Knowledge

Symmetric graph

Source đź“ť

31: 570:, with degree 4 and 27 vertices. Confusingly, some authors use the term "symmetric graph" to mean a graph which is vertex-transitive and edge-transitive, rather than an arc-transitive graph. Such a definition would include half-transitive graphs, which are excluded under the definition above. 752:, and in 1988 (when Foster was 92) the then current Foster census (listing all cubic symmetric graphs up to 512 vertices) was published in book form. The first thirteen items in the list are cubic symmetric graphs with up to 30 vertices (ten of these are also 577:
is one where instead of considering pairs of adjacent vertices (i.e. vertices a distance of 1 apart), the definition covers two pairs of vertices, each the same distance apart. Such graphs are automatically symmetric, by definition.
166: 705:- they are complete graphs with a set of edges making a perfect matching removed. Additional families of symmetric graphs with an even number of vertices 2n, are the evenly split 697:. Extension of the cube to n dimensions gives the hypercube graphs (with 2 vertices and degree n). Similarly extension of the octahedron to n dimensions gives the graphs of the 1405: 273: 221: 1469:. Data files for all cubic symmetric graphs up to 768 vertices, and some cubic graphs with up to 1000 vertices. Gordon Royle, updated February 2001, retrieved 2009-04-18. 1421:"The Foster Census: R.M. Foster's Census of Connected Symmetric Trivalent Graphs", by Ronald M. Foster, I.Z. Bouwer, W.W. Chernoff, B. Monson and Z. Star (1988) 740:(i.e. all vertices have degree 3) yields quite a strong condition, and such graphs are rare enough to be listed. They all have an even number of vertices. The 599:
vertices, such that any two consecutive vertices in the sequence are adjacent, and with any repeated vertices being more than 2 steps apart. A
364: 1466: 562:
degree, there exist connected graphs which are vertex-transitive and edge-transitive, but not symmetric. Such graphs are called
1426: 1339: 1249: 1204: 290:
of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called
1159: 350:
are a simple example of being edge-transitive without being vertex-transitive or symmetric. As a further example,
1492: 554:
symmetric graph must thus be both vertex-transitive and edge-transitive, and the converse is true for graphs of
673:. Further symmetric graphs are formed by the vertices and edges of the regular and quasiregular polyhedra: the 1141: â‰Ą 8. In the case of the degree being exactly 3 (cubic symmetric graphs), there are none for  17: 283: 121: 59: 1100: 551: 1164: 999: 915: 1271: 753: 574: 371: 226: 177: 829: 706: 1502: 1497: 1472: 1357: 1111: 1060: 768: 491: 327: 1389: 1154: 387: 379: 1241: 1088: 1080: 563: 469: 453: 331: 74: 1233: 701:, this family of graphs (with 2n vertices and degree 2n-2) are sometimes referred to as the 1126: 775: 702: 559: 555: 535: 461: 429: 351: 8: 347: 1450: 1278: 728:
forms an example of a symmetric graph with infinitely many vertices and infinite degree
1302: 279: 113: 43: 653:
Note that conventionally the term "symmetric graph" is not complementary to the term "
330:. Since the definition above maps one edge to another, a symmetric graph must also be 1422: 1335: 1245: 1234: 1200: 694: 1366: 1310: 744:
and its extensions provide such lists. The Foster census was begun in the 1930s by
654: 542: 1355:
Holt, Derek F. (1981). "A graph which is edge transitive but not arc transitive".
975: 718: 567: 511: 323: 42:) symmetric graph. Any pair of adjacent vertices can be mapped to another by an 1476: 1384: 875: 803: 698: 670: 35: 1486: 1104: 1040: 895: 690: 657:," as the latter refers to a graph that has no nontrivial symmetries at all. 499: 355: 1370: 1315: 1297: 1229: 1225: 1084: 1076: 955: 935: 745: 686: 527: 287: 55: 665:
Two basic families of symmetric graphs for any number of vertices are the
1199:(2nd ed.). Cambridge: Cambridge University Press. pp. 118–140. 995: 737: 714: 682: 666: 51: 39: 1072: 1020: 725: 678: 1083:. The ten distance-transitive graphs listed above, together with the 749: 736:
Combining the symmetry condition with the restriction that graphs be
631:
are simply edges, every symmetric graph of degree 3 or more must be
589: 717:
on 2n vertices. Many other symmetric graphs can be classified as
609:
is a graph such that the automorphism group acts transitively on
334:. However, an edge-transitive graph need not be symmetric, since 30: 27:
Graph in which all ordered pairs of linked nodes are automorphic
646:
can be used to further classify symmetric graphs. The cube is
1406:
Transactions of the American Institute of Electrical Engineers
1403:
Foster, R. M. "Geometrical Circuits of Electrical Networks."
