Knowledge

Altyn Tagh fault

Source 📝

182:. The way in which this zone accommodates the collision remains unclear with two end-member models being proposed. The first regards the crust as being made up of a mosaic of strong blocks separated by weak fault zones, the 'microplate' model. The second regards the deformation as being continuous within the mid to lower crust, the 'continuum' model. The change in width of the deformed zone along the collisional belt, with the narrow zone of western Tibet compared to the main part of the Tibetan Plateau, is explained as either lateral escape to the east along the Altyn Tagh and Karakorum faults in the microplate model or as the effect of the rigid Tarim Basin block causing heterogeneous deformation within a generally weaker 119: 224: 249:
This fault splays off from the Altyn Tagh Fault at the southwestern end of the Altyn Tagh mountains and runs along the edge of the Altyn Tagh range. It is a dominantly sinistral strike-slip structure, with some subsidiary thrusting. It is thought to extend northeastward from the end of the Altyn Tagh
284:
Slip rates determined from elastic dislocation modeling of measurements from campaign-style GPS surveys at 90° E are 9 ± 5 mm/yr, 9 ± 4 mm/yr, and 11 ± 3 mm/yr. Results from a regional GPS network indicate differences in far-field station of 6–9 mm/yr,. At 85°E, a slip rate of 11
267:
The overall displacement along the Altyn Tagh fault has been estimated using various lines of evidence. Measurements of total left-lateral displacement since initiation for the central ATF range from 280 to 500 km on the basis of an offset tectonic terrane boundary of Paleozoic age, a Paleozoic
214:
The geometry of the southwestern section of the fault zone and how it interacts with the main shortening structures remains unclear. A direct kinematic link to the northward directed thrusts of the western Kunlun seems likely, but this is insufficient to accommodate hundreds of km of displacement on
240:
The northeastern section of the fault zone shows increasing interaction with WNW-ESE trending structures within the eastern Kunlun Shan and the Qilian Mountains. The estimated displacement rate decreases along the northern section, suggesting that some of the displacement is transferred onto thrust
288:
Morphochronologic investigations, which combine displacement and age measurements of faulted landforms such as terrace risers, alluvial fans, stream channels, and glacial moraines, have been undertaken at seven sites along the central Altyn Tagh fault, including Cherchen He (86.4°E), Kelutelage
231:
The central section of the fault zone consists of five slightly en echelon segments, with right-stepping offsets between them, forming four restraining bends. Each of these bends is marked by a topographic high, well above the general elevation of the area, due to the local transpressional
280:
trenching, and on the basis of offset and dated landforms (morphochronology). The majority of these studies have focused on the central portion of the Altyn Tagh fault (85° to 90° E) because the highest slip rates are expected along this portion of the fault.
748:
Cowgill, E.; Arrowsmith, J.R.; Yin, A.; Xiao-feng, X.; Zhengle, C. (2004). "The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 2: Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system".
588:
Cowgill, E.; Yin, A.; Arrowsmith, J.R.; Xiao-Feng, W.; Shuanhong, Z. (2004). "The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults".
289:(86.7°E), Tuzidun (86.7°E), Sulamu Tagh (87.4°E), Yukuang (87.9°E), Keke Qiapu (88.1°E), and Yuemake (88.5°E). The average slip rates reported from these measurements range from 7–27 mm/yr for landforms ranging in age from ~3ka to ~113 ka. 241:
structures along the south side of the Qaidam Basin. Northeast of the Qilian Mountains, a series of five or more splays of the ATF have been identified, with active slip constrained to the post-Cretaceous to pre middle Miocene time interval.
1376:
Wang, Y.; Zhang, X.; Wang, E.; Zhang, J.; Li, Q.; Sun, G. (2005). "40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau".
258:
The Cherchen Fault lies within the Tarim Basin and runs parallel to the Altyn Tagh Fault. It is a steep structure that shows no significant vertical offsets in the Tarim Basin and is suspected to be another sinistral strike-slip fault.
