Knowledge

Radial turbine

Source 📝

1030:. Tesla attacked this problem by substituting a series of closely spaced disks for the blades of the rotor. The working fluid flows between the disks and transfers its energy to the rotor by means of the boundary layer effect or adhesion and viscosity rather than by impulse or reaction. Tesla stated his turbine could realize incredibly high efficiencies by steam. There has been no documented evidence of Tesla turbines achieving the efficiencies Tesla claimed. They have been found to have low overall efficiencies in the role of a turbine or pump. In recent decades there has been further research into bladeless turbine and development of patented designs that work with corrosive/abrasive and hard to pump material such as ethylene glycol, fly ash, blood, rocks, and even live fish. 94: 970: 707: 64:, a radial turbine can employ a relatively higher pressure ratio (≈4) per stage with lower flow rates. Thus these machines fall in the lower specific speed and power ranges. For high temperature applications rotor blade cooling in radial stages is not as easy as in axial turbine stages. Variable angle nozzle blades can give higher stage efficiencies in a radial turbine stage even at off-design point operation. In the family of water turbines, the 80: 261: 800: 646: 430: 35:
and radial turbines consists in the way the fluid flows through the components (compressor and turbine). Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly orientated perpendicular to the rotation axis, and it drives the turbine in the
48: 40:. The result is less mechanical stress (and less thermal stress, in case of hot working fluids) which enables a radial turbine to be simpler, more robust, and more efficient (in a similar power range) when compared to axial turbines. When it comes to high power ranges (above 5 410: 1000:. It consists of rings of cantilever blades projecting from two discs rotating in opposite directions. The relative peripheral velocity of blades in two adjacent rows, with respect to each other, is high. This gives a higher value of enthalpy drop per stage. 992:
In outward flow radial turbine stages, the flow of the gas or steam occurs from smaller to larger diameters. The stage consists of a pair of fixed and moving blades. The increasing area of cross-section at larger diameters accommodates the expanding gas.
694: 786:
At off-design operation, there are additional losses in the nozzle and rotor blade rings on account of incidence at the leading edges of the blades. This loss is conventionally referred to as shock loss though it has nothing to do with the shock
1081:
Osterle, J.F., ‘Thermodynamic considerations in the use of gasified coal as a fuel for power conversion systems’, Frontiers of power technology conference proceedings, Oklahoma State University, Carnegie-Mellon University, Pittsburgh, Oct.
93: 723:
The stage work is less than the isentropic stage enthalpy drop on account of aerodynamic losses in the stage. The actual output at the turbine shaft is equal to the stage work minus the losses due to rotor disc and bearing friction.
