Knowledge

Genome instability

Source πŸ“

205:
chemically more unstable than double-stranded DNA. During elongation of transcription, supercoiling can occur behind an elongating RNA polymerase, leading to single-stranded breaks. When the coding strand is single-stranded, it can also hybridize with itself, creating DNA secondary structures that can compromise replication. In E. coli, when attempting to transcribe GAA triplets such as those found in Friedrich's ataxia, the resulting RNA and template strand can form mismatched loops between different repeats, leaving the complementary segment in the coding strand available to form its own loops which impede replication. Furthermore, replication of DNA and transcription of DNA are not temporally independent; they can occur at the same time and lead to collisions between the replication fork and RNA polymerase complex. In S. cerevisiae, Rrm3 helicase is found at highly transcribed genes in the yeast genome, which is recruited to stabilize a stalling replication fork as described above. This suggests that transcription is an obstacle to replication, which can lead to increased stress in the chromatin spanning the short distance between the unwound replication fork and transcription start site, potentially causing single-stranded DNA breaks. In yeast, proteins act as barriers at the 3' of the transcription unit to prevent further travel of the DNA replication fork.
192:
of mutations, such as DNA-repeat expansion. Rare fragile sites can lead to genetic disease such as fragile X mental retardation syndrome, myotonic dystrophy, Friedrich's ataxia, and Huntington's disease, most of which are caused by expansion of repeats at the DNA, RNA, or protein level. Although, seemingly harmful, these common fragile sites are conserved all the way to yeast and bacteria. These ubiquitous sites are characterized by trinucleotide repeats, most commonly CGG, CAG, GAA, and GCN. These trinucleotide repeats can form into hairpins, leading to difficulty of replication. Under
196:, such as defective machinery or further DNA damage, DNA breaks and gaps can form at these fragile sites. Using a sister chromatid as repair is not a fool-proof backup as the surrounding DNA information of the n and n+1 repeat is virtually the same, leading to copy number variation. For example, the 16th copy of CGG might be mapped to the 13th copy of CGG in the sister chromatid since the surrounding DNA is both CGGCGGCGG..., leading to 3 extra copies of CGG in the final DNA sequence. 481:. While a mutation or epimutation in a DNA repair gene itself would not confer a selective advantage, such a repair defect may be carried along as a passenger in a cell when the cell acquires an additional mutation/epimutation that does provide a proliferative advantage. Such cells, with both proliferative advantages and one or more DNA repair defects (causing a very high mutation rate), likely give rise to the 20,000 to 80,000 total genome mutations frequently seen in cancers. 214:
catalyzed by RAG1 and RAG2 recombinases. Activation-Induced Cytidine Deaminase (AID) then converts cytidine into uracil. Uracil normally does not exist in DNA, and thus the base is excised and the nick is converted into a double-stranded break which is repaired by non-homologous end joining (NHEJ). This procedure is very error-prone and leads to somatic hypermutation. This genomic instability is crucial in ensuring mammalian survival against infection.
2474: 178:
firing of late replication origins until the DNA breaks are fixed by phosphorylating CHK1 and CHK2, which results in a signaling cascade arresting the cell in S-phase. For single stranded breaks, replication occurs until the location of the break, then the other strand is nicked to form a double stranded break, which can then be repaired by Break Induced Replication or homologous recombination using the sister
2486: 183:
caused by radiation. The yeast cells with defective rad9 failed to arrest following irradiation, continued cell division, and died rapidly; the cells with wild-type rad9 successfully arrested in late S/G2 phase and remained viable. The cells that arrested were able to survive due to the increased time in S/G2 phase allowing for DNA repair enzymes to function fully.
579:, an oncogene encoding a transcription factor, is translocated to a position after the promoter of the immunoglobulin gene, leading to dysregulation of c-myc transcription. Since immunoglobulins are essential to a lymphocyte and highly expressed to increase detection of antigens, c-myc is then also highly expressed, leading to transcription of its 383:, constitutes only 1.5% of the total genome. As pointed out above, ordinarily there are only an average of 0.35 mutations in the exome per generation (parent to child) in humans. In the entire genome (including non-protein coding regions) there are only about 70 new mutations per generation in humans. 360:). Genetic instability can originate due to deficiencies in DNA repair, or due to loss or gain of chromosomes, or due to large scale chromosomal reorganizations. Losing genetic stability will favour tumor development, because it favours the generation of mutants that can be selected by the environment. 1944:
Berger MF; Hodis E; Heffernan TP; Deribe YL; Lawrence MS; Protopopov A; Ivanova E; Watson IR; Nickerson E; Ghosh P; Zhang H; Zeid R; Ren X; Cibulskis K; Sivachenko AY; Wagle N; Sucker A; Sougnez C; Onofrio R; Ambrogio L; Auclair D; Fennell T; Carter SL; Drier Y; Stojanov P; Singer MA; Voet D; Jing R;
595:
results from the translocation of the immunoglobulin promoter to the Bcl-2 gene, giving rise to high levels of Bcl-2 protein, which inhibits apoptosis. DNA-damaged B-cells no longer undergo apoptosis, leading to further mutations which could affect driver genes, leading to tumorigenesis. The location
335:
It is currently accepted that sporadic tumors (non-familial ones) are originated due to the accumulation of several genetic errors. An average cancer of the breast or colon can have about 60 to 70 protein altering mutations, of which about 3 or 4 may be "driver" mutations, and the remaining ones may
204:
In both E. coli and Saccharomyces pombe, transcription sites tend to have higher recombination and mutation rates. The coding or non-transcribed strand accumulates more mutations than the template strand. This is due to the fact that the coding strand is single-stranded during transcription, which is
489:
In somatic cells, deficiencies in DNA repair sometimes arise by mutations in DNA repair genes, but much more often are due to epigenetic reductions in expression of DNA repair genes. Thus, in a sequence of 113 colorectal cancers, only four had somatic missense mutations in the DNA repair gene MGMT,
290:
and Alzheimer's disease) are defective in genes involved in repairing DNA double-strand breaks. Overall, it seems that oxidative stress is a major cause of genomic instability in the brain. A particular neurological disease arises when a pathway that normally prevents oxidative stress is deficient,
