Knowledge

Jasmonate

Source 📝

282: 517:(of which there are three, MYC2, 3, and 4) tend to act additively. For example, a plant that has only lost one myc becomes more susceptible to insect herbivory than a normal plant. A plant that has lost all three will be as susceptible to damage as coi1 mutants, which are completely unresponsive to JA and cannot mount a defense against herbivory. However, while all these MYC molecules share functions, they vary greatly in expression patterns and transcription functions. For instance, MYC2 has a greater effect on root growth compared to MYC3 or MYC4. 114: 102: 20: 307:. Research suggests that evolutionary repurposing of the jasmonate signaling pathway, which mediates defense against herbivores in noncarnivorous plants, has supported the evolution of plant carnivory. Jasmonates can be used to signal the closing of traps and to control the release of enzymes and nutrient transporters which are used in plant digestion. However, not all carnivorous plants rely on the jasmonate pathway in the same way. 485:. These complexes bind JAZ and target it for proteasomal degradation. However, given the large spectrum of JA molecules, not all JA derivatives activate this pathway for signaling, and the range of those participating in this pathway is unknown. Thus far, only JA-Ile has been shown to be necessary for COI1-mediated degradation of JAZ11. JA-Ile and structurally related derivatives can bind to COI1-JAZ complexes and promote 425:(ET). These interactions similarly optimize defense against pathogens and herbivores of different lifestyles. For example, MYC2 activity can be stimulated by both JA and ABA pathways, allowing it to integrate signals from both pathways. Other transcription factors such as ERF1 arise as a result of JA and ET signaling. All these molecules can act in combination to activate specific wound response genes. 414:
after insect herbivory. Generally, it has been found that pathogens living in live plant cells are more sensitive to SA-induced defenses, while herbivorous insects and pathogens that derive benefit from cell death are more susceptible to JA defenses. Thus, this trade-off in pathways optimizes defense and saves plant resources.
524:. These transcription factors all have different impacts on JAZ levels after JA signaling. JAZ levels in turn affect transcription factor and gene expression levels. In other words, on top of activating different response genes, the transcription factors can vary JAZ levels to achieve specificity in response to JA signals. 516:
Once freed from JAZ, transcription factors can activate genes needed for a specific JA response. The best-studied transcription factors acting in this pathway belong to the MYC family of transcription factors, which are characterized by a basic helix-loop-helix (bHLH) DNA binding motif. These factors
276:
JAs also play a role in symbiosis between plants and microorganisms; however, its precise role is still unclear. JA currently appears to regulate signal exchange and nodulation regulation between legumes and rhizobium. On the other hand, elevated JA levels appear to regulate carbohydrate partitioning
461:
to effect physiological changes. One of the key molecules in this pathway is JAZ, which serves as the on-off switch for JA signaling. In the absence of JA, JAZ proteins bind to downstream transcription factors and limit their activity. However, in the presence of JA or its bioactive derivatives, JAZ
492:
This mechanistic model raises the possibility that COI1 serves as an intracellular receptor for JA signals. Recent research has confirmed this hypothesis by demonstrating that the COI1-JAZ complex acts as a co-receptor for JA perception. Specifically, JA-Ile binds both to a ligand-binding pocket in
251:
By studying mutants overexpressing JA, one of the earliest discoveries made was that JA inhibits root growth. The mechanism behind this event is still not understood, but mutants in the COI1-dependent signaling pathway tend to show reduced inhibition, demonstrating that the COI1 pathway is somehow
413:
Wound and pathogen response appear to be interact negatively. For example, silencing phenylalanine ammonia lyase (PAL), an enzyme synthesizing precursors to SA, reduces SAR but enhances herbivory resistance against insects. Similarly, overexpression of PAL enhances SAR but reduces wound response
911:
Fernandez-Calvo, P.; Chini, A.; Fernandez-Barbero, G.; Chico, J.-M.; Gimenez-Ibanez, S.; Geerinck, J.; Eeckhout, D.; Schweizer, F.; Godoy, M.; Franco-Zorrilla, J. M.; Pauwels, L.; Witters, E.; Puga, M. I.; Paz-Ares, J.; Goossens, A.; Reymond, P.; De Jaeger, G.; Solano, R. (18 February 2011).