641:{\displaystyle {\begin{aligned}\eta _{\text{ts}}&={\frac {h_{01}-h_{03}}{h_{01}-h_{3ss}}}={\frac {\psi \,u_{2}^{2}}{C_{p}\,T_{01}\left(1-\left({\frac {p_{3}}{p_{01}}}\right)^{\frac {\gamma -1}{\gamma }}\right)}}\end{aligned}}} 281:) known as the isentropic velocity, spouting velocity or stage terminal velocity is defined as that velocity which will be obtained during an isentropic expansion of the gas between the entry and exit pressures of the stage. 211: 945: 1050:"Author, Harikishan Gupta E., & Author, Shyam P. Kodali (2013). Design and Operation of Tesla Turbo machine - A state of the art review. International Journal of Advanced Transport Phenomena, 2(1), 2-3" 1022:. One of the difficulties with bladed turbines is the complex and highly precise requirements for balancing and manufacturing the bladed rotor which has to be very well balanced. The blades are subject to 287: 699:
The two quantities within the parentheses in the numerator may have the same or opposite signs. This, besides other factors, would also govern the value of reaction. The stage reaction decreases as C
764:
These are due to circulatory flows developing into the various flow passages and are principally governed by the aerodynamic loading of the blades. The main parameters governing these losses are b
435: 1103:
Hurst, J.N. and Mottram, A.W.T., ‘Integrated Nuclear Gas turbines’, Paper No. EN-1/41, Symposium on the technology of integrated primary circuits for power reactors, ENEA, Paris, May 1968.
666: 1088:
Stasa, F.L. and Osterle, F., ‘The thermodynamic performance of two combined cycle power plants integrated with two coal gasification systems’, ASME J. Eng. Power, July 1981.
1121:
Mcdonald, C.F. and Boland, C.R., ‘The nuclear closed-cycle gas turbine (HTGR-GT) dry cooled commercial power plant studies’, ASME J. Eng. Power, 80-GT-82, Jan. 1981.
79: 44:) the radial turbine is no longer competitive (due to its heavy and expensive rotor) and the efficiency becomes similar to that of the axial turbines. 1100:
Hubert, F.W.L. et al., Large combined cycles for utilities’, Combustion, Vol. I, ASME gas turbine conference and products show, Brussels, May 1970.
749:. In the ninety degree IFR turbine stage, the losses occurring in the radial and axial sections of the rotor are sometimes separately considered. 1118:
Mcdonald, C.F. and Smith, M.J., ‘Turbomachinery design considerations for nuclear HTGR-GT power plant’, ASME J. Eng. Power, 80-GT-80, Jan. 1981.
132: 826: 221:
The stagnation state of the gas at the nozzle entry is represented by point 01. The gas expands adiabatically in the nozzles from a pressure
1109:
Kehlhofer, R., ‘Calculation for part-load operation of combined gas/steam turbine plants’, Brown Boveri Rev., 65, 10, pp 672–679, Oct. 1978.
1094:
Ushiyama, I., ‘Theoretically estimating the performance of gas turbines under varying atmospheric condition’, ASME J. Eng. Power, Jan. 1976.
969: 1112:
Kingcombe, R.C. and Dunning, S.W., ‘Design study for a fuel efficient turbofan engine’, ASME paper No. 80-GT-141, New Orleans, March 1980.
706: 1097:
Yannone, R.A. and Reuther, J.F., ‘Ten years of digital computer control of combustion turbines ASME J. Engg. Power, 80-GT-76, Jan. 1981.
1124:
Nabors, W.M. et al., ‘Bureau of mine progress in developing the coal burning gas turbine power plant’, ASME J. Eng. Power, April 1965.
249:. Since this is an energy transformation process, the stagnation enthalpy remains constant but the stagnation pressure decreases (p 405:{\displaystyle \,C_{0}={\sqrt {2C_{p}\,T_{01}\,\left(1-\left({\frac {p_{3}}{p_{01}}}\right)^{\frac {\gamma -1}{\gamma }}\right)}}} 996:
