Knowledge

Relativistic dynamics

Source đź“ť

207:
parameterized time and a distinct coordinate time, the conflict between a universal direction of time and a time that may proceed as readily from future to past as from past to future is resolved. The distinction between parameterized time and coordinate time removes ambiguities in the properties associated with the two temporal concepts in Relativistic Dynamics.
206:
and employs two temporal variables: a coordinate time, and an evolution parameter. The evolution parameter, or parameterized time, may be viewed as a physically measurable quantity, and a procedure has been presented for designing evolution parameter clocks. By recognizing the existence of a distinct
127:
in the early twentieth century preserved the Newtonian concept of time in the Schrödinger equation. The ability of non-relativistic quantum mechanics and special relativity to successfully describe observations motivated efforts to extend quantum concepts to the relativistic domain. Physicists had to
96:
Some researchers view the evolution parameter as a mathematical artifact while others view the parameter as a physically measurable quantity. To understand the role of an evolution parameter and the fundamental difference between the standard theory and evolution parameter theories, it is necessary
100:
Time t played the role of a monotonically increasing evolution parameter in classical Newtonian mechanics, as in the force law F = dP/dt for a non-relativistic, classical object with momentum P. To Newton, time was an “arrow” that parameterized the direction of evolution of a system.
162:
led to a relativistic probability conservation equation that is essentially a re-statement of the non-relativistic continuity equation. Time in the relativistic probability conservation equation is Einstein's time and is a consequence of implicitly adopting
115:. Einstein's view of time requires a physical equivalence between coordinate time and coordinate space. In this view, time should be a reversible coordinate in the same manner as space. Particles moving backward in time are often used to display 119:
in Feynman-diagrams, but they are not thought of as really moving backward in time usually it is done to simplify notation. However a lot of people think they are really moving backward in time and take it as evidence for time reversibility.
175:
establishes an “arrow of time” for evolving systems, including relativistic systems. Thus, even though Einstein's time is reversible in the standard theory, the evolution of a system is not time reversal invariant. From the perspective of
36:
concepts to describe the relationships between the motion and properties of a relativistic system and the forces acting on the system. What distinguishes relativistic dynamics from other physical theories is the use of an
128:
decide what role time should play in relativistic quantum theory. The role of time was a key difference between Einsteinian and Newtonian views of classical theory. Two hypotheses that were consistent with
45:
events. In a scale-invariant theory, the strength of particle interactions does not depend on the energy of the particles involved. Twentieth century experiments showed that the physical description of
180:, time must be both an irreversible arrow tied to entropy and a reversible coordinate in the Einsteinian sense. The development of relativistic dynamics is motivated in part by the concern that 58:
raised questions about such fundamental concepts as space, time, mass, and energy. The theoretical description of the physical phenomena required the integration of concepts from relativity and
84:
wrote a nice historical exposition of Feynman's investigation of such a theory. A resurgence of interest in evolution parameter theories began in the 1970s with the work of Horwitz and
199:(QFT) was adopted as the standard paradigm. The QFT perspective, particularly its formulation by Schwinger, is a subset of the more general Relativistic Dynamics. 171:, the standard paradigm has at its foundation a temporal paradox: motion relative to a single temporal variable must be reversible even though the second law of 68:
was the first to propose an evolution parameter theory for describing relativistic quantum phenomena, but the evolution parameter theory introduced by
626:
Horwitz, L.P.; Shashoua, S.; Schieve, W.C. (1989). "A manifestly covariant relativistic Boltzmann equation for the evolution of a system of events".
187:
The problems associated with the standard formulation of relativistic quantum mechanics provide a clue to the validity of
802:
Pavšič, Matej (1991). "On the interpretation of the relativistic quantum mechanics with invariant evolution parameter".
18: 195:, non-covariant expectation values, and so forth. Most of these problems were never solved; they were avoided when 853:
Pavšič, M. (1991). "Relativistic quantum mechanics and quantum field theory with invariant evolution parameter".
1061: 695:
PrugoveÄŤki, Eduard (1994). "On foundational and geometric critical aspects of quantum electrodynamics".
1056: 904:
Pavšič, Matej (2001). "Clifford-Algebra Based Polydimensional Relativity and Relativistic Dynamics".
575:
Fanchi, John R.; Collins, R. Eugene (1978). "Quantum mechanics of relativistic spinless particles".
366: 311:
Fanchi, J. R. (1993). "Review of invariant time formulations of relativistic quantum theories".
979: 862: 811: 755: 704: 635: 584: 532: 523:
Schweber, Silvan S. (1986-04-01). "Feynman and the visualization of space-time processes".
