Knowledge

Gerchberg–Saxton algorithm

Source 📝

28: 54:
It is often necessary to know only the phase distribution from one of the planes, since the phase distribution on the other plane can be obtained by performing a Fourier transform on the plane whose phase is known. Although often used for two-dimensional signals, the GS algorithm is also valid for
46:
for retrieving the phase of a complex-valued wavefront from two intensity measurements acquired in two different planes. Typically, the two planes are the image plane and the far field (diffraction) plane, and the wavefront propagation between these two planes is given by the
88:) Target and Source be the Target and Source Amplitude planes respectively A, B, C & D be complex planes with the same dimension as Target and Source Amplitude – Amplitude-extracting function: e.g. for complex 147:
error criterion is not satisfied B := Amplitude(Source) × exp(i × Phase(A)) C := FT(B) D := Amplitude(Target) × exp(i × Phase(C)) A := IFT(D)
62:
below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target".
154:
This is just one of the many ways to implement the GS algorithm. Aside from optimizations, others may start by performing a forward Fourier transform to the source distribution.
224:
Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Paciello, Antonio; Embrione, Valerio; Fusco, Sabato; Ferraro, Pietro; Antonio Netti, Paolo (2014-01-01).
292: 17: 286: 51:. The original paper by Gerchberg and Saxton considered image and diffraction pattern of a sample acquired in an electron microscope. 269: 309: 295: 178: 66: 282:
Applications and publications on phase retrieval from the University of Rochester, Institute of Optics
225: 200:"A practical algorithm for the determination of the phase from image and diffraction plane pictures" 314: 84:– the imaginary unit, √−1 (square root of −1) exp – exponential function (exp(x) = 281: 277: 199: 8: 245: 48: 241: 237: 65:
The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create
273: 163: 40: 267: 168: 303: 249: 27: 173: 132:| Phase – Phase extracting function: e.g. Phase(z) = arctan(y / x) 59: 43: 226:"Investigation on specific solutions of Gerchberg–Saxton algorithm" 80:
FT – forward Fourier transform IFT – inverse Fourier transform
223: 31:
The Gerchberg-Saxton algorithm. FT is Fourier transform.
139:Gerchberg–Saxton(Source, Target, Retrieved_Phase) 301: 197: 287:A Python-Script of the GS by Dominik Doellerer 198:Gerchberg, R. W.; Saxton, W. O. (1972). 26: 72: 14: 302: 24: 25: 326: 260: 230:Optics and Lasers in Engineering 242:10.1016/j.optlaseng.2013.06.008 37:Gerchberg–Saxton (GS) algorithm 217: 191: 13: 1: 184: 67:computer-generated holograms 7: 179:Adaptive-additive algorithm 157: 151:Retrieved_Phase = Phase(A) 10: 331: 266:Dr W. Owen Saxton's pages 143:A := IFT(Target) 18:Gerchberg-Saxton algorithm 310:Digital signal processing 55:one-dimensional signals. 32: 291:MATLAB GS algorithms 30: 73:Pseudocode algorithm 272:2008-06-13 at the 120:) for real 33: 49:Fourier transform 16:(Redirected from 322: 254: 253: 221: 215: 214: 204: 195: 39:is an iterative 21: 330: 329: 325: 324: 323: 321: 320: 319: 315:Physical optics 300: 299: 274:Wayback Machine 263: 258: 257: 222: 218: 202: 196: 192: 187: 164:Phase retrieval 160: 152: 75: 41:phase retrieval 23: 22: 15: 12: 11: 5: 328: 318: 317: 312: 298: 297: 289: 284: 279: 262: 261:External links 259: 256: 255: 216: 189: 188: 186: 183: 182: 181: 176: 171: 169:Fourier optics 166: 159: 156: 76: 74: 71: 9: 6: 4: 3: 2: 327: 316: 313: 311: 308: 307: 305: 296: 293: 290: 288: 285: 283: 280: 278: 275: 271: 268: 265: 264: 251: 247: 243: 239: 235: 231: 227: 220: 212: 208: 201: 194: 190: 180: 177: 175: 172: 170: 167: 165: 162: 161: 155: 150: 146: 142: 138: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 70: 68: 63: 61: 56: 52: 50: 45: 42: 38: 29: 19: 233: 229: 219: 210: 206: 193: 153: 148: 144: 140: 136: 133: 129: 125: 124:, amplitude( 121: 117: 113: 109: 105: 101: 100:, amplitude( 97: 93: 89: 85: 81: 77: 64: 57: 53: 36: 34: 236:: 206–211. 304:Categories 213:: 237–246. 185:References 174:Holography 60:pseudocode 250:0143-8166 149:end while 137:algorithm 104:) = sqrt( 44:algorithm 270:Archived 158:See also 134:end Let 248:  207:Optik 203:(PDF) 145:while 128:) = | 246:ISSN 78:Let: 58:The 35:The 238:doi 306:: 294:, 276:, 244:. 234:52 232:. 228:. 211:35 209:. 205:. 141:is 112:+ 98:iy 96:+ 92:= 69:. 252:. 240:: 130:x 126:x 122:x 118:y 116:· 114:y 110:x 108:· 106:x 102:z 94:x 90:z 86:e 82:i 20:)

Index

Gerchberg-Saxton algorithm

phase retrieval
algorithm
Fourier transform
pseudocode
computer-generated holograms
Phase retrieval
Fourier optics
Holography
Adaptive-additive algorithm
"A practical algorithm for the determination of the phase from image and diffraction plane pictures"
"Investigation on specific solutions of Gerchberg–Saxton algorithm"
doi
10.1016/j.optlaseng.2013.06.008
ISSN
0143-8166

Archived
Wayback Machine

Applications and publications on phase retrieval from the University of Rochester, Institute of Optics
A Python-Script of the GS by Dominik Doellerer


Categories
Digital signal processing
Physical optics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.