Knowledge

Adaptive-additive algorithm

Source đź“ť

1017: 612: 380: 521: 803: 1306: 857: 1061: 888: 1152: 1093: 255: 635: 670: 450: 418: 1184: 1120: 697: 223: 1252: 1219: 529: 275: 1500: 1479: 458: 1525: 1351:
Dufresne, Eric; Grier, David G; Spalding (December 2000), "Computer-Generated Holographic Optical Tweezer Arrays",
1318: 1222: 705: 1257: 1462: 818: 1012:{\displaystyle {\bar {A}}^{f}e^{i\phi _{n}^{f}}{\xrightarrow {iFFT}}{\bar {A}}_{n}^{k}e^{i\phi _{n}^{k}}.} 51:), which derives from a group of adaptive (input-output) algorithms, can be used. The AA algorithm is an 1025: 879: 1530: 1448: 1125: 1066: 228: 620: 1443: 643: 637:
against the convergence requirements. If the requirements are not met then mix the transformed
423: 391: 1157: 1370: 1098: 675: 201: 69:(k space). This can be done when given the phase’s known counterparts, usually an observed 153:
Mix transformed amplitude with desired output amplitude and combine with transformed phase
8: 1409:
Röbel, Axel (2006), "Adaptive Additive Modeling With Continuous Parameter Trajectories",
1231: 1198: 607:{\displaystyle \varepsilon ={\sqrt {\left(I_{n}^{f}\right)^{2}-\left(I_{0}\right)^{2}}}.} 386: 183: 86: 1374: 1426: 1386: 1360: 375:{\displaystyle A_{0}e^{i\phi _{n}^{k}}{\xrightarrow {FFT}}A_{n}^{f}e^{i\phi _{n}^{f}}} 1475: 1456: 258: 175: 103: 63: 59: 36: 25: 1399: 1390: 1494: 1418: 1378: 122: 32: 1430: 126: 21: 1333: 1323: 114: 110: 28: 17: 1519: 147:
Compare transformed amplitude/intensity to desired output amplitude/intensity
106: 78: 66: 40: 1422: 85:
uses error conversion, or the error between the desired and the theoretical
35:, and diffractive optical elements (DOEs) it is often important to know the 102:
The adaptive-additive algorithm was originally created to reconstruct the
1365: 1338: 118: 113:. Since then, the AA algorithm has been adapted to work in the fields of 1328: 1382: 638: 191: 82: 74: 70: 55: 52: 941: 319: 1497:
Presentation on optical tweezers and fabrication of AA algorithm.
62:
to calculate an unknown part of a propagating wave, normally the
39:
phase of an observed wave source. In order to reconstruct this
1472:
Iterative Methods for Diffractive Optical Elements Computation
1506: 1411:
IEEE Transactions on Audio, Speech, and Language Processing
1350: 1260: 1234: 1201: 1160: 1128: 1101: 1069: 1028: 891: 821: 708: 678: 646: 623: 532: 516:{\displaystyle I_{n}^{f}=\left(A_{n}^{f}\right)^{2},} 461: 426: 394: 278: 231: 204: 1501:
Adaptive Additive Synthesis for Non Stationary Sound
1300: 1246: 1213: 1178: 1146: 1114: 1087: 1055: 1011: 851: 797: 691: 664: 629: 606: 515: 444: 412: 374: 249: 217: 1469: 1517: 162:Combine new phase with original input amplitude 867:is a percentage, defined on the interval 0 ≤ 1470:Soifer, V. Kotlyar; Doskolovich, L. (1997), 109:of light intensity in the study of stellar 1447: 1364: 798:{\displaystyle {\bar {A}}_{n}^{f}=\left,} 73:(position space) and an assumed starting 1301:{\displaystyle {\bar {A}}_{n}^{k}=A_{0}} 144:Separate transformed amplitude and phase 138:Define input amplitude and random phase 1518: 194:and the starting phase of the wave in 174:For the problem of reconstructing the 165:Loop back to Forward Fourier Transform 1474:, Bristol, PA: Taylor & Francis, 1408: 1397: 852:{\displaystyle A^{f}={\sqrt {I_{0}}}} 