Knowledge

Steam reforming

Source 📝

278: 782: 2462: 38: 768: 457: 610: 1183:
reforming does not eliminate carbon dioxide release into the atmosphere but reduces the carbon dioxide emissions and nearly eliminates carbon monoxide emissions as compared to the burning of conventional fuels due to increased efficiency and fuel cell characteristics. However, by turning the release
1036: 1178:
The reformer– the fuel-cell system is still being researched but in the near term, systems would continue to run on existing fuels, such as natural gas or gasoline or diesel. However, there is an active debate about whether using these fuels to make hydrogen is beneficial while global warming
1071:
The capital cost of steam reforming plants is considered prohibitive for small to medium size applications. The costs for these elaborate facilities do not scale down well. Conventional steam reforming plants operate at pressures between 200 and 600 psi (14–40 bar) with outlet temperatures in the
855:
produces 9–10 million tons of hydrogen per year, mostly with steam reforming of natural gas. The worldwide ammonia production, using hydrogen derived from steam reforming, was 144 million tonnes in 2018. The energy consumption has been reduced from 100 GJ/tonne of ammonia in 1920 to 27 GJ by 2019.
1228:
would be another cause of catalyst deactivation during steam reforming. High reaction temperatures, low steam-to-carbon ratio (S/C), and the complex nature of sulfur-containing commercial hydrocarbon fuels make coking especially favorable. Olefins, typically ethylene, and aromatics are well-known
1062:
Partial oxidation (POX) occurs when a sub-stoichiometric fuel-air mixture is partially combusted in a reformer creating hydrogen-rich syngas. POX is typically much faster than steam reforming and requires a smaller reactor vessel. POX produces less hydrogen per unit of the input fuel than steam
772:
As these reactions by themselves are highly endothermic (apart from WGSR, which is mildly exothermic), a large amount of heat needs to be added to the reactor to keep a constant temperature. Optimal SMR reactor operating conditions lie within a temperature range of 800 °C to 900 °C at
1237:
of reforming reactants. Meanwhile, the adsorbed sulfur species increases the catalyst acidity, and hence indirectly promotes coking. Precious metal catalysts such as Rh and Pt have lower tendencies to form bulk sulfides than other metal catalysts such as Ni. Rh and Pt are less prone to sulfur
1199:
depends on the scale at which it is done, the capital cost of the reformer, and the efficiency of the unit, so that whilst it may cost only a few dollars per kilogram of hydrogen at an industrial scale, it could be more expensive at the smaller scale needed for fuel cells.
1087:(VOCs) are known problems in the offshore industry and in the on-shore oil and gas industry, since both release greenhouse gases into the atmosphere. Reforming for combustion engines utilizes steam reforming technology for converting waste gases into a source of energy. 801:, providing the necessary energy to keep the reactor at a constant temperature during operation. Furnace designs vary, depending on the burner configuration they are typically categorized into: top-fired, bottom-fired, and side-fired. A notable design is the 619: 1044::CO ratio can be varied, which can be useful for producing specialty products. Due to the exothermic nature of some of the additional reactions occurring within ATR, the process can essentially be performed at a net enthalpy of zero (Δ 322: 470: 902: 1229:
carbon-precursors, hence their formation must be reduced during steam reforming. Additionally, catalysts with lower acidity were reported to be less prone to coking by suppressing dehydrogenation reactions. H
2108: 2249:
Zheng, Qinghe; Janke, Christiane; Farrauto, Robert (2014). "Steam reforming of sulfur-containing dodecane on a Rh–Pt catalyst: Influence of process parameters on catalyst stability and coke structure".
195: 1233:
S, the main product in the reforming of organic sulfur, can bind to all transition metal catalysts to form metal–sulfur bonds and subsequently reduce catalyst activity by inhibiting the
1040:
The main difference between SMR and ATR is that SMR only uses air for combustion as a heat source to create steam, while ATR uses purified oxygen. The advantage of ATR is that the H
773:
medium pressures of 20-30 bar. High excess of steam is required, expressed by the (molar) steam-to-carbon (S/C) ratio. Typical S/C ratio values lie within the range 2.5:1 - 3:1.
1811: 859:
Globally, almost 50% of hydrogen is produced via steam reforming. It is currently the least expensive method for hydrogen production available in terms of its capital cost.
763:{\displaystyle \qquad \mathrm {CH} _{4}+2\,\mathrm {H} _{2}\mathrm {O} \rightleftharpoons \mathrm {CO} _{2}+4\,\mathrm {H} _{2}\qquad \Delta H_{DSR}=165\ \mathrm {kJ/mol} } 870:
produced from the process. Despite this, implementation of this technology remains problematic, costly, and increases the price of the produced hydrogen significantly.