398:
While the jasmonate (JA) pathway is critical for wound response, it is not the only signaling pathway mediating defense in plants. To build an optimal yet efficient defense, the different defense pathways must be capable of cross talk to fine-tune and specify responses to abiotic and biotic
203:
Although jasmonate (JA) regulates many different processes in the plant, its role in wound response is best understood. Following mechanical wounding or herbivory, JA biosynthesis is rapidly activated, leading to expression of the appropriate response genes. For example, in the
1468:
Chini, A.; Fonseca, S.; Fernandez, G.; Adie, B.; Chico, J. M.; Lorenzo, O.; Garcia-Casado, G.; Lopez-Vidriero, I.; Lozano, F. M.; Ponce, M. R.; Micol, J. L; Solano, R. (2007). "The JAZ family of repressors is the missing link in jasmonate signaling".
1520:
Devoto, A; Nieto-Rostro, M; Xie, D; Ellis, C; Harmston, R; Patrick, E; Davis, J; Sherratt, L; Coleman, M; Turner, JG (November 2002). "COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis".
493:
COI1 and to a 20 amino-acid stretch of the conserved Jas motif in JAZ. This JAZ residue acts as a plug for the pocket in COI1, keeping JA-Ile bound in the pocket. Additionally, Sheard et al 2010 co-purified and subsequently removed
1556:
Sheard, Laura B.; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R.; Kobayashi, Yuichi; Hsu, Fong-Fu; Sharon, Michal; Browse, John; He, Sheng Yang; Rizo, Josep; Howe, Gregg A.; Zheng, Ning (6 October 2010).
351:(PR) genes. All these data suggest COR acts through the JA pathway to invade host plants. Activation of a wound response is hypothesized to come at the expense of pathogen defense. By activating the JA wound response pathway, 223:
JAs have also been implicated in cell death and leaf senescence. JA can interact with many kinases and transcription factors associated with senescence. JA can also induce mitochondrial death by inducing the accumulation of
259:. Mutants in JA synthesis or in JA signaling in Arabidopsis present with male sterility, typically due to delayed development. The same genes promoting male fertility in Arabidopsis promote female fertility in tomatoes. 273:
High levels of JA encourage the accumulation of storage proteins; genes encoding vegetative storage proteins are JA responsive. Specifically, tuberonic acid, a JA derivative, induces the formation of tubers.
346:
and unresponsive to COR; additionally, applying MeJA was sufficient to rescue virulence in COR mutant bacteria. Infected plants also expressed downstream JA and wound response genes but repressed levels of
428:
Finally, cross talk is not restricted for defense: JA and ET interactions are critical in development as well, and a balance between the two compounds is necessary for proper apical hook development in
686:
Per, Tasir S.; Khan, M. Iqbal R.; Anjum, Naser A.; Masood, Asim; Hussain, Sofi Javed; Khan, Nafees A. (2018). "Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters".
138:, i.e. derivatives of oxygenated fatty acid. They are biosynthesized from linolenic acid in chloroplast membranes. Synthesis is initiated with the conversion of linolenic acid to 442: 654:
Demole E; Lederer, E.; Mercier, D. (1962). "Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l'essence de jasmin".
603:
Baldwin, I. T.; Halitschke, R.; Paschold, A.; von Dahl, C. C.; Preston, C. A. (2006). "Volatile signaling in plant-plant interactions: "talking trees" in the genomics era".
1313:"Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany" 236:, or programmed cell death. JAs' roles in these processes are suggestive of methods by which the plant defends itself against biotic challenges and limits the spread of 142:(OPDA), which then undergoes a reduction and three rounds of oxidation to form (+)-7-iso-JA, jasmonic acid. Only the conversion of linolenic acid to OPDA occurs in the 139: 165:-isoleucine), which Fonseca et al 2009 finds is involved in most JA signaling - see also the review by Katsir et al 2008. However Van Poecke & Dicke 2003 finds 914:"The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses" 1132:
Hause, Bettina; Schaarschmidt, Sara (1 September 2009). "The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms".