This configuration did not become popular with the steam and gas turbines. The only one which is employed more commonly is the
741:
These losses are also governed by the channel geometry, coefficient of skin friction and the ratio of the relative velocities w
1106:
Jackson, A.J.B., ‘Some future trends in aeroengine design for subsonic transport aircraft’,-ASME J. Eng. Power, April 1976.
1073: 260: 1085:
Starkey, N.E., ‘Long life base load service at 1600°F turbine inlet temperature’, ASME J. Eng. Power, Jan. 1967.
703:
increases because this results in a large proportion of the stage enthalpy drop to occur in the nozzle ring.
689:{\displaystyle R={\frac {\text{static enthalpy drop in rotor}}{\text{stagnation enthalpy drop in stage}}}} 257:) due to losses. The energy transfer accompanied by an energy transformation process occurs in the rotor. 1115:
Mayers, M.A. et al., ‘Combination gas turbine and steam turbine cycles’, ASME paper No. 55-A-184, 1955.
68:
is a very well-known IFR turbine which generates much greater power with a relatively large impeller.
793:
This is due to the flow over the rotor blade tips which does not contribute to the energy transfer.
816:
The blade-to-gas speed ratio can be expressed in terms of the isentropic stage terminal velocity c
987: 799: 118:, respectively. The relative velocity of the flow and the peripheral speed of the rotor are w 997: 656:
The relative pressure or enthalpy drop in the nozzle and rotor blades are determined by the
729: 8: 975:
Variation of stage efficiency of an IFR turbine with blade-to-isentropic gas speed ratio
657: 100:
Velocity triangles for an inward-flow radial (IFR) turbine stage with cantilever blades
61: 712:
Variation of the degree of reaction with flow coefficient and air angle at rotor entry
1137: 1069: 734:
They depend on the geometry and the coefficient of skin friction of these components.
758:
These are mainly governed by the geometry of the diffuser and the rate of diffusion.
1091:
Traenckner, K., ‘Pulverized-coal gasification Ruhrgas processes’, Trans ASME, 1953.
65: 1131: 1019: 1009: 421: 32: 28: 1015: 206:{\displaystyle \,\tan {\beta _{2}}={\frac {c_{r2}}{c_{\theta 2}-u_{2}}}} 1027: 940:{\displaystyle \,\sigma _{s}={\frac {u_{2}}{c_{0}}}=^{-{\frac {1}{2}}}} 1023: 37: 41: 1049: 754: 730:
Skin friction and separation losses in the scroll and nozzle ring
126:
respectively. The air angle at the rotor blade entry is given by
47: 24: 739:
Skin friction and separation losses in the rotor blade channels
106:
The radial and tangential components of the absolute velocity c
266:
Enthalpy-entropy diagram for flow through an IFR turbine stage
1078:'A review of cascade data on secondary losses in turbines' 1003: 829: 669: 433: 290: 135: 939: 688: 640: 404: 205: 1129: 71: 216: 31:is radial to the shaft. The difference between 1068:'Turbines, Compressors and Fans 4th Edition' 86:Ninety degree inward-flow radial turbine stage 981: 55: 811: 805:Losses in the rotor of an IFR turbine stage 753:Skin friction and separation losses in the 830: 552: 524: 331: 320: 291: 136: 968: 798: 705: 259: 46: 1004:Nikola Tesla's bladeless radial turbine 998:Ljungstrom double rotation type turbine 1130: 1044: 1042: 235:with an increase in its velocity from 1018:developed and patented his bladeless 651: 780:and hub-tip ratio at the rotor exit. 272: 1039: 