855: 674: 1473:
Trivalent (cubic) symmetric graphs on up to 10000 vertices
1114:
in general, the vertex-connectivity is bounded below by 2(
1394:
J. Combin. Math. Combin. Comput, vol. 20, pp. 41–63
1298:"Vertex and Edge Transitive, But Not 1-Transitive Graphs" 46:, since any five-vertex ring can be mapped to any other. 1329: 229: 180: 124: 1272:"Automorphism groups, isomorphism, reconstruction" 566:. The smallest connected half-transitive graph is 267: 215: 160: 1091:, are the only cubic distance-transitive graphs. 1484: 1390:Trivalent symmetric graphs on up to 768 vertices 1137:-transitive graphs of degree 3 or more for  1133: â€“ 1). However, there are no finite 1071:Other well known cubic symmetric graphs are the 1194: 365:Graph families defined by their automorphisms 1103:of a symmetric graph is always equal to the 278:In other words, a graph is symmetric if its 1224: 1467:Cubic symmetric graphs (The Foster Census) 1125:-transitive graph of degree 3 or more has 1314: 731: 1220: 1218: 1216: 29: 1445: 1443: 1323: 1265: 1263: 1261: 1190: 1188: 1186: 1184: 1182: 1180: 14: 1485: 1295: 1065:distance-transitive, 5-arc-transitive 1045:distance-transitive, 3-arc-transitive 980:distance-transitive, 3-arc-transitive 960:distance-transitive, 2-arc-transitive 940:distance-transitive, 3-arc-transitive 900:distance-transitive, 4-arc-transitive 880:distance-transitive, 3-arc-transitive 860:distance-transitive, 2-arc-transitive 840:distance-transitive, 3-arc-transitive 814:distance-transitive, 2-arc-transitive 161:{\displaystyle f:V(G)\rightarrow V(G)} 73:) if, given any two pairs of adjacent 1330:Gross, J.L. & Yellen, J. (2004). 1269: 1213: 1440: 1354: 1258: 1177: 756:; the exceptions are as indicated): 24: 25: 1514: 1460: 360: 1431: 268:{\displaystyle f(v_{1})=v_{2}.} 1415: 1397: 1378: 1348: 1289: 1240:. New York: Springer. p.  954:The vertices and edges of the 854:The vertices and edges of the 358:, but not vertex-transitive. 246: 233: 216:{\displaystyle f(u_{1})=u_{2}} 197: 184: 155: 149: 143: 140: 134: 13: 1: 1170: 1094: 322:), a symmetric graph without 7: 1148: 660: 462:edge-transitive and regular 454:vertex- and edge-transitive 10: 1519: 1453:", from Wolfram MathWorld. 1334:. CRC Press. p. 491. 1000:generalized Petersen graph 404:symmetric (arc-transitive) 1283:Handbook of Combinatorics 748:while he was employed by 707:complete bipartite graphs 575:distance-transitive graph 363: 1332:Handbook of Graph Theory 1112:vertex-transitive graphs 830:complete bipartite graph 354:are edge-transitive and 304:By definition (ignoring 1358:Journal of Graph Theory 1160:Gallery of named graphs 1089:Biggs–Smith graph 1081:Biggs–Smith graph 1493:Algebraic graph theory 1412:, 309–317, 1932. 1371:10.1002/jgt.3190050210 1316:10.4153/CMB-1970-047-8 1236:Algebraic Graph Theory 1197:Algebraic Graph Theory 1195:Biggs, Norman (1993). 1155:Algebraic graph theory 732:Cubic symmetric graphs 669:(of degree 2) and the 558:degree. However, for 269: 217: 162: 47: 1451:Cubic Symmetric Graph 1449:Weisstein, Eric W., " 703:cocktail party graphs 352:semi-symmetric graphs 270: 218: 163: 33: 1281:; Lovász, L (eds.). 