Knowledge

Cubic graph

Source đź“ť

411: 43: 55: 430:
of the embedding, a mutually incident triple of a vertex, edge, and face of the surface. The three neighbors of each flag are the three flags that may be obtained from it by changing one of the members of this mutually incident triple and leaving the other two members unchanged.
516:-vertex cubic graph has at most 2 (approximately 1.260) distinct Hamiltonian cycles, and provided examples of cubic graphs with that many cycles. The best proven estimate for the number of distinct Hamiltonian cycles is 659:
conjectured that every cubic bridgeless graph has an exponential number of perfect matchings. The conjecture was recently proved, showing that every cubic bridgeless graph with
780: 552: 92: 591: 1324:
Xiao, Mingyu; Nagamochi, Hiroshi (2012), "An Exact Algorithm for TSP in Degree-3 Graphs Via Circuit Procedure and Amortization on Connectivity Structure",
1281:
Xiao, Mingyu; Nagamochi, Hiroshi (2013), "An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure",
483:, a still-open combination of Tait's and Tutte's conjecture, states that every bicubic polyhedral graph is Hamiltonian. When a cubic graph is Hamiltonian, 467:, in 1946. In 1971, Tutte conjectured that all bicubic graphs are Hamiltonian. However, Joseph Horton provided a counterexample on 96 vertices, the 1003:
Ellingham, M. N. "Non-Hamiltonian 3-Connected Cubic Partite Graphs."Research Report No. 28, Dept. of Math., Univ. Melbourne, Melbourne, 1981.
1083: 1476: 596: 399:
in that most 1-cell attaching maps are disjoint from the 0-skeleton of the graph. Cubic graphs are also formed as the graphs of
1379: 303:
is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
1308: 707: 319: 1527: 1139: 1410: 1015: 886: 873:, EUT report, vol. 76-WSK-01, Dept. of Mathematics and Computing Science, Eindhoven University of Technology 868: 1160: 731: 292: 944: 816: 314:. A 3-edge-coloring is known as a Tait coloring, and forms a partition of the edges of the graph into three 939: 759: 637:
in 1736 as part of the first paper on graph theory, that every cubic graph has an even number of vertices.
386: 111: 743: 688: 382: 162: 994:
Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 240, 1976.
476: 174: 519: 480: 59: 1568: 1563: 1236: 719: 699: 684: 194: 1013:
Ellingham, M. N.; Horton, J. D. (1983), "Non-Hamiltonian 3-connected cubic bipartite graphs",
644: 640: 206: 119: 115: 64: 652: 254:
is one of the five smallest cubic graphs without any symmetries: it possesses only a single
1454: 1343: 1121: 917: 460: 456: 404: 326: 232: 8: 1480: 1158:
Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms",
942:(1975), "Infinite families of nontrivial trivalent graphs which are not Tait colorable", 703: 676: 452: 307: 20: 1458: 1347: 1444: 1377:
Alimonti, Paola; Kann, Viggo (2000), "Some APX-completeness results for cubic graphs",
1359: 1333: 1286: 1285:, Lecture Notes in Computer Science, vol. 7876, Springer-Verlag, pp. 96–107, 1263: 1245: 1212: 1092: 1075: 961: 921: 838: 797: 680: 656: 576: 444: 267: 255: 1393: 498:-vertex cubic graphs, then it is very likely to be Hamiltonian: the proportion of the 422:
on a two-dimensional surface may be represented as a cubic graph structure known as a
1542: 1508: 1489: 1304: 1216: 1135: 1029: 925: 905: 842: 630: 440: 423: 346: 334: 801: 338: 1419: 1388: 1363: 1351: 1296: 1267: 1255: 1231: 1202: 1193: 1169: 1127: 1102: 1053: 1044:
Robinson, R.W.; Wormald, N.C. (1994), "Almost all regular graphs are Hamiltonian",
1024: 953: 895: 828: 789: 672: 648: 448: 395: 315: 1492: 1234:; Norine, Serguei (2011), "Exponentially many perfect matchings in cubic graphs", 1300: 1120:
Gebauer, H. (2008), "On the number of Hamilton cycles in bounded degree graphs",
913: 711: 427: 419: 281: 240: 221:
can be mapped to each other by exactly one symmetry of the graph. He showed that
182: 154: 138: 28: 1511: 793: 1424: 1071: 723: 634: 509: 472: 350: 330: 271: 166: 47: 24: 1355: 1259: 1173: 1131: 1557: 1546: 909: 735: 354: 311: 284:
with at most three colors. Therefore, every connected cubic graph other than
244: 190: 170: 158: 123: 36: 1057: 900: 833: 715: 491: 484: 468: 342: 251: 202: 178: 161:. Many well-known individual graphs are cubic and symmetric, including the 150: 103: 1123:
Proc. 4th Workshop on Analytic Algorithmics and Combinatorics (ANALCO '08)
325:
The bridgeless cubic graphs that do not have a Tait coloring are known as
225:
is at most 5, and provided examples of graphs with each possible value of
884:
Frucht, R. (1949), "Graphs of degree three with a given abstract group",
867:
Bussemaker, F. C.; Cobeljic, S.; Cvetkovic, D. M.; Seidel, J. J. (1976),
727: 619: 464: 210: 186: 99: 614:/6. The best known lower bound on the pathwidth of cubic graphs is 0.082 1207: 1106: 965: 561: 502:-vertex cubic graphs that are Hamiltonian tends to one in the limit as 400: 390: 236: 198: 32: 1097: 691:
in cubic graphs can be solved in time O(1.2312) and polynomial space.