452:{\displaystyle \qquad \mathrm {CH} _{4}+\mathrm {H} _{2}\mathrm {O} \rightleftharpoons \mathrm {CO} +3\,\mathrm {H} _{2}\qquad \Delta H_{SR}=206\ \mathrm {kJ/mol} } 605:{\displaystyle \qquad \mathrm {CO} +\mathrm {H} _{2}\mathrm {O} \rightleftharpoons \mathrm {CO} _{2}+\mathrm {H} _{2}\qquad \Delta H_{WGSR}=-41\ \mathrm {kJ/mol} } 2116: 1031:{\displaystyle \qquad \mathrm {CH} _{4}+0.5\,\mathrm {O} _{2}\rightleftharpoons \mathrm {CO} +2\,\mathrm {H} _{2}\qquad \Delta H_{R}=-24.5\ \mathrm {kJ/mol} } 614:
Some additional reactions occurring within steam reforming processes have been studied. Commonly the direct steam reforming (DSR) reaction is also included:
1846: 882:. The reaction takes place in a single chamber where the methane is partially oxidized. The reaction is exothermic. When the ATR uses carbon dioxide, the H 2291: 2090: 1257:(MCFC) do not have this problem, but operate at higher temperatures, slowing start-up time, and requiring costly materials and bulky insulation. 1774:
Reimert, Rainer; Marschner, Friedemann; Renner, Hans-Joachim; Boll, Walter; Supp, Emil; Brejc, Miron; Liebner, Waldemar; Schaub, Georg (2011).
1760: 1293: 890::CO ratio produced is 2.5:1. The outlet temperature of the syngas is between 950–1100 °C and outlet pressure can be as high as 100 2521: 2495: 1448:"Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production" 2130: 1192:
becomes a possibility, which would prevent the release of carbon dioxide to the atmosphere, while adding to the cost of the process.
1212:
The reforming reaction takes place at high temperatures, making it slow to start up and requiring costly high-temperature materials.
797:
category. These reactors consist of an array of long and narrow tubes which are situated within the combustion chamber of a large
17: 2284: 1500: 2055: 1928: 1882: 1795: 1656: 1822: 86: 1951:"Explaining successful and failed investments in U.S. carbon capture and storage using empirical and expert assessments" 465:(WGSR), additional hydrogen is released by reaction of water with the carbon monoxide generated according to equation : 2597: 2506: 2277: 1736: 1391: 1354: 1989: 2076: 1218:
compounds in the fuel will poison certain catalysts, making it difficult to run this type of system from ordinary
2587: 2511: 2484: 2364: 2334: 238:, using low- or zero-carbon electricity. Zero carbon emissions 'turquoise' hydrogen is produced by one-step 2773: 866:(CCS) methods are being implemented within the industry, which have the potential to remove up to 90% of CO 817: 2003:"A Comparative Exergoeconomic Evaluation of the Synthesis Routes for Methanol Production from Natural Gas" 1447: 1408: 2778: 2369: 2094: 2035: 1908: 1339: 2727: 2666: 1847:"Fact of the Month May 2018: 10 Million Metric Tons of Hydrogen Produced Annually in the United States" 1344: 1254: 1189: 1134:
There is also interest in the development of much smaller units based on similar technology to produce
878:
Autothermal reforming (ATR) uses oxygen and carbon dioxide or steam in a reaction with methane to form
863: 223: 41:
Illustrating inputs and outputs of steam reforming of natural gas, a process to produce hydrogen and CO
1684: 1604: 1409:"A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production" 2793: 2722: 2707: 2440: 2324: 1084: 282: 2235: 2213: 1949:
Abdulla, Ahmed; Hanna, Ryan; Schell, Kristen R; Babacan, Oytun; Victor, David G (29 December 2020).
239: 2712: 2656: 2425: 2410: 2384: 2300: 2168: 1261: 462: 2435: 2420: 2405: 1864: 794: 1562: 1520: 317:
The name-giving reaction is the steam reforming (SR) reaction and is expressed by the equation:
2702: 2430: 2399: 2389: 2314: 2208: 1318: 1775: 1090:
Reforming for combustion engines is based on steam reforming, where non-methane hydrocarbons (
2614: 2581: 2450: 2222: 1308: 1250: 825: 1146:
are currently the subject of research and development, typically involving the reforming of
2752: 2682: 2672: 2609: 2545: 2359: 2329: 1298: 231: 8: 2737: 2732: 2687: 2646: 2576: 1496: 1288: 1265: 1249:(CO) produced by the reactor, making it necessary to include complex CO-removal systems. 77: 31: 2788: 2555: 2537: 2526: 2490: 2445: 2415: 1972: 1920: 1754: 1467: 1428: 1283: 798: 781: 250: 1620: 2783: 2602: 2479: 2195: 2051: 2047: 1976: 1924: 1791: 1742: 1732: 1704: 1662: 1652: 1624: 1582: 1540: 1471: 1432: 1387: 1329: 1323: 1242: 1057: 277: 2182: 2159: 1222:. Some new technologies have overcome this challenge with sulfur-tolerant catalysts. 2697: 2651: 2618: 2592: 2566: 2516: 2500: 2354: 2349: 2319: 2255: 2144: 2043: 2014: 1962: 1916: 1783: 1700: 1696: 1616: 1574: 1532: 1463: 1459: 1424: 1420: 1379: 2461: 2109:"Wärtsilä Launches GasReformer Product For Turning Oil Production Gas Into Energy" 2717: 2692: 2560: 2550: 2259: 1563:"Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics" 1492: 1246: 281:
Depiction of the general process flow of a typical steam reforming plant. (PSA =
266: 65: 2131:"Method of operating a gas engine plant and fuel feeding system of a gas engine" 1685:"Review and evaluation of hydrogen production methods for better sustainability" 2641: 2623: 2394: 2374: 2339: 1967: 1950: 1313: 1303: 1111: 802: 227: 2161:
Hydrogen from Exhaust Gas Fuel Reforming: Greener, Leaner and Smoother Engines
1746: 1666: 2767: 2379: 2344: 1787: 1708: 1628: 1586: 1544: 1234: 852: 842: 219: 215: 1887: 2742: 2661: 2269: 1726: 1646: 1196: 1185: 836: 235: 222:
when the carbon dioxide is (mostly) captured and stored geologically - see
1578: 1536: 1383: 289:
The purpose of pre-reforming is to break down higher hydrocarbons such as
2677: 2207:
Doty, F. David (2004). "A Realistic Look at Hydrogen Price Projections".