153:
JA itself can be further metabolized into active or inactive derivatives. Methyl JA (MeJA) is a volatile compound that is potentially responsible for
212:. Another indirect result of JA signaling is the volatile emission of JA-derived compounds. MeJA on leaves can travel airborne to nearby plants and 382:
by plants and acts through an increase in JA levels concomitantly with resistance to necrotrophic pathogens. AA is an evolutionarily conserved
1048:
Anderson, JM. (1988). "Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings".
1272:"Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway" 505:
to be a necessary component of the co-receptor and playing a role in potentiating the co-receptor complex. Sheard's results may show varying
50:
and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as
453:
signaling: the first step comprises E3 ubiquitin ligase complexes, which tag substrates with ubiquitin to mark them for degradation by
1632: 331:
causes bacterial speck disease in tomatoes by hijacking the plant's jasmonate (JA) signaling pathway. This bacteria utilizes a
688: 473:
mutant plant backgrounds, protein COI1 was shown to mediate JAZ degradation. COI1 belongs to the family of highly conserved
406:(SA). SA, a hormone, mediates defense against pathogens by inducing both the expression of pathogenesis-related genes and 966:"Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development" 1171: 134:
is reviewed by Acosta and Farmer 2010, Wasternack and Hause 2013, and Wasternack and Song 2017. Jasmonates (JA) are
740: 281: 47: 546:"Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves" 1625: 407: 1751: 800: 422: 1013:
Creelman, Robert A.; Mullet, John E. (1 June 1997). "Biosynthesis and Action of Jasmonates in Plants".
809: 494: 332: 51: 433:
seedlings. Still, further research is needed to elucidate the molecules regulating such cross talk.
363: 213: 154: 78: 859:"Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence" 1746: 1618: 225: 209: 216:
related to wound response. In general, this emission can further upregulate JA biosynthesis and
521: 410:(SAR), in which the whole plant gains resistance to a pathogen after localized exposure to it. 1710: 458: 68: 24: 1208:"On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet" 1570: 1478: 612: 557: 348: 188: 167: 72:
led to the discovery of the molecular structure of jasmonates and their name in 1962 while
1224: 8: 910: 506: 478: 319:, and may have developed methods of regulating digestive enzymes that are JA-independent. 1574: 1482: 1207: 616: 561: 1690: 1591: 1558: 1502: 1445: 1420: 1345: 1312: 1245: 1109: 1084: 1065: 990: 965: 938: 913: 888: 839: 818: 795: 766: 735: 636: 462:
proteins are degraded, freeing transcription factors for expression of genes needed in
300: 256: 1393: 1372: 1596: 1538: 1534: 1494: 1450: 1398: 1350: 1332: 1293: 1288: 1271: 1249: 1237: 1229: 1149: 1114: 1030: 1026: 995: 943: 880: 875: 858: 831: 823: 771: 709: 628: 585: 580: 545: 417:
Cross talk also occurs between JA and other plant hormone pathways, such as those of
291: 1145: 1069: 843: 705: 1756: 1586: 1578: 1530: 1506: 1486: 1440: 1432: 1388: 1380: 1340: 1324: 1283: 1219: 1179: 1141: 1104: 1096: 1057: 1022: 985: 977: 933: 925: 892: 870: 813: 761: 753: 701: 663: 640: 620: 575: 565: 520:
Additionally, MYC2 will loop back and regulate JAZ expression levels, leading to a
463: 371: 63: 355:
could divert resources from its host's immune system and infect more effectively.
1662: 1270:
Zhao, Y; Thilmony, R; Bender, CL; Schaller, A; He, SY; Howe, GA (November 2003).