191:
There are hotspots in the genome where DNA sequences are prone to gaps and breaks after inhibition of DNA synthesis such as in the aforementioned checkpoint arrest. These sites are called fragile sites, and can occur commonly as naturally present in most mammalian genomes or occur rarely as a result
168:
must perform its function well to result in a perfect copy of DNA. Mutations of proteins such as DNA polymerase or DNA ligase can lead to impairment of replication and lead to spontaneous chromosomal exchanges. Proteins such as Tel1 and Mec1 (ATR, ATM in humans) can detect single and double-stranded
574:
Cancers usually result from disruption of a tumor repressor or dysregulation of an oncogene. Knowing that B-cells experience DNA breaks during development can give insight to the genome of lymphomas. Many types of lymphoma are caused by chromosomal translocation, which can arise from breaks in DNA,
213:
In some portions of the genome, variability is essential to survival. One such locale is the Ig genes. In a pre-B cell, the region consists of all V, D, and J segments. During development of the B cell, a specific V, D, and J segment is chosen to be spliced together to form the final gene, which is
182:
as an error-free template. In addition to S-phase checkpoints, G1 and G2 checkpoints exist to check for transient DNA damage which could be caused by mutagens such as UV damage. An example is the Saccharomyces pombe gene rad9 which arrests the cells in late S/G2 phase in the presence of DNA damage
553:
located in cancers including breast, ovarian, colorectal and head and neck. Two or three epigenetic deficiencies in expression of ERCC1, XPF and/or PMS2 were found to occur simultaneously in the majority of the 49 colon cancers evaluated. Some of these DNA repair deficiencies can be caused by
177:
result in a significant increase of chromosomal recombination. ATR responds specifically to stalled replication forks and single-stranded breaks resulting from UV damage while ATM responds directly to double-stranded breaks. These proteins also prevent progression into mitosis by inhibiting the
497:
Similarly, for 119 cases of colorectal cancers classified as mismatch repair deficient and lacking DNA repair gene PMS2 expression, Pms2 was deficient in 6 due to mutations in the PMS2 gene, while in 103 cases PMS2 expression was deficient because its pairing partner MLH1 was repressed due to
327:
in DNA, the intercalation of foreign substances into the DNA double helix, or any abnormal changes in DNA tertiary structure that can cause either the loss of DNA, or the misexpression of genes. Situations of genome instability (as well as aneuploidy) are common in cancer cells, and they are
2290:
Valeri, N; Gasparini, P; Fabbri, M; Braconi, C; Veronese, A; Lovat, F; Adair, B; Vannini, I; Fanini, F; Bottoni, A; Costinean, S; Sandhu, SK; Nuovo, GJ; Alder, H; Gafa, R; Calore, F; Ferracin, M; Lanza, G; Volinia, S; Negrini, M; Mcllhatton, MA; Amadori, D; Fishel, R; Croce, CM (2010).
117:), although some species present a very high karyotypic variability. In humans, mutations that would change an amino acid within the protein coding region of the genome occur at an average of only 0.35 per generation (less than one mutated protein per generation). 454:
The high frequency of mutations in the total genome within cancers suggests that, often, an early carcinogenic alteration may be a deficiency in DNA repair. Mutation rates substantially increase (sometimes by 100-fold) in cells defective in
1945:
Saksena G; Barretina J; Ramos AH; Pugh TJ; Stransky N; Parkin M; Winckler W; Mahan S; Ardlie K; Baldwin J; Wargo J; Schadendorf D; Meyerson M; Gabriel SB; Golub TR; Wagner SN; Lander ES; Getz G; Chin L; Garraway LA (May 2012).
498:
promoter methylation (PMS2 protein is unstable in the absence of MLH1). The other 10 cases of loss of PMS2 expression were likely due to epigenetic overexpression of the microRNA, miR-155, which down-regulates MLH1.
163:
must be able to navigate obstacles such as tightly wound chromatin with bound proteins, single and double stranded breaks which can lead to the stalling of the replication fork. Each protein or enzyme in the
76:
The sources of genome instability have only recently begun to be elucidated. A high frequency of externally caused DNA damage can be one source of genome instability since DNA damage can cause inaccurate
226:
Of about 200 neurological and neuromuscular disorders, 15 have a clear link to an inherited or acquired defect in one of the DNA repair pathways or excessive genotoxic oxidative stress. Five of them (
813:
Aguilera, A; Klein, H. L. (Aug 1998). "Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations".
270:) seem to result from increased oxidative stress, and the inability of the base excision repair pathway to handle the damage to DNA that this causes. Four of them (Huntington's disease, various 2249:
Truninger, K; Menigatti, M; Luz, J; Russell, A; Haider, R; Gebbers, JO; Bannwart, F; Yurtsever, H; Neuweiler, J; Riehle, HM; Cattaruzza, MS; Heinimann, K; SchΓ€r, P; Jiricny, J; Marra, G (2005).
442:
of DNA. The average number of DNA sequence mutations in the entire genome of a breast cancer tissue sample is about 20,000. In an average melanoma tissue sample (where melanomas have a higher
494:(see section "DNA repair epigenetics in cancer") presented evidence that between 40% and 90% of colorectal cancers have reduced MGMT expression due to methylation of the MGMT promoter region. 1734:
Cuozzo, C; Porcellini, A; Angrisano, T; Morano, A; Lee, B; Di Pardo, A; Messina, S; Iuliano, R; Fusco, A; Santillo, MR; Muller, MT; Chiariotti, L; Gottesman, ME; Avvedimento, EV (2007).
438:
As noted above, about 3 or 4 driver mutations and 60 passenger mutations occur in the exome (protein coding region) of a cancer. However, a much larger number of mutations occur in the
1507:
Hui, T.; Zhen, G.; HuiZhong, L.; BaoFu, Z.; Gang, W.; Qing, Z.; DongSheng, P.; JunNian, Z. (2015), "DNA damage response – A double-edged sword in cancer prevention and cancer therapy",
120:
Sometimes, in a species with a stable karyotype, random variations that modify the normal number of chromosomes may be observed. In other cases, there are structural alterations (e.g.,
509:), there is a partial listing of epigenetic deficiencies found in DNA repair genes in sporadic cancers. These include frequencies of between 13–100% of epigenetic defects in genes 218:
can ensure millions of unique B-cell receptors; however, random repair by NHEJ introduces variation which can create a receptor that can bind with higher affinity to antigens.
97:
is very frequent, occurring on average more than 60,000 times a day in the genomes of human cells, any reduced DNA repair is likely an important source of genome instability.
