122:253 1015:doi 870:of 743:0.5 39:to 1946:: 1922:. 1912:. 1900:. 1896:. 1873:. 1863:. 1855:. 1847:. 1839:. 1827:16 1825:. 1821:. 1796:. 1773:. 1765:. 1757:. 1745:. 1741:. 1718:. 1708:. 1700:. 1692:. 1680:. 1676:. 1664:^ 1650:. 1640:. 1632:. 1622:20 1616:. 1604:^ 1590:. 1582:. 1572:54 1566:. 1554:^ 1516:. 1506:. 1498:. 1486:. 1482:. 1459:. 1447:42 1445:. 1441:. 1418:. 1410:. 1402:. 1390:. 1386:. 1360:. 1338:. 1328:. 1314:. 1310:. 1298:^ 1282:23 1280:. 1262:^ 1248:. 1218:^ 1204:. 1170:^ 1156:. 1148:. 1140:. 1132:. 1120:. 1116:. 1089:^ 1077:}} 1073:{{ 1058:. 1031:, 1021:, 1013:, 1001:, 986:^ 248:, 1932:. 1926:: 1916:: 1908:: 1881:. 1851:: 1843:: 1833:: 1806:. 1781:. 1761:: 1753:: 1747:8 1726:. 1696:: 1688:: 1682:6 1658:. 1644:: 1636:: 1628:: 1598:. 1586:: 1578:: 1548:. 1524:. 1502:: 1494:: 1488:1 1467:. 1453:: 1426:. 1406:: 1398:: 1371:. 1346:. 1332:: 1322:: 1292:. 1288:: 1256:. 1212:. 1164:. 1136:: 1128:: 1083:) 1069:. 1017:: 1009:: 759:4 755:/ 751:1 746:) 740:( 716:e 712:T 707:/ 701:f 698:r 695:u 692:s 688:T 663:4 658:f 655:r 652:u 649:s 645:T 638:2 635:= 630:4 625:e 621:T 593:4 588:f 585:r 582:u 579:s 575:T 535:R 532:L 529:O 503:1 477:e 473:T 428:S 404:4 399:f 396:r 393:u 390:s 386:T 379:+ 376:R 373:L 370:O 367:= 362:4 357:e 353:T 343:) 334:1 331:( 326:4 323:S 298:R 295:L 292:O 270:f 267:r 264:u 261:s 257:T 210:R 207:L 204:O 201:= 196:4 191:f 188:r 185:u 182:s 178:T

Index

celestial object's
upper atmosphere
greenhouse effect
transparent
infrared
Saturn
Titan
haze
organic
aerosol
solar radiation
Earth
Archean
stratospheric ozone layer
nuclear fallout

greenhouse effect
energy budget
conservation of energy
electromagnetic spectrum
shortwave radiation
outgoing longwave radiation

Kirchhoff's law
Stefan–Boltzmann law
Stefan–Boltzmann constant
albedo
effective mean radiating temperature
Precambrian
carbon sequestration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