1304:
Gold, R.D.; Cowgill, E.; Arrowsmith, J. R.; Gosse, J.; Wang, X.; Chen, X. (2009). "Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China".
1268:
Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.-F. (2011). "Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet".
1001:
Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; Hanrong, S.; Xinzhao, Y. (2004). "Continuous deformation of the Tibetan Plateau from global positioning system data".
897:
Sobel, E.R.; Arnaud, N.; Jolivet, M.; Ritts, B.D.; Brunel, M. (2001). "Jurassic to Cenozoic exhumation history of the Altyn Tagh range, northwest China, constrained by 40Ar/39Ar and apatite fission track thermochronology".
317:
No major earthquakes have been recorded instrumentally along this fault zone. Paleoseismological studies using trenching have determined that 2–3 large earthquakes have occurred in the last 2–3000 years.
1340:
Cowgill, E.; Gold, R. D.; Chen, X.; Wang, X.-F.; Arrowsmith, J. R.; Southon, J. R. (2009). "Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet".
1123:
Elliott, J.R.; Biggs, J.; Parsons, B.; Wright, T.J. (2008). "InSAR slip rate determination on the Altyn Tagh fault, northern Tibet, in the presence of topographically correlated atmospheric delays".
276:
Late Quaternary slip rates have been reported along the majority of the length of the Altyn Tagh fault and include measurements from geodetic techniques (e.g., GPS surveys and InSAR), traditional
1166:
Cowgill, E (2007). "Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China".
453:"Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau" 232:
deformation. These high points are, from west to east, the Sulamu Tagh (6245 m elevation), the Akato Tagh (~6100 m), the Pingding Shan (4780 m) and the Altun Shan (5830 m).
1041:; Tang, W.; Wang, E.; Zhao, J.; Zhang, X. (2000). "Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental". 268:
plutonic belt, a Jurassic shoreline, Oligocene and Miocene sediments from inferred sources and reconstructions of areas with distinctive 40Ar/39Ar cooling histories.
250:
based on effects on drainage and bedrock ridges suggesting a linkage with the Cherchen Fault. It may have formed part of the ATF at an early stage in its development.
198:
The Altyn Tagh Fault extends for at least 1,500 km and possibly for as much as 2,500 km from the West Kunlun thrust zone in the southwest to the edge of the
689: 1088:
Shen, Z.-K.; Wang, M.; Li, Y.; Jackson, D.D.; Yin, A.; Dong, D.; Fang, P (2001). "Crustal deformation along the Altyn Tagh fault system, western China, from GPS".
523:
Peltzer, G.; Tapponnier, P. (1988). "Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach".
206:, the North Altyn Fault. The main active fault trace of the ATF lies within a zone of secondary structures that is about 100 km wide in the central section. 958:
Zhang, P.-Z.; Molnar, P.; Xu, X. (2007). "Late Quaternary and present-day rates of slip along the Altyn Tagh fault, northern margin of the Tibetan Plateau".
452: 389:
Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. (2001). "Oblique stepwise rise and growth of the Tibet Plateau".
1411: 305:. There is also evidence that the present fault follows a precursor structure, also a zone of sinistral strike-slip, that dates back to the latest 215:
the Altyn Tagh Fault. An alternative suggestion is that the earlier part of the displacement was accommodated by the Tianshuihai backthrust belt.
1207: 338:
Bendick, R.; Bilham, R.; Freymueller, J.; Larson, K.; andYin, G. (2000). "Geodetic evidence for a low slip rate in the Altyn Tagh fault system".
202:
in the northeast (and possibly well beyond). It is divided into three main sections: southwestern, central and northeastern. There is one major
203: 285:± 5 mm/yr was measured on the basis of elastic dislocation modeling of interferometric synthetic aperture radar (InSAR) measurements. 561:
Ritts, B.; Biffi, U. (2000). "Magnitude of post-Middle Jurassic (Bajocian) displacement on the Altyn Tagh fault system, northwest China".