415: 13: 14: 1149: 682:stagnation enthalpy drop in stage 660:of the stage. This is defined by 424:is based on this value of work. 92: 78: 718: 918: 914: 877: 871: 1: 1062: 679:static enthalpy drop in rotor 72:Components of radial turbines 217:Enthalpy and entropy diagram 7: 10: 1154: 1007: 985: 982:Outward-flow radial stages 784:Shock or incidence losses 422:total-to-static efficiency 56:Advantages and challenges 27:in which the flow of the 1033: 812:Blade to gas speed ratio 36:same way water drives a 988:Out-flow radial turbine 277:A reference velocity (c 978: 941: 808: 715: 690: 642: 406: 269: 207: 52: 972: 942: 802: 709: 691: 643: 407: 263: 208: 50: 1014:In the early 1900s, 827: 667: 431: 288: 133: 791:Tip clearance loss 539: 979: 937: 809: 716: 686: 658:degree of reaction 652:Degree of reaction 638: 636: 525: 402: 270: 203: 62:axial flow turbine 53: 933: 866: 762:Secondary losses 684: 683: 680: 632: 623: 601: 513: 445: 400: 392: 370: 273:Spouting velocity 201: 1145: 1057: 1056: 1054: 1046: 946: 944: 943: 938: 936: 935: 934: 926: 913: 912: 911: 895: 894: 867: 865: 864: 855: 854: 845: 840: 839: 695: 693: 692: 687: 685: 681: 678: 677: 647: 645: 644: 639: 637: 633: 631: 630: 626: 625: 624: 619: 608: 606: 602: 600: 599: 590: 589: 580: 562: 561: 551: 550: 540: 538: 533: 519: 514: 512: 511: 510: 492: 491: 481: 480: 479: 467: 466: 456: 447: 446: 443: 416:Stage efficiency 411: 409: 408: 403: 401: 399: 395: 394: 393: 388: 377: 375: 371: 369: 368: 359: 358: 349: 330: 329: 319: 318: 306: 301: 300: 212: 210: 209: 204: 202: 200: 199: 198: 186: 185: 172: 171: 159: 154: 153: 152: 96: 82: 1153: 1152: 1148: 1147: 1146: 1144: 1143: 1142: 1128: 1127: 1065: 1060: 1052: 1048: 1047: 1040: 1036: 1012: 1006: 990: 984: 977: 964: 957: 925: 921: 917: 907: 903: 902: 890: 886: 860: 856: 850: 846: 844: 835: 831: 828: 825: 824: 819: 814: 807: 797: 779: 775: 771: 767: 748: 744: 721: 714: 702: 676: 668: 665: 664: 654: 635: 634: 609: 607: 595: 591: 585: 581: 579: 575: 574: 567: 563: 557: 553: 546: 542: 541: 534: 529: 520: 518: 500: 496: 487: 483: 482: 475: 471: 462: 458: 457: 455: 448: 442: 438: 434: 432: 429: 428: 418: 378: 376: 364: 360: 354: 350: 348: 344: 343: 336: 332: 325: 321: 314: 310: 305: 296: 292: 289: 286: 285: 280: 275: 268: 256: 252: 247: 240: 233: 226: 219: 194: 190: 178: 174: 173: 164: 160: 158: 148: 144: 143: 134: 131: 130: 125: 121: 117: 113: 109: 102: 97: 88: 83: 74: 66:Francis turbine 60:Compared to an 58: 17: 16:Type of turbine 12: 11: 5: 1151: 1141: 1140: 1126: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1079: 1076: 1064: 1061: 1059: 1058: 1037: 1035: 1032: 1008:Main article: 1005: 1002: 986:Main article: 983: 980: 973: 967: 966: 962: 959: 955: 948: 947: 932: 929: 924: 920: 916: 910: 906: 901: 898: 893: 889: 885: 882: 879: 876: 873: 870: 863: 859: 853: 849: 843: 838: 834: 817: 813: 810: 803: 796: 795: 794: 789: 788: 782: 781: 777: 773: 769: 765: 760: 759: 751: 750: 746: 742: 737: 736: 735: 726: 720: 717: 710: 700: 697: 696: 675: 672: 653: 650: 649: 648: 629: 622: 618: 615: 612: 605: 598: 594: 588: 584: 578: 573: 570: 566: 560: 556: 549: 545: 537: 532: 528: 523: 517: 509: 506: 503: 499: 495: 490: 486: 478: 474: 470: 465: 461: 454: 451: 449: 441: 437: 436: 417: 414: 413: 412: 398: 391: 387: 384: 381: 374: 367: 363: 357: 353: 347: 342: 339: 335: 328: 324: 317: 313: 309: 304: 299: 295: 278: 274: 271: 264: 254: 