1238:
poisoning by only chemisorbing sulfur rather than forming metal sulfides.
1180: 1163: 246: 234:, using solar thermal, low- or zero-carbon electricity or waste heat, or 201: 73: 69: 27:
Method for producing hydrogen and carbon monoxide from hydrocarbon fuels
2019: 2002: 2001:
Blumberg, Timo; Morosuk, Tatiana; Tsatsaronis, George (December 2017).
1143: 1139: 891: 790: 2747: 2470: 1080: 897:
In addition to reactions – , ATR introduces the following reaction:
821: 1883:"Vinder af VIDENSKABENS TOP 5: Hydrogen og methanol uden energifrås" 1605:"The kinetics of methane steam reforming over a Ni/α-Al2O catalyst" 1219: 1155: 1147: 1135: 1119: 829: 61: 2158:
Wyszynski, Miroslaw L.; Megaritis, Thanos; Lehrle, Roy S. (2001).
832:
shapes used are spoked wheels, gear wheels, and rings with holes (
2571: 1203: 1167: 1159: 1151: 1103: 809: 302: 298: 290: 218:
when the waste carbon dioxide is released to the atmosphere and
1349: 1278: 1225: 1215: 1095: 879: 813: 294: 262: 249:
produces most of the world's hydrogen. Hydrogen is used in the
57: 1208:
There are several challenges associated with this technology:
37: 1651:(2nd ed.). Cambridge, MA: Gulf Professional Publishing. 1126:) - thereby improving the fuel gas quality (methane number). 1376:
Hydrogen and Syngas Production and Purification Technologies
1491: 1334: 1091: 2000: 1773: 2196:
Fossil fuel reforming not eliminating any carbon dioxides
1948: 886::CO ratio produced is 1:1; when the ATR uses steam, the H 309:), which allows for more efficient reforming downstream. 183: 117: 101: 76:
is the feedstock. The main purpose of this technology is
2157: 1870:(Report). United States Geological Survey. January 2020. 269:
catalysts, have been studied in detail since the 1950s.
1374:
Liu, Ke; Song, Chunshan; Subramani, Velu, eds. (2009).
261:
Steam reforming reaction kinetics, in particular using
144: 1812:"Hydrogen Production – Steam Methane Reforming (SMR)" 905: 622: 473: 325: 190:{\displaystyle {\ce {CH4 + H2O <=> CO + 3 H2}}} 89: 2167:(Technical report). Future Power Systems Group, The 1150:, but other fuels are also being considered such as 848:
Steam reforming of natural gas is 65–75% efficient.
1906: 80:. The reaction is represented by this equilibrium: 2248: 1268:) depending on the purity of the hydrogen product. 1030: 950: 762: 672: 604: 512: 451: 371: 189: 1066: 862:In an effort to decarbonise hydrogen production, 152: 151: 134: 133: 2765: 1373: 1907:Velazquez Abad, A.; Dodds, P. E. (2017-01-01), 214:Hydrogen produced by steam reforming is termed 2036:"FUELS – HYDROGEN STORAGE | Chemical Carriers" 1780:Ullmann's Encyclopedia of Industrial Chemistry 1611:. FRONTIERS IN CHEMICAL REACTION ENGINEERING. 1204:Challenges with reformers supplying fuel cells 1142:. Small-scale steam reforming units to supply 2285: 2040:Encyclopedia of Electrochemical Power Sources 1195:The cost of hydrogen production by reforming 2299: 2077:"Hydrogen Production: Natural Gas Reforming" 2033: 1728:Handbook of industrial hydrocarbon processes 1406: 845:which is advantageous for this application. 45:greenhouse gas that may be captured with CCS 1683:Dincer, Ibrahim; Acar, Canan (2015-09-14). 1294:Chemical looping reforming and gasification 2292: 2278: 1759:: CS1 maint: location missing publisher ( 1682: 789:The reaction is conducted in multitubular 2212: 2042:, Amsterdam: Elsevier, pp. 504–518, 2018: 1966: 1603:Hou, Kaihu; Hughes, Ronald (2001-03-15). 1602: 1561:Xu, Jianguo; Froment, Gilbert F. (1989). 1560: 1518: 1075: 967: 937: 841:). Additionally, these shapes have a low 808:Inside the tubes, a mixture of steam and 696: 654: 388: 172: 2385:Environmentally healthy community design 1913:Encyclopedia of Sustainable Technologies 1689:International Journal of Hydrogen Energy 1521:"Kinetics of the methane-steam reaction" 1452:International Journal of Hydrogen Energy 1094:) of low quality gases are converted to 873: 780: 276: 36: 1880: 1874: 1724: 1644: 1445: 1407:Safari, Farid; Dincer, Ibrahim (2020). 