150:. It is one of the major sinistral strike-slip structures that together help to accommodate the eastward motion of this zone of thickened 190:
compared to the degree of distributed deformation of the intervening crust is critical to discriminating between these two models.
629: 720: 227:
The Aksai restraining bend. The resulting uplifted area, the mountains of Altun Shan, is shown by the extent of snow cover
1206:
Mériaux, A.-S.; Ryerson, F.J.; Tapponnier, P.; Van der Woerd, J.; Finkel, R.C.; Xu, X.; Xu, Z.; Caffee, M.W. (2004).
1450: 1043: 460: 840: 819:
Gehrels, G.; Yin, A.; Wang, X.F. (2003). "Detrital-zircon geochronology of the northeastern Tibetan plateau".
574: 1208:"Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh" 862:
Yue, Y.; Ritts, B.D.; Graham, S.A. (2001). "Initiation and long-term slip history of the Altyn Tagh fault".
495: 1460: 655: 186:
in the continuum model. The rate of displacement along the major fault zones such as the Altyn Tagh and
1238: 1455: 158:. A total displacement of about ~475 km has been estimated for this fault zone since the middle 482: 139: 1065: 784:
Gehrels, G.; Yin, A.; Wang, X.F. (2003). "Magmatic history of the northeastern Tibetan Plateau".
654:
Washburn, Z.; Arrowsmith, J.R.; Dupont-Nivet, G.; Xiao-Feng, W.; Qiao, Z.Y.; Zhengle, C. (2003).
60: 1060: 477: 175: 88: 1179: 708: 1386: 1350: 1314: 1278: 1222: 1175: 1132: 1097: 1052: 1011: 967: 930: 828: 793: 758: 704: 598: 532: 469: 398: 347: 8: 78: 1390: 1354: 1318: 1282: 1226: 1136: 1101: 1056: 1015: 971: 934: 832: 797: 762: 656:"Paleoseismology of the Xorxol Segment of the Central Altyn Tagh Fault, Xinjiang, China" 602: 536: 473: 402: 351: 1148: 983: 879: 422: 371: 101: 883: 844: 625: 414: 363: 171: 162:, although the amount of displacement, age of initiation and slip rate are disputed. 94: 1152: 987: 626:"Sinkiang - Xinjiang 53 Mountain Summits with Prominence of 1,500 meters or greater" 426: 1394: 1358: 1322: 1286: 1230: 1183: 1140: 1105: 1070: 1019: 975: 938: 871: 836: 801: 766: 712: 606: 570: 540: 487: 406: 375: 355: 199: 151: 143: 123: 45: 1187: 716: 179: 155: 875: 1444: 1426: 1413: 919:"Inescapable slow slip on the Altyn Tagh fault: Geophysical Research Letters" 848: 544: 1038: 418: 410: 367: 277: 187: 135: 337: 118: 1326: 1303: 1234: 1144: 1109: 1074: 979: 943: 918: 805: 491: 183: 147: 653: 1362: 1398: 1290: 1205: 1023: 896: 770: 610: 359: 159: 388: 297:
The formation of the Altyn Tagh fault has been variously dated as
306: 302: 110: 1087: 298: 106: 747: 690:"Did the Altyn Tagh fault extend beyond the Tibetan Plateau?" 587: 223: 451:
Cowgill, E.; Yin, A.; Harrison, T.M.; Xiao-Feng, W. (2003).
841:
10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2
450: 1267: 1122: 575:
10.1130/0016-7606(2000)112<61:mopjbd>2.0.co;2
916: 818: 783: 518: 516: 235: 209: 957: 522: 513: 1036: 688:
Darby, B.J.; Ritts, B.D.; Yue, Y.; Meng, Q. (2005).
