Knowledge

SDS-PAGE

Source đź“ť

127:) and as micelles, below the CMC SDS occurs only as monomers in aqueous solutions. At the critical micellar concentration, a micelle consists of about 62 SDS molecules. However, only SDS monomers bind to proteins via hydrophobic interactions, whereas the SDS micelles are anionic on the outside and do not adsorb any protein. SDS is amphipathic in nature, which allows it to unfold both polar and nonpolar sections of protein structure. In SDS concentrations above 0.1 millimolar, the unfolding of proteins begins, and above 1 mM, most proteins are denatured. Due to the strong denaturing effect of SDS and the subsequent dissociation of protein complexes, 406:
behind the proteins (as initial trailing ions), whereas in the comparatively basic separating gel both ions migrate in front of the proteins. The pH gradient between the stacking and separation gel buffers leads to a stacking effect at the border of the stacking gel to the separation gel, since the glycinate partially loses its slowing positive charges as the pH increases and then, as the former trailing ion, overtakes the proteins and becomes a leading ion, which causes the bands of the different proteins (visible after a staining) to become narrower and sharper - the stacking effect. For the separation of smaller proteins and peptides, the TRIS-
572:
as the distance migrated by the protein band divided by the distance migrated by the buffer front. The distances are each measured from the beginning of the separation gel. The migration of the buffer front roughly corresponds to the migration of the dye contained in the sample buffer. The Rf's of the size marker are plotted semi-logarithmically against their known molecular weights. By comparison with the linear part of the generated graph or by a regression analysis, the molecular weight of an unknown protein can be determined by its relative mobility.
20: 268: 179: 334: 80: 112:, masking the protein's intrinsic charge and conferring them very similar charge-to-mass ratios. The intrinsic charges of the proteins are negligible in comparison to the SDS loading, and the positive charges are also greatly reduced in the basic pH range of a separating gel. Upon application of a constant electric field, the proteins migrate towards the anode, each with a different speed, depending on their mass. This simple procedure allows precise protein separation by mass. 251:) and have a nearly neutral pH, they can be stored for several weeks. The more neutral pH slows the hydrolysis and thus the decomposition of the polyacrylamide. Furthermore, there are fewer acrylamide-modified cysteines in the proteins. Due to the constant pH in collecting and separating gel there is no stacking effect. Proteins in BisTris gels can not be stained with ruthenium complexes. This gel system has a comparatively large separation range, which can be varied by using 72: 212:(APS) the polymerisation is started. The solution is then poured between the glass plates without creating bubbles. Depending on the amount of catalyst and radical starter and depending on the temperature, the polymerisation lasts between a quarter of an hour and several hours. The lower gel (separating gel) is poured first and covered with a few drops of a barely water-soluble alcohol (usually buffer-saturated butanol or isopropanol), which eliminates bubbles from the 135:(e.g. -S-S- linkages) and the SDS-resistant protein complexes, which are stable even in the presence of SDS (the latter, however, only at room temperature). To denature the SDS-resistant complexes a high activation energy is required, which is achieved by heating. SDS resistance is based on a metastability of the protein fold. Although the native, fully folded, SDS-resistant protein does not have sufficient stability in the presence of SDS, the 538: 187: 419: 345: 564: 361:. The gel acts like a sieve. Small proteins migrate relatively easily through the mesh of the gel, while larger proteins are more likely to be retained and thereby migrate more slowly through the gel, thereby allowing proteins to be separated by molecular size. The electrophoresis lasts between half an hour to several hours depending on the voltage and length of gel used. 224:. After addition of APS and TEMED to the stacking gel solution, it is poured on top of the solid separation gel. Afterwards, a suitable sample comb is inserted between the glass plates without creating bubbles. The sample comb is carefully pulled out after polymerisation, leaving pockets for the sample application. For later use of proteins for 579:) can lead to an overestimation of the molecular weight or even not migrate into the gel at all, because they move slower in the electrophoresis due to the positive charges or even to the opposite direction. On the other hand, many acidic amino acids can lead to accelerated migration of a protein and an underestimation of its molecular mass. 204:
which temporarily seals the otherwise open underside of the glass plates with the two spacers. For the gel solution, acrylamide is mixed as gel-former (usually 4% V/V in the stacking gel and 10-12 % in the separating gel), methylenebisacrylamide as a cross-linker, stacking or separating gel buffer, water and SDS. By adding the catalyst
545:
After protein staining and documentation of the banding pattern, the polyacrylamide gel can be dried for archival storage. Proteins can be extracted from it at a later date. The gel is either placed in a drying frame (with or without the use of heat) or in a vacuum dryer. The drying frame consists of
373:
The most commonly used method is the discontinuous SDS-PAGE. In this method, the proteins migrate first into a collecting gel with neutral pH, in which they are concentrated and then they migrate into a separating gel with basic pH, in which the actual separation takes place. Stacking and separating
203:
in a mold consisting of two sealed glass plates with spacers between the glass plates. In a typical mini-gel setting, the spacers have a thickness of 0.75 mm or 1.5 mm, which determines the loading capacity of the gel. For pouring the gel solution, the plates are usually clamped in a stand
571:
For a more accurate determination of the molecular weight, the relative migration distances of the individual protein bands are measured in the separating gel. The measurements are usually performed in triplicate for increased accuracy. The relative mobility (called Rf value or Rm value) is defined
554:
solution are added. Then a second wet cellophane film is applied bubble-free, the second frame part is put on top and the frame is sealed with clips. The removal of the air bubbles avoids a fragmentation of the gel during drying. The water evaporates through the cellophane film. In contrast to the
512:
when sufficient amounts of detergent are not present. This precipitation manifests itself for membrane proteins in a SDS-PAGE in "tailing" above the band of the transmembrane protein. In this case, more SDS can be used (by using more or more concentrated sample buffer) and the amount of protein in
324:
is usually loaded onto the gel. This consists of proteins of known sizes and thereby allows the estimation (with an error of ± 10%) of the sizes of the proteins in the actual samples, which migrate in parallel in different tracks of the gel. The size marker is often pipetted into the first or last
405:
form, at high pH the glycines lose positive charges and become predominantly anionic. In the collection gel, the smaller, negatively charged chloride ions migrate in front of the proteins (as leading ions) and the slightly larger, negatively and partially positively charged glycinate ions migrate
470:
staining, gel is fixed in a 50% ethanol 10% glacial acetic acid solution for 1 hr. Then the solution is changed for fresh one and after 1 to 12 hrs gel is changed to a staining solution (50% methanol, 10% glacial acetic acid, 0.1% coomassie brilliant blue) followed by destaining changing several
794:
improved the separation. The discontinuous electrophoresis of 1964 by L. Ornstein and B. J. Davis made it possible to improve the separation by the stacking effect. The use of cross-linked polyacrylamide hydrogels, in contrast to the previously used paper discs or starch gels, provided a higher
369:
to the sample buffer. Due to the relatively small molecule size of bromophenol blue, it migrates faster than proteins. By optical control of the migrating colored band, the electrophoresis can be stopped before the dye and also the samples have completely migrated through the gel and leave it.
364:
The fastest-migrating proteins (with a molecular weight of less than 5 kDa) form the buffer front together with the anionic components of the electrophoresis buffer, which also migrate through the gel. The area of the buffer front is made visible by adding the comparatively small, anionic dye
520:
A low contrast (as in the marker lane of the image) between bands within a lane indicates either the presence of many proteins (low purity) or, if using purified proteins and a low contrast occurs only below one band, it indicates a proteolytic degradation of the protein, which first causes
1583:
Wiltfang, Jens; Arold, Norbert; Neuhoff, Volker (1991). "A new multiphasic buffer system for sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins and peptides with molecular masses 100 000-1000, and their detection with picomolar sensitivity".