2350:
Facista, A; Nguyen, H; Lewis, C; Prasad, AR; Ramsey, L; Zaitlin, B; Nfonsam, V; Krouse, RS; Bernstein, H; Payne, CM; Stern, S; Oatman, N; Banerjee, B; Bernstein, C (2012).
61:. Genome instability does occur in bacteria. In multicellular organisms genome instability is central to carcinogenesis, and in humans it is also a factor in some 1106:"Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair" 1699:
Cunningham, FH; Fiebelkorn, S; Johnson, M; Meredith, C (2011). "A novel application of the Margin of Exposure approach: segregation of tobacco smoke toxicants".
600:, suggesting that the oncogene was a potential target of AID, leading to a double-stranded break that was translocated to the immunoglobulin gene locus through 340:
rate will have as a consequence an increase in the acquisition of new mutations, increasing then the probability to develop a tumor. During the process of
2202:"O(6)-methylguanine methyltransferase in colorectal cancers: detection of mutations, loss of expression, and weak association with G:C>A:T transitions" 114: 490:
while the majority of these cancers had reduced MGMT expression due to methylation of the MGMT promoter region. Five reports, listed in the article
391:
The likely major underlying cause of mutations in cancer is DNA damage. For example, in the case of lung cancer, DNA damage is caused by agents in
303:, genome instability can occur prior to or as a consequence of transformation. Genome instability can refer to the accumulation of extra copies of 2442:
Ramiro, Almudena; San-Marin, Bernardo Reina; McBride, Kevin; Jankovic, Mila; Barreto, Vasco; Nussenzweig, Andre; Nussenzweig, Michel C. (2007).
128:) that modify the standard chromosomal complement. In these cases, it is indicated that the affected organism presents genome instability (also 834:"Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations" 1836:
Gottschalk, AJ; Timinszky, G; Kong, SE; Jin, J; Cai, Y; Swanson, SK; Washburn, MP; Florens, L; Ladurner, AG; Conaway, JW; Conaway, RC (2009).
1381:; Sengupta, A.; Jallepalli, P.V.; Shih, I.M.; Vogelstein, B.; Lengauer, C. (2002), "The role of chromosomal instability in tumor initiation", 1016:"A persistent RNA-DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro" 506: 1895:
Yost SE; Smith EN; Schwab RB; Bao L; Jung H; Wang X; Voest E; Pierce JP; Messer K; Parker BA; Harismendy O; Frazer KA (August 2012).
477:
past some of those damages may give rise to mutations. In addition, faulty repair of these accumulated DNA damages may give rise to
1787:"Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island" 1541:
Lander ES; Linton LM; Birren B; Nusbaum C; Zody MC; Baldwin J; Devon K; Dewar K; Doyle M; FitzHugh W; et al. (February 2001).
526: 1471:
Cahill, D. P.; Kinzler, K. W.; Vogelstein, B.; Lengauer, C. (1999), "Genetic instability and darwinian selection in tumours",
2451: 597: 282:
types 1 and 2) often have an unusual expansion of repeat sequences in DNA, likely attributable to genome instability. Four (
140:, in which the cells present a chromosomic number that is either higher or lower than the normal complement for the species. 2063:"Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6" 883:"Double-strand breaks arising from replication through a nick are repaired by cohesin-dependent sister-chromatid exchange" 371:
pathways contributing to genomic instability, which promotes tumor survival, proliferation, and malignant transformation.
426:
alterations during DNA repair. Both mutations and epigenetic alterations (epimutations) can contribute to progression to
17: 1897:"Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens" 328:
considered a "hallmark" for these cells. The unpredictable nature of these events are also a main contributor to the
411: 407: 94: 1065:"RNA Polymerase Modulators and DNA Repair Activities Resolve Conflicts between DNA Replication and Transcription" 550: 267: 66: 410:
is also very frequent, occurring on average more than 60,000 times a day in the genomes of human cells (see
613: 1104:
Schrader, Carol E.; Guikema, Jeroen E. J.; Linehan, Erin K.; Selsing, Erik; Stavnezer, Janet (Nov 2007).
2112:"Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation" 2004:"Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2" 1542: 1435:
Kinzler, K. W.; Vogelstein, B. (April 1997), "Cancer-susceptibility genes. Gatekeepers and caretakers",
2464: 601: 419: 287: 1237:
Corcos, D. (2012), "Unbalanced replication as a major source of genetic instability in cancer cells",
173:
to stabilize the replication fork in order to prevent its collapse. Mutations in Tel1, Mec1, and Rmr3
312: 121: 54: 1838:"Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler" 1273:
Storchova, Z.; Pellman, D. (2004), "From polyploidy to aneuploidy, genome instability and cancer",
466:. Also, chromosomal rearrangements and aneuploidy increase in humans defective in DNA repair gene 460: 105:
Usually, all cells in an individual in a given species (plant or animal) show a constant number of
591:
to the immunoglobulin locus. Cyclin D1 inhibits Rb, a tumor suppressor, leading to tumorigenesis.
251: 1063:
Trautinger, Brigitte W.; Jaktaji, Razieh P.; Rusakova, Ekaterina; Lloyd, Robert G. (July 2005).
563: 737:
MΓΈller, P (2005). "Genotoxicity of environmental agents assessed by the alkaline comet assay".
467: 364: 275: 271: 259: 255: 247: 231: 291:
or a DNA repair pathway that normally repairs damage caused by oxidative stress is deficient.
2161:"Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients" 415: 414:). Externally and endogenously caused damages may be converted into mutations by inaccurate 316: 283: 227: 50: 2506: 2304: 2015: 1958: 1849: 1606: 1557: 1390: 1333: 1145:
Subba Rao, K (2007). "Mechanisms of disease: DNA repair defects and neurological disease".
992: 693: 584: 329: 2352:"Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer" 2251:"Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer" 8: 592: 456: 324: 320: 235: 215: 125: 2308: 2019: 1962: 1853: 1610: 1561: 1394: 1337: 697: 2378: 2351: 2327: 2292: 2226: 2201: 2177: 2160: 2136: 2111: 2087: 2062: 1979: 1946: 1921: 1896: 1872: 1837: 1813: 1786: 1762: 1735: 1676: 1651: 1627: 1594: 1354: 1321: 1320:
Vogelstein B; Papadopoulos N; Velculescu VE; Zhou S; Diaz LA; Kinzler KW (March 2013).