1118: + 1)/3. 227: 178: 122: 1296:Bouwer, Z. (1970). 1110:. In contrast, for 1101:vertex-connectivity 1061:Tutte–Coxeter graph 916:Möbius–Kantor graph 754:distance-transitive 642:, and the value of 588:is defined to be a 508:(if bipartite) 450:(if connected) 372:distance-transitive 1303:Canad. Math. Bull. 280:automorphism group 265: 213: 158: 48: 1270:Babai, L (1996). 1069: 1068: 1025:1-arc-transitive 1005:2-arc-transitive 920:2-arc-transitive 695:icosidodecahedron 548: 547: 492:vertex-transitive 328:vertex-transitive 324:isolated vertices 16:(Redirected from 1510: 1454: 1447: 1438: 1435: 1429: 1419: 1413: 1401: 1395: 1382: 1376: 1374: 1352: 1346: 1345: 1327: 1321: 1320: 1318: 1293: 1287: 1286: 1277:. In Graham, R; 1276: 1267: 1256: 1255: 1239: 1222: 1211: 1210: 1192: 1145: â‰Ą 6. 759: 758: 746:Ronald M. Foster 719:circulant graphs 655:asymmetric graph 649: 645: 641: 637: 635: 630: 626: 624: 622: 615: 613: 606: 604: 598: 587: 585: 423: 417: 388:strongly regular 380:distance-regular 361: 345: 341: 337: 321: 312: 294: 274: 272: 271: 266: 261: 260: 245: 244: 222: 220: 219: 214: 212: 211: 196: 195: 167: 165: 164: 159: 111: 107: 91: 64: 21: 1518: 1517: 1513: 1512: 1511: 1509: 1508: 1507: 1483: 1482: 1463: 1458: 1457: 1448: 1441: 1436: 1432: 1420: 1416: 1402: 1398: 1383: 1379: 1353: 1349: 1342: 1328: 1324: 1294: 1290: 1274: 1268: 1259: 1252: 1223: 1214: 1207: 1193: 1178: 1173: 1151: 1097: 976:Desargues graph 837: 811: 734: 721:(but not all). 712: 699:cross-polytopes 671:complete graphs 663: 650:, for example. 647: 643: 639: 633: 632: 628: 620: 619: 617: 611: 610: 602: 601: 593: 583: 582: 564:half-transitive 510: 509: 470:edge-transitive 452: 451: 418: 412: 343: 339: 335: 332:edge-transitive 320: 314: 311: 305: 299:flag-transitive 292: 256: 252: 240: 236: 228: 225: 224: 207: 203: 191: 187: 179: 176: 175: 123: 120: 119: 109: 106: 99: 93: 90: 83: 77: 62: 28: 23: 22: 15: 12: 11: 5: 1516: 1506: 1505: 1503:Regular graphs 1500: 1498:Graph families 1495: 1481: 1480: 1477:Marston Conder 1470: 1462: 1461:External links 1459: 1456: 1455: 1439: 1430: 1414: 1396: 1385:Marston Conder 1377: 1365:(2): 201–204. 1347: 1340: 1322: 1288: 1257: 1250: 1212: 1205: 1175: 1174: 1172: 1169: 1168: 1167: 1162: 1157: 1150: 1147: 1096: 1093: 1067: 1066: 1063: 1057: 1054: 1051: 1047: 1046: 1043: 1037: 1034: 1031: 1027: 1026: 1023: 1017: 1014: 1011: 1007: 1006: 1003: 992: 989: 986: 982: 981: 978: 972: 969: 966: 962: 961: 958: 952: 949: 946: 942: 941: 938: 932: 929: 926: 922: 921: 918: 912: 909: 906: 902: 901: 898: 892: 889: 886: 882: 881: 878: 876:Petersen graph 872: 869: 866: 862: 861: 858: 852: 849: 846: 842: 841: 838: 835: 826: 823: 820: 816: 815: 812: 809: 804:complete graph 800: 797: 794: 790: 789: 784: 779: 772: 765: 733: 730: 710: 662: 659: 546: 545: 540: 538: 536:zero-symmetric 533: 530: 524: 523: 521: 519: 515: 514: 507: 505: 502: 497: 494: 488: 487: 484: 482: 