481: 438: 395: 320: 248: 196: 29: 8: 380: 361:
Fanchi, J.R. (2003): “The Relativistic Quantum Potential and Non-Locality,” published in
983: 866: 815: 759: 708: 639: 588: 536: 485: 442: 399: 324: 252: 939: 913: 886: 835: 728: 608: 505: 344: 216: 129: 112: 81: 69: 1066: 1003: 995: 943: 931: 890: 878: 839: 827: 771: 732: 720: 651: 647: 612: 600: 548: 509: 497: 454: 411: 348: 336: 266: 124: 59: 237:"Information Theory Consequences of the Scale-Invariance of Schröedinger's Equation" 72:
is more closely aligned with recent work. Evolution parameter theories were used by
987: 923: 870: 819: 763: 712: 643: 592: 540: 489: 446: 403: 328: 256: 85: 77: 38: 104: 80:
and others to formulate quantum field theory in the late 1940s and early 1950s.
429:
Schwinger, Julian (1951-06-01). "On Gauge Invariance and Vacuum Polarization".
381:"Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction" 172: 55: 51: 970:
Fanchi, John R. (1986-09-01). "Parametrizing relativistic quantum mechanics".
927: 544: 1050: 999: 991: 935: 882: 831: 775: 767: 724: 655: 604: 552: 501: 458: 415: 340: 270: 192: 116: 65: 493: 450: 407: 108: 1007: 47: 235:
Flego, Silvana; Plastino, Angelo; Plastino, Angel Ricardo (2011-12-20).
918: 874: 823: 716: 596: 332: 111:
concept and identified t as the fourth coordinate of a space-time four-
42: 261: 236: 472:
Schwinger, Julian (1951-06-15). "The Theory of Quantized Fields. I".
1037:
Relativistic dynamics of stars near a supermassive black hole (2014)
746:
Fanchi, John R. (1979-12-15). "A generalized quantum field theory".
191:. These problems included negative probabilities, hole theory, the 1041: 1036: 73: 33: 565:
Horwitz, L.P. and C. Piron (1973): Helv. Phys. Acta 46, 316.
292:
Stueckelberg, E.C.G. (1941): Helv. Phys. Acta 14, 322, 588.
41:
evolution parameter to monitor the historical evolution of
1042:
International Association for Relativistic Dynamics (IARD)
861:(9). Springer Science and Business Media LLC: 1337–1354. 91: 703:(3). Springer Science and Business Media LLC: 335–362. 319:(3). Springer Science and Business Media LLC: 487–548. 155:
An invariant evolution parameter in the sense of Newton
140:
Assume t = Einsteinian time and reject Newtonian time.
625: 628:
Physica A: Statistical Mechanics and Its Applications
301:
Stueckelberg, E.C.G. (1942): Helv. Phys. Acta 14, 23.
234: 958:
The Landscape of Theoretical Physics: A Global View
17:For classical dynamics at relativistic speeds, see 754:(12). American Physical Society (APS): 3108–3119. 685:, Volume I (Cambridge University Press, New York). 978:(3). American Physical Society (APS): 1677–1681. 1048: 283:Fock, V.A. (1937): Phys. Z. Sowjetunion 12, 404. 531:(2). American Physical Society (APS): 449–508. 480:(6). American Physical Society (APS): 914–927. 437:(5). American Physical Society (APS): 664–679. 394:(3). American Physical Society (APS): 440–457. 574: 694: 152:A coordinate time in the sense of Einstein 917: 471: 428: 260: 1022:Parametrized Relativistic Quantum Theory 790:Parametrized Relativistic Quantum Theory 670:Parametrized Relativistic Quantum Theory 522: 378: 1049: 969: 903: 852: 801: 745: 310: 92:Invariant Evolution Parameter Concept 123:The development of non-relativistic 583:(11–12). Springer Nature: 851–877. 369:, Hauppauge, New York), pp 117-159. 148:Introduce two temporal variables: 13: 202:Relativistic Dynamics is based on 14: 1078: 1030: 810:(9). Springer Nature: 1005–1019. 365:, 240, Edited by Albert Reimer, ( 143: 1014: 963: 950: 897: 846: 795: 782: 739: 688: 675: 662: 619: 568: 559: 516: 135: 97:to review the concept of time. 465: 422: 372: 355: 304: 295: 286: 277: 228: 54:objects moving at or near the 1: 379:Feynman, R. P. (1950-11-01). 