Knowledge

Heat flux

Source 📝

580: 571: 25: 703:. Usually this method is difficult to perform since the thermal resistance of the material being tested is often not known. Accurate values for the material's thickness and thermal conductivity would be required in order to determine thermal resistance. Using the thermal resistance, along with temperature measurements on either side of the material, heat flux can then be indirectly calculated. 131: 1097: 903: 719:
which operates on essentially the same principle as the first measurement method that was mentioned except it has the advantage in that the thermal resistance/conductivity does not need to be a known parameter. These parameters do not have to be known since the heat flux sensor enables an in-situ
583:
Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be directly measured using a single heat flux sensor located on either surface or embedded within the material. Using this method, knowing the values of k and x of the
728:
heat flux sensors have to be calibrated in order to relate their output signals to heat flux values . Once the heat flux sensor is calibrated it can then be used to directly measure heat flux without requiring the rarely known value of thermal resistance or thermal conductivity.
574:
Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be determined using two surface temperature measurements on either side of the material using temperature sensors if k and x of the material are also
960: 747: 534: 715:, or heat flux transducer, to directly measure the amount of heat being transferred to/from the surface that the heat flux sensor is mounted to. The most common type of heat flux sensor is a differential temperature 949: 641: 301: 1138: 411: 219: 171: 1092:{\displaystyle {\frac {\partial E_{\mathrm {in} }}{\partial t}}-{\frac {\partial E_{\mathrm {out} }}{\partial t}}=\oint _{S}{\vec {\phi }}_{\mathrm {q} }\cdot \,\mathrm {d} {\vec {S}}} 898:{\displaystyle {\big .}{\frac {\partial E_{\mathrm {in} }}{\partial t}}-{\frac {\partial E_{\mathrm {out} }}{\partial t}}-{\frac {\partial E_{\mathrm {accumulated} }}{\partial t}}=0} 951:
terms stand for the time rate of change of respectively the total amount of incoming energy, the total amount of outgoing energy and the total amount of accumulated energy.
1253: 1163:
In real-world applications one cannot know the exact heat flux at every point on the surface, but approximation schemes can be used to calculate the integral, for example
663: 954:
Now, if the only way the system exchanges energy with its surroundings is through heat transfer, the heat rate can be used to calculate the energy balance, since
470: 1158: 556: 1220:
The word "flux" is used in most physical disciplines to refer to the flow of a quantity (mass, heat, momentum, etc.) across a surface per unit
691:
A commonly known, but often impractical, method is performed by measuring a temperature difference over a piece of material with a well-known
593: 1228:, with the primary exception being in electromagnetism, where it refers to the integral of a vector quantity through a surface. Refer to the 741:. Such a balance can be set up for any physical system, from chemical reactors to living organisms, and generally takes the following form 911: 588:
The multi-dimensional case is similar, the heat flux goes "down" and hence the temperature gradient has the negative sign:
579: 89: 61: 1248: 265: 108: 570: 1105: 378: 186: 138: 68: 46: 562:. The negative sign shows that heat flux moves from higher temperature regions to lower temperature regions. 1201: 75: 738: 447: 369: 258: 42: 57: 695:. This method is analogous to a standard way to measure an electric current, where one measures the 435: 1164: 35: 646: 721: 917: 753: 692: 559: 8: 428: 1143: 541: 457: 361: 82: 1186: 666: 1196: 1181: 712: 678: 1221: 345: 1242: 529:{\displaystyle \phi _{\text{q}}=-k{\frac {\mathrm {d} T(x)}{\mathrm {d} x}}} 1176: 683:
The measurement of heat flux can be performed in a few different manners.
357: 246: 313: 16:
Vector representing the energy passing through a given area per unit time
1191: 725: 716: 423: 24: 700: 349: 696: 309: 225: 737:
One of the tools in a scientist's or engineer's toolbox is the
360:(W/m). It has both a direction and a magnitude, and so it is a 337: 453: 372:
where the size of the surface becomes infinitesimally small.
460:
and the heat flux is adequately described by Fourier's law.