479: 477: 473: 472: 467: 464: 459: 456: 449: 446: 445: 443: 441: 439: 437: 433: 432: 430:skew-symmetric 427: 425: 422: â‰Ą 2 409: 406: 400: 399: 397: 395: 391: 390: 385: 382: 377: 374: 368: 367: 318: 309: 276: 275: 264: 259: 255: 251: 248: 243: 239: 235: 232: 210: 206: 202: 199: 194: 190: 186: 183: 169: 168: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 127: 112:, there is an 104: 97: 88: 81: 71:arc-transitive 36:Petersen graph 26: 9: 6: 4: 3: 2: 1515: 1504: 1501: 1499: 1496: 1494: 1491: 1490: 1488: 1478: 1474: 1471: 1468: 1465: 1464: 1452: 1446: 1444: 1437:Biggs, p. 148 1434: 1428: 1427:0-919611-19-2 1424: 1418: 1411: 1408: 1407: 1400: 1393: 1391: 1386: 1381: 1372: 1368: 1364: 1360: 1359: 1351: 1343: 1341:1-58488-090-2 1337: 1333: 1326: 1317: 1312: 1308: 1305: 1304: 1299: 1292: 1284: 1280: 1273: 1266: 1264: 1262: 1253: 1251:0-387-95220-9 1247: 1243: 1238: 1237: 1231: 1230:Royle, Gordon 1227: 1226:Godsil, Chris 1221: 1219: 1217: 1208: 1206:0-521-45897-8 1202: 1198: 1191: 1189: 1187: 1185: 1183: 1181: 1176: 1166: 1163: 1161: 1158: 1156: 1153: 1152: 1146: 1144: 1140: 1136: 1132: 1128: 1124: 1119: 1117: 1113: 1109: 1106: 1102: 1092: 1090: 1086: 1082: 1078: 1074: 1064: 1062: 1058: 1055: 1052: 1049: 1048: 1044: 1042: 1041:Coxeter graph 1038: 1035: 1032: 1029: 1028: 1024: 1022: 1018: 1015: 1012: 1009: 1008: 1004: 1001: 997: 993: 990: 987: 984: 983: 979: 977: 973: 970: 967: 964: 963: 959: 957: 953: 950: 947: 944: 943: 939: 937: 933: 930: 927: 924: 923: 919: 917: 913: 910: 907: 904: 903: 899: 897: 896:Heawood graph 893: 890: 887: 884: 883: 879: 877: 873: 870: 867: 864: 863: 859: 857: 853: 850: 847: 844: 843: 839: 834: 831: 827: 824: 821: 818: 817: 813: 808: 805: 801: 798: 795: 792: 791: 788: 785: 783: 780: 778: 777: 773: 771: 770: 766: 764: 761: 760: 757: 755: 751: 747: 743: 742:Foster census 739: 729: 727: 722: 720: 716: 708: 704: 700: 696: 692: 691:cuboctahedron 688: 684: 680: 676: 672: 668: 658: 656: 651: 616:, but not on 608: 596: 591: 579: 576: 571: 569: 565: 561: 557: 553: 544: 541: 539: 537: 534: 531: 529: 526: 525: 522: 520: 517: 516: 513: 506: 503: 501: 498: 495: 493: 490: 489: 485: 483: 480: 478: 475: 474: 471: 468: 465: 463: 460: 457: 455: 448: 447: 444: 442: 440: 438: 435: 434: 431: 428: 426: 424: 421: 415: 410: 407: 405: 402: 401: 398: 396: 393: 392: 389: 386: 383: 381: 378: 375: 373: 370: 369: 366: 362: 359: 357: 353: 349: 342:, but not to 338:might map to 333: 329: 326:must also be 325: 317: 308: 302: 300: 296: 289: 288:ordered pairs 285: 281: 262: 257: 253: 249: 241: 237: 230: 208: 204: 200: 192: 188: 181: 174: 173: 172: 152: 146: 137: 131: 128: 125: 118: 117: 116: 115: 103: 96: 87: 80: 76: 72: 68: 61: 57: 53: 45: 41: 37: 32: 19: 18:Foster census 1433: 1417: 1409: 1404: 1399: 1388: 1380: 1362: 1356: 1350: 1331: 1325: 1306: 1301: 1291: 1282: 1279:Grötschel, M 1235: 1196: 1142: 1138: 1134: 1130: 1122: 1120: 1115: 1107: 1098: 1085:Foster graph 1077:Foster graph 1070: 956:dodecahedron 936:Pappus graph 832: 806: 786: 781: 774: 767: 762: 741: 735: 723: 715:crown graphs 687:dodecahedron 667:cycle graphs 664: 652: 648:2-transitive 600: 594: 580: 572: 568:Holt's graph 549: 528:Cayley graph 419: 416:-transitive, 413: 411: 403: 315: 306: 303: 298: 291: 284:transitively 277: 170: 114:automorphism 101: 94: 85: 78: 70: 66: 56:graph theory 52:mathematical 49: 44:automorphism 1309:: 231–237. 