237: 54:(VOCs) to permit communication between plants in anticipation of mutual dangers. 602: 1720: 486: 474: 403: 383: 312: 260: 220:, thereby inducing nearby plants to prime their defenses in case of herbivory. 217: 180: 175: 43: 1184: 757: 1740: 1725: 1652: 1641: 1559:"Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor" 1336: 1233: 827: 713: 667: 418: 304: 286: 91: 73: 39: 624: 570: 113: 1600: 1542: 1498: 1454: 1402: 1354: 1297: 1241: 1153: 1118: 1034: 999: 947: 929: 884: 835: 775: 632: 589: 359: 229: 131: 42:
that regulate a wide range of processes in plants, ranging from growth and
1436: 266:
JA and MeJA inhibit the germination of nondormant seeds and stimulate the
101: 1677: 1328: 1100: 981: 482: 454: 267: 192: 143: 1582: 1490: 1085:"Jasmonic acid induces tuberization of potato stolons cultured in vitro" 856: 19: 1384: 1061: 379: 367: 339: 308: 243:
JA and its derivatives have also been implicated in plant development,
158: 147: 1715: 1667: 1555: 1467: 244: 233: 208:, wounding produces defense molecules that inhibit leaf digestion in 1269: 857:
Reinbothe, C; Springer, A; Samol, I; Reinbothe, S (September 2009).
1705: 1695: 1672: 1519: 749: 697: 135: 1610: 449:
In general, the steps in jasmonate (JA) signaling mirror that of
335:
to inject a cocktail of viral effector proteins into host cells.
46:
to reproductive development. In particular, JAs are critical for
338:
One of the molecules included in this mixture is the phytotoxin
736:"Jasmonate signaling: a conserved mechanism of hormone sensing" 387: 375: 316: 205: 402:
One of the best studied examples of JA cross talk occurs with
1657: 1015:
Annual Review of Plant Physiology and Plant Molecular Biology
734:
Katsir, L.; Chung, H. S.; Koo, A. J. K.; Howe, G. A. (2008).
450: 386:
that acts in plants in response to stress similar to that in
374:(AA), the counterpart of the JA precursor α-LeA occurring in 441: 247:, and a host of other processes included in the list below. 1418: 1370: 393: 1131: 370:
pathogens by activating JA biosynthesis and signalling.
1012: 789: 787: 785: 653: 481:
SCF. The complexes that ultimately form are known as
342:(COR). JA-insensitive plants are highly resistant to 796:"The Layers of Plant Responses to Insect Herbivores" 794:
Schuman, Meredith C.; Baldwin, Ian T. (2016-03-11).
1082: 782: 178:to not require JA-Ile, nor VanDoorn et al 2011 for 1206:Hedrich, Rainer; Fukushima, Kenji (17 June 2021). 733: 685: 1419:Koornneef, A.; Pieterse, C. M.J. (1 March 2008). 906: 904: 902: 543: 1738: 1205: 681: 679: 677: 1310: 299:JAs have been implicated in the development of 899: 793: 1626: 1371:Turner, J. G.; Ellis, C.; Devoto, A. (2002). 674: 232:membranes and compromise the cell by causing 161:(Ile) results in JA-Ile ((+)-7-iso-jasmonoyl- 1414: 1412: 959: 957: 277:and stress tolerance in mycorrhizal plants. 1633: 1619: 963: 125:Structures of active jasmonate derivatives 1590: 1444: 1409: 1392: 1366: 1364: 1344: 1287: 1223: 1183: 1108: 989: 954: 937: 874: 817: 765: 579: 569: 445:Major components of the jasmonate pathway 436: 1047: 850: 729: 727: 725: 723: 539: 537: 440: 280: 146:; all subsequent reactions occur in the 18: 1311:Wasternack, C.; Hause, B. (June 2013). 