587:
The SDS-PAGE in combination with a protein stain is widely used in biochemistry for the quick and exact separation and subsequent analysis of proteins. It has comparatively low instrument and reagent costs and is an easy-to-use method. Because of its low
62:
gel eliminates the influence of structure and charge, and proteins are separated by differences in their size. At least up to 2012, the publication describing it was the most frequently cited paper by a single author, and the second most cited overall.
275:
During sample preparation, the sample buffer, and thus SDS, is added in excess to the proteins, and the sample is then heated to 95 Â°C for five minutes, or alternatively 70 Â°C for ten minutes. Heating disrupts the
714:
While being one of the more precise and low-cost protein separation and analysis methods, the SDS-PAGE denatures proteins. Where non-denaturing conditions are necessary, proteins are separated by a native PAGE or different
422:
Coomassie-stained 10% Tris/Tricine gel. In the left lane, a molecular weight size marker was used to estimate the size (from top to bottom: 66, 45, 35, 24, 18 and 9 kDa). In the remaining lanes purified yeast proteins were
685:
is used if native protein folding is to be maintained. For separation of membrane proteins, BAC-PAGE or CTAB-PAGE may be used as an alternative to SDS-PAGE. For electrophoretic separation of larger protein complexes,
190:
Polymerised separating and stacking gel before removing the sample comb (white) between the spacers (black), in the stacking gel are small amounts of bromophenol blue for improved visibility, the separating gel is
348:
Electrophoresis chamber after an hour of electrophoresis at 80 Volts. In the first and the last two wells loaded, a commercial protein ladder was applied. The other loaded wells contain protein samples coated in
316:
are added to the sample buffer. After cooling to room temperature, each sample is pipetted into its own well in the gel, which was previously immersed in electrophoresis buffer in the electrophoresis apparatus.
91:
method that allows protein separation by mass. The medium (also referred to as ′matrix′) is a polyacrylamide-based discontinuous gel. The polyacrylamide-gel is typically sandwiched between two glass plates in a
1319:
Akin, Dianne T.; Shapira, Raymond; Kinkade, Joseph M. (1985). "The determination of molecular weights of biologically active proteins by cetyltrimethylammonium bromide-polyacrylamide gel electrophoresis".
516:
An overloading of the gel with a soluble protein creates a semicircular band of this protein (e. g. in the marker lane of the image at 66 kDa), allowing other proteins with similar molecular weights to be
567:
The proteins of the size marker (black X) show an approximately straight line in the representation of log M over Rf. The molecular weight of the unknown protein (red X) can be determined on the y-axis.
795:
stability of the gel and no microbial decomposition. The denaturing effect of SDS in continuous polyacrylamide gels and the consequent improvement in resolution was first described in 1965 by
790:
for the discovery of the principle of electrophoresis as the migration of charged and dissolved atoms or molecules in an electric field. The use of a solid matrix (initially paper discs) in a
1079:
Staikos, Georgios; Dondos, Anastasios (2009). "Study of the sodium dodecyl sulphate–protein complexes: evidence of their wormlike conformation by treating them as random coil polymers".
2222:
Moritz, Christian P.; Marz, Sabrina X.; Reiss, Ralph; Schulenborg, Thomas; Friauf, Eckhard (February 2014). "Epicocconone staining: a powerful loading control for Western blots".
248: 239:, gradient gels with a gradient of acrylamide (usually from 4 to 12%) can be cast, which have a larger separation range of the molecular masses. Commercial gel systems (so-called 357:(usually around 100 V, 10-20 V per cm gel length) is applied, which causes a migration of negatively charged molecules through the gel in the direction of the positively charged 337:
Electrophoresis chamber after a few minutes of electrophoresis. In the first pocket a size marker was applied with bromophenol blue, in the other pockets, the samples were added
1824:
Schägger, Hermann; von Jagow, Gebhard (1987). "Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa".
1635:
Moebius, Jan; Denker, Katrin; Sickmann, Albert (2007). "Ruthenium (II) tris-bathophenanthroline disulfonate is well suitable for Tris-Glycine PAGE but not for Bis-Tris gels".
803:
to separate poliovirus proteins. The current variant of the SDS-PAGE was described in 1970 by Ulrich K. Laemmli and initially used to characterise the proteins in the head of
1155:
Turro, Nicholas J.; Yekta, Ahmad (1978). "Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles".
247:
with a pH value between 6.4 and 7.2 both in the stacking gel and in the separating gel. These gels are delivered cast and ready-to-use. Since they use only one buffer (
353:
For separation, the denatured samples are loaded onto a gel of polyacrylamide, which is placed in an electrophoresis buffer with suitable electrolytes. Thereafter, a
2267:
Advanced Fluorescence Reporters in Chemistry and Biology III: Applications in Sensing and Imaging Band 3 von Advanced Fluorescence Reporters in Chemistry and Biology
1540:
Hachmann, John P.; Amshey, Joseph W. (2005). "Models of protein modification in Tris–glycine and neutral pH Bis–Tris gels during electrophoresis: Effect of gel pH".
1907:
Wilson, CM (1979). "Studies and critique of Amido Black 10B, Coomassie Blue R, and Fast Green FCF as stains for proteins after polyacrylamide gel electrophoresis".
1239:"Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure" 1867:
Fazekas de St. Groth, S.; Webster, R. G.; Datyner, A. (1963). "Two new staining procedures for quantitative estimation of proteins on electrophoretic strips".
2909:"Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals" 525:
The documentation of the banding pattern is usually done by photographing or scanning. For a subsequent recovery of the molecules in individual bands, a
2003:
R. C. Switzer, C. R. Merril, S. Shifrin (September 1979), "A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels",
912: 886: 427:
At the end of the electrophoretic separation, all proteins are sorted by size and can then be analyzed by other methods, e. g. protein staining such as
796: 455:. The fluorescent dyes have a comparatively higher linearity between protein quantity and color intensity of about three orders of magnitude above the 139:
of denaturation at room temperature occurs slowly. Stable protein complexes are characterised not only by SDS resistance but also by stability against
100:(in glass cylinders) were used historically, they were rapidly made obsolete with the invention of the more convenient slab gels. In addition, SDS ( 2792: 2033: 236: 195:
When using different buffers in the gel (discontinuous gel electrophoresis), the gels are made up to one day prior to electrophoresis, so that the
650: 1944:"Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain" 1223: 592:, it is mostly used for analytical purposes and less for preparative purposes, especially when larger amounts of a protein are to be isolated. 463:, a subsequent protein staining is omitted if it was added to the gel solution and the gel was irradiated with UV light after electrophoresis. 2082:
Rabilloud, T.; et al. (1988). "Improvement and simplification of low-background silver staining of proteins by using sodium dithionite".
575:
Bands of proteins with glycosylations can be blurred, as glycosylation is often heterogenous. Proteins with many basic amino acids (e. g.
97: 981:"Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes" 123:(CMC). Above the critical micellar concentration of 7 to 10 millimolar in solutions, the SDS simultaneously occurs as single molecules ( 2678:"An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide" 93: 2955:
Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G (2013). "Zymography methods for visualizing hydrolytic enzymes".
3057: 3032: 3007: 2660: 2596: 2569: 2514: 2487: 2274: 2190: 1758: 1131: 220:
oxygen. After the polymerisation of the separating gel, the alcohol is discarded and the residual alcohol is removed with
1408:"16-BAC/SDS–PAGE: A Two-Dimensional Gel Electrophoresis System Suitable for the Separation of Integral Membrane Proteins" 674: 410:
buffer system of Schägger and von Jagow is used due to the higher spread of the proteins in the range of 0.5 to 50 kDa.