1264:of the process is between 70% and 85% ( 127: 14: 2766: 1915:, Oxford: Elsevier, pp. 293–304, 776: 2273: 1902: 1900: 1898: 1720: 1718: 2206: 2183:"Commonly used fuel reforming today" 1857: 1678: 1676: 1640: 1638: 1598: 1596: 1556: 1554: 1051: 785:Global Hydrogen Production by Method 24: 2522:waste-water treatment technologies 2252:Applied Catalysis B: Environmental 2034:Semelsberger, T. A. (2009-01-01), 1921:10.1016/b978-0-12-409548-9.10117-4 1895: 1881:Ramskov, Jens (16 December 2019). 1731:(Second ed.). Cambridge, MA. 1715: 1519:Akers, W. W.; Camp, D. P. (1955). 1024: 1021: 1018: 1010: 1007: 981: 970: 957: 954: 940: 921: 918: 756: 753: 750: 742: 739: 710: 699: 680: 677: 668: 657: 638: 635: 598: 595: 592: 584: 581: 546: 535: 520: 517: 508: 497: 488: 485: 445: 442: 439: 431: 428: 402: 391: 378: 375: 367: 356: 341: 338: 312: 25: 2805: 2507:agricultural wastewater treatment 1673: 1635: 1593: 1551: 1355:Timeline of hydrogen technologies 1245:membranes can be poisoned by the 1188:rather than distributed release, 1129: 2460: 2048:10.1016/b978-044452745-5.00331-2 1499:; Buchanan, Michelle V. (2004). 1413:Energy Conversion and Management 1173: 272: 2588:List of energy storage projects 2512:industrial wastewater treatment 2365:Environmental impact assessment 2335:Environmental impact assessment 2242: 2200: 2189: 2175: 2151: 2137: 2123: 2115:. 18 March 2013. Archived from 2101: 2083: 2069: 2027: 1994: 1983: 1942: 1911:, in Abraham, Martin A. (ed.), 1839: 1804: 1767: 980: 915: 709: 632: 545: 483: 401: 335: 251:industrial synthesis of ammonia 1955:Environmental Research Letters 1776:"Gas Production, 2. Processes" 1701:10.1016/j.ijhydene.2014.12.035 1512: 1485: 1464:10.1016/j.ijhydene.2021.11.057 1439: 1425:10.1016/j.enconman.2019.112182 1400: 1367: 1067:Steam reforming at small scale 912: 906: 816:catalyst. Catalysts with high 629: 623: 480: 474: 332: 326: 232:thermochemical water splitting 154: 129: 13: 1: 1621:10.1016/S1385-8947(00)00367-3 1360: 1072:range of 815 to 925 °C. 54:steam methane reforming (SMR) 2260:10.1016/j.apcatb.2014.05.044 1609:Chemical Engineering Journal 1063:reforming of the same fuel. 818:surface-area-to-volume ratio 812:are put into contact with a 256: 7: 2370:Environmental impact design 2038:, in Garche, Jürgen (ed.), 1340:Reformed methanol fuel cell 1272: 1255:molten carbonate fuel cells 793:reactors, a subtype of the 10: 2810: 2728:High-performance buildings 1725:Speight, James G. (2020). 1648:The refinery of the future 1645:Speight, James G. (2020). 1345:Reformer sponge iron cycle 1190:carbon capture and storage 1085:volatile organic compounds 1055: 864:carbon capture and storage 224:carbon capture and storage 56:is a method for producing 29: 2723:Heat recovery ventilation 2708:Environmental remediation 2633: 2536: 2469: 2458: 2325:Climate smart agriculture 2307: 1184:of carbon dioxide into a 820:are preferred because of 283:Pressure swing adsorption 200:The reaction is strongly 2713:Glass in green buildings 2657:sustainable architecture 2301:Environmental technology 2169:University of Birmingham 1968:10.1088/1748-9326/abd19e 1909:"Production of Hydrogen" 1865:Nitrogen (Fixed)—Ammonia 1788:10.1002/14356007.o12_o01 1262:thermodynamic efficiency 824:limitations due to high 463:water-gas shift reaction 30:Not to be confused with 2145:"Fossil fuel processor" 2091:"Atmospheric Emissions" 1497:Dresselhaus, Mildred S. 1446:Lumbers, Brock (2022). 805:terrace wall reformer. 18:Steam methane reforming 2703:Environmental movement 2400:Sustainability science 2390:Public interest design 2315:Appropriate technology 2230:Cite journal requires 1319:Lane hydrogen producer 1251:Solid oxide fuel cells 1076:For combustion engines 1032: 786: 764: 606: 453: 286: 191: 46: 2582:hydrogen technologies 2496:Solid waste treatment 1579:10.1002/aic.690350109 1537:10.1002/aic.690010415 1384:10.1002/9780470561256 1309:Hydrogen technologies 1102:+ CO) and finally to 1033: 874:Autothermal reforming 826:operating temperature 784: 765: 607: 454: 280: 253:and other chemicals. 