1199: 1165: 1163: 1083:Pelacho, AM; Mingo-Castel, AM. (1991). 323: 191:. JA undergoes decarboxylation to give 1739: 1549: 1513: 1361: 1050:Journal of Plant Growth and Regulation 596: 469:Because JAZ did not disappear in null 394:Cross talk with other defense pathways 38:) and its derivatives are lipid-based 1614: 1461: 1225:10.1146/annurev-arplant-080620-010429 1125: 720: 689:Environmental and Experimental Botany 534: 477:, and it recruits substrates for the 289:carnivory process, with JA signaling 263:of 12-OH-JA can also delay flowering. 252:necessary for inhibiting root growth. 66:(MeJA) from jasmine oil derived from 1263: 1169: 1160: 489:and thus degradation of the latter. 544:Farmer, E. E.; Ryan, C. A. (1990). 13: 1640: 819:10.1146/annurev-ento-010715-023851 14: 1768: 1421:"Cross Talk in Defense Signaling" 1535:10.1046/j.1365-313x.2002.01432.x 1289:10.1046/j.1365-313x.2003.01895.x 1170:Pain, Stephanie (2 March 2022). 1027:10.1146/annurev.arplant.48.1.355 876:10.1111/j.1742-4658.2009.07193.x 741:Current Opinion in Plant Biology 228:(ROSs). These compounds disrupt 157:. JA conjugated with amino acid 112: 100: 1304: 1146:10.1016/j.phytochem.2009.07.003 1076: 1041: 1006: 706:10.1016/j.envexpbot.2017.11.004 501:) from COI1, demonstrating InsP 85: 48:plant defense against herbivory 1373:"The jasmonate signal pathway" 1212:Annual Review of Plant Biology 964:Wasternack, C. (18 May 2007). 647: 378:species but not in plants, is 1: 527: 214:elevate levels of transcripts 1172:"How plants turned predator" 408:systemic acquired resistance 82:by Alderidge et al in 1971. 7: 801:Annual Review of Entomology 457:. The second step utilizes 311:differ significantly from 198: 10: 1773: 495:inositol pentakisphosphate 89: 57: 52:volatile organic compounds 16:Lipid-based plant hormones 1686: 1648: 1379:. 14 Suppl (7): 153–164. 1185:10.1146/knowable-030122-1 758:10.1016/j.pbi.2008.05.004 333:type III secretion system 285:Stages and timing of the 76:itself was isolated from 668:10.1002/hlca.19620450233 550:Proc Natl Acad Sci U S A 155:interplant communication 140:12-oxo-phytodienoic acid 79:Lasiodiplodia theobromae 625:10.1126/science.1118446 571:10.1073/pnas.87.19.7713 255:JA plays many roles in 226:reactive oxygen species 1711:Plant peptide hormones 930:10.1105/tpc.110.080788 522:negative feedback loop 446: 437:Mechanism of signaling 295: 28: 1437:10.1104/pp.107.112029 918:The Plant Cell Online 459:transcription factors 444: 284: 90:Further information: 69:Jasminum grandiflorum 25:Jasminum grandiflorum 22: 1140:(13–14): 1589–1599. 1101:10.1104/pp.97.3.1253 509:for various SCF-InsP 349:pathogenesis-related 329:Pseudomonas syringae 324:Role in pathogenesis 189:herbivore resistance 1583:10.1038/nature09430 1575:2010Natur.468..400S 1491:10.1038/nature06006 1483:2007Natur.448..666C 617:2006Sci...311..812B 562:1990PNAS...87.7713F 507:binding specificity 479:E3 ubiquitin ligase 384:signalling molecule 1752:Carboxylate anions 1691:24-Epibrassinolide 1385:10.1105/tpc.000679 1329:10.1093/aob/mct067 1062:10.1007/BF02025263 982:10.1093/aob/mcm079 447: 301:carnivorous plants 296: 257:flower development 107:Jasmonic acid (JA) 29: 1734: 1733: 1569:(7322): 400–405. 