1516: 1497: 778:
Foster, R. M. (1932), "Geometrical Circuits of Electrical Networks",
603: 570: 213:
classified the symmetric cubic graphs by the smallest integer number
1188: 957: 410: 366: 1449: 1408:
Hliněný, Petr (2006), "Crossing number is hard for cubic graphs",
1338: 1291: 1250: 846: 1189:"Die Theorie der regulären Graphs (The theory of regular graphs)" 866: 747: 739: 675:
algorithms restricted to cubic graphs. For instance, by applying
374: 54: 42: 1526:
Brinkmann, Gunnar; Goedgebeur, Jan; Van Cleemput, Nico (2013).
1525: 426:. In this structure, each vertex of a cubic graph represents a 781:
Transactions of the American Institute of Electrical Engineers
414:
Representation of a planar embedding as a graph-encoded map
310:
every cubic graph needs either three or four colors for an
750:
to approximate to within any factor less than 1153/1152.
695: 407:
with the property that three faces meet at every vertex.
1487: 683:
of the graph, Fomin and Høie showed how to find their
618:. It is not known how to reduce this gap between this 1441:
Approximation Hardness of Graphic TSP on Cubic Graphs
1229: 579: 522: 369:
in several ways. For example, the cubic graphs with
67: 1506: 1230:
Esperet, Louis; Kardoš, František; King, Andrew D.;
979:Bonnington, C. Paul; Little, Charles H. C. (1995), 671:Several researchers have studied the complexity of 714:. These include the problems of finding a minimum 694:Several important graph optimization problems are 585: 546: 373:vertices describe the different ways of cutting a 357:. There is an infinite number of distinct snarks. 86: 1076:"The traveling salesman problem for cubic graphs" 1555: 1438: 1283:Theory and Applications of Models of Computation 978: 734:(the minimum number of edges which cross in any 261: 1528:"The history of the generation of cubic graphs" 1043: 1012: 563: 239:(the smallest semi-symmetric cubic graph), the 742:for cubic graphs but may be approximated. The 1323: 1280: 1477:"Cubic symmetric graphs (The Foster Census)" 1376: 1084:Journal of Graph Algorithms and Applications 710:whose approximation ratio tends to 1 unless 666: 217:such that each two oriented paths of length 122:three. In other words, a cubic graph is a 3- 1439:Karpinski, Marek; Schmied, Richard (2013), 981:The Foundations of Topological Graph Theory 706:is bounded by a constant, they do not have 663:vertices has at least 2 perfect matchings. 403:in three dimensions, polyhedra such as the 270:every connected cubic graph other than the 1401: 475:constructed two more counterexamples: the 1448: 1423: 1392: 1337: 1290: 1274: 1249: 1206: 1187:Petersen, Julius Peter Christian (1891), 1157: 1096: 1028: 899: 832: 771: 322:every bicubic graph has a Tait coloring. 1186: 1070: 409: 360: 53: 41: 1407: 1223: 1180: 1153: 1151: 1119: 597:(more unsolved problems in mathematics) 487:allows it to be represented concisely. 1556: 938: 883: 870:Computer investigation of cubic graphs 777: 746:on cubic graphs has been proven to be 1507: 1488: 814: 708:polynomial time approximation schemes 1148: 1006: 997: 988: 698:, meaning that, although they have 557: 153:began collecting examples of cubic 16:Graph with all vertices of degree 3 13: 14: 1580: 1474: 1468: 817:"On the symmetry of cubic graphs" 1046:Random Structures and Algorithms 439:There has been much research on 434: 365:Cubic graphs arise naturally in 94:is an example of a bicubic graph 1432: 1411:Journal of Combinatorial Theory 1370: 1317: 1113: 1064: 1037: 1016:Journal of Combinatorial Theory 887:Canadian Journal of Mathematics 610:-vertex cubic graph is at most 564:Unsolved problem in mathematics 126:. Cubic graphs are also called 1161:Information Processing Letters 972: 932: 877: 860: 808: 547:{\displaystyle O({1.276}^{n})} 541: 526: 459:provided a counter-example to 1: 1394:10.1016/S0304-3975(98)00158-3 945:American Mathematical Monthly 765: 569:What is the largest possible 447:conjectured that every cubic 320:KĹ‘nig's line coloring theorem 262:Coloring and independent sets 258:, the identity automorphism. 