1339: 1375: 687: 218: 1442: 1037:Chen, Z.; Burchfiel, B.C.; Liu, Y.; King, R.W.; 1000: 861: 560: 271: 170:The Tibetan Plateau is an area of thickened 142:that forms the northwestern boundary of the 1201: 1199: 1197: 743: 741: 174:, a result of the ongoing collision of the 649: 647: 1064: 942: 917:Wallace, K.; Yin, G.; Bilham, R. (2004). 481: 446: 444: 442: 440: 438: 436: 382: 333: 331: 1333: 1263: 1261: 1259: 1194: 812: 738: 222: 126:showing location of the Altyn Tagh Fault 117: 1165: 910: 777: 644: 617: 581: 556: 554: 1443: 1379:Geological Society of America Bulletin 1271:Geological Society of America Bulletin 1116: 821:Geological Society of America Bulletin 751:Geological Society of America Bulletin 591:Geological Society of America Bulletin 563:Geological Society of America Bulletin 433: 328: 1297: 1256: 900:Geological Society of America Memoirs 890: 262: 1369: 1081: 1030: 681: 623: 551: 244: 1168:Earth and Planetary Science Letters 855: 697:Earth and Planetary Science Letters 632:from the original on 23 August 2010 312: 236:Northeastern section (east of 94°E) 210:Southwestern section (west of 84°E) 165: 13: 14: 1472: 253: 1307:Journal of Geophysical Research 1215:Journal of Geophysical Research 1159: 1090:Journal of Geophysical Research 1044:Journal of Geophysical Research 994: 951: 786:Journal of Geophysical Research 525:Journal of Geophysical Research 461:Journal of Geophysical Research 134:(ATF) is a 2,000 km long, 219:Central section (84°E to 94°E) 1: 321: 122:Major fault zones around the 1125:Geophysical Research Letters 923:Geophysical Research Letters 864:International Geology Review 7: 193: 138:, sinistral (left lateral) 10: 1477: 1188:10.1016/j.epsl.2006.09.015 717:10.1016/j.epsl.2005.09.011 292: 876:10.1080/00206810109465062 272:Late Quaternary slip rate 100: 87: 77: 69: 59: 54: 44: 36: 31: 23: 18: 1180:2007E&PSL.254..239C 709:2005E&PSL.240..425D 545:10.1029/JB093iB12p15085 1451:Seismic faults of Asia 411:10.1126/science.105978 228: 127: 301:, mid-Oligocene, and 226: 176:Indo-Australian Plate 121: 1327:10.1029/2008JB005913 1235:10.1029/2003JB002558 1145:10.1029/2008GL033659 1110:10.1029/2001JB000349 1075:10.1029/2000JB900092 980:10.1029/2006TC002014 944:10.1029/2004GL019724 806:10.1029/2002JB001876 757:(11–12): 1443–1464. 663:Annals of Geophysics 597:(11–12): 1423–1442. 531:(B12): 15085–15117. 492:10.1029/2002JB002080 83:~2000-3000 years ago 1423: /  1391:2005GSAB..117.1336W 1355:2009Geo....37..647C 1319:2009JGRB..114.4401G 1283:2011GSAB..123..958G 1227:2004JGRB..109.6401M 1137:2008GeoRL..3512309E 1102:2001JGR...10630607S 1096:(12): 30607–30621. 