1523:The Plant Journal 1477:(7154): 666–671. 1276:The Plant Journal 1176:Knowable Magazine 611:(5762): 812–815. 556:(19): 7713–7716. 292:Knowable Magazine 270:of dormant seeds. 62:The isolation of 1764: 1663:Brassinosteroids 1635: 1628: 1621: 1612: 1611: 1605: 1604: 1594: 1553: 1547: 1546: 1517: 1511: 1510: 1465: 1459: 1458: 1448: 1425:Plant Physiology 1416: 1407: 1406: 1396: 1368: 1359: 1358: 1348: 1323:(6): 1021–1058. 1317:Annals of Botany 1308: 1302: 1301: 1291: 1267: 1261: 1260: 1258: 1256: 1227: 1203: 1197: 1196: 1194: 1192: 1187: 1167: 1158: 1157: 1129: 1123: 1122: 1112: 1089:Plant Physiology 1080: 1074: 1073: 1045: 1039: 1038: 1010: 1004: 1003: 993: 970:Annals of Botany 961: 952: 951: 941: 908: 897: 896: 878: 863:The FEBS Journal 854: 848: 847: 821: 791: 780: 779: 769: 731: 718: 717: 683: 672: 671: 651: 645: 644: 600: 594: 593: 583: 573: 541: 513:-JAZ complexes. 372:Arachidonic acid 186: 173: 164: 116: 104: 64:methyl jasmonate 1772: 1771: 1767: 1766: 1765: 1763: 1762: 1761: 1737: 1736: 1735: 1730: 1682: 1644: 1639: 1609: 1608: 1554: 1550: 1518: 1514: 1466: 1462: 1417: 1410: 1369: 1362: 1309: 1305: 1268: 1264: 1254: 1252: 1204: 1200: 1190: 1188: 1168: 1161: 1130: 1126: 1081: 1077: 1046: 1042: 1011: 1007: 962: 955: 909: 900: 869:(17): 4666–81. 855: 851: 792: 783: 732: 721: 684: 675: 652: 648: 601: 597: 542: 535: 530: 512: 504: 500: 439: 396: 358:Plants produce 326: 210:guts of insects 201: 184: 171: 162: 129: 128: 127: 126: 122: 121: 120: 117: 109: 108: 105: 94: 88: 60: 17: 12: 11: 5: 1770: 1760: 1759: 1754: 1749: 1747:Plant hormones 1732: 1731: 1729: 1728: 1726:Strigolactones 1723: 1721:Salicylic acid 1718: 1713: 1708: 1703: 1698: 1693: 1687: 1684: 1683: 1681: 1680: 1675: 1670: 1665: 1660: 1655: 1649: 1646: 1645: 1642:Plant hormones 1638: 1637: 1630: 1623: 1615: 1607: 1606: 1548: 1512: 1460: 1431:(3): 839–844. 1408: 1360: 1303: 1262: 1218:(1): 133–153. 1198: 1159: 1134:Phytochemistry 1124: 1095:(3): 1253–55. 1075: 1040: 1021:(1): 355–381. 1005: 976:(4): 681–697. 953: 924:(2): 701–715. 898: 849: 810:Annual Reviews 781: 719: 673: 656:Helv Chim Acta 646: 595: 532: 531: 529: 526: 510: 502: 498: 487:ubiquitination 475:F-box proteins 438: 435: 404:salicylic acid 395: 392: 325: 322: 321: 320: 313:Venus flytraps 279: 278: 274: 271: 264: 261:Overexpression 253: 218:cell signaling 200: 197: 181:Solanum nigrum 174:s emission of 124: 123: 118: 111: 110: 106: 99: 98: 97: 96: 95: 87: 84: 59: 56: 44:photosynthesis 40:plant hormones 15: 9: 6: 4: 3: 2: 1769: 1758: 1755: 1753: 1750: 1748: 1745: 1744: 1742: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1688: 1685: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1653:Abscisic acid 1651: 1650: 1647: 1643: 1636: 1631: 1629: 1624: 1622: 1617: 1616: 1613: 1602: 1598: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1552: 1544: 1540: 1536: 1532: 1529:(4): 457–66. 