1440:Adaptive-Additive Synthesis of Sound 159:Separate new amplitude and new phase 1510:University of Maryland College Park 1398:Grier, David G (October 10, 2000), 13: 1221:then the AA algorithm becomes the 1056:{\displaystyle {\bar {A}}_{n}^{k}} 14: 1542: 1488: 1437: 874:Combine mixed amplitude with the 1353:Review of Scientific Instruments 92: 77:(k space). To find the correct 1268: 1164: 1036: 964: 899: 769: 757: 716: 1: 1344: 1147:{\displaystyle \phi _{n}^{k}} 1088:{\displaystyle \phi _{n}^{k}} 385:Then compare the transformed 250:{\displaystyle \phi _{n}^{k}} 630:{\displaystyle \varepsilon } 150:Check convergence conditions 132: 7: 1401:Adaptive-Additive Algorithm 1312: 420:with the desired intensity 45:Adaptive-Additive Algorithm 10: 1547: 1319:Gerchberg–Saxton algorithm 1223:Gerchberg–Saxton algorithm 169: 97: 1526:Digital signal processing 1189: 880:inverse Fourier transform 665:{\displaystyle A_{n}^{f}} 445:{\displaystyle I_{0}^{f}} 413:{\displaystyle I_{n}^{f}} 156:Inverse Fourier Transform 141:Forward Fourier Transform 1461:: CS1 maint: location ( 1179:{\displaystyle n\to n+1} 117:by Soifer and Dr. Hill, 1423:10.1109/TSA.2005.858529 1154:. Increase loop by one 672:with desired amplitude 1302: 1248: 1215: 1180: 1148: 1116: 1089: 1057: 1013: 853: 799: 693: 666: 631: 608: 517: 446: 414: 376: 251: 219: 182:-space) for a desired 1303: 1249: 1216: 1181: 1149: 1117: 1115:{\displaystyle A_{0}} 1090: 1058: 1014: 854: 800: 694: 692:{\displaystyle A^{f}} 667: 632: 609: 518: 447: 415: 377: 252: 220: 218:{\displaystyle A_{0}} 1258: 1232: 1199: 1158: 1126: 1099: 1067: 1026: 889: 819: 812:is mixing ratio and 706: 676: 644: 621: 530: 459: 424: 392: 276: 229: 202: 190:-space). Assume the 186:in the image plane ( 1375:2001RScI...72.1810D 1284: 1247:{\displaystyle a=0} 1214:{\displaystyle a=1} 1143: 1084: 1052: 1003: 980: 954: 933: 786: 732: 661: 560: 499: 476: 441: 409: 369: 346: 329: 311: 246: 1298: 1261: 1244: 1211: 1176: 1144: 1129: 1112: 1085: 1070: 1053: 1029: 1009: 989: 957: 919: 849: 795: 772: 709: 689: 662: 647: 627: 604: 546: 513: 485: 462: 442: 427: 410: 395: 372: 355: 332: 297: 247: 232: 215: 125:by Dr. Grier, and 58:that utilizes the 16:In the studies of 1495:David Grier's Lab 1481:978-0-7484-0634-0 1383:10.1063/1.1344176 1271: 1039: 967: 955: 902: 878:-space phase and 847: 719: 599: 330: 259:Fourier transform 176:spatial frequency 104:spatial frequency 64:spatial frequency 60:Fourier Transform 37:spatial frequency 1538: 1484: 1466: 1460: 1452: 1451: 1433: 1417:(4): 1440–1453, 1404: 1393: 1368: 1366:cond-mat/0008414 1307: 1305: 1304: 1299: 1297: 1296: 1283: 1278: 1273: 1272: 1264: 1253: 1251: 1250: 1245: 1220: 1218: 1217: 1212: 1185: 1183: 1182: 1177: 1153: 1151: 1150: 1145: 1142: 1137: 1121: 1119: 1118: 1113: 1111: 1110: 1094: 1092: 1091: 1086: 1083: 1078: 1062: 1060: 1059: 1054: 1051: 1046: 1041: 1040: 1032: 1018: 1016: 1015: 1010: 1005: 1004: 1002: 997: 979: 974: 969: 968: 960: 956: 937: 935: 934: 932: 927: 910: 909: 904: 903: 895: 858: 856: 855: 850: 848: 846: 845: 836: 831: 830: 804: 802: 801: 796: 791: 787: 785: 780: 753: 752: 731: 726: 721: 720: 712: 698: 696: 695: 690: 688: 687: 671: 669: 668: 663: 660: 655: 636: 634: 633: 628: 613: 611: 610: 605: 600: 598: 597: 592: 588: 587: 570: 569: 564: 559: 554: 540: 522: 520: 519: 514: 509: 508: 503: 498: 493: 475: 470: 451: 449: 448: 443: 440: 435: 419: 417: 416: 411: 408: 403: 381: 379: 378: 373: 371: 370: 368: 363: 345: 340: 331: 315: 313: 312: 310: 305: 288: 287: 256: 254: 253: 248: 245: 240: 224: 222: 221: 216: 214: 213: 123:optical tweezers 33:optical tweezers 1546: 1545: 1541: 1540: 1539: 1537: 1536: 1535: 1531:Physical optics 1516: 1515: 1503:Dr. Axel Röbel. 