Knowledge

GAERS

Source 📝

501:
to a single gene locus and/or that environmental effects might play a role. This mode of inheritance was confirmed in F2 (F1 x F1) and backcross (F1 x control) generations. When F2 population was generated by breeding GAERS with Brown Norway rats, a polygenic inheritance of SWD-related phenotypes was shown and three quantitative trait loci were identified that could control different variables of SWDs (e.g., frequency, amplitude, duration). In this study, the age of the animals was found to be a major factor influencing the detection of genetic linkage to the various components of the SWDs. The development of two inbred strains from the same initial colony has appeared as a very powerful tool to study the possible mutations involved in a genetically complex idiopathic epilepsy. A functional mutation in the
509:, was found using the two strains. In addition, the effect is due to a gain-of-function splice variant mutation, and is semi-dominant, explaining about 20% of the phenotypic variance in the cross. In heterologous expression studies, it was shown that the GAERS splice variant allele on Cav3.2 conferred faster recovery from channel inactivation and greater charge transference during high-frequency bursts. This is in agreement with a previous study that showed a selective increase in the T-type conductance in GAERS nRT neurons. It is also in line with the role of the low voltage activated Ca2+ channel in thalamic burst firing and genetic data in human patients. 254: 120: 25: 66: 238:(EE) recordings. These seizures were recorded on both sides of the brain, lasted about 20 seconds and occurred when the animals were quiet. Importantly, SWDs were always associated with a typical "arrest" of the rats' behavior with twitching of the vibrissae. In addition, drugs used in the clinic to stop absence seizures (ethosuccimide, 745:
Powell, K.L., Cain, S.M., Ng, C., Sirdesai, S., David, L.S., Kyi, M., Garcia, E., Tyson, J.R., Reid, C.A., Bahlo, M., Foote, S.J., Snutch, T.P., O'Brien, T.J., 2009. A Cav3.2 T-Type Calcium Channel Point Mutation Has Splice-Variant-Specific Effects on Function and Segregates with Seizure Expression
500:
In GAERS x NEC F1 generation, more than 95% of the animals showed SWDs after six months, suggesting a dominant transmission. Similar SWDs were recorded in males and females, indicating that the transmission is autosomal. Inter-individual variability suggested that the inheritance of SWDs is not due
474:
Using different methodologies (EEG, local field potentials, intracellular electrophysiology, functional MRI) it was demonstrated that spike-and-waves discharges are initiated in the somatosensory cortex in GAERS, more precisely in the area that codes for information from the vibrissae (barrel
278:
These initial observations led to the development of two breeding colonies: (i) a fully inbred strain of rats, with 100% of animals displaying the EEG and behavioral characteristics of absence seizures, derived from an outbred Wistar colony and called the Genetic Absence Epilepsy Rats from
735:
Rudolf, G., Bihoreau, M.T., Godfrey, R.F., Wilder, S.P., Cox, R.D., Lathrop, M., Marescaux, C., Gauguier, D., 2004. Polygenic control of idiopathic generalized epilepsy phenotypes in the genetic absence rats from Strasbourg (GAERS). Epilepsia 45,
279:
Strasbourg (GAERS) (ii) a strain of non epileptic control animals selected from the same initial breeding colony of Wistar rats and called the Non Epileptic Control or NEC. Since then, the GAERS has been recognized as a very predictive model for
525:
Vergnes, M., Marescaux, C., Micheletti, G., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1982. Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neuroscience Letters 33,
698:
Depaulis, A., David, O., Charpier, S., 2016. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. Journal of Neuroscience Methods 260,
573:
Depaulis, A., David, O., Charpier, S., 2016. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. Journal of Neuroscience Methods 260,
660:
Micheletti, G., Vergnes, M., Marescaux, C., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1985. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung 35,
650:
Micheletti, G., Vergnes, M., Marescaux, C., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1985. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung 35,
621:
Micheletti, G., Vergnes, M., Marescaux, C., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1985. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung 35,
611:
Micheletti, G., Vergnes, M., Marescaux, C., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1985. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung 35,
601:
Micheletti, G., Vergnes, M., Marescaux, C., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1985. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung 35,
535:
Micheletti, G., Vergnes, M., Marescaux, C., Reis, J., Depaulis, A., Rumbach, L., Warter, J.M., 1985. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung 35,
755:
Tsakiridou, E., Bertollini, L., deCurtis, M., Avanzini, G., Pape, H.C., 1995. Selective increase in T-Type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. Journal of Neuroscience 15,
563:
Depaulis, A., van Luijtelaar, G., 2005. Genetic models of absence epilepsy in the rat, in: Pitkänen, A., Schwartzkroin, P., Moshe, S. (Eds.), Models of Seizures and Epilepsy. Oxford: Elsevier Academic, Amsterdam, pp.