641:. In the HIV test, HIV proteins are separated by SDS-PAGE and subsequently detected by Western Blot with HIV-specific 607:) or to a change in the binding of a detection antibody used in the western blot (i.e. a band disappears or appears). 2362: 1199: 1055: 1482:"2-dimensional resolution of plasma proteins by combination of polyacrylamide disc and gradient gel electrophoresis" 2047:
Blum, H.; Beier, H.; Gross, H. J. (1987). "Improved silver staining of plant protein, RNA & DNA in PAA gels".
228:, the gels are often prepared the day before electrophoresis to reduce reactions of unpolymerised acrylamide with 618:. In regards to determining the molecular mass of a protein, the SDS-PAGE is a bit more exact than an analytical 600: 120: 2125:
Rabilloud, T. (1992). "A comparison between low background silver diammine and silver nitrate protein stains".
767: 104:) is used. About 1.4 grams of SDS bind to a gram of protein, corresponding to one SDS molecule charges per two 827:
Laemmli, U. K. (1970). "Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4".
599:
for the determination of the presence of a specific protein in a mixture of proteins - or for the analysis of
735: 309: 166:
The SDS-PAGE method is composed of gel preparation, sample preparation, electrophoresis, protein staining or
39: 2169: 731: 459:(the quantity of protein that can be estimated by color intensity). When using the fluorescent protein dye 321: 2631: 754:. Some historically early and cost effective but crude separation methods usually based upon a series of 739: 687: 614:
of proteins, SDS-PAGE is a widely used method for sample preparation prior to spectrometry, mostly using
200: 2168:
Lelong, C.; Chevallet, M.; Luche, S.; Rabilloud, T. (2009). "Silver Staining of Proteins in 2DE Gels".
743: 626:
or - ignoring post-translational modifications - a calculation of the protein molecular mass from the
150:
Alternatively, polyacrylamide gel electrophoresis can also be performed with the cationic surfactants
1276:
Buxbaum, Engelbert (2003). "Cationic electrophoresis and electrotransfer of membrane glycoproteins".
521:
degradation bands, and after further degradation produces a homogeneous color ("smear") below a band.
182:
Sample combs with different numbers of pockets, each prong leaves a pocket in the gel when pulled out
3259: 1948: 787: 723: 467: 428: 131:
can generally not be determined with SDS. Exceptions are proteins that are stabilised by covalent
727: 603:. Post-translational modifications of proteins can lead to a different relative mobility (i.e. a 3243: 755: 101: 55: 2613: 2586: 2559: 2504: 2427:"Stain-Free total protein staining is a superior loading control to β-actin for Western blots" 1748: 2786: 2650: 2477: 658: 479:
Protein staining in the gel creates a documentable banding pattern of the various proteins.
3194: 3139: 2689: 1957: 1493: 992: 836: 791: 678: 497: 490:
and adsorb SDS more unevenly at the glycosylations, resulting in broader and blurred bands.
144: 136: 128: 297: 8: 1709: 720: 619: 277: 209: 151: 3198: 3143: 2693: 1961: 1497: 1194:. Tymoczko, John L.; Gatto, Gregory J. Jr.; Stryer, Lubert (Eighth ed.). New York. 996: 840: 673:
SDS-PAGE is the most widely used method for gel electrophoretic separation of proteins.
3163: 3151: 3112: 2980: 2937: 2908: 2883: 2856: 2837: 2769: 2742: 2718: 2677: 2451: 2426: 2343:
Wilson, CM (1983). "Staining of proteins on gels: Comparisons of dyes and procedures".
2320: 2291: 2247: 2204: 2150: 2107: 2064: 1668: 1617: 1517: 1467: 1217: 1104: 868: 771: 555:
drying frame, a vacuum dryer generates a vacuum and heats the gel to about 50 Â°C.
509: 281: 225: 3217: 3182: 3050:
Protein Bioseparation Using Ultrafiltration: Theory, Applications And New Developments
2873: 2354: 1980: 1943: 1289: 1015: 980: 938: 3222: 3155: 3130:
Ornstein, L.; Davis, B. J. (1964). "Disc Electrophoresis –1. Background and Theory".
3104: 3096: 3053: 3028: 3003: 2972: 2929: 2888: 2841: 2829: 2774: 2723: 2705: 2656: 2592: 2565: 2510: 2483: 2456: 2407: 2368: 2358: 2325: 2307: 2270: 2251: 2239: 2196: 2186: 2142: 2099: 2027: 2016: 2012: 1985: 1924: 1920: 1884: 1880: 1849: 1841: 1837: 1754: 1660: 1652: 1609: 1601: 1565: 1557: 1509: 1437: 1429: 1388: 1380: 1345: 1337: 1333: 1301: 1293: 1258: 1205: 1195: 1172: 1137: 1127: 1096: 1061: 1051: 1020: 950: 942: 860: 852: 623: 611: 541:
Two SDS gels after completed separation of the samples and staining in a drying frame
338: 313: 217: 213: 43: 19: 3167: 3116: 2941: 2208: 2154: 2111: 2068: 1672: 1621: 1108: 750:. Single proteins can be isolated from a mixture by affinity chromatography or by a 3212: 3202: 3147: 3086: 2984: 2964: 2921: 2878: 2868: 2819: 2764: 2754: 2713: 2697: 2538: 2446: 2438: 2399: 2388:"Visible fluorescent detection of proteins in polyacrylamide gels without staining" 2350: 2315: 2299: 2231: 2178: 2134: 2091: 2056: 2008: 1975: 1965: 1916: 1876: 1833: 1807: 1782: 1730: 1705: 1697: 1644: 1593: 1549: 1521: 1501: 1463: 1419: 1372: 1329: 1285: 1250: 1164: 1088: 1043: 1010: 1000: 934: 872: 844: 804: 800: 615: 493: 460: 366: 305: 289: 244: 3183:"Evidence for virus-specific noncapsid proteins in poliovirus-infected HeLa cells" 3075:"Turning a PAGE: the overnight sensation of SDS-polycrylamide gel electrophoresis" 2542: 2182: 1786: 976: 751: 747: 699: 456: 440: 398: 88: 1811: 1406:
Hartinger, Joachim; Stenius, Katinka; Högemann, Dagmar; Jahn, Reinhard (1996).
1047: 716: 526: 487: 444: 379: 301: 267: 59: 1701: 1092: 386:(pH 6.8 or pH 8.8). The electrolyte most frequently used is an SDS-containing 178: 3253: 3100: 2759: 2709: 2442: 2403: 2311: 1845: 1656: 1605: 1561: 1553: 1433: 1384: 1341: 1297: 1209: 1176: 1141: 1100: 946: 856: 783: 759: 333: 285: 2138: 2095: 2060: 1597: 3159: 3108: 3000:
Protein Purification: Principles, High Resolution Methods, and Applications
2976: 2833: 2808:"Western blotting: a powerful staple in scientific and biomedical research" 2778: 2727: 2460: 2411: 2387: 2329: 2243: 2235: 2200: 1970: 1888: 1664: 1648: 1569: 1424: 1407: 1392: 1305: 1262: 1238: 1065: 1038:
Smith, B. J. (1984). "SDS Polyacrylamide Gel Electrophoresis of Proteins".
1005: 954: 627: 596: 483: 452: 448: 432: 402: 252: 221: 167: 3226: 3207: 3091: 3074: 2933: 2824: 2807: 2372: 2344: 2146: 2103: 1853: 1613: 1513: 1481: 1441: 1349: 1024: 864: 375: 79: 71: 2892: 1376: 763: 682: 646: 638: 589: 24: 2020: 1989: 1928: 1734: 1168: 2968: 2925: 2002: 703: 642: 547: 501: 436: 132: 109: 105: 51: 2701: 1505: 1254: 471:
times a destaining solution of 40% methanol, 10% glacial acetic acid.