250: 245: 238: 231: 224: 218: 215: 214: 213: 197: 193: 189: 184: 181: 177: 170: 167: 163: 157: 151: 147: 142: 139: 123: 119: 115: 111: 107: 104: 103: 98: 91: 89: 84: 77: 73: 70: 57: 54: 51:Radial turbine 21:radial turbine 15: 9: 6: 4: 3: 2: 1150: 1139: 1136: 1135: 1133: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1080: 1077: 1075: 1074:9780070707023 1071: 1067: 1066: 1051: 1045: 1043: 1038: 1031: 1029: 1025: 1021: 1020:Tesla turbine 1017: 1011: 1010:Tesla turbine 1001: 999: 994: 989: 976: 971: 960: 953: 952: 951: 930: 927: 922: 908: 904: 899: 896: 891: 887: 883: 880: 874: 868: 861: 857: 851: 847: 841: 836: 832: 823: 822: 821: 806: 801: 792: 790: 785: 783: 763: 761: 757: 756: 752: 740: 738: 733: 732: 731: 728: 727: 725: 713: 708: 704: 673: 670: 663: 662: 661: 659: 627: 620: 616: 613: 610: 603: 596: 592: 586: 582: 576: 571: 568: 564: 558: 554: 547: 543: 535: 530: 526: 521: 515: 507: 504: 501: 497: 493: 488: 484: 476: 472: 468: 463: 459: 452: 450: 439: 427: 426: 425: 423: 396: 389: 385: 382: 379: 372: 365: 361: 355: 351: 345: 340: 337: 333: 326: 322: 315: 311: 307: 302: 297: 293: 284: 283: 282: 267: 262: 258: 248: 241: 234: 227: 195: 191: 187: 182: 179: 175: 168: 165: 161: 155: 149: 145: 140: 137: 129: 128: 127: 101: 95: 90: 87: 81: 76: 75: 69: 67: 63: 49: 45: 43: 39: 34: 30: 29:working fluid 26: 22: 1016:Nikola Tesla 1013: 995: 991: 974: 949: 815: 804: 722: 719:Stage losses 711: 698: 655: 419: 276: 265: 243: 236: 229: 222: 220: 105: 99: 85: 59: 20: 18: 1063:References 1028:cavitation 1024:corrosion 923:− 905:β 900:⁡ 888:ϕ 833:σ 621:γ 614:− 611:γ 572:− 522:ψ 494:− 469:− 440:η 390:γ 383:− 380:γ 341:− 188:− 180:θ 146:β 141:⁡ 38:watermill 1138:Turbines 1132:Category 755:diffuser 965:≈ 0.707 25:turbine 1072:  787:waves. 253:> p 1082:1974. 1053:(PDF) 1034:Notes 122:and u 114:and c 110:are c 33:axial 23:is a 1070:ISBN 1026:and 958:= 90 950:for 420:The 897:cot 772:, d 242:to 228:to 138:tan 1134:: 1041:^ 820:. 776:/d 768:/d 745:/w 701:θ2 597:01 559:01 489:01 477:03 464:01 444:ts 366:01 327:01 255:02 251:01 116:q2 112:r2 42:MW 19:A 1055:. 963:s 961:σ 956:2 954:β 931:2 928:1 919:] 915:) 909:2 892:2 884:+ 881:1 878:( 875:2 872:[ 869:= 862:0 858:c 852:2 848:u 842:= 837:s 818:0 778:2 774:3 770:2 766:2 747:2 743:3 674:= 671:R 628:) 617:1 604:) 593:p 587:3 583:p 577:( 569:1 565:( 555:T 548:p 544:C 536:2 531:2 527:u 516:= 508:s 505:s 502:3 498:h 485:h 473:h 460:h 453:= 397:) 386:1 373:) 362:p 356:3 352:p 346:( 338:1 334:( 323:T 316:p 312:C 308:2 303:= 298:0 294:C 279:0 246:2 244:c 239:1 237:c 232:2 230:p 225:1 223:p 196:2 192:u 183:2 176:c 169:2 166:r 162:c 156:= 150:2 124:2 120:2 108:2

Index

turbine
working fluid
axial
watermill
MW

axial flow turbine
Francis turbine
Ninety degree inward-flow radial turbine stage
Velocity triangles for an inward-flow radial (IFR) turbine stage with cantilever blades

total-to-static efficiency
degree of reaction

Skin friction and separation losses in the scroll and nozzle ring
diffuser


Out-flow radial turbine
Ljungstrom double rotation type turbine
Tesla turbine
Nikola Tesla
Tesla turbine
corrosion
cavitation


"Author, Harikishan Gupta E., & Author, Shyam P. Kodali (2013). Design and Operation of Tesla Turbo machine - A state of the art review. International Journal of Advanced Transport Phenomena, 2(1), 2-3"
ISBN
9780070707023

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