192: 72:with water. Commonly 40: 2753:Water heat recycling 2683:Efficient energy use 2673:Conservation biology 2610:Sustainable lighting 2546:Efficient energy use 2360:Environmental Design 2330:Environmental design 2254:. 160–161: 525–533. 1502:The Hydrogen Economy 1299:Cracking (chemistry) 903: 620: 471: 323: 87: 2774:Hydrogen production 2738:Nature conservation 2733:Land rehabilitation 2688:Energy conservation 2577:carbon-neutral fuel 2485:dispersion modeling 1819:Hydrogen Fact Sheet 1508:(Technical report). 1493:Crabtree, George W. 1289:Catalytic reforming 1138:as a feedstock for 777:Industrial practice 285:, NG = Natural gas) 245:Steam reforming of 185: 140: 119: 103: 78:hydrogen production 32:catalytic reforming 2779:Chemical processes 2556:Energy development 2538:Sustainable energy 2527:water purification 2491:Industrial ecology 2020:10.3390/app7121213 1828:on 4 February 2006 1284:Boudouard reaction 1028: 799:industrial furnace 787: 760: 602: 449: 287: 187: 173: 159: 107: 91: 47: 2761: 2760: 2598:commercialization 2057:978-0-444-52745-5 1930:978-0-12-804792-7 1797:978-3-527-30673-2 1658:978-0-12-816995-7 1330:Partial oxidation 1324:Methane pyrolysis 1243:polymer fuel cell 1058:Partial oxidation 1052:Partial oxidation 1005: 795:plug flow reactor 737: 579: 426: 240:methane pyrolysis 176: 165: 161: 122: 110: 94: 68:) by reaction of 16:(Redirected from 2801: 2794:Industrial gases 2698:Energy recycling 2619:electric vehicle 2593:Renewable energy 2567:alternative fuel 2517:sewage treatment 2501:Waste management 2464: 2355:Energy recycling 2350:Electric vehicle 2320:Clean technology 2294: 2287: 2280: 2271: 2270: 2264: 2263: 2246: 2240: 2239: 2233: 2228: 2226: 2218: 2216: 2204: 2198: 2193: 2187: 2186: 2179: 2173: 2172: 2166: 2155: 2149: 2148: 2141: 2135: 2134: 2127: 2121: 2120: 2105: 2099: 2098: 2093:. Archived from 2087: 2081: 2080: 2073: 2067: 2066: 2065: 2064: 2031: 2025: 2024: 2022: 2007:Applied Sciences 1998: 1992: 1987: 1981: 1980: 1970: 1946: 1940: 1939: 1938: 1937: 1904: 1893: 1892: 1878: 1872: 1871: 1869: 1861: 1855: 1854: 1843: 1837: 1836: 1835: 1833: 1827: 1821:, archived from 1816: 1808: 1802: 1801: 1771: 1765: 1764: 1758: 1750: 1722: 1713: 1712: 1680: 1671: 1670: 1642: 1633: 1632: 1600: 1591: 1590: 1558: 1549: 1548: 1516: 1510: 1509: 1507: 1489: 1483: 1482: 1480: 1478: 1458:(7): 4265–4283. 1443: 1437: 1436: 1404: 1398: 1397: 1371: 1241:Low temperature 1037: 1035: 1034: 1029: 1027: 1017: 1003: 993: 992: 979: 978: 973: 960: 949: 948: 943: 930: 929: 924: 769: 767: 766: 761: 759: 749: 735: 728: 727: 708: 707: 702: 689: 688: 683: 671: 666: 665: 660: 647: 646: 641: 611: 609: 608: 603: 601: 591: 577: 567: 566: 544: 543: 538: 529: 528: 523: 511: 506: 505: 500: 491: 458: 456: 455: 450: 448: 438: 424: 417: 416: 400: 399: 394: 381: 370: 365: 364: 359: 350: 349: 344: 242:of natural gas. 228:'green' hydrogen 196: 194: 193: 188: 186: 184: 181: 174: 163: 162: 160: 158: 157: 150: 142: 141: 139: 132: 124: 120: 118: 115: 108: 102: 99: 92: 21: 2809: 2808: 2804: 2803: 2802: 2800: 2799: 2798: 2764: 2763: 2762: 2757: 2718:Green computing 2693:Energy recovery 2629: 2561:Energy recovery 2551:Electrification 2532: 2478:Air pollution ( 2465: 2456: 2303: 2298: 2268: 2267: 2247: 2243: 2231: 2229: 2220: 2219: 2214:10.1.1.538.3537 2205: 2201: 2194: 2190: 2181: 2180: 2176: 2164: 2156: 2152: 2143: 2142: 2138: 2129: 2128: 2124: 2107: 2106: 2102: 2089: 2088: 2084: 2075: 2074: 2070: 2062: 2060: 2058: 2032: 2028: 1999: 1995: 1988: 1984: 1947: 1943: 1935: 1933: 1931: 1905: 1896: 1879: 1875: 1867: 1863: 1862: 1858: 1845: 1844: 1840: 1831: 1829: 1825: 1814: 1810: 1809: 1805: 1798: 1772: 1768: 