1229: 1225: 365: 353: 341: 130: 944:{\displaystyle {\big .}{\frac {\partial E}{\partial t}}} 636:{\displaystyle {\vec {\phi }}_{\mathrm {q} }=-k\nabla T} 1146: 1108: 963: 914: 750: 711:
A second method of measuring heat flux is by using a
649: 596: 544: 473: 381: 268: 189: 141: 706: 686: 1254:
Customary units of measurement in the United States
720:measurement of the existing heat flux by using the 456:in usual conditions, heat is transported mainly by 49:. Unsourced material may be challenged and removed. 1152: 1132: 1091: 943: 897: 657: 635: 550: 528: 405: 295: 213: 165: 463: 1240: 438:is an important application of these concepts. 296:{\displaystyle {\mathsf {M}}{\mathsf {T}}^{-3}} 565: 1133:{\displaystyle {\vec {\phi }}_{\mathrm {q} }} 406:{\displaystyle {\vec {\phi }}_{\mathrm {q} }} 214:{\displaystyle {\vec {\phi }}_{\mathrm {q} }} 166:{\displaystyle {\vec {\phi }}_{\mathrm {q} }} 368:at a certain point in space, one takes the 732: 129: 1071: 109:Learn how and when to remove this message 578: 569: 1102:where we have integrated the heat flux 448:Thermal conduction § Fourier's law 1241: 279: 271: 47:adding citations to reliable sources 18: 13: 1124: 1073: 1062: 1025: 1017: 1014: 1011: 1002: 987: 979: 976: 967: 932: 924: 880: 872: 869: 866: 863: 860: 857: 854: 851: 848: 845: 842: 833: 818: 810: 807: 804: 795: 780: 772: 769: 760: 651: 627: 612: 516: 497: 397: 205: 157: 14: 1265: 707:With unknown thermal conductivity 687:With a given thermal conductivity 441: 324:, sometimes also referred to as 23: 34:needs additional citations for 1214: 1116: 1083: 1054: 672: 604: 510: 504: 464:Fourier's law in one dimension 389: 197: 149: 1: 364:quantity. To define the heat 1202:Relativistic heat conduction 7: 1170: 566:Multi-dimensional extension 375:Heat flux is often denoted 10: 1270: 676: 584:material are not required. 445: 658:{\displaystyle {\nabla }} 257: 244: 234: 224: 178: 128: 123: 1249:Thermodynamic properties 1232:article for more detail. 1207: 724:. However, differential 334:heat-flow rate intensity 1165:Monte Carlo integration 733:Science and engineering 1154: 1134: 1093: 945: 899: 659: 637: 585: 576: 552: 530: 407: 297: 215: 167: 1155: 1135: 1094: 946: 900: 660: 638: 582: 573: 553: 531: 408: 298: 216: 168: 1144: 1106: 961: 912: 748: 693:thermal conductivity 647: 594: 560:thermal conductivity 542: 471: 421:flux, as opposed to 379: 266: 187: 139: 43:improve this article 1150: 1130: 1089: 941: 895: 699:drop over a known 655: 633: 586: 577: 548: 526: 403: 293: 248:SI base units 211: 173:through a surface. 163: 1187:Rate of heat flow 1153:{\displaystyle S} 1140:over the surface 1119: 1086: 1057: 1032: 994: 939: 887: 825: 787: 667:gradient operator 607: 551:{\displaystyle k} 524: 481: 392: 330:heat-flow density 326:heat flux density 306: 305: 200: 152: 119: 118: 111: 93: 1261: 1233: 1218: 1197:Heat flux sensor 1182:Latent heat flux 1159: 1157: 1156: 1151: 1139: 1137: 1136: 1131: 1129: 1128: 1127: 1121: 1120: 1112: 1098: 1096: 1095: 1090: 1088: 1087: 1079: 1076: 1067: 1066: 1065: 1059: 1058: 1050: 1046: 1045: 1033: 1031: 1023: 1022: 1021: 1020: 1000: 995: 993: 985: 984: 983: 982: 965: 950: 948: 947: 942: 940: 938: 930: 922: 920: 919: 908:where the three 904: 902: 901: 896: 888: 886: 878: 877: 876: 875: 831: 826: 824: 816: 815: 814: 813: 793: 788: 786: 778: 777: 776: 775: 758: 756: 755: 713:heat flux sensor 679:Heat flux sensor 664: 662: 661: 656: 654: 642: 640: 639: 634: 617: 616: 615: 609: 608: 600: 557: 555: 554: 549: 535: 533: 532: 527: 525: 523: 519: 513: 500: 494: 483: 482: 479: 416: 413:, the subscript 412: 410: 409: 404: 402: 401: 400: 394: 393: 385: 302: 300: 299: 294: 292: 291: 283: 282: 275: 274: 249: 220: 218: 217: 212: 210: 209: 208: 202: 201: 193: 172: 170: 169: 164: 162: 161: 160: 154: 153: 145: 133: 121: 120: 114: 107: 103: 100: 94: 92: 51: 27: 19: 1269: 1268: 1264: 1263: 1262: 1260: 1259: 1258: 1239: 1238: 1237: 1236: 1219: 1215: 1210: 1173: 1160:of the system. 