451:
stain and SYPRO orange stain, and immunological detection such as the
1721:
John A. Burns, James C. Butler, John T. Moran, George M. Whitesides:
1456:
One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE).
848: 537: 500:, are often composed of the more hydrophobic amino acids, have lower 196: 1124:
Fundamental Laboratory Approaches for Biochemistry and Biotechnology
2954: 1723:
Selective reduction of disulfides by tris(2-carboxyethyl)phosphine.
634: 551: 395: 383: 229: 140: 1866: 27:
membrane separated by SDS-PAGE according to their molecular masses
1690:
Optimized Proteome Reduction for Integrative Top–Down Proteomics.
691: 654: 576: 407: 391: 354: 199:
does not lead to a mixing of the buffers. The gel is produced by
124: 116: 47: 2303: 695: 563: 186: 155: 2676:
Guan, Yihong; Zhu, Qinfang; Huang, Delai; et al. (2015).
119:
in aqueous solutions above a certain concentration called the
2857:"High resolution two-dimensional electrophoresis of proteins" 2503:
Burgess, Richard R.; Deutscher, Murray P. (3 November 2009).
2167: 1042:. Methods in Molecular Biology. Vol. 1. pp. 41–56. 505: 418: 358: 293: 205: 2558:
Bonner, Philip L. R.; Hargreaves, Alan J. (24 August 2011).
1405: 2649:
van Venrooij, W. J.; Maini, Ravinder N. (6 December 2012).
649:. SDS-PAGE for proteinuria evaluates the levels of various 387: 256: 2221: 344: 2007:(in German), vol. 98, no. 1, pp. 231–237, 1942:
Merril, C. R.; Switzer, R. C.; Keuren, M. L. Van (1979).
1126:(2nd ed.). Hoboken, NJ: John Wiley & Sons, Inc. 662: 36:
sodium dodecyl sulfate–polyacrylamide gel electrophoresis
3025:
Downstream Processing of Proteins: Methods and Protocols
2591:. Springer Science & Business Media. pp. 243–. 1753:. Springer Science & Business Media. pp. 103–. 633:
In medical diagnostics, SDS-PAGE is used as part of the
292:
can be cleaved by reduction. For this purpose, reducing
2743:"Western blot: technique, theory, and trouble shooting" 2655:. Springer Science & Business Media. pp. 50–. 2553: 2551: 2385: 2283: 1688:
Breyer Woodland, Aleksandar Necakov, Jens R. Coorssen:
595:
Additionally, SDS-PAGE is used in combination with the
401:
system. At neutral pH, glycine predominantly forms the
2805: 2561:
Basic Bioscience Laboratory Techniques: A Pocket Guide
2479:
Cryo-EM Part A: Sample Preparation and Data Collection
1750:
Protein Analysis and Purification: Benchtop Techniques
1715: 508:, and tend to precipitate in aqueous solutions due to 3027:. Springer Science & Business Media. p. 35. 2177:. Methods Mol Biol. Vol. 519. pp. 339–350. 1817: 1634: 1535: 1533: 1531: 925:
Studier, F (2000-12-01). "Slab-gel electrophoresis".
3180: 2548: 2496: 1582: 1399: 2289: 1941: 546:two parts, one of which serves as a base for a wet 2907: 2349:. Methods Enzymol. Vol. 91. pp. 236–47. 1528: 1318: 915:. NZZ Folio, No. 11, 2005. Accessed March 4, 2012. 2854: 2648: 2642: 2529:S. Stamova, I. Michalk, H. Bartsch, M. Bachmann: 2482:. Academic Press. 30 September 2010. p. 28. 2386:Ladner CL, Yang J, Turner RJ, Edwards RA (2004). 1823: 1628: 1576: 1121: 3251: 2675: 2557: 2502: 1072: 2806:Begum H, Murugesan P, Tangutur AD (June 2022). 1479: 1312: 974: 558: 170:and analysis of the generated banding pattern. 58:(SDS, also known as sodium lauryl sulfate) and 46:which is commonly used as a method to separate 2632:"Beginners Guide To Glycosylation Of Proteins" 2578: 2046: 1539: 742:. Proteins can also be separated by size in a 3129: 2948: 1902: 1900: 1898: 1740: 1148: 1078: 822: 820: 3066: 2791:: CS1 maint: DOI inactive as of June 2024 ( 2032:: CS1 maint: multiple names: authors list ( 1236: 2740: 2669: 1729:1991, Band 56, Nummer 8, S. 2648–2650 1684: 1682: 1356: 1269: 645:of the patient, if they are present in his 3181:Summers DF, Maizel JV, Darnell JE (1965). 2991: 2747:North American Journal of Medical Sciences 2584: 2424: 2336: 1895: 1767: 1222:: CS1 maint: location missing publisher ( 1154: 970: 968: 966: 964: 918: 817: 288:and stretching the molecules. Optionally, 3216: 3206: 3090: 3016: 2882: 2872: 2823: 2768: 2758: 2717: 2450: 2319: 2290:Gallagher, Sean; Chakavarti, Deb (2008). 2264: 2258: 2171:Two-Dimensional Electrophoresis Protocols 2124: 2081: 1979: 1969: 1746: 1423: 1014: 1004: 3072: 3041: 2611: 2585:Holtzhauer, Martin (13 September 2006). 2564:. John Wiley & Sons. pp. 140–. 1679: 1473: 1448: 1157:Journal of the American Chemical Society 1031: 913:Interview with Ulrich Lämmli (in German) 562: 550:film to which the gel and a one percent 536: 431:staining (most common and easy to use), 417: 378:size (4-6 % T and 10-20 % T), 343: 332: 266: 185: 177: 78: 70: 50:with molecular masses between 5 and 250 18: 3174: 2998:Janson, Jan-Christer (3 January 2012). 2734: 2652:Manual of Biological Markers of Disease 2523: 2472: 2470: 2265:Demchenko, Aleksandr Petrovich (2011). 1792: 1362: 1275: 1230: 961: 924: 826: 3252: 2997: 2379: 2342: 1906: 1747:Rosenberg, Ian M. (22 December 2006). 1122:Ninfa AJ, Ballou DP, Benore M (2010). 513:the sample application can be reduced. 3022: 2905: 2799: 2741:Mahmood T, Yang PC (September 2012). 2614:"Measuring mobility of protein bands" 2612:Caprette, David R (January 5, 2007). 2588:Basic Methods for the Biochemical Lab 2418: 1037: 447:staining, fluorescent stains such as 262: 216:and protects the gel solution of the 3047: 2467: 1781:Volume 1855, 2019, p. 115–124, 1696:2023, Band 11, Nummer 1, S. 10 1363:Simpson, R. J. (2010). "CTAB-PAGE". 1189: 1115: 40:discontinuous electrophoretic system 2537:Volume 869, 2012, p. 433–436, 1462:Volume 541, 2014, p. 151–159, 675:Two-dimensional gel electrophoresis 504:in aqueous solutions, tend to bind 243:) usually use the buffer substance 13: 3152:10.1111/j.1749-6632.1964.tb14207.x 1806:Volume 1721, 2018, p. 89–94, 1468:10.1016/B978-0-12-420119-4.00012-4 328: 14: 3271: 3237: 3052:. World Scientific. p. 142. 