1298: 1251: 1214: 1189: 1170: 1040: 1015: 956: 931: 907: 882: 858: 833: 790: 765: 714: 681: 657: 632: 596:
of translocation in the oncogene shares structural properties of the target regions of
502: 473:
A deficiency in DNA repair itself can allow DNA damages to accumulate, and error-prone
279: 263: 239: 193: 149: 70: 1485: 1413: 427: 2516: 2447: 2424: 2383: 2332: 2272: 2231: 2182: 2141: 2092: 2043: 2038: 2003: 1984: 1926: 1877: 1818: 1767: 1716: 1681: 1632: 1575: 1524: 1490: 1454: 1418: 1359: 1290: 1256: 1219: 1162: 1127: 1086: 1045: 996: 961: 912: 863: 795: 746: 719: 705: 662: 580: 243: 62: 1302: 1205: 1174: 2414: 2373: 2363: 2322: 2312: 2262: 2221: 2213: 2172: 2131: 2123: 2082: 2074: 2061:
Hegan DC; Narayanan L; Jirik FR; Edelmann W; Liskay RM; Glazer PM (December 2006).
2033: 2023: 1974: 1966: 1916: 1908: 1867: 1857: 1808: 1798: 1757: 1747: 1708: 1671: 1663: 1622: 1614: 1565: 1516: 1480: 1444: 1408: 1398: 1378: 1349: 1341: 1282: 1246: 1209: 1201: 1154: 1117: 1076: 1035: 1027: 988: 951: 943: 902: 894: 853: 845: 785: 777: 709: 701: 652: 644: 2127: 2511: 2490: 2267: 2250: 1803: 1752: 1520: 1081: 1064: 356: 1595:"Analysis of genetic inheritance in a family quartet by whole-genome sequencing" 1122: 1105: 947: 781: 446:
mutation frequency) the total number of DNA sequence mutations is about 80,000.
348:
cells acquire mutations in genes responsible for maintaining genome integrity (
2478: 1652:"Estimating the human mutation rate using autozygosity in a founder population" 350: 1712: 354:), as well as in genes that are directly controlling cellular proliferation ( 2500: 1319: 979:
Durkin, Sandra G.; Glover, Thomas W. (Dec 2007). "Chromosome Fragile Sites".
898: 439: 403: 341: 2317: 2217: 2078: 1862: 1618: 1345: 2428: 2387: 2336: 2276: 2235: 2145: 2096: 2028: 1988: 1930: 1881: 1822: 1771: 1720: 1685: 1636: 1579: 1528: 1494: 1422: 1403: 1363: 1294: 1260: 1223: 1166: 1131: 1090: 1049: 1000: 916: 867: 799: 750: 723: 666: 395: 46: 2368: 2186: 2047: 1458: 965: 648: 159:
In the cell cycle, DNA is usually most vulnerable during replication. The
2419: 2402: 1912: 1158: 1031: 932:"Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint" 491: 478: 423: 336:
be "passenger" mutations Any genetic or epigenetic lesion increasing the
86: 78: 2110:
Tutt AN; van Oostrom CT; Ross GM; van Steeg H; Ashworth A (March 2002).
1970: 379:
The protein coding regions of the human genome, collectively called the
2109: 2002:
Narayanan L; Fritzell JA; Baker SM; Liskay RM; Glazer PM (April 1997).
2001: 849: 514: 474: 463: 368: 308: 137: 106: 58: 2060: 1943: 1570: 1449: 588: 246:) have a defect in the DNA nucleotide excision repair pathway. Six ( 179: 165: 160: 110: 1667: 1286: 2473: 1698: 1540: 569: 559: 555: 399: 337: 174: 170: 136:). The process of genome instability often leads to a situation of 90: 82: 42: 27:
High frequency of mutations within the genome of a cellular lineage
2200:
Halford S; Rowan A; Sawyer E; Talbot I; Tomlinson I (June 2005).
449: 392: 345: 2403:"Oncogenic chromosomal translocations and human cancer (Review)" 2293:"Modulation of mismatch repair and genomic stability by miR-155" 2199: 1733: 1470: 1376: 300: 2441: 1062: 81:
DNA synthesis past the damage or errors in repair, leading to
1947:"Melanoma genome sequencing reveals frequent PREX2 mutations" 1894: 1650:
Campbell CD; Chong JX; Malig M; et al. (November 2012).
1103: 576: 546: 542: 522: 518: 510: 443: 406:, 1,3-butadiene, acetaldehyde, ethylene oxide and isoprene). 380: 2289: 2248: 374: 1736:"DNA damage, homology-directed repair, and DNA methylation" 766:"Rates and fitness consequences of new mutations in humans" 538: 534: 530: 1835: 1649: 1784: 304: 2349: 1593:
Roach JC; Glusman G; Smit AF; et al. (April 2010).
1592: 221: 1014:
Grabczyk, E.; Mancuso, M.; Sammarco, M. C. (Aug 2007).
1013: 199: 880: 93:
reductions in expression of DNA repair genes. Because
2462: 1543:"Initial sequencing and analysis of the human genome" 1187: 881:
Cortes-Ledesma, Felipe; Aguilera, Andres (Sep 2006).