483:
In GAERS, absence epilepsy develops during the cortical maturation, i.e., the first 3–4 weeks after birth. Abnormal oscillations are EEG recorded in GAERS at postnatal day (P) 15. They progressively evolve into
631:
Gower, A.J., Hirsch, E., Boehrer, A., Noyer, M., Marescaux, C., 1995. Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Research 22,
688:
Vartanian, M.G., Radulovic, L.L., Kinsora, J.J., Serpa, K.A., Vergnes, M., Bertram, E., Taylor, C.P., 2006. Activity profile of pregabalin in rodent models of epilepsy and ataxia. Epilepsy Research 68,
283:, along with the WAG/Rij rat model. The colony, initially developed in Strasbourg, is maintained at the University of Grenoble Alpes, under Inserm licence and the supervision of Antoine Depaulis. 475:
cortex). Using intracellular electrophysiological recordings of the different layers of the somatosensory cortex, it was found that pyramidal cell of the deep layer (L5/6) initiate the spikes
708:
Polack, P.-O. et al. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. The Journal of Neuroscience 27, 6590–6599 (2007).
670:
Liu, Z., Seiler, N., Marescaux, C., Depaulis, A., Vergnes, M., 1990. Potentiation of gamma-vinyl GABA (vigabatrin) effects by glycine. European Journal of Pharmacology 182, 109–115.
679:
Danober, L., Deransart, C., Depaulis, A., Vergnes, M., Marescaux, C., 1998. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57
592:
Danober, L., Deransart, C., Depaulis, A., Vergnes, M., Marescaux, C., 1998. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57
554:
Danober, L., Deransart, C., Depaulis, A., Vergnes, M., Marescaux, C., 1998. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57
726:
Marescaux, C., Vergnes, M., Depaulis, A., 1992. Genetic absence epilepsy in rats from Strasbourg--a review. Journal of Neural Transmission - Supplement 35, 37–69.
717:
Jarre, G. et al. Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cerebral Cortex 27, 4607–4623 (2017)
583:
Marescaux, C., Vergnes, M., Depaulis, A., 1992. Genetic absence epilepsy in rats from Strasbourg--a review. Journal of Neural Transmission - Supplement 35, 37–69
545:
Marescaux, C., Vergnes, M., Depaulis, A., 1992. Genetic absence epilepsy in rats from Strasbourg--a review. Journal of Neural Transmission - Supplement 35, 37–69
210:
characterized by recurrent loss of contact and concomitant pattern on the electroencephalogram called "spike-and-wave" discharges. It was first characterized in
291:
The reactivity of GAERS to antiepileptic drugs is unique since it perfectly matches with the effects of these drugs in patients with typical absence epilepsy
214:, in the 1980s and since then has been used by different international research groups to understand the mechanisms underlying absence seizures and their 227: 641:
Augusto Grinspan, Evaluación de la eficacia de la lamotrigine en agudo en las GAERS, PhD dissertation, Buenos aires, 1995
181: 163: 101: 52: 226:
In the 1980s the research group of Marguerite Vergnes at Institut National de la Santé et de la Recherche Médicale (
145: 76: 781: 130: 488:
Spike-and-wave discharges up to P25-30, simultaneously with an increase of the intrinsic excitability of
141: 791: 506: 235: 38: 242:) suppressed SWDs in these rats, whereas those that aggravate these seizures in patients ( 8: 786: 489: 253: 746:
in a Polygenic Rat Model of Absence Epilepsy. Journal of Neuroscience 29, 371–380.