1491: 1482: 1454: 1453: 1347: 1339:Sound Synthesis 1315: 1292: 1288: 1279: 1274: 1263: 1262: 1259: 1256: 1255: 1233: 1230: 1229: 1200: 1197: 1196: 1192: 1159: 1156: 1155: 1138: 1133: 1127: 1124: 1123: 1106: 1102: 1100: 1097: 1096: 1079: 1074: 1068: 1065: 1064: 1047: 1042: 1031: 1030: 1027: 1024: 1023: 998: 993: 985: 981: 975: 970: 959: 958: 936: 928: 923: 915: 911: 905: 894: 893: 892: 890: 887: 886: 841: 837: 835: 826: 822: 820: 817: 816: 781: 776: 748: 744: 740: 736: 727: 722: 711: 710: 707: 704: 703: 683: 679: 677: 674: 673: 656: 651: 645: 642: 641: 622: 619: 618: 593: 583: 579: 575: 574: 565: 555: 550: 542: 541: 539: 531: 528: 527: 504: 494: 489: 481: 480: 471: 466: 460: 457: 456: 436: 431: 425: 422: 421: 404: 399: 393: 390: 389: 364: 359: 351: 347: 341: 336: 314: 306: 301: 293: 289: 283: 279: 277: 274: 273: 241: 236: 230: 227: 226: 209: 205: 203: 200: 199: 172: 135: 127:sound synthesis 100: 95: 22:sound synthesis 12: 11: 5: 1544: 1534: 1533: 1528: 1514: 1513: 1504: 1498: 1490: 1489:External links 1487: 1486: 1485: 1480: 1467: 1449:10.1.1.27.7602 1435: 1406: 1395: 1346: 1343: 1342: 1341: 1336: 1334:Interferometry 1331: 1326: 1324:Fourier optics 1321: 1314: 1311: 1310: 1309: 1295: 1291: 1287: 1282: 1277: 1270: 1267: 1243: 1240: 1237: 1226: 1210: 1207: 1204: 1191: 1188: 1175: 1172: 1169: 1166: 1163: 1141: 1136: 1132: 1109: 1105: 1082: 1077: 1073: 1050: 1045: 1038: 1035: 1020: 1019: 1008: 1001: 996: 992: 988: 984: 978: 973: 966: 963: 953: 950: 947: 944: 940: 931: 926: 922: 918: 914: 908: 901: 898: 861: 860: 844: 840: 834: 829: 825: 806: 805: 794: 790: 784: 779: 775: 771: 768: 765: 762: 759: 756: 751: 747: 743: 739: 735: 730: 725: 718: 715: 686: 682: 659: 654: 650: 626: 615: 614: 603: 596: 591: 586: 582: 578: 573: 568: 563: 558: 553: 549: 545: 538: 535: 524: 523: 512: 507: 502: 497: 492: 488: 484: 479: 474: 469: 465: 439: 434: 430: 407: 402: 398: 383: 382: 367: 362: 358: 354: 350: 344: 339: 335: 328: 325: 322: 318: 309: 304: 300: 296: 292: 286: 282: 257:respectively. 244: 239: 235: 212: 208: 171: 168: 167: 166: 163: 160: 157: 154: 151: 148: 145: 142: 139: 134: 131: 115:Fourier Optics 111:interferometry 99: 96: 94: 91: 29:interferometry 18:Fourier optics 9: 6: 4: 3: 2: 1543: 1532: 1529: 1527: 1524: 1523: 1521: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1492: 1483: 1477: 1473: 1468: 1464: 1458: 1450: 1445: 1442:, ICMC 1999, 1441: 1438:Röbel, Axel, 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1407: 1403: 1402: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1367: 1362: 1358: 1354: 1349: 1348: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1316: 1293: 1289: 1285: 1280: 1275: 1265: 1241: 1238: 1235: 1227: 1224: 1208: 1205: 1202: 1194: 1193: 1187: 1173: 1170: 1167: 1161: 1139: 1134: 1130: 1107: 1103: 1080: 1075: 1071: 1048: 1043: 1033: 1006: 999: 994: 990: 986: 982: 976: 971: 961: 951: 948: 945: 942: 938: 929: 924: 920: 916: 912: 