1752: 1751: 1739: 1723: 1716: 1681: 1674: 1659: 1643: 1636: 1601: 1594: 1559: 1552: 1517: 1513: 1505: 1490: 1486: 1476: 1474: 1444: 1440: 1405: 1401: 1394: 1372: 1368: 1363: 1275: 1247:carbon monoxide 1232: 1206: 1176: 1132: 1125: 1117: 1109: 1101: 1078: 1069: 1060: 1054: 1043: 1013: 1006: 988: 984: 974: 969: 968: 953: 944: 939: 938: 925: 917: 916: 904: 901: 900: 889: 885: 876: 869: 779: 745: 738: 717: 713: 703: 698: 697: 684: 676: 675: 667: 661: 656: 655: 642: 634: 633: 621: 618: 617: 587: 580: 553: 549: 539: 534: 533: 524: 516: 515: 507: 501: 496: 495: 484: 472: 469: 468: 434: 427: 409: 405: 395: 390: 389: 374: 366: 360: 355: 354: 345: 337: 336: 324: 321: 320: 315: 313:Steam reforming 308: 275: 259: 230:is produced by 220:'blue' hydrogen 216:'grey' hydrogen 211:= 206 kJ/mol). 210: 182: 177: 153: 146: 145: 143: 135: 128: 126: 125: 123: 116: 111: 100: 95: 90: 88: 85: 84: 66:carbon monoxide 50:Steam reforming 44: 35: 28: 23: 22: 15: 12: 11: 5: 2807: 2797: 2796: 2791: 2786: 2781: 2776: 2759: 2758: 2756: 2755: 2750: 2745: 2740: 2735: 2730: 2725: 2720: 2715: 2710: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2664: 2659: 2654: 2649: 2644: 2637: 2635: 2631: 2630: 2628: 2627: 2624:hybrid vehicle 2621: 2615:Transportation 2612: 2607: 2606: 2605: 2600: 2590: 2585: 2579: 2574: 2569: 2563: 2558: 2553: 2548: 2542: 2540: 2534: 2533: 2531: 2530: 2524: 2519: 2514: 2509: 2503: 2498: 2493: 2488: 2482: 2475: 2473: 2467: 2466: 2459: 2457: 2455: 2454: 2448: 2443: 2438: 2433: 2428: 2423: 2418: 2413: 2408: 2402: 2397: 2395:Sustainability 2392: 2387: 2382: 2377: 2375:Green building 2372: 2367: 2362: 2357: 2352: 2347: 2342: 2340:Eco-innovation 2337: 2332: 2327: 2322: 2317: 2311: 2309: 2305: 2304: 2297: 2296: 2289: 2282: 2274: 2266: 2265: 2241: 2232:|journal= 2199: 2188: 2174: 2150: 2136: 2122: 2119:on 2015-05-11. 2113:Marine Insight 2100: 2097:on 2013-09-26. 2082: 2068: 2056: 2026: 1993: 1982: 1941: 1929: 1894: 1873: 1856: 1838: 1803: 1796: 1766: 1737: 1714: 1672: 1657: 1634: 1615:(1): 311–328. 1592: 1550: 1531:(4): 471–475. 1511: 1484: 1438: 1399: 1392: 1365: 1364: 1362: 1359: 1358: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1326:(for Hydrogen) 1321: 1316: 1314:Industrial gas 1311: 1306: 1304:Hydrogen pinch 1301: 1296: 1291: 1286: 1281: 1274: 1271: 1270: 1269: 1258: 1239: 1230: 1223: 1213: 1205: 1202: 1175: 1172: 1131: 1130:For fuel cells 1128: 1123: 1115: 1112:carbon dioxide 1107: 1099: 1077: 1074: 1068: 1065: 1056:Main article: 1053: 1050: 1041: 1026: 1023: 1020: 1016: 1012: 1009: 1002: 999: 996: 991: 987: 983: 977: 972: 966: 963: 959: 956: 952: 947: 942: 936: 933: 928: 923: 920: 914: 911: 908: 887: 883: 875: 872: 867: 828:. Examples of 803:Foster-Wheeler 778: 775: 758: 755: 752: 748: 744: 741: 734: 731: 726: 723: 720: 716: 712: 706: 701: 695: 692: 687: 682: 679: 674: 670: 664: 659: 653: 650: 645: 640: 637: 631: 628: 625: 600: 597: 594: 590: 586: 583: 576: 573: 570: 565: 562: 559: 556: 552: 548: 542: 537: 532: 527: 522: 519: 514: 510: 504: 499: 494: 490: 487: 482: 479: 476: 447: 444: 441: 437: 433: 430: 423: 420: 415: 412: 408: 404: 398: 393: 387: 384: 380: 377: 373: 369: 363: 358: 353: 348: 343: 340: 334: 331: 328: 314: 311: 306: 274: 271: 258: 255: 226:. Zero carbon 208: 198: 197: 180: 171: 168: 156: 149: 138: 131: 114: 106: 98: 42: 26: 9: 6: 4: 3: 2: 2806: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2771: 2769: 2754: 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2668: 2667:New Classical 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2639: 2638: 2636: 2632: 2625: 2622: 2620: 2616: 2613: 2611: 2608: 2604: 2601: 2599: 2596: 2595: 2594: 2591: 2589: 2586: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2543: 2541: 2539: 2535: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2486: 2483: 2481: 2477: 2476: 2474: 2472: 2468: 2463: 2452: 2449: 2447: 2444: 2442: 2441:refurbishment 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404:Sustainable ( 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2380:Green vehicle 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2345:Ecotechnology 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2312: 2310: 2306: 2302: 2295: 2290: 2288: 2283: 2281: 2276: 2275: 2272: 2261: 2257: 2253: 2245: 2237: 2224: 2215: 2210: 2203: 2197: 2192: 2185:. 