1528: 1524: 1516: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1464: 1456: 1452: 1447: 1442: 1438: 1434: 1430: 1426: 1422: 1415: 1413: 1404: 1400: 1395: 1390: 1386: 1382: 1378: 1374: 1367: 1365: 1356: 1352: 1347: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1307: 1299: 1295: 1290: 1285: 1282:(4): 485–99. 1281: 1277: 1273: 1266: 1251: 1247: 1243: 1239: 1235: 1231: 1226: 1221: 1217: 1213: 1209: 1202: 1186: 1181: 1177: 1173: 1166: 1164: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1120: 1116: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1079: 1071: 1067: 1063: 1059: 1056:(4): 203–11. 1055: 1051: 1044: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1001: 997: 992: 987: 983: 979: 975: 971: 967: 960: 958: 949: 945: 940: 935: 931: 927: 923: 919: 915: 907: 905: 903: 894: 890: 886: 882: 877: 872: 868: 864: 860: 853: 845: 841: 837: 833: 829: 825: 820: 815: 811: 807: 803: 802: 797: 790: 788: 786: 777: 773: 768: 763: 759: 755: 751: 747: 743: 742: 737: 730: 728: 726: 724: 715: 711: 707: 703: 699: 695: 691: 690: 682: 680: 678: 669: 665: 662:(2): 675–85. 661: 657: 650: 642: 638: 634: 630: 626: 622: 618: 614: 610: 606: 599: 591: 587: 582: 577: 572: 567: 563: 559: 555: 551: 547: 540: 538: 533: 525: 523: 518: 514: 508: 496: 490: 488: 484: 483:SCF complexes 480: 476: 472: 467: 465: 460: 456: 452: 443: 434: 432: 426: 424: 420: 419:abscisic acid 415: 411: 409: 405: 400: 391: 389: 385: 381: 377: 373: 369: 365: 361: 356: 354: 350: 345: 341: 336: 334: 330: 318: 314: 310: 306: 305:Venus flytrap 302: 298: 297: 294: 293: 288: 287:Venus flytrap 283: 275: 272: 269: 265: 262: 258: 254: 250: 249: 248: 246: 241: 239: 235: 231: 227: 221: 219: 215: 211: 207: 196: 194: 190: 183: 182: 177: 170: 169: 160: 156: 151: 149: 145: 141: 137: 133: 115: 103: 93: 92:Jasmonic acid 83: 81: 80: 75: 74:jasmonic acid 71: 70: 65: 55: 53: 49: 45: 41: 37: 33: 27: 26: 21: 1700: 1678:Gibberellins 1566: 1562: 1551: 1526: 1522: 1515: 1474: 1470: 1463: 1428: 1424: 1376: 1320: 1316: 1306: 1279: 1275: 1265: 1253:. Retrieved 1215: 1211: 1201: 1189:. Retrieved 1175: 1137: 1133: 1127: 1092: 1088: 1078: 1053: 1049: 1043: 1018: 1014: 1008: 973: 969: 921: 917: 866: 862: 852: 805: 799: 745: 739: 693: 687: 659: 655: 649: 608: 604: 598: 553: 549: 519: 515: 491: 470: 468: 448: 430: 427: 416: 412: 401: 399:challenges. 397: 368:necrotrophic 362:that confer 360:N-acylamides 357: 352: 343: 337: 328: 327: 303:such as the 290: 242: 230:mitochondria 222: 202: 179: 166: 152: 132:Biosynthesis 130: 86:Biosynthesis 77: 67: 61: 35: 31: 30: 23: 812:: 373–394. 752:: 428–435. 700:: 104–120. 466:responses. 455:proteasomes 431:Arabidopsis 353:P. syringae 344:P. syringae 309:Butterworts 268:germination 193:cis-jasmone 168:Arabidopsis 144:chloroplast 1741:Categories 1701:Jasmonates 1668:Cytokinins 1377:Plant Cell 528:References 421:(ABA) and 364:resistance 340:coronatine 238:infections 159:isoleucine 148:peroxisome 1716:Polyamine 1706:Karrikins 1337:0305-7364 1250:231595236 1234:1543-5008 828:0066-4170 714:0098-8472 390:systems. 