2509:. Academic Press. pp. 184–. 2296:Journal of Visualized Experiments 173: 601:post-translational modifications 83:Unfolding of a protein with heat 3123: 2899: 2848: 2624: 2605: 2215: 2161: 2118: 2075: 2040: 1996: 1935: 1860: 1480:Margolis J, Kenrick KG (1969). 1183: 709: 582: 413: 121:critical micellar concentration 75:Unfolding of a protein with SDS 1190:Berg, Jeremy M. (2015-04-08). 927:Trends in Biochemical Sciences 905: 893:(in German). No. 11. 2005 887:"Interview with Ulrich Lämmli" 879: 768:ammonium sulfate precipitation 320:In addition to the samples, a 249:continuous gel electrophoresis 1: 3244:Protocol for BisTris SDS-PAGE 2874:10.1016/S0021-9258(19)41496-8 2535:Methods in molecular biology. 2506:Guide to Protein Purification 2355:10.1016/s0076-6879(83)91020-0 1869:Biochimica et Biophysica Acta 1804:Methods in molecular biology. 1779:Methods in molecular biology. 1727:Journal of organic chemistry. 1290:10.1016/S0003-2697(02)00639-5 939:10.1016/s0968-0004(00)01679-0 810: 736:size exclusion chromatography 681:or BAC-PAGE with a SDS-PAGE. 310:tris(2-carboxyethyl)phosphine 284:of the protein by disrupting 66: 3048:Raja, Ghosh (11 June 2003). 2543:10.1007/978-1-61779-821-4_36 2183:10.1007/978-1-59745-281-6_21 2013:10.1016/0003-2697(79)90732-2 1921:10.1016/0003-2697(79)90581-5 1881:10.1016/0006-3002(63)91092-8 1838:10.1016/0003-2697(87)90587-2 1787:10.1007/978-1-4939-8793-1_12 1365:Cold Spring Harbor Protocols 1334:10.1016/0003-2697(85)90343-4 933:(12). Elsevier BV: 588–590. 732:tandem affinity purification 559:Molecular mass determination 532: 486:have differential levels of 322:molecular-weight size marker 161: 115:SDS tends to form spherical 7: 2425:Gilda JE, Gomes AV (2013). 2292:"Staining Proteins in Gels" 1812:10.1007/978-1-4939-7546-4_8 1237:Manning M, ColĂłn W (2004). 1081:Colloid and Polymer Science 766:molecules, for example the 740:ion exchange chromatography 688:agarose gel electrophoresis 668: 474: 201:free radical polymerization 10: 3276: 3023:Desai, Mohamed A. (2000). 1454:J. L. Brunelle, R. Green: 777: 744:tangential flow filtration 698:can be detected via their 304:(DTT, 10–100 millimolar), 271:Disulfide reduction by DTT 208:and the radical initiator 3002:. John Wiley & Sons. 1775:Cationic Electrophoresis. 1702:10.3390/proteomes11010010 1093:10.1007/s00396-009-2059-3 374:gels differ by different 3187:Proc Natl Acad Sci U S A 2760:10.4103/1947-2714.100998 2443:10.1016/j.ab.2013.05.027 2404:10.1016/j.ab.2003.10.047 1949:Proc Natl Acad Sci U S A 1800:The No-Nonsens SDS-PAGE. 1798:L. Backman, K. Persson: 1554:10.1016/j.ab.2005.04.015 1048:10.1385/0-89603-062-8:41 985:Proc Natl Acad Sci U S A 799:in the working group of 788:Nobel Prize in Chemistry 719:methods with subsequent 622:, but less exact than a 2763:(inactive 2024-06-22). 2346:Enzyme Structure Part I 2139:10.1002/elps.1150130190 2096:10.1002/elps.1150090608 2061:10.1002/elps.1150080203 1826:Analytical Biochemistry 1598:10.1002/elps.1150120507 1542:Analytical Biochemistry 1412:Analytical Biochemistry 1322:Analytical Biochemistry 1278:Analytical Biochemistry 911:Neue ZĂĽricher Zeitung: 728:affinity chromatography 435:(highest sensitivity), 259:in the running buffer. 2855:O'Farrell, PH (1975). 2236:10.1002/pmic.201300089 1971:10.1073/pnas.76.9.4335 1649:10.1002/pmic.200600642 1460:Methods in enzymology. 1425:10.1006/abio.1996.0339 1006:10.1073/pnas.66.3.1002 690:can be used, e.g. the 677:sequentially combines 568: 542: 424: 350: 341: 308:(DTE, 10 millimolar), 300:(β-ME, 5% by volume), 272: 192: 183: 102:sodium dodecyl sulfate 84: 76: 56:sodium dodecyl sulfate 54:. The combined use of 28: 3208:10.1073/pnas.54.2.505 3092:10.1096/fj.08-0402ufm 3073:Pederson, T. (2007). 2825:10.2144/btn-2022-0003 659:Alpha-2-macroglobulin 566: 540: 421: 347: 336: 270: 189: 181: 129:quaternary structures 82: 74: 22: 16:Biochemical technique 1377:10.1101/pdb.prot5412 891:Neue ZĂĽrcher Zeitung 792:zone electrophoresis 679:isoelectric focusing 498:transmembrane domain 145:biological half-life 137:chemical equilibrium 3199:1965PNAS...54..505S 3144:1964NYASA.121..321O 2694:2015NatSR...513370G 2638:. 25 February 2021. 2531:Gel drying methods. 1962:1979PNAS...76.4335M 1735:10.1021/jo00008a014 1498:1969Natur.221.1056M 1371:(4): pdb.prot5412. 1169:10.1021/ja00486a062 997:1970PNAS...66.1002R 841:1970Natur.227..680L 653:in the urine, e.g. 620:ultracentrifugation 510:hydrophobic effects 496:, because of their 282:tertiary structures 210:ammonium persulfate 154:in a CTAB-PAGE, or 3246:at OpenWetWare.org 2969:10.1038/nmeth.2371 2926:10.1007/bf00281458 2682:Scientific Reports 772:polyethyleneglycol 569: 543: 529:can be performed. 425: 351: 342: 273: 263:Sample preparation 226:protein sequencing 193: 184: 85: 77: 29: 3079:The FASEB Journal 3059:978-1-78326-126-0 3034:978-1-59259-027-8 3009:978-1-118-00219-3 2906:Klose, J (1975). 2702:10.1038/srep13370 2662:978-94-011-1670-1 2598:978-3-540-32786-8 2571:978-1-119-95644-0 2516:978-0-08-092317-8 2489:978-0-08-095695-4 2276:978-3-642-18035-4 2192:978-1-58829-937-6 1760:978-0-8176-4412-3 1704:. PMID 36976889. 1506:10.1038/2211056a0 1255:10.1021/bi0491898 1163:(18): 5951–5952. 1133:978-0-470-08766-4 835:(5259): 680–685. 