2000-10-04. 2184: 2178: 2170: 2163: 2162: 2154: 2147:. 2000-10-04. 2146: 2140: 2132: 2126: 2118: 2114: 2110: 2104: 2096: 2092: 2086: 2078: 2072: 2059: 2053: 2049: 2045: 2041: 2037: 2030: 2021: 2016: 2012: 2008: 2004: 1997: 1991: 1986: 1978: 1974: 1969: 1964: 1961:(1): 014036. 1960: 1956: 1952: 1945: 1932: 1926: 1922: 1918: 1914: 1910: 1903: 1901: 1899: 1890: 1889: 1884: 1877: 1866: 1860: 1852: 1848: 1842: 1824: 1820: 1813: 1807: 1799: 1793: 1789: 1785: 1781: 1777: 1770: 1762: 1756: 1748: 1744: 1740: 1738:9780128099230 1734: 1730: 1729: 1721: 1719: 1710: 1706: 1702: 1698: 1695:(34): 11096. 1694: 1690: 1686: 1679: 1677: 1668: 1664: 1660: 1654: 1650: 1649: 1641: 1639: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1599: 1597: 1588: 1584: 1580: 1576: 1572: 1568: 1567:AIChE Journal 1564: 1557: 1555: 1546: 1542: 1538: 1534: 1530: 1526: 1525:AIChE Journal 1522: 1515: 1504: 1503: 1498: 1494: 1488: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1442: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1403: 1395: 1393:9780470561256 1389: 1385: 1381: 1377: 1370: 1366: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1276: 1267: 1263: 1259: 1256: 1252: 1248: 1244: 1240: 1236: 1235:chemisorption 1227: 1224: 1221: 1217: 1214: 1211: 1210: 1209: 1201: 1198: 1193: 1191: 1187: 1182: 1179:is an issue. 1174:Disadvantages 1171: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1127: 1121: 1113: 1105: 1097: 1096:synthesis gas 1093: 1088: 1086: 1082: 1073: 1064: 1059: 1049: 1047: 1038: 1014: 1000: 997: 994: 989: 985: 975: 964: 961: 945: 934: 931: 926: 909: 898: 895: 893: 881: 871: 865: 860: 857: 854: 853:United States 849: 846: 844: 843:pressure drop 840: 839: 838:Raschig rings 835: 831: 827: 823: 819: 815: 811: 806: 804: 800: 796: 792: 783: 774: 770: 746: 732: 729: 724: 721: 718: 714: 704: 693: 690: 685: 662: 651: 648: 643: 626: 615: 612: 588: 574: 571: 568: 563: 560: 557: 554: 550: 540: 530: 525: 502: 492: 477: 466: 464: 459: 435: 421: 418: 413: 410: 406: 396: 385: 382: 361: 351: 346: 329: 318: 310: 304: 300: 296: 292: 284: 279: 273:Pre-reforming 270: 268: 264: 254: 252: 248: 243: 241: 237: 233: 229: 225: 221: 217: 212: 207: 203: 178: 169: 166: 147: 136: 112: 104: 96: 83: 82: 81: 79: 75: 71: 67: 63: 59: 55: 51: 39: 33: 19: 2743:Permaculture 2662:New Urbanism 2634:Conservation 2426:food systems 2411:architecture 2251: 2244: 2223:cite journal 2202: 2191: 2177: 2160: 2153: 2139: 2125: 2117:the original 2112: 2103: 2095:the original 2085: 2071: 2061:, retrieved 2039: 2029: 2013:(12): 1213. 2010: 2006: 1996: 1985: 1958: 1954: 1944: 1934:, retrieved 1912: 1891:(in Danish). 1886: 1876: 1859: 1850: 1841: 1830:, retrieved 1823:the original 1818: 1806: 1779: 1769: 1727: 1692: 1688: 1647: 1612: 1608: 1573:(1): 88–96. 1570: 1566: 1528: 1524: 1514: 1501: 1487: 1475:. Retrieved 1455: 1451: 1441: 1416: 1412: 1402: 1375: 1369: 1207: 1197:fossil fuels 1194: 1186:point source 1177: 1133: 1089: 1079: 1070: 1061: 1045: 1039: 899: 896: 877: 861: 858: 850: 847: 837: 833: 807: 788: 771: 616: 613: 467: 460: 319: 316: 288: 260: 244: 236:electrolysis 213: 205: 199: 70:hydrocarbons 53: 49: 48: 2678:Ecoforestry 2436:procurement 2421:development 2406:agriculture 1253:(SOFC) and 1181:Fossil fuel 1164:diesel fuel 1083:and vented 247:natural gas 202:endothermic 74:natural gas 2768:Categories 2647:insulation 2640:Building ( 2603:transition 2446:technology 2431:industries 2063:2021-11-16 1990:Topsoe ATR 1936:2021-11-16 1888:Ingeniøren 1851:Energy.gov 1747:1129385226 1667:1179046717 1419:: 112182. 