280: 203: 295: 231: 137: 83: 234:
discharges (SWD) evocative of absence seizures in Wistar rats during cortical
775: 393: 363: 348: 243: 333: 378: 453: 423: 211: 44: 438: 408: 318: 247: 239: 148:. Statements consisting only of original research should be removed. 215: 207: 230:) in Strasbourg, France, reported the spontaneous occurrence of 505:
gene encoding the Cav3.2 low-voltage activated Ca2+ channel, a
495: 294:
The following table summarizes the effects of the different
75:
may be in need of reorganization to comply with Knowledge's
492:
in deep layers as well as an increase of synchronization.
469: 765:
Hughes, J.R., 2009. Epilepsy & Behavior. 15, 404–412.
286: 773: 307:Effect on human patients with absence epilepsy 298:used in the clinic that were tested on GAERS: 86:to make improvements to the overall structure. 273: 496:Genetic transmission and chromosomal mapping 200:Genetic Absence Epilepsy Rat from Strasbourg 53:Learn how and when to remove these messages 182:Learn how and when to remove this message 164:Learn how and when to remove this message 102:Learn how and when to remove this message 252: 470:Initiation of spike and wave discharges 774: 113: 59: 18: 13: 478: 14: 803: 34:This article has multiple issues. 257:EEG of spike and wave discharges 202:is a recognized animal model of 118: 64: 23: 16:Animal model of absence epilepsy 759: 749: 739: 729: 720: 711: 702: 692: 682: 673: 664: 654: 644: 635: 625: 615: 605: 42:or discuss these issues on the 595: 586: 577: 567: 557: 548: 539: 529: 519: 287:Effects of antiepileptic drugs 218:, using different techniques. 206:, a typical childhood form of 1: 512: 250:), increased rats' seizures. 7: 144:the claims made and adding 10: 808: 274:Development of two strains 221: 236:electroencephalographic 782:Electroencephalography 507:T-type calcium channel 258: 256: 304:Antiepileptic drugs 296:antiepileptic drugs 84:editing the article 259: 212:Strasbourg, France 129:possibly contains 490:pyramidal neurons 467: 466: 192: 191: 184: 174: 173: 166: 131:original research 112: 111: 104: 77:layout guidelines 57: 799: 766: 763: 757: 753: 747: 743: 737: 733: 727: 724: 718: 715: 709: 706: 700: 696: 690: 686: 680: 677: 671: 668: 662: 658: 652: 648: 642: 639: 633: 629: 623: 619: 613: 609: 603: 599: 593: 590: 584: 581: 575: 571: 565: 561: 555: 552: 546: 543: 537: 533: 527: 523: 310:Effects on GAERS 301: 300: 281:absence epilepsy 204:absence epilepsy 187: 180: 169: 162: 158: 155: 149: 146:inline citations 122: 121: 114: 107: 100: 96: 93: 87: 68: 67: 60: 49: 27: 26: 19: 807: 806: 802: 801: 800: 798: 797: 796: 772: 771: 770: 769: 764: 760: 754: 750: 744: 740: 734: 730: 725: 721: 716: 712: 707: 703: 697: 693: 687: 683: 678: 674: 669: 665: 659: 655: 649: 645: 640: 636: 630: 626: 620: 616: 610: 606: 600: 596: 591: 587: 582: 578: 572: 568: 562: 558: 553: 549: 544: 540: 534: 530: 524: 520: 515: 498: 481: 479:Epileptogenesis 472: 289: 276: 270: 267: 264: 261: 224: 188: 177: 176: 175: 170: 159: 153: 150: 135: 123: 119: 108: 97: 91: 88: 82:Please help by 81: 69: 65: 28: 24: 17: 12: 11: 5: 805: 795: 794: 789: 784: 768: 767: 758: 748: 738: 728: 719: 710: 701: 691: 681: 672: 663: 653: 643: 634: 624: 614: 604: 594: 585: 576: 566: 556: 547: 