380:perceived 245:symbiosis 234:apoptosis 176:volatiles 136:oxylipins 119:Methyl JA 32:Jasmonate 1696:Florigen 1673:Ethylene 1601:20927106 1543:12445118 1499:17637675 1455:18316638 1403:12045275 1355:23558912 1298:14617079 1255:11 March 1242:33434053 1191:11 March 1154:19700177 1119:16668517 1070:37785073 1035:15012267 1000:17513307 948:21335373 885:19663906 844:24720368 836:26651543 776:18583180 750:Elsevier 698:Elsevier 633:16469918 590:11607107 423:ethylene 376:metazoan 199:Function 1757:Ketones 1592:2988090 1571:Bibcode 1507:4383741 1479:Bibcode 1446:2259093 1346:3662512 1110:1081150 991:2749622 939:3077776 893:1349010 767:2560989 641:9260593 613:Bibcode 605:Science 558:Bibcode 317:sundews 58:History 1658:Auxins 1599:  1589:  1563:Nature 1541:  1505:  1497:  1471:Nature 1453:  1443:  1401:  1394:151253 1391:  1353:  1343:  1335:  1296:  1248:  1240:  1232:  1152:  1117:  1107:  1068:  1033:  998:  988:  946:  936:  891:  883:  842:  834:  826:  774:  764:  712:  639:  631:  588:  578:  464:stress 388:animal 206:tomato 1503:S2CID 1246:S2CID 1066:S2CID 889:S2CID 840:S2CID 808:(1). 748:(4). 637:S2CID 581:54818 497:(InsP 451:auxin 185:' 172:' 1597:PMID 1539:PMID 1495:PMID 1451:PMID 1399:PMID 1351:PMID 1333:ISSN 1294:PMID 1257:2022 1238:PMID 1230:ISSN 1193:2022 1150:PMID 1115:PMID 1031:PMID 996:PMID 944:PMID 881:PMID 832:PMID 824:ISSN 772:PMID 710:ISSN 629:PMID 586:PMID 471:coi1 315:and 1587:PMC 1579:doi 1567:468 1531:doi 1487:doi 1475:448 1441:PMC 1433:doi 1429:146 1389:PMC 1381:doi 1341:PMC 1325:doi 1321:111 1284:doi 1220:doi 1180:doi 1142:doi 1105:PMC 1097:doi 1058:doi 1023:doi 986:PMC 978:doi 974:100 934:PMC 926:doi 871:doi 867:276 814:doi 762:PMC 754:doi 702:doi 694:145 664:doi 621:doi 609:311 576:PMC 566:doi 366:to 1743:: 1595:. 1585:. 1577:. 1565:. 1561:. 1537:. 1527:32 1525:. 1501:. 1493:. 1485:. 1473:. 1449:. 1439:. 1427:. 1423:. 1411:^ 1397:. 1387:. 1375:. 1363:^ 1349:. 1339:. 1331:. 1319:. 1315:. 1292:. 1280:36 1278:. 1274:. 1244:. 1236:. 1228:. 1216:72 1214:. 1210:. 1178:. 1174:. 1162:^ 1148:. 1138:70 1136:. 1113:. 1103:. 1093:97 1091:. 1087:. 1064:. 1052:. 1029:. 1019:48 1017:. 994:. 984:. 972:. 968:. 956:^ 942:. 932:. 922:23 920:. 916:. 901:^ 887:. 879:. 865:. 861:. 838:. 830:. 822:. 806:61 804:. 798:. 784:^ 770:. 760:. 746:11 744:. 738:. 722:^ 708:. 696:. 692:. 676:^ 660:45 658:. 635:. 627:. 619:. 607:. 584:. 574:. 564:. 554:87 552:. 548:. 536:^ 240:. 195:. 187:s 150:. 36:JA 1634:e 1627:t 1620:v 1603:. 1581:: 1573:: 1545:. 1533:: 1509:. 1489:: 1481:: 1457:. 1435:: 1405:. 1383:: 1357:. 1327:: 1300:. 1286:: 1259:. 1222:: 1195:. 1182:: 1156:. 1144:: 1121:. 1099:: 1072:. 1060:: 1054:7 1037:. 1025:: 1002:. 980:: 950:. 928:: 895:. 873:: 846:. 816:: 778:. 756:: 716:. 704:: 670:. 666:: 643:. 623:: 615:: 592:. 568:: 560:: 511:5 503:5 499:5 163:L 34:(

Index


Jasminum grandiflorum
plant hormones
photosynthesis
plant defense against herbivory
volatile organic compounds
methyl jasmonate
Jasminum grandiflorum
jasmonic acid
Lasiodiplodia theobromae
Jasmonic acid


Biosynthesis
oxylipins
12-oxo-phytodienoic acid
chloroplast
peroxisome
interplant communication
isoleucine
Arabidopsis
volatiles
Solanum nigrum
herbivore resistance
cis-jasmone
tomato
guts of insects
elevate levels of transcripts
cell signaling
reactive oxygen species

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.