1057:2000JGR...10516215C 1016:2004Geo....32..809Z 972:2007Tecto..26.5010Z 935:2004GeoRL..31.9613W 833:2003GSAB..115..881G 798:2003JGRB..108.2423G 763:2004GSAB..116.1443C 603:2004GSAB..116.1423C 537:1988JGR....9315085P 474:2003JGRB..108.2346C 403:2001Sci...294.1671T 397:(5547): 1671–1677. 352:2000Natur.404...69B 1461:Strike-slip faults 1051:(7): 16215–16227. 263:Total displacement 229: 154:, relative to the 128: 1427:36.000°N 92.000°E 1363:10.1130/G25623A.1 870:(12): 1087–1093. 245:North Altyn Fault 172:continental crust 140:strike-slip fault 116: 115: 95:strike-slip fault 1468: 1456:Geology of China 1438: 1437: 1435: 1434: 1433: 1428: 1424: 1421: 1420: 1419: 1416: 1403: 1402: 1399:10.1130/B25685.1 1373: 1367: 1366: 1337: 1331: 1330: 1301: 1295: 1294: 1291:10.1130/B30207.1 1277:(5–6): 958–978. 1265: 1254: 1253: 1251: 1249: 1243: 1237:. Archived from 1212: 1203: 1192: 1191: 1174:(3–4): 239–255. 1163: 1157: 1156: 1120: 1114: 1113: 1085: 1079: 1078: 1068: 1034: 1028: 1027: 1024:10.1130/G20554.1 998: 992: 991: 966:(TC5010): 1–24. 955: 949: 948: 946: 914: 908: 907: 894: 888: 887: 859: 853: 852: 816: 810: 809: 781: 775: 774: 771:10.1130/B25360.1 745: 736: 735: 733: 731: 725: 719:. Archived from 694: 685: 679: 678: 676: 674: 660: 651: 642: 641: 639: 637: 621: 615: 614: 611:10.1130/B25359.1 585: 579: 578: 558: 549: 548: 520: 511: 510: 508: 506: 500: 494:. Archived from 485: 457: 448: 431: 430: 386: 380: 379: 360:10.1038/35003555 335: 313:Seismic activity 200:Qilian Mountains 166:Tectonic setting 132:Altyn Tagh Fault 19:Altyn Tagh Fault 16: 15: 1476: 1475: 1471: 1470: 1469: 1467: 1466: 1465: 1441: 1440: 1431: 1429: 1425: 1422: 1417: 1414: 1412: 1410: 1409: 1407: 1406: 1374: 1370: 1338: 1334: 1302: 1298: 1266: 1257: 1247: 1245: 1241: 1210: 1204: 1195: 1164: 1160: 1131:(L12309): 1–5. 1121: 1117: 1086: 1082: 1035: 1031: 999: 995: 956: 952: 915: 911: 895: 891: 860: 856: 817: 813: 782: 778: 746: 739: 729: 727: 723: 692: 686: 682: 672: 670: 658: 652: 645: 635: 633: 622: 618: 586: 582: 559: 552: 521: 514: 504: 502: 501:on 18 July 2010 498: 483:10.1.1.458.2239 455: 449: 434: 387: 383: 346:(6773): 69–72. 336: 329: 324: 315: 295: 274: 265: 256: 247: 238: 221: 212: 196: 168: 144:Tibetan Plateau 124:Tibetan Plateau 32:Characteristics 12: 11: 5: 1474: 1464: 1463: 1458: 1453: 1432:36.000; 92.000 1405: 1404: 1385:(9–10): 1336. 1368: 1349:(3): 647–650. 1332: 1296: 1255: 1193: 1158: 1115: 1080: 1066:10.1.1.560.737 1029: 1010:(9): 809–812. 993: 950: 909: 889: 854: 827:(7): 881–896. 811: 776: 737: 703:(2): 425–435. 