906: 896: 885: 884: 883: 881: 877: 872: 870: 866: 842: 838: 832: 827: 823: 815: 814: 813: 811: 792: 788: 782: 777: 773: 766: 763: 760: 754: 749: 745: 741: 737: 733: 728: 723: 713: 702: 701: 700: 684: 680: 657: 652: 648: 640: 624: 601: 594: 589: 584: 580: 576: 571: 566: 561: 556: 551: 547: 543: 536: 533: 526: 525: 510: 505: 500: 495: 490: 486: 482: 477: 472: 467: 463: 455: 454: 453: 437: 432: 428: 405: 400: 396: 388: 365: 360: 356: 352: 348: 342: 337: 333: 326: 323: 320: 316: 307: 302: 298: 294: 290: 284: 280: 272: 271: 270: 268: 264: 260: 242: 237: 233: 210: 206: 197: 193: 189: 185: 181: 177: 164: 161: 158: 155: 152: 149: 146: 143: 140: 137: 136: 130: 128: 124: 120: 116: 112: 108: 105: 93:The algorithm 90: 88: 84: 80: 76: 72: 68: 65: 61: 57: 54: 50: 46: 42: 38: 34: 30: 27: 23: 19: 1509: 1471: 1439: 1414: 1410: 1400: 1356: 1352: 1186:and repeat. 1095:and combine 1021: 875: 873: 868: 864: 862: 809: 807: 616: 384: 266: 262: 261:the wave in 195: 187: 179: 173: 101: 49:AA algorithm 48: 44: 15: 1359:(3): 1810, 119:soft matter 87:intensities 1520:Categories 1345:References 1329:Holography 863:Note that 265:-space to 198:-space is 129:by Röbel. 1507:Hill Labs 1444:CiteSeerX 1269:¯ 1165:→ 1131:ϕ 1072:ϕ 1037:¯ 1022:Separate 991:ϕ 965:¯ 921:ϕ 900:¯ 764:− 717:¯ 639:amplitude 625:ε 572:− 534:ε 387:intensity 357:ϕ 299:ϕ 234:ϕ 192:amplitude 184:intensity 133:Algorithm 83:algorithm 75:amplitude 71:amplitude 56:algorithm 53:iterative 1457:citation 1391:14064547 1313:See also 939:→ 452:, where 317:→ 1371:Bibcode 269:space. 178:phase ( 170:Example 98:History 26:stellar 1478:  1446:  1429:  1389:  1190:Limits 808:where 617:Check 1431:73476 1427:S2CID 1387:S2CID 1361:arXiv 1254:then 1122:with 871:≤ 1. 107:phase 79:phase 67:phase 41:phase 1476:ISBN 1463:link 1063:and 225:and 121:and 81:the 47:(or 43:the 1419:doi 1379:doi 1228:If 1195:If 1522:: 1512:.] 1459:}} 1455:{{ 1425:, 1415:14 1413:, 1385:, 1377:, 1369:, 1357:72 1355:, 882:. 699:. 89:. 31:, 24:, 20:, 1465:) 1434:. 1421:: 1405:. 1394:. 1381:: 1373:: 1363:: 1308:. 1294:0 1290:A 1286:= 1281:k 1276:n 1266:A 1242:0 1239:= 1236:a 1225:. 1209:1 1206:= 1203:a 1174:1 1171:+ 1168:n 1162:n 1140:k 1135:n 1108:0 1104:A 1081:k 1076:n 1049:k 1044:n 1034:A 1007:. 1000:k 995:n 987:i 983:e 977:k 972:n 962:A 952:T 949:F 946:F 943:i 930:f 925:n 917:i 913:e 907:f 897:A 876:x 869:a 865:a 859:. 843:0 839:I 833:= 828:f 824:A 810:a 793:, 789:] 783:f 778:n 774:A 770:) 767:a 761:1 758:( 755:+ 750:f 746:A 742:a 738:[ 734:= 729:f 724:n 714:A 685:f 681:A 658:f 653:n 649:A 602:. 595:2 590:) 585:0 581:I 577:( 567:2 562:) 557:f 552:n 548:I 544:( 537:= 511:, 506:2 501:) 496:f 491:n 487:A 483:( 478:= 473:f 468:n 464:I 438:f 433:0 429:I 406:f 401:n 397:I 366:f 361:n 353:i 349:e 343:f 338:n 334:A 327:T 324:F 321:F 308:k 303:n 295:i 291:e 285:0 281:A 267:x 263:k 243:k 238:n 211:0 207:A 196:k 188:x 180:k

Index

Fourier optics
sound synthesis
stellar
interferometry
optical tweezers
spatial frequency
phase
iterative
algorithm
Fourier Transform
spatial frequency
phase
amplitude
amplitude
phase
algorithm
intensities
spatial frequency
phase
interferometry
Fourier Optics
soft matter
optical tweezers
sound synthesis
spatial frequency
intensity
amplitude
Fourier transform
intensity
amplitude

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