1361:References 1144:fuel cells 1140:fuel cells 1081:Flared gas 791:packed bed 2789:Catalysis 2748:Recycling 2471:Pollution 2451:transport 2209:CiteSeerX 1977:234429781 1832:28 August 1755:cite book 1709:0360-3199 1629:1385-8947 1587:1547-5905 1545:1547-5905 1472:244814932 1433:214089650 1266:LHV basis 998:− 982:Δ 951:⇌ 822:diffusion 711:Δ 673:⇌ 572:− 547:Δ 513:⇌ 403:Δ 372:⇌ 257:Reactions 155:⇀ 148:− 137:− 130:↽ 2784:Fuel gas 1477:16 March 1273:See also 1220:gasoline 1156:gasoline 1148:methanol 1136:hydrogen 1120:hydrogen 830:catalyst 461:Via the 62:hydrogen 2652:natural 2572:biofuel 2505:Water ( 2480:control 2308:General 1168:ethanol 1160:autogas 1152:propane 1104:methane 810:methane 303:methane 299:naphtha 291:propane 267:alumina 2565:Fuel ( 2416:design 2211:  2054:  1975:  1927:  1794:  1745:  1735:  1707:  1665:  1655:  1627:  1585:  1543:  1470:  1431:  1390:  1350:Syngas 1279:Biogas 1226:Coking 1216:Sulfur 1166:, and 1118:) and 1048:= 0). 1004:  880:syngas 814:nickel 736:  578:  425:  295:butane 263:nickel 58:syngas 2642:green 2165:(PDF) 1973:S2CID 1868:(PDF) 1826:(PDF) 1815:(PDF) 1506:(PDF) 1468:S2CID 1429:S2CID 1092:NMHCs 301:into 2236:help 2052:ISBN 1925:ISBN 1834:2014 1792:ISBN 1761:link 1743:OCLC 1733:ISBN 1705:ISSN 1663:OCLC 1653:ISBN 1625:ISSN 1583:ISSN 1541:ISSN 1479:2022 1388:ISBN 1335:PROX 1260:The 1001:24.5 851:The 834:see: 64:and 2256:doi 2044:doi 2015:doi 1963:doi 1917:doi 1784:doi 1697:doi 1617:doi 1575:doi 1533:doi 1460:doi 1421:doi 1417:205 1380:doi 1114:(CO 1110:), 1106:(CH 935:0.5 892:bar 733:165 422:206 305:(CH 297:or 52:or 2770:: 2227:: 2225:}} 2221:{{ 2111:. 2050:, 2009:. 2005:. 1971:. 1959:16 1957:. 1953:. 1923:, 1897:^ 1885:. 1849:. 1817:, 1790:. 1782:. 1778:. 1757:}} 1753:{{ 1741:. 1717:^ 1703:. 1693:40 1691:. 1687:. 1675:^ 1661:. 1637:^ 1623:. 1613:82 1607:. 1595:^ 1581:. 1571:35 1569:. 1565:. 1553:^ 1539:. 1527:. 1523:. 1495:; 1466:. 1456:47 1454:. 1450:. 1427:. 1415:. 1411:. 1386:. 1378:. 1170:. 1162:, 1158:, 1154:, 1122:(H 1098:(H 894:. 575:41 293:, 209:SR 204:(Δ 164:CO 93:CH 2669:) 2626:) 2617:( 2584:) 2529:) 2487:) 2453:) 2293:e 2286:t 2279:v 2262:. 2258:: 2238:) 2234:( 2217:. 2171:. 2133:. 2079:. 2046:: 2023:. 2017:: 2011:7 1979:. 1965:: 1919:: 1853:. 1800:. 1786:: 1763:) 1749:. 1711:. 1699:: 1669:. 1631:. 1619:: 1589:. 1577:: 1547:. 1535:: 1529:1 1481:. 1462:: 1435:. 1423:: 1396:. 1382:: 1231:2 1124:2 1116:2 1108:4 1100:2 1046:H 1042:2 1025:l 1022:o 1019:m 1015:/ 1011:J 1008:k 995:= 990:R 986:H 976:2 971:H 965:2 962:+ 958:O 955:C 946:2 941:O 932:+ 927:4 922:H 919:C 913:] 910:4 907:[ 888:2 884:2 868:2 757:l 754:o 751:m 747:/ 743:J 740:k 730:= 725:R 722:S 719:D 715:H 705:2 700:H 694:4 691:+ 686:2 681:O 678:C 669:O 663:2 658:H 652:2 649:+ 644:4 639:H 636:C 630:] 627:3 624:[ 599:l 596:o 593:m 589:/ 585:J 582:k 569:= 564:R 561:S 558:G 555:W 551:H 541:2 536:H 531:+ 526:2 521:O 518:C 509:O 503:2 498:H 493:+ 489:O 486:C 481:] 478:2 475:[ 446:l 443:o 440:m 436:/ 432:J 429:k 419:= 414:R 411:S 407:H 397:2 392:H 386:3 383:+ 379:O 376:C 368:O 362:2 357:H 352:+ 347:4 342:H 339:C 333:] 330:1 327:[ 307:4 265:- 206:H 179:2 175:H 170:3 167:+ 121:O 113:2 109:H 105:+ 97:4 60:( 43:2 34:. 20:)

Index

Steam methane reforming
catalytic reforming

syngas
hydrogen
carbon monoxide
hydrocarbons
natural gas
hydrogen production
endothermic
'grey' hydrogen
'blue' hydrogen
carbon capture and storage
'green' hydrogen
thermochemical water splitting
electrolysis
methane pyrolysis
natural gas
industrial synthesis of ammonia
nickel
alumina
Depiction of the general process flow of a typical steam reforming plant. From left to right: Desulphurisation, pre-reforming, steam reforming, shift conversion, and pressure-swing-adsorption.
Pressure swing adsorption
propane
butane
naphtha
methane
water-gas shift reaction

packed bed

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.