575:
leading to incorrect joining. In Burkitt's lymphoma,
1506: 433: 422:). In addition, DNA damages can also give rise to 679: 484: 115:List of number of chromosomes of various organisms 1434: 682:"Implications of genetic heterogeneity in cancer" 2498: 1272: 570:Lymphomas as a consequence of genome instability 929: 507:Frequencies of epimutations in DNA repair genes 386: 208: 143: 1785:O'Hagan, HM; Mohammad, HP; Baylin, SB (2008). 450:Cause of high frequency of mutations in cancer 85:. Another source of genome instability may be 1315: 1313: 1311: 1188:Jeppesen, DK; Bohr, VA; Stevnsner, T (2011). 812: 2193: 1937: 1888: 1534: 1190:"DNA repair deficiency in neurodegeneration" 978: 930:Weinert, T. A.; Hartwell, L. H. (May 1993). 763: 583:, which are involved in cell proliferation. 408:Endogenous (metabolically-caused) DNA damage 95:endogenous (metabolically-caused) DNA damage 680:Schmitt, MW; Prindle, MJ; Loeb, LA (2012). 630: 1308: 614:Hallmarks of aging > Genome instability 154: 2418: 2377: 2367: 2326: 2316: 2266: 2225: 2176: 2135: 2086: 2037: 2027: 1995: 1978: 1920: 1871: 1861: 1812: 1802: 1761: 1751: 1675: 1626: 1569: 1484: 1448: 1412: 1402: 1353: 1250: 1213: 1144: 1121: 1080: 1039: 955: 906: 857: 789: 713: 656: 375:Low frequency of mutations without cancer 100: 49:. These mutations can include changes in 169:breaks and recruit factors such as Rmr3 109:, which constitute what is known as the 286:, ataxia-telangiectasia-like disorder, 14: 2499: 2158: 1236: 993:10.1146/annurev.genet.41.042007.165900 736: 673: 479:epigenetic alterations or epimutations 2400: 2054: 624: 222:In neuronal and neuromuscular disease 2103: 831: 200:Transcription-associated instability 24: 1239:American Journal of Blood Research 418:or inaccurate DNA repair (e.g. by 25: 2528: 434:Very frequent mutations in cancer 2484: 2472: 706:10.1111/j.1749-6632.2012.06590.x 412:DNA damage (naturally occurring) 186: 113:defining this species (see also 41:) refers to a high frequency of 2435: 2394: 2343: 2283: 2242: 2152: 1829: 1778: 1727: 1692: 1643: 1586: 1500: 1464: 1428: 1370: 1266: 1230: 1206:10.1016/j.pneurobio.2011.04.013 1181: 1138: 1097: 1056: 1007: 485:DNA repair deficiency in cancer 323:, single-strand breaks in DNA, 972: 923: 874: 825: 806: 764:Keightley PD (February 2012). 757: 730: 633:"Bacterial Genome Instability" 631:Darmon, E; Leach, DRF (2014). 587:is characterized by fusion of 13: 1: 2446:. Elsevier. pp. 75–107. 1486:10.1016/S0168-9525(99)01874-0 618: 332:observed among tumour cells. 268:amyotrophic lateral sclerosis 69:or the neuromuscular disease 67:amyotrophic lateral sclerosis 2268:10.1053/j.gastro.2005.01.056 2008:Proc. Natl. Acad. Sci. U.S.A 1804:10.1371/journal.pgen.1000155 1753:10.1371/journal.pgen.0030110 1521:10.1016/j.canlet.2014.12.038 1082:10.1016/j.molcel.2005.06.004 739:Basic Clin Pharmacol Toxicol 564:miRNA, DNA repair and cancer 387:Cause of mutations in cancer 367:has an inhibitory effect on 294: 209:Increase Genetic Variability 144:Causes of genome instability 7: 2128:10.1093/embo-reports/kvf037 1123:10.4049/jimmunol.179.9.6064 782:10.1534/genetics.111.134668 607: 10: 2533: 1383:Proc. Natl. Acad. Sci. USA 1322:"Cancer genome landscapes" 611: 461:homologous recombinational 440:non-protein-coding regions 420:non-homologous end joining 313:chromosomal translocations 288:Nijmegen breakage syndrome 250:with axonal neuropathy-1, 147: 122:chromosomal translocations 55:chromosomal rearrangements 1713:10.1016/j.fct.2011.07.019 981:Annual Review of Genetics 948:10.1093/genetics/134.1.63 637:Microbiol. Mol. Biol. Rev 1842:Proc Natl Acad Sci U S A 899:10.1038/sj.embor.7400774 832:Cobb, J. A. (Dec 2005). 2401:Zheng, Jie (Nov 2013). 2318:10.1073/pnas.1002472107 2218:10.1136/gut.2004.059535 1863:10.1073/pnas.0906920106 1619:10.1126/science.1186802 1346:10.1126/science.1235122 838:Genes & Development 562:article section titled 272:spinocerebellar ataxias 155:DNA Replication Defects 134:chromosomic instability 45:within the genome of a 2444:Advances in Immunology 2297:Proc Natl Acad Sci USA 2159:German, J (Mar 1969). 