624:mass spectrometry 612:mass spectrometry 494:Membrane proteins 339:bromocresol green 325:pocket of a gel. 314:tributylphosphine 298:β-mercaptoethanol 290:disulfide bridges 218:radical scavenger 143:and an increased 44:Ulrich K. Laemmli 3267: 3231: 3230: 3220: 3210: 3178: 3172: 3171: 3127: 3121: 3120: 3094: 3070: 3064: 3063: 3045: 3039: 3038: 3020: 3014: 3013: 2995: 2989: 2988: 2952: 2946: 2945: 2911: 2903: 2897: 2896: 2886: 2876: 2852: 2846: 2845: 2827: 2803: 2797: 2796: 2790: 2782: 2772: 2762: 2738: 2732: 2731: 2721: 2673: 2667: 2666: 2646: 2640: 2639: 2628: 2622: 2621: 2618:www.ruf.rice.edu 2609: 2603: 2602: 2582: 2576: 2575: 2555: 2546: 2545:, PMID 22585507. 2527: 2521: 2520: 2500: 2494: 2493: 2474: 2465: 2464: 2454: 2422: 2416: 2415: 2383: 2377: 2376: 2340: 2334: 2333: 2323: 2287: 2281: 2280: 2262: 2256: 2255: 2219: 2213: 2212: 2176: 2165: 2159: 2158: 2122: 2116: 2115: 2079: 2073: 2072: 2044: 2038: 2037: 2031: 2023: 2000: 1994: 1993: 1983: 1973: 1956:(9): 4335–4339. 1939: 1933: 1932: 1904: 1893: 1892: 1864: 1858: 1857: 1821: 1815: 1814:, PMID 29423849. 1796: 1790: 1789:, PMID 30426413. 1771: 1765: 1764: 1744: 1738: 1719: 1713: 1686: 1677: 1676: 1632: 1626: 1625: 1580: 1574: 1573: 1537: 1526: 1525: 1492:(5185): 1056–7. 1477: 1471: 1470:, PMID 24674069. 1452: 1446: 1445: 1427: 1403: 1397: 1396: 1360: 1354: 1353: 1316: 1310: 1309: 1273: 1267: 1266: 1249:(35): 11248–54. 1234: 1228: 1227: 1221: 1213: 1187: 1181: 1180: 1152: 1146: 1145: 1119: 1113: 1112: 1087:(8): 1001–1004. 1076: 1070: 1069: 1035: 1029: 1028: 1018: 1008: 977:Tanford, Charles 972: 959: 958: 922: 916: 909: 903: 902: 900: 898: 883: 877: 876: 849:10.1038/227680a0 824: 805:bacteriophage T4 801:James E. Darnell 797:David F. Summers 786:was awarded the 637:and to evaluate 616:in-gel digestion 461:trichloroethanol 367:bromophenol blue 306:dithioerythritol 245:Bis-tris methane 168:western blotting 108:. SDS acts as a 23:Proteins of the 3275: 3274: 3270: 3269: 3268: 3266: 3265: 3264: 3260:Electrophoresis 3250: 3249: 3240: 3235: 3234: 3179: 3175: 3132:Ann NY Acad Sci 3128: 3124: 3071: 3067: 3060: 3046: 3042: 3035: 3021: 3017: 3010: 2996: 2992: 2953: 2949: 2904: 2900: 2867:(10): 4007–21. 2853: 2849: 2804: 2800: 2784: 2783: 2739: 2735: 2674: 2670: 2663: 2647: 2643: 2630: 2629: 2625: 2610: 2606: 2599: 2583: 2579: 2572: 2556: 2549: 2528: 2524: 2517: 2501: 2497: 2490: 2476: 2475: 2468: 2423: 2419: 2384: 2380: 2365: 2341: 2337: 2288: 2284: 2277: 2263: 2259: 2220: 2216: 2193: 2174: 2166: 2162: 2127:Electrophoresis 2123: 2119: 2084:Electrophoresis 2080: 2076: 2049:Electrophoresis 2045: 2041: 2025: 2024: 2001: 1997: 1940: 1936: 1905: 1896: 1865: 1861: 1822: 1818: 1797: 1793: 1772: 1768: 1761: 1745: 1741: 1720: 1716: 1687: 1680: 1633: 1629: 1586:Electrophoresis 1581: 1577: 1538: 1529: 1478: 1474: 1453: 1449: 1404: 1400: 1361: 1357: 1317: 1313: 1274: 1270: 1235: 1231: 1215: 1214: 1202: 1188: 1184: 1153: 1149: 1134: 1120: 1116: 1077: 1073: 1058: 1036: 1032: 973: 962: 923: 919: 910: 906: 896: 894: 885: 884: 880: 825: 818: 813: 780: 774:precipitation. 752:pull-down assay 748:ultrafiltration 717:chromatographic 712: 700:enzyme activity 671: 585: 561: 535: 477: 457:detection limit 441:Amido black 10B 433:silver staining 416: 331: 329:Electrophoresis 265: 176: 164: 158:in a BAC-PAGE. 89:electrophoresis 87:SDS-PAGE is an 69: 17: 12: 11: 5: 3273: 3263: 3262: 3248: 3247: 3239: 3238:External links 3236: 3233: 3232: 3173: 3138:(2): 321–349. 3122: 3085:(4): 949–953. 3065: 3058: 3040: 3033: 3015: 3008: 2990: 2963:(3): 211–220. 2947: 2898: 2847: 2798: 2753:(9): 429–434. 2733: 2668: 2661: 2641: 2623: 2604: 2597: 2577: 2570: 2547: 2522: 2515: 2495: 2488: 2466: 2417: 2378: 2363: 2335: 2282: 2275: 2257: 2230:(2–3): 162–8. 2214: 2191: 2160: 2133:(7): 429–439. 2117: 2090:(6): 288–291. 2074: 2039: 1995: 1934: 1894: 1859: 1832:(2): 368–379. 1816: 1791: 1766: 1759: 1739: 1714: 1678: 1643:(4): 524–527. 1627: 1592:(5): 352–366. 1575: 1548:(2): 237–245. 1527: 1472: 1447: 1418:(1): 126–133. 1398: 1355: 1328:(1): 170–176. 1311: 1268: 1229: 1200: 1182: 1147: 1132: 1114: 1071: 1056: 1030: 975:Reynolds, JA; 960: 917: 904: 878: 815: 814: 812: 809: 779: 776: 760:precipitations 726:, for example 724:quantification 711: 708: 670: 667: 651:serum proteins 584: 581: 560: 557: 534: 531: 527:gel extraction 523: 522: 518: 514: 491: 488:glycosylations 476: 473: 445:Fast green FCF 415: 412: 380:ionic strength 330: 327: 302:dithiothreitol 286:hydrogen bonds 264: 261: 237:gradient mixer 175: 174:Gel production 172: 163: 160: 68: 65: 60:polyacrylamide 15: 9: 6: 4: 3: 2: 3272: 3261: 3258: 3257: 3255: 3245: 3242: 3241: 3228: 3224: 3219: 3214: 3209: 3204: 3200: 3196: 3193:(2): 505–13. 3192: 3188: 3184: 3177: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3126: 3118: 3114: 3110: 3106: 3102: 3098: 3093: 3088: 3084: 3080: 3076: 3069: 3061: 3055: 3051: 3044: 3036: 3030: 3026: 3019: 3011: 3005: 3001: 2994: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2951: 2943: 2939: 2935: 2931: 2927: 2923: 2920:(3): 231–43. 2919: 2915: 2910: 2902: 2894: 2890: 2885: 2880: 2875: 2870: 2866: 2862: 2861:J. Biol. Chem 2858: 2851: 2843: 2839: 2835: 2831: 2826: 2821: 2817: 2813: 2812:BioTechniques 2809: 2802: 2794: 2788: 2780: 2776: 2771: 2766: 2761: 2756: 2752: 2748: 2744: 2737: 2729: 2725: 2720: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2672: 2664: 2658: 2654: 2653: 2645: 2637: 2636:Peak Proteins 2633: 2627: 2619: 2615: 2608: 2600: 2594: 2590: 2589: 2581: 2573: 2567: 2563: 2562: 2554: 2552: 2544: 2540: 2536: 2532: 2526: 2518: 2512: 2508: 2507: 2499: 2491: 2485: 2481: 2480: 2473: 2471: 2462: 2458: 2453: 2448: 2444: 2440: 2436: 2432: 2428: 2421: 2413: 2409: 2405: 2401: 2397: 2393: 2389: 2382: 2374: 2370: 2366: 2364:9780121819910 2360: 2356: 2352: 2348: 2347: 2339: 2331: 2327: 2322: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2278: 2272: 2268: 2261: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2218: 2210: 2206: 2202: 2198: 2194: 2188: 2184: 2180: 2173: 2172: 2164: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2121: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2078: 2070: 2066: 2062: 2058: 2054: 2050: 2043: 2035: 2029: 2022: 2018: 2014: 2010: 2006: 1999: 1991: 1987: 1982: 1977: 1972: 1967: 1963: 1959: 1955: 1951: 1950: 1945: 1938: 1930: 1926: 1922: 1918: 1915:(2): 263–78. 