1145: 1142: 1141: 1123: 1122: 1111: 1110: 1109: 1107: 1104: 1103: 1078: 1077: 1072: 1061: 1060: 1049: 1048: 1047: 1041: 1037: 1024: 1010: 1009: 1005: 1001: 999: 986: 975: 974: 970: 966: 964: 962: 959: 958: 931: 923: 921: 916: 915: 913: 910: 909: 879: 841: 840: 836: 832: 830: 817: 803: 802: 798: 794: 792: 779: 768: 767: 763: 759: 757: 752: 751: 749: 746: 745: 735: 709: 689: 681: 675: 650: 648: 645: 644: 611: 610: 599: 598: 597: 595: 592: 591: 568: 543: 540: 539: 515: 514: 496: 495: 493: 478: 474: 472: 469: 468: 466: 450: 444: 414: 396: 395: 384: 383: 382: 380: 377: 376: 336:, is a flow of 284: 278: 277: 276: 270: 269: 267: 264: 263: 247: 237: 204: 203: 192: 191: 190: 188: 185: 184: 181: 174: 156: 155: 144: 143: 142: 140: 137: 136: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1267: 1257: 1256: 1251: 1235: 1234: 1212: 1211: 1209: 1206: 1205: 1204: 1199: 1194: 1189: 1184: 1179: 1172: 1169: 1149: 1126: 1118: 1115: 1100: 1099: 1085: 1082: 1075: 1070: 1064: 1056: 1053: 1044: 1040: 1036: 1030: 1027: 1019: 1016: 1013: 1008: 1004: 998: 992: 989: 981: 978: 973: 969: 937: 934: 929: 926: 918: 906: 905: 894: 891: 885: 882: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 839: 835: 829: 823: 820: 812: 809: 806: 801: 797: 791: 785: 782: 774: 771: 766: 762: 754: 739:energy balance 734: 731: 722:Seebeck effect 708: 705: 688: 685: 677:Main article: 674: 671: 653: 632: 629: 626: 623: 620: 614: 606: 603: 567: 564: 547: 522: 518: 512: 509: 506: 503: 499: 492: 489: 486: 477: 465: 462: 446:Main article: 443: 440: 399: 391: 388: 304: 303: 290: 287: 281: 273: 261: 255: 254: 251: 242: 241: 238: 235: 232: 231: 228: 222: 221: 207: 199: 196: 182: 180:Common symbols 179: 176: 175: 159: 151: 148: 134: 126: 125: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1266: 1255: 1252: 1250: 1247: 1246: 1244: 1231: 1227: 1223: 1217: 1213: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1174: 1168: 1166: 1161: 1147: 1113: 1080: 1068: 1051: 1042: 1038: 1034: 1028: 1006: 996: 990: 971: 957: 956: 955: 952: 935: 927: 892: 889: 883: 837: 827: 821: 799: 789: 783: 764: 744: 743: 742: 740: 730: 727: 723: 718: 714: 704: 702: 698: 694: 684: 680: 670: 668: 630: 624: 621: 618: 601: 589: 581: 572: 563: 561: 545: 536: 520: 507: 501: 490: 487: 484: 475: 461: 459: 455: 449: 442:Fourier's law 439: 437: 436:Fourier's law 433: 431: 426: 425: 420: 386: 373: 371: 370:limiting case 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 288: 285: 262: 260: 256: 252: 250: 243: 239: 233: 229: 227: 223: 194: 183: 177: 146: 132: 127: 122: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1216: 1177:Radiant flux 1162: 1101: 953: 907: 736: 710: 690: 682: 590: 587: 537: 467: 451: 429: 422: 418: 374: 358:square metre 333: 329: 325: 322:thermal flux 321: 317: 307: 226:SI unit 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 673:Measurement 417:specifying 314:engineering 236:Other units 58:"Heat flux" 1243:Categories 1192:Insolation 726:thermopile 717:thermopile 458:conduction 240:Btu/(h⋅ft) 135:Heat flux 99:March 2021 69:newspapers 1224:per unit 1117:→ 1114:ϕ 1084:→ 1069:⋅ 1055:→ 1052:ϕ 1039:∮ 1026:∂ 1003:∂ 997:− 988:∂ 968:∂ 933:∂ 925:∂ 881:∂ 834:∂ 828:− 819:∂ 796:∂ 790:− 781:∂ 761:∂ 652:∇ 628:∇ 622:− 605:→ 602:ϕ 488:− 476:ϕ 452:For most 390:→ 387:ϕ 344:per unit 340:per unit 318:heat flux 286:− 259:Dimension 198:→ 195:ϕ 150:→ 147:ϕ 124:Heat flux 1171:See also 701:resistor 430:momentum 350:SI units 697:voltage 665:is the 558:is the 310:physics 83:scholar 643:where 575:known. 538:where 454:solids 362:vector 348:. Its 338:energy 85:  78:  71:  64:  56:  1208:Notes 354:watts 90:JSTOR 76:books 1230:Flux 1226:area 1222:time 432:flux 424:mass 419:heat 366:flux 356:per 352:are 346:time 342:area 312:and 253:kg⋅s 62:news 427:or 332:or 320:or 308:In 245:In 230:W/m 45:by 1245:: 1167:. 669:. 434:. 328:, 316:, 1148:S 1125:q 1081:S 1074:d 1063:q 1043:S 1035:= 1029:t 1018:t 1015:u 1012:o 1007:E 991:t 980:n 977:i 972:E 936:t 928:E 893:0 890:= 884:t 873:d 870:e 867:t 864:a 861:l 858:u 855:m 852:u 849:c 846:c 843:a 838:E 822:t 811:t 808:u 805:o 800:E 784:t 773:n 770:i 765:E 631:T 625:k 619:= 613:q 546:k 521:x 517:d 511:) 508:x 505:( 502:T 498:d 491:k 485:= 480:q 415:q 398:q 289:3 280:T 272:M 206:q 158:q 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Heat flux"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

SI unit
SI base units
Dimension
physics
engineering
energy
area
time
SI units
watts
square metre
vector
flux
limiting case
mass
momentum flux
Fourier's law
Thermal conduction § Fourier's law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.