2029:10.1073/pnas.94.7.3122 1404:10.1073/pnas.202617399 1020:Nucleic Acids Research 365:tumor microenvironment 317:chromosomal inversions 248:spinocerebellar ataxia 101:Usual genome situation 51:nucleic acid sequences 2369:10.1186/2041-9414-3-3 2079:10.1093/carcin/bgl079 1275:Nat Rev Mol Cell Biol 1147:Nat Clin Pract Neurol 1110:Journal of Immunology 649:10.1128/MMBR.00035-13 558:as summarized in the 475:translesion synthesis 416:translesion synthesis 284:ataxia-telangiectasia 228:xeroderma pigmentosum 216:V, D, J recombination 2420:10.3892/or.2013.2677 1159:10.1038/ncpneuro0448 585:Mantle cell lymphoma 398:tobacco smoke (e.g. 325:double-strand breaks 252:Huntington's disease 2309:2010PNAS..107.6982V 2020:1997PNAS...94.3122N 1971:10.1038/nature11071 1963:2012Natur.485..502B 1854:2009PNAS..10613770G 1611:2010Sci...328..636R 1562:2001Natur.409..860L 1395:2002PNAS...9916226N 1338:2013Sci...339.1546V 698:2012NYASA1267..110S 593:Follicular lymphoma 457:DNA mismatch repair 344:, it is known that 276:Friedreich's ataxia 260:Parkinson's disease 256:Alzheimer's disease 236:trichothiodystrophy 232:Cockayne's syndrome 130:genetic instability 39:genomic instability 35:genetic instability 18:Genetic instability 1913:10.1093/nar/gks299 1032:10.1093/nar/gkm589 850:10.1101/gad.361805 503:cancer epigenetics 280:myotonic dystrophy 194:replication stress 150:Replication stress 71:myotonic dystrophy 31:Genome instability 2453:978-0-12-373706-9 2303:(15): 6982–6987. 1901:Nucleic Acids Res 1707:(11): 2921–2933. 1701:Food Chem Toxicol 1556:(6822): 860–921. 1473:Trends Cell Biol. 1332:(6127): 1546–58. 1026:(16): 5351–5359. 844:(24): 3055–3069. 745:(Suppl 1): 1–42. 244:triple-A syndrome 65:diseases such as 63:neurodegenerative 16:(Redirected from 2524: 2489: 2488: 2487: 2477: 2476: 2468: 2458: 2457: 2439: 2433: 2432: 2422: 2413:(5): 2011–2019. 2407:Oncology Reports 2398: 2392: 2391: 2381: 2371: 2347: 2341: 2340: 2330: 2320: 2287: 2281: 2280: 2270: 2261:(5): 1160–1171. 2255:Gastroenterology 2246: 2240: 2239: 2229: 2197: 2191: 2190: 2180: 2156: 2150: 2149: 2139: 2107: 2101: 2100: 2090: 2058: 2052: 2051: 2041: 2031: 1999: 1993: 1992: 1982: 1941: 1935: 1934: 1924: 1892: 1886: 1885: 1875: 1865: 1833: 1827: 1826: 1816: 1806: 1782: 1776: 1775: 1765: 1755: 1731: 1725: 1724: 1696: 1690: 1689: 1679: 1647: 1641: 1640: 1630: 1590: 1584: 1583: 1573: 1571:10.1038/35057062 1547: 1538: 1532: 1531: 1504: 1498: 1497: 1488: 1468: 1462: 1461: 1452: 1450:10.1038/386761a0 1432: 1426: 1425: 1416: 1406: 1389:(25): 16226–31, 1374: 1368: 1367: 1357: 1317: 1306: 1305: 1270: 1264: 1263: 1254: 1234: 1228: 1227: 1217: 1185: 1179: 1178: 1142: 1136: 1135: 1125: 1116:(9): 6064–6071. 1101: 1095: 1094: 1084: 1060: 1054: 1053: 1043: 1011: 1005: 1004: 976: 970: 969: 959: 927: 921: 920: 910: 878: 872: 871: 861: 829: 823: 822: 810: 804: 803: 793: 761: 755: 754: 734: 728: 727: 717: 686:Ann N Y Acad Sci 677: 671: 670: 660: 628: 554:epimutations in 402:, formaldehyde, 357:gatekeeper genes 47:cellular lineage 21: 2532: 2531: 2527: 2526: 2525: 2523: 2522: 2521: 2497: 2496: 2495: 2485: 2483: 2471: 2463: 2461: 2454: 2440: 2436: 2399: 2395: 2348: 2344: 2288: 2284: 2247: 2243: 2198: 2194: 2157: 2153: 2108: 2104: 2059: 2055: 2000: 1996: 1957:(7399): 502–6. 1942: 1938: 1893: 1889: 1848:(33): 13770–4. 1834: 1830: 1797:(8): e1000155. 1783: 1779: 1732: 1728: 1697: 1693: 1668:10.1038/ng.2418 1662:(11): 1277–81. 1648: 1644: 1605:(5978): 636–9. 1591: 1587: 1545: 1539: 1535: 1505: 1501: 1479:(12): M57–M60, 1469: 1465: 1443:(6627): 761–3, 1433: 1429: 1379:Komarova, N. L. 1375: 1371: 1318: 1309: 1287:10.1038/nrm1276 1271: 1267: 1235: 1231: 1186: 1182: 1143: 1139: 1102: 1098: 1061: 1057: 1012: 1008: 977: 973: 928: 924: 879: 875: 830: 826: 811: 807: 762: 758: 735: 731: 678: 674: 629: 625: 621: 616: 610: 572: 487: 452: 436: 389: 377: 351:caretaker genes 297: 264:Down's syndrome 240:Down's syndrome 224: 211: 202: 189: 157: 152: 146: 103: 28: 23: 22: 15: 12: 11: 5: 2530: 2520: 2519: 2514: 2509: 2494: 2493: 2481: 2460: 2459: 2452: 2434: 2393: 2342: 2282: 2241: 2212:(6): 797–802. 2192: 2171:(2): 196–227. 2165:Am J Hum Genet 2151: 2102: 2073:(12): 2402–8. 2067:Carcinogenesis 2053: 1994: 1936: 1887: 1828: 1777: 1726: 1691: 1642: 1585: 1533: 1509:Cancer Letters 1499: 1463: 1427: 1377:Nowak, M. A.; 1369: 1307: 1265: 1229: 1200:(2): 166–200. 1194:Prog Neurobiol 1180: 1137: 1096: 1075:(2): 247–258. 1069:Molecular Cell 1055: 1006: 987:(1): 169–192. 971: 922: 893:(9): 919–926. 873: 824: 805: 776:(2): 295–304. 756: 729: 692:(1): 110–116. 672: 622: 620: 617: 609: 606: 571: 568: 486: 483: 451: 448: 435: 432: 388: 385: 376: 373: 296: 293: 223: 220: 210: 207: 201: 198: 188: 185: 156: 153: 148:Main article: 145: 142: 102: 99: 26: 9: 6: 4: 3: 2: 2529: 2518: 2515: 2513: 2510: 2508: 2505: 2504: 2502: 2492: 2482: 2480: 2475: 2470: 2469: 2466: 2455: 2449: 2445: 2438: 2430: 2426: 2421: 2416: 2412: 2408: 2404: 2397: 2389: 2385: 2380: 2375: 2370: 2365: 2361: 2357: 2356:Genome Integr 2353: 2346: 2338: 2334: 2329: 2324: 2319: 2314: 2310: 2306: 2302: 2298: 2294: 2286: 2278: 2274: 2269: 2264: 2260: 2256: 2252: 2245: 2237: 2233: 2228: 2223: 2219: 2215: 2211: 2207: 2203: 2196: 2188: 2184: 2179: 2174: 2170: 2166: 2162: 2155: 2147: 2143: 2138: 2133: 2129: 2125: 2122:(3): 255–60. 2121: 2117: 2113: 2106: 2098: 2094: 2089: 2084: 2080: 2076: 2072: 2068: 2064: 2057: 2049: 2045: 2040: 2035: 2030: 2025: 2021: 2017: 2014:(7): 3122–7. 