1914: 1910: 1903: 1901: 1899: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1813: 1809: 1805: 1801: 1795: 1788: 1784: 1780: 1776: 1770: 1762: 1756: 1752: 1751: 1743: 1736: 1732: 1728: 1724: 1718: 1711: 1707: 1703: 1699: 1695: 1691: 1685: 1683: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1631: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1579: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1536: 1534: 1532: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1469: 1465: 1461: 1457: 1451: 1443: 1439: 1435: 1431: 1426: 1421: 1417: 1413: 1409: 1402: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1315: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1272: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1233: 1225: 1219: 1211: 1207: 1203: 1201:9781464126109 1197: 1193: 1186: 1178: 1174: 1170: 1166: 1162: 1158: 1151: 1143: 1139: 1135: 1129: 1125: 1118: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1075: 1067: 1063: 1059: 1057:0-89603-062-8 1053: 1049: 1045: 1041: 1034: 1026: 1022: 1017: 1012: 1007: 1002: 998: 994: 991:(3): 1002–7. 990: 986: 982: 978: 971: 969: 967: 965: 956: 952: 948: 944: 940: 936: 932: 928: 921: 914: 908: 892: 888: 882: 874: 870: 866: 862: 858: 854: 850: 846: 842: 838: 834: 830: 823: 821: 816: 808: 806: 802: 798: 793: 789: 785: 784:Arne Tiselius 775: 773: 769: 765: 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 722: 718: 707: 705: 701: 697: 693: 689: 684: 680: 676: 666: 664: 660: 656: 652: 648: 644: 640: 636: 631: 629: 625: 621: 617: 613: 608: 606: 602: 598: 593: 591: 580: 578: 573: 565: 556: 553: 549: 539: 530: 528: 519: 515: 511: 507: 503: 499: 495: 492: 489: 485: 484:Glycoproteins 482: 481: 480: 472: 469: 464: 462: 458: 454: 450: 446: 442: 438: 434: 430: 420: 411: 409: 404: 400: 397: 393: 389: 385: 381: 377: 371: 368: 362: 360: 356: 346: 340: 335: 326: 323: 318: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 269: 260: 258: 254: 250: 246: 242: 241:pre-cast gels 238: 233: 232:in proteins. 231: 227: 223: 219: 215: 211: 207: 202: 198: 188: 180: 171: 169: 159: 157: 153: 148: 146: 142: 138: 134: 133:cross-linking 130: 126: 122: 118: 113: 111: 107: 103: 99: 95: 90: 81: 73: 64: 61: 57: 53: 49: 45: 42:developed by 41: 37: 33: 26: 21: 3190: 3186: 3176: 3135: 3131: 3125: 3082: 3078: 3068: 3049: 3043: 3024: 3018: 2999: 2993: 2960: 2956: 2950: 2917: 2914:Humangenetik 2913: 2901: 2864: 2860: 2850: 2818:(1): 58–69. 2815: 2811: 2801: 2787:cite journal 2750: 2746: 2736: 2688:(1): 13370. 2685: 2681: 2671: 2651: 2644: 2635: 2626: 2617: 2607: 2587: 2580: 2560: 2534: 2530: 2525: 2505: 2498: 2478: 2437:(2): 186–8. 2434: 2431:Anal Biochem 2430: 2420: 2398:(1): 13–20. 2395: 2392:Anal Biochem 2391: 2381: 2345: 2338: 2295: 2285: 2269:. Springer. 2266: 2260: 2227: 2223: 2217: 2170: 2163: 2130: 2126: 2120: 2087: 2083: 2077: 2052: 2048: 2042: 2005:Anal Biochem 2004: 1998: 1953: 1947: 1937: 1912: 1909:Anal Biochem 1908: 1872: 1868: 1862: 1829: 1825: 1819: 1803: 1799: 1794: 1778: 1774: 1773:E. Buxbaum: 1769: 1749: 1742: 1726: 1722: 1717: 1693: 1689: 1640: 1636: 1630: 1589: 1585: 1578: 1545: 1541: 1489: 1485: 1475: 1459: 1455: 1450: 1415: 1411: 1401: 1368: 1364: 1358: 1325: 1321: 1314: 1284:(1): 70–76. 1281: 1277: 1271: 1246: 1243:Biochemistry 1242: 1232: 1192:Biochemistry 1191: 1185: 1160: 1156: 1150: 1123: 1117: 1084: 1080: 1074: 1039: 1033: 988: 984: 930: 926: 920: 907: 895:. Retrieved 890: 881: 832: 828: 781: 713: 710:Alternatives 672: 632: 628:DNA sequence 609: 604: 597:western blot 594: 586: 583:Applications 574: 570: 544: 524: 478: 465: 453:Western Blot 449:epicocconone 426: 414:Gel staining 403:zwitterionic 372: 363: 352: 319: 274: 240: 234: 222:filter paper 194: 165: 149: 114: 86: 35: 31: 30: 2957:Nat Methods 2304:10.3791/760 1875:: 377–391. 764:kosmotropic 756:extractions 721:photometric 683:Native PAGE 647:blood serum 639:proteinuria 590:scalability 235:By using a 106:amino acids 96:. Although 25:erythrocyte 2224:Proteomics 1694:Proteomes. 1637:Proteomics 811:References 704:zymography 643:antibodies 605:band shift 548:cellophane 502:solubility 443:staining, 439:staining, 437:stains all 423:separated. 110:surfactant 67:Properties 3101:0892-6638 2842:250175915 2710:2045-2322 2312:1940-087X 2252:206368546 2055:: 93–99. 1846:0003-2697 1657:1615-9853 1606:0173-0835 1562:0003-2697 1434:0003-2697 1385:1559-6095 1342:0003-2697 1298:0003-2697 1218:cite book 1210:913469736 1177:0002-7863 1142:420027217 1101:0303-402X 947:0968-0004 857:0028-0836 782:In 1948, 730:(or even 533:Archiving 468:Coomassie 429:Coomassie 384:pH values 278:secondary 230:cysteines 197:diffusion 191:unstained 162:Procedure 141:proteases 98:tube gels 3254:Category 3168:28591995 3160:14240533 3117:33466516 3109:18378803 2977:23443633 2942:30981877 2834:35775367 2779:23050259 2728:26311515 2461:23747530 2412:14769330 2330:19066521 2244:24339236 2209:52820065 2201:19381593 2155:43084621 2112:33007991 2069:84471792 2028:citation 1889:18421828 1710:10059017 1673:25822873 1665:17309097 1622:40101706 1570:15935323 1393:20360366 1306:12633604 1263:15366934 1109:97367384 1066:20512673 1040:Proteins 979:(1970). 