222: 648:10.1016/0378-4371(89)90471-8 7: 634:(2). Elsevier BV: 300–338. 210: 28:refers to a combination of 10: 1083: 247:(12). MDPI AG: 2049–2058. 88:, and Fanchi and Collins. 545:10.1103/revmodphys.58.449 525:Reviews of Modern Physics 363:Horizons in World Physics 992:10.1103/physreva.34.1677 768:10.1103/physrevd.20.3108 683:Quantum Theory of Fields 928:10.1023/a:1017599804103 367:Nova Science Publishers 906:Foundations of Physics 804:Foundations of Physics 697:Foundations of Physics 577:Foundations of Physics 494:10.1103/physrev.82.914 451:10.1103/physrev.82.664 408:10.1103/physrev.80.440 313:Foundations of Physics 19:relativistic mechanics 1020:Fanchi, J.R. (1993): 788:Fanchi, J.R. (1993): 681:Weinberg, S. (1995): 668:Fanchi, J.R. (1993): 184:was too restrictive. 26:Relativistic dynamics 1062:Theory of relativity 960:(Kluwer, Dordrecht). 197:quantum field theory 1024:(Kluwer, Dordrecht) 984:1986PhRvA..34.1677F 956:PavsiÄŤ, M. (2001): 867:1991NCimA.104.1337P 816:1991FoPh...21.1005P 792:(Kluwer, Dordrecht) 760:1979PhRvD..20.3108F 709:1994FoPh...24..335P 672:(Kluwer, Dordrecht) 640:1989PhyA..161..300H 589:1978FoPh....8..851F 537:1986RvMP...58..449S 486:1951PhRv...82..914S 443:1951PhRv...82..664S 400:1950PhRv...80..440F 325:1993FoPh...23..487F 253:2011Entrp..13.2049F 875:10.1007/bf02789576 855:Il Nuovo Cimento A 824:10.1007/bf00733384 717:10.1007/bf02058096 597:10.1007/bf00715059 333:10.1007/bf01883726 217:Ernst Stueckelberg 130:special relativity 82:Silvan S. Schweber 70:Ernst Stueckelberg 1057:Quantum mechanics 972:Physical Review A 748:Physical Review D 262:10.3390/e13122049 125:quantum mechanics 1074: 1025: 1018: 1012: 1011: 967: 961: 954: 948: 947: 921: 912:(8): 1185–1209. 901: 895: 894: 850: 844: 843: 799: 793: 786: 780: 779: 743: 737: 736: 692: 686: 679: 673: 666: 660: 659: 623: 617: 616: 572: 566: 563: 557: 556: 520: 514: 513: 469: 463: 462: 426: 420: 419: 385: 376: 370: 359: 353: 352: 308: 302: 299: 293: 290: 284: 281: 275: 274: 264: 232: 39:invariant scalar 1082: 1081: 1077: 1076: 1075: 1073: 1072: 1071: 1047: 1046: 1033: 1028: 1019: 1015: 968: 964: 955: 951: 902: 898: 851: 847: 800: 796: 787: 783: 744: 740: 693: 689: 680: 676: 667: 663: 624: 620: 573: 569: 564: 560: 521: 517: 474:Physical Review 470: 466: 431:Physical Review 427: 423: 388:Physical Review 383: 377: 373: 360: 356: 309: 305: 300: 296: 291: 287: 282: 278: 233: 229: 225: 213: 146: 138: 132:were possible: 105:Albert Einstein 94: 12: 11: 5: 1080: 1070: 1069: 1064: 1059: 1045: 1044: 1039: 1032: 1031:External links 1029: 1027: 1026: 1013: 962: 949: 919:hep-th/0011216 896: 845: 794: 781: 738: 687: 674: 661: 618: 567: 558: 515: 464: 421: 371: 354: 303: 294: 285: 276: 226: 224: 221: 220: 219: 212: 209: 173:thermodynamics 167:. By adopting 157: 156: 153: 145: 142: 137: 134: 93: 90: 60:quantum theory 56:speed of light 52:submicroscopic 9: 6: 4: 3: 2: 1079: 1068: 1065: 1063: 1060: 1058: 1055: 1054: 1052: 1043: 1040: 1038: 1035: 1034: 1023: 1017: 1009: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 966: 959: 953: 945: 941: 937: 933: 929: 925: 920: 915: 911: 907: 900: 892: 888: 884: 880: 876: 872: 868: 864: 860: 856: 849: 841: 837: 833: 829: 825: 821: 817: 813: 809: 805: 798: 791: 785: 777: 773: 769: 765: 761: 757: 753: 749: 742: 734: 730: 726: 722: 718: 714: 710: 706: 702: 698: 691: 684: 678: 671: 665: 657: 653: 649: 645: 641: 637: 633: 629: 622: 614: 610: 606: 602: 598: 594: 590: 586: 582: 578: 571: 562: 