2013: 2009: 2005: 1998: 1990: 1986: 1981: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1940: 1932: 1928: 1923: 1918: 1914: 1910: 1906: 1902: 1898: 1891: 1883: 1879: 1874: 1869: 1864: 1859: 1855: 1851: 1847: 1843: 1839: 1832: 1824: 1820: 1815: 1810: 1805: 1800: 1796: 1792: 1788: 1781: 1773: 1769: 1764: 1759: 1754: 1749: 1745: 1741: 1737: 1730: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1687: 1683: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1638: 1634: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1589: 1581: 1577: 1572: 1567: 1563: 1559: 1555: 1551: 1544: 1537: 1530: 1526: 1522: 1518: 1514: 1510: 1503: 1496: 1492: 1487: 1482: 1478: 1474: 1467: 1460: 1456: 1451: 1446: 1442: 1438: 1431: 1424: 1420: 1415: 1410: 1405: 1400: 1396: 1392: 1388: 1384: 1380: 1373: 1365: 1361: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1314: 1312: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1269: 1262: 1258: 1253: 1248: 1244: 1240: 1233: 1225: 1221: 1216: 1211: 1207: 1203: 1199: 1195: 1191: 1184: 1176: 1172: 1168: 1164: 1160: 1156: 1153:(3): 162–72. 1152: 1148: 1141: 1133: 1129: 1124: 1119: 1115: 1111: 1107: 1100: 1092: 1088: 1083: 1078: 1074: 1070: 1066: 1059: 1051: 1047: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1002: 998: 994: 990: 986: 982: 975: 967: 963: 958: 953: 949: 945: 941: 937: 933: 926: 918: 914: 909: 904: 900: 896: 892: 888: 884: 877: 869: 865: 860: 855: 851: 847: 843: 839: 835: 828: 821:(4): 779–790. 820: 816: 809: 801: 797: 792: 787: 783: 779: 775: 771: 767: 760: 752: 748: 744: 740: 733: 725: 721: 716: 711: 707: 703: 699: 695: 691: 687: 683: 676: 668: 664: 659: 654: 650: 646: 642: 638: 634: 627: 623: 615: 605: 603: 599: 594: 590: 586: 582: 578: 567: 565: 561: 557: 552: 548: 544: 540: 536: 532: 528: 524: 520: 516: 512: 508: 505:(see section 504: 499: 495: 493: 482: 480: 476: 471: 469: 465: 462: 458: 447: 445: 441: 431: 429: 425: 421: 417: 413: 409: 405: 404:acrylonitrile 401: 397: 394: 384: 382: 372: 370: 366: 361: 359: 358: 353: 352: 347: 343: 342:tumorogenesis 339: 333: 331: 330:heterogeneity 326: 322: 319:, chromosome 318: 314: 310: 306: 302: 292: 289: 285: 281: 277: 273: 269: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 219: 217: 206: 197: 195: 187:Fragile Sites 184: 181: 176: 172: 167: 162: 151: 141: 139: 135: 131: 127: 123: 118: 116: 112: 108: 98: 96: 92: 88: 84: 80: 74: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 2443: 2437: 2410: 2406: 2396: 2359: 2355: 2345: 2300: 2296: 2285: 2258: 2254: 2244: 2209: 2205: 2195: 2168: 2164: 2154: 2119: 2115: 2105: 2070: 2066: 2056: 2011: 2007: 1997: 1954: 1950: 1939: 1907:(14): e107. 1904: 1900: 1890: 1845: 1841: 1831: 1794: 1790: 1780: 1743: 1739: 1729: 1704: 1700: 1694: 1659: 1655: 1645: 1602: 1598: 1588: 1553: 1549: 1536: 1512: 1508: 1502: 1476: 1472: 1466: 1440: 1436: 1430: 1386: 1382: 1372: 1329: 1325: 1281:(1): 45–54, 1278: 1274: 1268: 1245:(3): 160–9, 1242: 1238: 1232: 1197: 1193: 1183: 1150: 1146: 1140: 1113: 1109: 1099: 1072: 1068: 1058: 1023: 1019: 1009: 984: 980: 974: 942:(1): 63–80. 939: 935: 925: 890: 887:EMBO Reports 886: 876: 841: 837: 827: 818: 814: 808: 773: 769: 759: 742: 738: 732: 689: 685: 675: 640: 636: 626: 573: 500: 496: 488: 472: 453: 437: 390: 378: 362: 355: 349: 334: 298: 225: 212: 203: 190: 158: 133: 129: 119: 104: 75: 38: 34: 30: 29: 2507:Chromosomes 1746:(7): e110. 1515:(1): 8–16, 643:(1): 1–39. 492:Epigenetics 309:chromosomes 107:chromosomes 79:translesion 2501:Categories 1791:PLOS Genet 1740:PLOS Genet 1656:Nat. Genet 619:References 612:See also: 464:DNA repair 424:epigenetic 369:DNA repair 138:aneuploidy 132:, or even 91:mutational 87:epigenetic 59:aneuploidy 589:cyclin D1 556:microRNAs 396:genotoxic 393:exogenous 321:deletions 295:In cancer 180:chromatid 166:replisome 161:replisome 126:deletions 111:karyotype 43:mutations 2517:Mutation 2491:Medicine 2429:23970180 2388:22494821 2362:(1): 3. 2337:20351277 2277:15887099 2236:15888787 2146:11850397 2116:EMBO Rep 2097:16728433 1989:22622578 1931:22492626 1882:19666485 1823:18704159 1772:17616978 1721:21802474 1686:23001126 1637:20220176 1580:11237011 1529:25528631 1495:10611684 1423:12446840 1364:23539594 1303:11985415 1295:14708009 1261:23119227 1224:21550379 1175:12930631 1167:17342192 1132:17947680 1091:16039593 1050:17693431 1001:17608616 936:Genetics 917:16888651 868:16357221 815:Genetics 800:22345605 770:Genetics 751:15859009 724:22954224 667:24600039 608:In aging 604:repair. 