1285:. Elsevier. 1165:Regular map 1129:at least 2( 996:Nauru graph 683:icosahedron 636:-transitive 605:-transitive 348:Star graphs 295:-transitive 1487:Categories 1171:References 1095:Properties 1073:Dyck graph 1021:F26A graph 726:Rado graph 679:octahedron 543:asymmetric 171:such that 750:Bell Labs 638:for some 627:. Since 552:connected 512:biregular 144:→ 67:symmetric 54:field of 1232:(2001). 1149:See also 1087:and the 1079:and the 1002:G(12,5)) 769:Diameter 763:Vertices 713:and the 661:Examples 590:sequence 532:← 518:↑ 504:→ 496:→ 486:↓ 481:↓ 476:↓ 466:→ 458:→ 436:↓ 408:← 394:↓ 384:← 376:→ 75:vertices 1479:, 2011. 500:regular 356:regular 50:In the 1425:  1338:  1248:  1203:  1105:degree 1075:, the 693:, and 629:1-arcs 625:)-arcs 550:Every 38:is a ( 1275:(PDF) 1127:girth 998:(the 787:Notes 782:Graph 776:Girth 738:cubic 614:-arcs 607:graph 293:1-arc 282:acts 60:graph 40:cubic 1423:ISBN 1336:ISBN 1246:ISBN 1201:ISBN 1099:The 1059:The 1039:The 1019:The 994:The 974:The 934:The 914:The 894:The 874:The 856:cube 828:The 802:The 724:The 675:cube 586:-arc 560:even 313:and 223:and 92:and 69:(or 58:, a 34:The 1367:doi 1311:doi 836:3,3 711:n,n 623:+ 1 597:+ 1 592:of 556:odd 344:d—c 340:c—d 336:a—b 297:or 286:on 108:of 65:is 1489:: 1475:. 1442:^ 1410:51 1387:, 1361:. 1307:13 1300:. 1260:^ 1244:. 1242:59 1228:; 1215:^ 1179:^ 1121:A 1050:30 1030:28 1010:26 985:24 965:20 945:20 925:18 905:16 885:14 865:10 689:, 685:, 681:, 677:, 581:A 573:A 346:. 301:. 1392:, 1375:. 1373:. 1369:: 1363:5 1344:. 1319:. 1313:: 1254:. 1209:. 1143:t 1139:t 1135:t 1131:t 1123:t 1116:d 1108:d 1056:8 1053:4 1036:7 1033:4 1016:6 1013:5 991:6 988:4 971:6 968:5 951:5 948:5 931:6 928:4 911:6 908:4 891:6 888:3 871:5 868:2 851:4 848:3 845:8 833:K 825:4 822:2 819:6 810:4 807:K 799:3 796:1 793:4 709:K 644:t 640:t 634:t 621:t 618:( 612:t 603:t 595:t 584:t 420:t 414:t 319:2 316:u 310:1 307:u 263:. 258:2 254:v 250:= 247:) 242:1 238:v 234:( 231:f 209:2 205:u 201:= 198:) 193:1 189:u 185:( 182:f 156:) 153:G 150:( 147:V 141:) 138:G 135:( 132:V 129:: 126:f 110:G 105:2 102:v 100:— 98:2 95:u 89:1 86:v 84:— 82:1 79:u 63:G 20:)

Index

Foster census

Petersen graph
cubic
automorphism
mathematical
graph theory
graph
vertices
automorphism
automorphism group
transitively
ordered pairs
isolated vertices
vertex-transitive
edge-transitive
Star graphs
semi-symmetric graphs
regular
Graph families defined by their automorphisms
distance-transitive
distance-regular
strongly regular
symmetric (arc-transitive)
t-transitive, t â‰Ą 2
skew-symmetric
vertex- and edge-transitive
edge-transitive and regular
edge-transitive
vertex-transitive

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