680: 669:(5): 1015–1034 643: 616: 580: 550: 512: 432: 381: 326: 325: 323: 320: 314: 311: 294: 291: 273: 270: 264: 261: 255: 254:Cherchen Fault 252: 246: 243: 237: 234: 220: 217: 211: 208: 195: 192: 180:Eurasian Plate 167: 164: 156:Eurasian Plate 114: 113: 104: 98: 97: 91: 85: 84: 81: 75: 74: 71: 67: 66: 65:Eurasian plate 63: 57: 56: 52: 51: 48: 42: 41: 38: 34: 33: 29: 28: 25: 21: 20: 9: 6: 4: 3: 2: 1473: 1462: 1459: 1457: 1454: 1452: 1449: 1448: 1446: 1439: 1436: 1400: 1396: 1392: 1388: 1384: 1380: 1372: 1364: 1360: 1356: 1352: 1348: 1344: 1336: 1328: 1324: 1320: 1316: 1312: 1308: 1300: 1292: 1288: 1284: 1280: 1276: 1272: 1264: 1262: 1260: 1244:on 2011-07-16 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1202: 1200: 1198: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1119: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1076: 1072: 1067: 1062: 1058: 1054: 1050: 1046: 1045: 1040: 1033: 1025: 1021: 1017: 1013: 1009: 1005: 997: 989: 985: 981: 977: 973: 969: 965: 961: 954: 945: 940: 936: 932: 928: 924: 920: 913: 905: 901: 893: 885: 881: 877: 873: 869: 865: 858: 850: 846: 842: 838: 834: 830: 826: 822: 815: 807: 803: 799: 795: 791: 787: 780: 772: 768: 764: 760: 756: 752: 744: 742: 726:on 2011-07-20 722: 718: 714: 710: 706: 702: 698: 691: 684: 668: 664: 657: 650: 648: 631: 627: 620: 612: 608: 604: 600: 596: 592: 584: 576: 572: 568: 564: 557: 555: 546: 542: 538: 534: 530: 526: 519: 517: 497: 493: 489: 484: 479: 475: 471: 467: 463: 462: 454: 447: 445: 443: 441: 439: 437: 428: 424: 420: 416: 412: 408: 404: 400: 396: 392: 385: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 334: 332: 327: 319: 310: 308: 304: 300: 290: 286: 282: 279: 269: 260: 251: 242: 233: 225: 216: 207: 205: 201: 191: 189: 188:Kunlun faults 185: 181: 177: 173: 163: 161: 157: 153: 149: 145: 141: 137: 133: 125: 120: 112: 108: 105: 103: 99: 96: 92: 90: 86: 82: 80: 76: 72: 68: 64: 62: 58: 53: 49: 47: 43: 39: 35: 30: 26: 22: 17: 1408: 1382: 1378: 1371: 1346: 1342: 1335: 1310: 1306: 1299: 1274: 1270: 1246:. Retrieved 1239:the original 1218: 1214: 1171: 1167: 1161: 1128: 1124: 1118: 1093: 1089: 1083: 1048: 1042: 1039:Royden, L.H. 1032: 1007: 1003: 996: 963: 959: 953: 926: 922: 912: 903: 899: 892: 867: 863: 857: 824: 820: 814: 792:(B9): 2423. 789: 785: 779: 754: 750: 728:. Retrieved 721:the original 700: 696: 683: 671:. Retrieved 666: 662: 634:. Retrieved 619: 594: 590: 583: 569:(1): 61–74. 566: 562: 528: 524: 503:. Retrieved 496:the original 468:(B7): 2346. 465: 459: 394: 390: 384: 343: 339: 316: 296: 287: 283: 278:paleoseismic 275: 266: 257: 248: 239: 230: 213: 197: 169: 131: 129: 46:Displacement 1430: / 204:splay fault 184:lithosphere 148:Tarim Basin 79:Earthquakes 1445:Categories 1313:(B04401). 1221:(B06401). 929:(9): 1–4. 906:: 247–267. 624:Peaklist. 