538: 528: 517: 516: 514: 511: 497: 494: 480: 477: 471: 468: 465: 464: 462: 459: 456: 450: 449: 447: 444: 441: 435: 434: 432: 429: 426: 420: 419: 417: 414: 411: 405: 404: 402: 399: 396: 390: 389: 387: 384: 381: 375: 374: 372: 369: 366: 360: 359: 357: 354: 351: 345: 344: 342: 339: 336: 330: 329: 327: 324: 321: 315: 314: 311: 308: 305: 288: 285: 275: 272: 232:spike-and-wave 223: 220: 190: 189: 172: 171: 126: 124: 117: 110: 109: 72: 70: 63: 58: 32: 31: 29: 22: 15: 9: 6: 4: 3: 2: 804: 793: 792:Animal models 790: 788: 785: 783: 780: 779: 777: 762: 752: 742: 732: 723: 714: 705: 695: 685: 676: 667: 657: 647: 638: 628: 618: 608: 598: 589: 580: 570: 560: 551: 542: 532: 522: 518: 510: 508: 504: 493: 491: 487: 476: 463: 460: 457: 455: 452: 451: 448: 445: 442: 440: 437: 436: 433: 430: 427: 425: 422: 421: 418: 415: 412: 410: 407: 406: 403: 400: 397: 395: 394:Carbamazepine 392: 391: 388: 385: 382: 380: 377: 376: 373: 370: 367: 365: 364:Levetiracetam 362: 361: 358: 355: 352: 350: 347: 346: 343: 340: 337: 335: 332: 331: 328: 325: 322: 320: 317: 316: 312: 309: 306: 303: 302: 299: 297: 292: 284: 282: 271: 268: 265: 262: 255: 251: 249: 245: 244:carbamazepine 241: 237: 233: 229: 219: 217: 213: 209: 205: 201: 197: 186: 183: 168: 165: 157: 154:February 2016 147: 143: 139: 133: 132: 127:This article 125: 116: 115: 106: 103: 95: 92:February 2016 85: 79: 78: 73:This article 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 761: 751: 741: 731: 722: 713: 704: 694: 684: 675: 666: 656: 646: 637: 627: 617: 607: 597: 588: 579: 569: 559: 550: 541: 531: 521: 502: 499: 485: 482: 473: 349:Trimetadione 334:Ethosuximide 293: 290: 277: 269: 266: 263: 260: 225: 199: 195: 193: 178: 160: 151: 128: 98: 89: 74: 50: 43: 37: 36:Please help 33: 446:Aggravation 443:Aggravation 431:Aggravation 428:Aggravation 416:Aggravation 413:Aggravation 401:Aggravation 398:Aggravation 386:Suppression 383:Suppression 379:Lamotrigine 371:Suppression 368:Suppression 356:Suppression 353:Suppression 341:Suppression 338:Suppression 326:Suppression 323:Suppression 776:Categories 756:3110–3117. 513:References 454:Pregabalin 424:Vigabatrin 409:Phenytoine 248:phenytoine 138:improve it 39:improve it 461:No effect 458:No effect 439:Tiagabine 319:Valproate 240:valproate 142:verifying 45:talk page 787:Epilepsy 736:301–308. 699:159-174. 689:189–205. 661:483–485. 651:483–485. 632:207–213. 622:483–485. 612:483–485. 602:483–485. 574:159-174. 564:233–248. 486:bonafide 216:ontogeny 208:epilepsy 536:483–485 526:97–101. 503:Cacna1h 222:History 136:Please 228:INSERM 313:Refs 196:GAERS 194:The 198:or 140:by 778:: 246:, 48:. 185:) 179:( 167:) 161:( 156:) 152:( 134:. 105:) 99:( 94:) 90:( 80:. 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
layout guidelines
editing the article
Learn how and when to remove this message
original research
improve it
verifying
inline citations
Learn how and when to remove this message
Learn how and when to remove this message
absence epilepsy
epilepsy
Strasbourg, France
ontogeny
INSERM
spike-and-wave
electroencephalographic
valproate
carbamazepine
phenytoine

absence epilepsy
antiepileptic drugs
Valproate
Ethosuximide
Trimetadione
Levetiracetam
Lamotrigine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.