1541:(2–3). Nova Science: 67–89. 1380:Theoretical Computer Science 1301:10.1007/978-3-642-38236-9_10 1030:10.1016/0095-8956(83)90046-1 760:Table of simple cubic graphs 7: 794:10.1109/T-AIEE.1932.5056068 753: 744:Travelling Salesman Problem 738:) of a cubic graph is also 689:travelling salesman problem 490:If a cubic graph is chosen 157:, forming the start of the 144: 10: 1585: 1425:10.1016/j.jctb.2005.09.009 443:of cubic graphs. In 1880, 18: 1356:10.1007/s00453-015-9970-4 1260:10.1016/j.aim.2011.03.015 1174:10.1016/j.ipl.2005.10.012 1132:10.1137/1.9781611972986.8 667:Algorithms and complexity 235:cubic graphs include the 700:approximation algorithms 685:maximum independent sets 643:states that every cubic 60:complete bipartite graph 19:Not to be confused with 1237:Advances in Mathematics 720:maximum independent set 512:conjectured that every 477:Ellingham–Horton graphs 87:{\displaystyle K_{3,3}} 1535:Int. J. Chem. Modeling 1058:10.1002/rsa.3240050209 901:10.4153/CJM-1949-033-6 834:10.4153/CJM-1959-057-2 587: 548: 415: 389:to be a 1-dimensional 95: 88: 51: 815:Tutte, W. T. (1959), 588: 549: 481:Barnette's conjecture 413: 385:. If one considers a 361:Topology and geometry 89: 57: 45: 1126:, pp. 241–248, 629:It follows from the 593:-vertex cubic graph? 577: 520: 457:William Thomas Tutte 405:regular dodecahedron 65: 1459:2013arXiv1304.6800K 1348:2012arXiv1212.6831X 704:approximation ratio 677:dynamic programming 492:uniformly at random 453:Hamiltonian circuit 393:, cubic graphs are 329:. They include the 299:/3 vertices, where 195:Tutte–Coxeter graph 175:Möbius–Kantor graph 1509:Weisstein, Eric W. 1490:Weisstein, Eric W. 1208:10.1007/BF02392606 1107:10.7155/jgaa.00137 681:path decomposition 641:Petersen's theorem 583: 544: 506:goes to infinity. 416: 256:graph automorphism 96: 84: 52: 1310:978-3-642-38236-9 983:, Springer-Verlag 631:handshaking lemma 586:{\displaystyle n} 461:Tait's conjecture 424:graph-encoded map 347:double-star snark 316:perfect matchings 207:Biggs–Smith graph 50:is a cubic graph. 1576: 1550: 1532: 1522: 1521: 1503: 1502: 1484: 1479:. Archived from 1463: 1461: 1452: 1436: 1430: 1428: 1427: 1405: 1399: 1397: 1396: 1387:(1–2): 123–134, 1374: 1368: 1366: 1341: 1321: 1315: 1313: 1294: 1278: 1272: 1270: 1253: 1244:(4): 1646–1664, 1227: 1221: 1219: 1210: 1194:Acta Mathematica 1184: 1178: 1176: 1155: 1146: 1144: 1117: 1111: 1109: 1100: 1080: 1068: 1062: 1060: 1041: 1035: 1033: 1032: 1010: 1004: 1001: 995: 992: 986: 984: 976: 970: 968: 936: 930: 928: 903: 881: 875: 874: 864: 858: 856: 855: 854: 845:, archived from 836: 812: 806: 804: 775: 673:exponential time 649:perfect matching 626:/6 upper bound. 592: 590: 589: 584: 565: 558:Other properties 553: 551: 550: 545: 540: 539: 534: 463:, the 46-vertex 449:polyhedral graph 401:simple polyhedra 308:Vizing's theorem 155:symmetric graphs 151:Ronald M. Foster 128:trivalent graphs 93: 91: 90: 85: 83: 82: 1584: 1583: 1579: 1578: 1577: 1575: 1574: 1573: 1554: 1553: 1530: 1493:"Bicubic Graph" 1475:Royle, Gordon. 1471: 1466: 1437: 1433: 1406: 1402: 1375: 1371: 1322: 1318: 1311: 1279: 1275: 1228: 1224: 1201:(15): 193–220, 1185: 1181: 1156: 1149: 1142: 1118: 1114: 1078: 1072:Eppstein, David 1069: 1065: 1042: 1038: 1011: 1007: 1002: 998: 993: 989: 977: 973: 958:10.2307/2319844 937: 933: 882: 878: 865: 861: 852: 850: 813: 809: 776: 772: 768: 756: 732:crossing number 687:in time 2. The 669: 600: 599: 594: 578: 575: 574: 567: 560: 535: 530: 529: 521: 518: 517: 437: 420:graph embedding 363: 293:independent set 290: 282:vertex coloring 279: 268:Brooks' theorem 264: 241:Ljubljana graph 183:Desargues graph 147: 139:bipartite graph 72: 68: 66: 63: 62: 40: 29:hypercube graph 25:cubic functions 17: 12: 11: 5: 1582: 1572: 1571: 1569:Regular graphs 1566: 1564:