322:References 93:Sinistral 1061:CiteSeerX 960:Tectonics 884:128922108 849:0016-7606 478:CiteSeerX 178:with the 160:Oligocene 146:with the 55:Tectonics 40:~2,000 km 1153:55951736 988:14370761 630:Archived 427:24563782 419:11721044 368:10716442 194:Geometry 24:Location 1418:92°00′E 1415:36°00′N 1387:Bibcode 1351:Bibcode 1343:Geology 1315:Bibcode 1279:Bibcode 1248:15 July 1223:Bibcode 1176:Bibcode 1133:Bibcode 1098:Bibcode 1053:Bibcode 1012:Bibcode 1004:Geology 968:Bibcode 931:Bibcode 829:Bibcode 794:Bibcode 759:Bibcode 730:15 July 705:Bibcode 673:15 July 636:24 July 599:Bibcode 533:Bibcode 505:15 July 470:Bibcode 399:Bibcode 391:Science 376:4340488 348:Bibcode 307:Permian 303:Miocene 293:History 111:Miocene 1151:  1063:  986:  882:  847:  480:  425:  417:  374:  366:  340:Nature 299:Eocene 136:active 107:Eocene 73:Active 70:Status 50:475 km 37:Length 1242:(PDF) 1211:(PDF) 1149:S2CID 984:S2CID 880:S2CID 724:(PDF) 693:(PDF) 659:(PDF) 499:(PDF) 456:(PDF) 423:S2CID 372:S2CID 152:crust 61:Plate 27:China 1250:2010 845:ISSN 732:2010 675:2010 638:2010 507:2010 415:PMID 364:PMID 130:The 89:Type 1395:doi 1383:117 1359:doi 1323:doi 1311:114 1287:doi 1275:123 1231:doi 1219:109 1184:doi 1172:254 1141:doi 1106:doi 1094:106 1071:doi 1049:105 1020:doi 976:doi 939:doi 904:194 872:doi 837:doi 825:115 802:doi 790:108 767:doi 755:116 713:doi 701:240 607:doi 595:116 571:doi 567:112 541:doi 488:doi 466:108 407:doi 395:294 356:doi 344:404 102:Age 1447:: 1393:. 1381:. 1357:. 1347:28 1345:. 1321:. 1309:. 1285:. 1273:. 1258:^ 1229:. 1217:. 1213:. 1196:^ 1182:. 1170:. 1147:. 1139:. 1129:35 1127:. 1104:. 1092:. 1069:. 1059:. 1047:. 1018:. 1008:32 1006:. 982:. 974:. 964:27 962:. 937:. 927:31 925:. 921:. 902:. 878:. 868:43 866:. 843:. 835:. 823:. 800:. 788:. 765:. 753:. 740:^ 711:. 699:. 695:. 667:46 665:. 661:. 646:^ 628:. 605:. 593:. 565:. 553:^ 539:. 529:93 527:. 515:^ 486:. 476:. 464:. 458:. 435:^ 421:. 413:. 405:. 393:. 370:. 362:. 354:. 342:. 330:^ 309:. 1401:. 1397:: 1389:: 1365:. 1361:: 1353:: 1329:. 1325:: 1317:: 1293:. 1289:: 1281:: 1252:. 1233:: 1225:: 1190:. 1186:: 1178:: 1155:. 1143:: 1135:: 1112:. 1108:: 1100:: 1077:. 1073:: 1055:: 1026:. 1022:: 1014:: 990:. 978:: 970:: 947:. 941:: 933:: 886:. 874:: 851:. 839:: 831:: 808:. 804:: 796:: 773:. 769:: 761:: 734:. 715:: 707:: 677:. 640:. 613:. 609:: 601:: 577:. 573:: 547:. 543:: 535:: 509:. 490:: 472:: 429:. 409:: 401:: 378:. 358:: 350:: 109:-

Index

Displacement
Plate
Earthquakes
Type
strike-slip fault
Age
Eocene
Miocene

Tibetan Plateau
active
strike-slip fault
Tibetan Plateau
Tarim Basin
crust
Eurasian Plate
Oligocene
continental crust
Indo-Australian Plate
Eurasian Plate
lithosphere
Kunlun faults
Qilian Mountains
splay fault

paleoseismic
Eocene
Miocene
Permian

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.