955:11116182 897:March 4, 770:and the 669:Variants 635:HIV test 577:histones 552:glycerol 517:covered. 475:Analysis 396:chloride 296:such as 214:meniscus 117:micelles 94:slab gel 48:proteins 32:SDS-PAGE 3227:4285933 3195:Bibcode 3140:Bibcode 2985:5314901 2934:1093965 2884:2874754 2770:3456489 2719:4550835 2690:Bibcode 2452:3809032 2373:6190068 2321:3253607 2147:1425556 2104:2466660 1958:Bibcode 1854:2449095 1614:1718736 1522:4197850 1514:5774398 1494:Bibcode 1442:8811889 1350:4003759 1025:5269225 993:Bibcode 873:3105149 865:5432063 837:Bibcode 778:History 696:enzymes 694:. Some 692:SDD-AGE 655:Albumin 408:Tricine 392:glycine 355:voltage 125:monomer 38:) is a 3225:  3218:219696 3215:  3166:  3158:  3115:  3107:  3099:  3056:  3031:  3006:  2983:  2975:  2940:  2932:  2893:236308 2891:  2881:  2840:  2832:  2777:  2767:  2726:  2716:  2708:  2659:  2595:  2568:  2513:  2486:  2459:  2449:  2410:  2371:  2361:  2328:  2318:  2310:  2298:(17). 2273:  2250:  2242:  2207:  2199:  2189:  2153:  2145:  2110:  2102:  2067:  2019:  1988:  1981:411569 1978:  1927:  1887:  1852:  1844:  1757:  1708:  1671:  1663:  1655:  1620:  1612:  1604:  1568:  1560:  1520:  1512:  1486:Nature 1440:  1432:  1391:  1383:  1348:  1340:  1304:  1296:  1261:  1208:  1198:  1175:  1140:  1130:  1107:  1099:  1064:  1054:  1023:  1016:283150 1013:  953:  945:  871:  863:  855:  829:Nature 762:using 746:or an 506:lipids 399:buffer 294:thiols 156:16-BAC 3164:S2CID 3113:S2CID 2981:S2CID 2938:S2CID 2838:S2CID 2248:S2CID 2205:S2CID 2175:(PDF) 2151:S2CID 2108:S2CID 2065:S2CID 2021:94518 1990:92027 1929:89822 1669:S2CID 1618:S2CID 1518:S2CID 1105:S2CID 869:S2CID 359:anode 206:TEMED 3223:PMID 3156:PMID 3105:PMID 3097:ISSN 3054:ISBN 3029:ISBN 3004:ISBN 2973:PMID 2930:PMID 2889:PMID 2830:PMID 2793:link 2775:PMID 2724:PMID 2706:ISSN 2657:ISBN 2593:ISBN 2566:ISBN 2533:In: 2511:ISBN 2484:ISBN 2457:PMID 2408:PMID 2369:PMID 2359:ISBN 2326:PMID 2308:ISSN 2271:ISBN 2240:PMID 2197:PMID 2187:ISBN 2143:PMID 2100:PMID 2034:link 2017:PMID 1986:PMID 1925:PMID 1885:PMID 1850:PMID 1842:ISSN 1802:In: 1777:In: 1755:ISBN 1725:In: 1692:In: 1661:PMID 1653:ISSN 1610:PMID 1602:ISSN 1566:PMID 1558:ISSN 1510:PMID 1458:In: 1438:PMID 1430:ISSN 1389:PMID 1381:ISSN 1369:2010 1346:PMID 1338:ISSN 1302:PMID 1294:ISSN 1259:PMID 1224:link 1206:OCLC 1196:ISBN 1173:ISSN 1138:OCLC 1128:ISBN 1097:ISSN 1062:PMID 1052:ISBN 1021:PMID 951:PMID 943:ISSN 899:2012 861:PMID 853:ISSN 758:and 661:and 388:Tris 382:and 376:pore 349:SDS. 280:and 257:MOPS 152:CTAB 3213:PMC 3203:doi 3148:doi 3136:121 3087:doi 2965:doi 2922:doi 2879:PMC 2869:doi 2865:250 2820:doi 2765:PMC 2755:doi 2714:PMC 2698:doi 2539:doi 2447:PMC 2439:doi 2435:440 2400:doi 2396:326 2351:doi 2316:PMC 2300:doi 2232:doi 2179:doi 2135:doi 2092:doi 2057:doi 2009:doi 1976:PMC 1966:doi 1917:doi 1877:doi 1834:doi 1830:166 1808:doi 1783:doi 1731:doi 1706:PMC 1698:doi 1645:doi 1594:doi 1550:doi 1546:342 1502:doi 1490:221 1464:doi 1420:doi 1416:240 1373:doi 1330:doi 1326:145 1286:doi 1282:314 1251:doi 1165:doi 1161:100 1089:doi 1085:287 1044:doi 1011:PMC 1001:doi 935:doi 845:doi 833:227 734:), 702:by 663:IgG 610:In 466:In 312:or 255:or 253:MES 52:kDa 3256:: 3221:. 3211:. 3201:. 3191:54 3189:. 3185:. 3162:. 3154:. 3146:. 3134:. 3111:. 3103:. 3095:. 3083:22 3081:. 3077:. 2979:. 2971:. 2961:10 2959:. 2936:. 2928:. 2918:26 2916:. 2912:. 2887:. 2877:. 2863:. 2859:. 2836:. 2828:. 2816:73 2814:. 2810:. 2789:}} 2785:{{ 2773:. 2749:. 2745:. 2722:. 2712:. 2704:. 2696:. 2684:. 2680:. 2634:. 2616:. 2550:^ 2469:^ 2455:. 2445:. 2433:. 2429:. 2406:. 2394:. 2390:. 2367:. 2357:. 2324:. 2314:. 2306:. 2294:. 2246:. 2238:. 2228:14 2226:. 2203:. 2195:. 2185:. 2149:. 2141:. 2131:13 2129:. 2106:. 2098:. 2086:. 2063:. 2051:. 2030:}} 2026:{{ 2015:, 1984:. 1974:. 1964:. 1954:76 1952:. 1946:. 1923:. 1913:96 1911:. 1897:^ 1883:. 1873:71 1871:. 1848:. 1840:. 1828:. 1681:^ 1667:. 1659:. 1651:. 1639:. 1616:. 1608:. 1600:. 1590:12 1588:. 1564:. 1556:. 1544:. 1530:^ 1516:. 1508:. 1500:. 1488:. 1484:. 1436:. 1428:. 1414:. 1410:. 1387:. 1379:. 1367:. 1344:. 1336:. 1324:. 1300:. 1292:. 1280:. 1257:. 1247:43 1245:. 1241:. 1220:}} 1216:{{ 1204:. 1171:. 1159:. 1136:. 1103:. 1095:. 1083:. 1060:. 1050:. 1019:. 1009:. 999:. 989:66 987:. 983:. 963:^ 949:. 941:. 931:25 929:. 889:. 867:. 859:. 851:. 843:. 831:. 819:^ 807:. 738:, 706:. 665:. 657:, 630:. 147:. 3229:. 3205:: 3197:: 3170:. 3150:: 3142:: 3119:. 3089:: 3062:. 3037:. 3012:. 2987:. 2967:: 2944:. 2924:: 2895:. 2871:: 2844:. 2822:: 2795:) 2781:. 2757:: 2751:4 2730:. 2700:: 2692:: 2686:5 2665:. 2620:. 2601:. 2574:. 2541:: 2519:. 2492:. 2463:. 2441:: 2414:. 2402:: 2375:. 2353:: 2332:. 2302:: 2279:. 2254:. 2234:: 2211:. 2181:: 2157:. 2137:: 2114:. 2094:: 2088:9 2071:. 2059:: 2053:8 2036:) 2011:: 1992:. 1968:: 1960:: 1931:. 1919:: 1891:. 1879:: 1856:. 1836:: 1810:: 1785:: 1763:. 1737:. 1733:: 1712:. 1700:: 1675:. 1647:: 1641:7 1624:. 1596:: 1572:. 1552:: 1524:. 1504:: 1496:: 1466:: 1444:. 1422:: 1395:. 1375:: 1352:. 1332:: 1308:. 1288:: 1265:. 1253:: 1226:) 1212:. 1179:. 1167:: 1144:. 1111:. 1091:: 1068:. 1046:: 1027:. 1003:: 995:: 957:. 937:: 901:. 875:. 847:: 839:: 394:- 390:- 34:(

Index


erythrocyte
discontinuous electrophoretic system
Ulrich K. Laemmli
proteins
kDa
sodium dodecyl sulfate
polyacrylamide


electrophoresis
slab gel
tube gels
sodium dodecyl sulfate
amino acids
surfactant
micelles
critical micellar concentration
monomer
quaternary structures
cross-linking
chemical equilibrium
proteases
biological half-life
CTAB
16-BAC
western blotting


diffusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