554: 550: 546: 542: 538: 534: 530: 526: 519: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 468: 460: 456: 452: 448: 444: 440: 436: 432: 425: 417: 413: 409: 405: 401: 397: 393: 389: 382: 375: 368: 364: 358: 350: 346: 342: 338: 334: 330: 326: 322: 318: 314: 307: 298: 289: 280: 272: 268: 263: 258: 254: 250: 246: 242: 238: 231: 227: 218: 215: 214: 208: 205: 204:Hypothesis II 200: 198: 194: 193:Klein paradox 190: 185: 183: 179: 174: 170: 166: 161: 154: 151: 150: 149: 144:Hypothesis II 141: 133: 131: 126: 121: 118: 117:antiparticles 114: 110: 107:rejected the 106: 102: 98: 89: 87: 83: 79: 75: 71: 67: 66:Vladimir Fock 63: 61: 57: 53: 49: 44: 40: 35: 31: 27: 23: 22: 20: 1021: 1016: 975: 971: 965: 957: 952: 909: 905: 899: 858: 854: 848: 807: 803: 797: 789: 784: 751: 747: 741: 700: 696: 690: 682: 677: 669: 664: 631: 627: 621: 580: 576: 570: 561: 528: 524: 518: 477: 473: 467: 434: 430: 424: 391: 387: 374: 362: 357: 316: 312: 306: 297: 288: 279: 244: 240: 230: 203: 201: 189:Hypothesis I 188: 186: 182:Hypothesis I 181: 178:Hypothesis I 177: 169:Hypothesis I 168: 165:Hypothesis I 164: 160:Hypothesis I 159: 158: 147: 139: 136:Hypothesis I 122: 103: 99: 95: 64: 30:relativistic 25: 24: 16: 15: 48:microscopic 1051:Categories 223:References 43:space-time 1000:0556-2791 944:117429211 936:0015-9018 891:122902647 883:0369-3546 840:119436518 832:0015-9018 776:0556-2821 733:121653916 725:0015-9018 656:0378-4371 613:120601267 605:0015-9018 553:0034-6861 510:121971249 502:0031-899X 459:0031-899X 416:0031-899X 349:120073749 341:0015-9018 271:1099-4300 109:Newtonian 78:Schwinger 1067:Theories 211:See also 1008:9897446 980:Bibcode 863:Bibcode 812:Bibcode 756:Bibcode 705:Bibcode 636:Bibcode 585:Bibcode 533:Bibcode 482:Bibcode 439:Bibcode 396:Bibcode 321:Bibcode 249:Bibcode 241:Entropy 74:Feynman 34:quantum 1006:  998:  942:  934:  889:  881:  838:  830:  774:  731:  723:  654:  611:  603:  551:  508:  500:  457:  414:  347:  339:  269:  113:vector 940:S2CID 914:arXiv 887:S2CID 836:S2CID 729:S2CID 609:S2CID 506:S2CID 384:(PDF) 345:S2CID 86:Piron 1004:PMID 996:ISSN 932:ISSN 879:ISSN 828:ISSN 772:ISSN 721:ISSN 652:ISSN 601:ISSN 549:ISSN 498:ISSN 455:ISSN 412:ISSN 337:ISSN 267:ISSN 50:and 32:and 988:doi 924:doi 871:doi 859:104 820:doi 764:doi 713:doi 644:doi 632:161 593:doi 541:doi 490:doi 447:doi 404:doi 329:doi 257:doi 1053:: 1002:. 994:. 986:. 976:34 974:. 938:. 930:. 922:. 910:31 908:. 885:. 877:. 869:. 857:. 834:. 826:. 818:. 808:21 806:. 770:. 762:. 752:20 750:. 727:. 719:. 711:. 701:24 699:. 650:. 642:. 630:. 607:. 599:. 591:. 579:. 547:. 539:. 529:58 527:. 504:. 496:. 488:. 478:82 476:. 453:. 445:. 435:82 433:. 410:. 402:. 392:80 390:. 386:. 343:. 335:. 327:. 317:23 315:. 265:. 255:. 245:13 243:. 239:. 76:, 62:. 1010:. 990:: 982:: 946:. 926:: 916:: 893:. 873:: 865:: 842:. 822:: 814:: 778:. 766:: 758:: 735:. 715:: 707:: 658:. 646:: 638:: 615:. 595:: 587:: 581:8 555:. 543:: 535:: 512:. 492:: 484:: 461:. 449:: 441:: 418:. 406:: 398:: 351:. 331:: 323:: 273:. 259:: 251:: 21:.

Index

relativistic mechanics
relativistic
quantum
invariant scalar
space-time
microscopic
submicroscopic
speed of light
quantum theory
Vladimir Fock
Ernst Stueckelberg
Feynman
Schwinger
Silvan S. Schweber
Piron
Albert Einstein
Newtonian
vector
antiparticles
quantum mechanics
special relativity
thermodynamics
Klein paradox
quantum field theory
Ernst Stueckelberg
"Information Theory Consequences of the Scale-Invariance of Schröedinger's Equation"
Bibcode
2011Entrp..13.2049F
doi
10.3390/e13122049

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