560:MicroRNA 400:acrolein 338:mutation 175:helicase 171:helicase 83:mutation 2479:Biology 2465:Portals 2379:3351028 2328:2872463 2305:Bibcode 2227:1774551 2187:5770175 2178:1706430 2137:1084010 2088:2612936 2048:9096356 2016:Bibcode 1980:3367798 1959:Bibcode 1922:3413110 1873:2722505 1850:Bibcode 1814:2491723 1763:1913100 1677:3483378 1628:3037280 1607:Bibcode 1599:Science 1558:Bibcode 1459:9126728 1391:Bibcode 1355:3749880 1334:Bibcode 1326:Science 1252:3484411 1215:3123739 1041:2018641 966:8514150 957:1205445 908:1559660 859:1315408 791:3276617 715:3674777 694:Bibcode 658:3957733 581:targets 545:, XPF, 346:diploid 2512:Cancer 2450:  2427:  2386:  2376:  2335:  2325:  2275:  2234:  2224:  2185:  2175:  2144:  2134:  2095:  2085:  2046:  2036:  1987:  1977:  1951:Nature 1929:  1919:  1880:  1870:  1821:  1811:  1770:  1760:  1719:  1684:  1674:  1635:  1625:  1578:  1550:Nature 1527:  1493:  1457:  1437:Nature 1421:  1414:138593 1411:  1362:  1352:  1301:  1293:  1259:  1249:  1222:  1212:  1173:  1165:  1130:  1089:  1048:  1038:  999:  964:  954:  915:  905:  866:  856:  798:  788:  749:  722:  712:  665:  655:  459:or in 428:cancer 301:cancer 242:, and 33:(also 2039:20332 1546:(PDF) 1299:S2CID 1171:S2CID 577:c-myc 547:NEIL1 543:ERCC1 523:FANCF 519:FANCB 511:BRCA1 444:exome 381:exome 2448:ISBN 2425:PMID 2384:PMID 2333:PMID 2273:PMID 2232:PMID 2183:PMID 2142:PMID 2093:PMID 2044:PMID 1985:PMID 1927:PMID 1878:PMID 1819:PMID 1768:PMID 1717:PMID 1682:PMID 1633:PMID 1576:PMID 1525:PMID 1491:PMID 1455:PMID 1419:PMID 1360:PMID 1291:PMID 1257:PMID 1220:PMID 1163:PMID 1128:PMID 1087:PMID 1046:PMID 997:PMID 962:PMID 913:PMID 864:PMID 796:PMID 747:PMID 720:PMID 690:1267 663:PMID 602:NHEJ 549:and 539:MSH4 535:MSH2 531:MLH1 527:MGMT 363:The 278:and 266:and 2415:doi 2374:PMC 2364:doi 2323:PMC 2313:doi 2301:107 2263:doi 2259:128 2222:PMC 2214:doi 2206:Gut 2173:PMC 2132:PMC 2124:doi 2083:PMC 2075:doi 2034:PMC 2024:doi 1975:PMC 1967:doi 1955:485 1917:PMC 1909:doi 1868:PMC 1858:doi 1846:106 1809:PMC 1799:doi 1758:PMC 1748:doi 1709:doi 1672:PMC 1664:doi 1623:PMC 1615:doi 1603:328 1566:doi 1554:409 1517:doi 1513:358 1481:doi 1445:doi 1441:386 1409:PMC 1399:doi 1350:PMC 1342:doi 1330:339 1283:doi 1247:PMC 1210:PMC 1202:doi 1155:doi 1118:doi 1114:179 1077:doi 1036:PMC 1028:doi 989:doi 952:PMC 944:doi 940:134 903:PMC 895:doi 854:PMC 846:doi 786:PMC 778:doi 774:190 710:PMC 702:doi 653:PMC 645:doi 598:AID 551:ATM 515:WRN 501:In 468:BLM 307:or 305:DNA 299:In 89:or 57:or 37:or 2503:: 2423:. 2411:30 2409:. 2405:. 2382:. 2372:. 2358:. 2354:. 2331:. 2321:. 2311:. 2299:. 2295:. 2271:. 2257:. 2253:. 2230:. 2220:. 2210:54 2208:. 2204:. 2181:. 2169:21 2167:. 2163:. 2140:. 2130:. 2118:. 2114:. 2091:. 2081:. 2071:27 2069:. 2065:. 2042:. 2032:. 2022:. 2012:94 2010:. 2006:. 1983:. 1973:. 1965:. 1953:. 1949:. 1925:. 1915:. 1905:40 1903:. 1899:. 1876:. 1866:. 1856:. 1844:. 1840:. 1817:. 1807:. 1793:. 1789:. 1766:. 1756:. 1742:. 1738:. 1715:. 1705:49 1703:. 1680:. 1670:. 1660:44 1658:. 1654:. 1631:. 1621:. 1613:. 1601:. 1597:. 1574:. 1564:. 1552:. 1548:. 1523:, 1511:, 1489:, 1475:, 1453:, 1439:, 1417:, 1407:, 1397:, 1387:99 1385:, 1358:. 1348:. 1340:. 1328:. 1324:. 1310:^ 1297:, 1289:, 1277:, 1255:, 1241:, 1218:. 1208:. 1198:94 1196:. 1192:. 1169:. 1161:. 1149:. 1126:. 1112:. 1108:. 1085:. 1073:19 1071:. 1067:. 1044:. 1034:. 1024:35 1022:. 1018:. 995:. 985:41 983:. 960:. 950:. 938:. 934:. 911:. 901:. 889:. 885:. 862:. 852:. 842:19 840:. 836:. 817:. 794:. 784:. 772:. 768:. 743:96 741:. 718:. 708:. 700:. 688:. 684:. 661:. 651:. 641:78 639:. 635:. 566:. 541:, 537:, 533:, 529:, 525:, 521:, 517:, 513:, 470:. 430:. 315:, 311:, 274:, 262:, 258:, 254:, 238:, 234:, 230:, 124:, 73:. 53:, 2467:: 2456:. 2431:. 2417:: 2390:. 2366:: 2360:3 2339:. 2315:: 2307:: 2279:. 2265:: 2238:. 2216:: 2189:. 2148:. 2126:: 2120:3 2099:. 2077:: 2050:. 2026:: 2018:: 1991:. 1969:: 1961:: 1933:. 1911:: 1884:. 1860:: 1852:: 1825:. 1801:: 1795:4 1774:. 1750:: 1744:3 1723:. 1711:: 1688:. 1666:: 1639:. 1617:: 1609:: 1582:. 1568:: 1560:: 1519:: 1483:: 1477:9 1447:: 1401:: 1393:: 1366:. 1344:: 1336:: 1285:: 1279:5 1243:2 1226:. 1204:: 1177:. 1157:: 1151:3 1134:. 1120:: 1093:. 1079:: 1052:. 1030:: 1003:. 991:: 968:. 946:: 919:. 897:: 891:7 870:. 848:: 819:4 802:. 780:: 753:. 726:. 704:: 696:: 669:. 647:: 20:)

Index

Genetic instability
mutations
cellular lineage
nucleic acid sequences
chromosomal rearrangements
aneuploidy
neurodegenerative
amyotrophic lateral sclerosis
myotonic dystrophy
translesion
mutation
epigenetic
mutational
endogenous (metabolically-caused) DNA damage
chromosomes
karyotype
List of number of chromosomes of various organisms
chromosomal translocations
deletions
aneuploidy
Replication stress
replisome
replisome
helicase
helicase
chromatid
replication stress
V, D, J recombination
xeroderma pigmentosum
Cockayne's syndrome

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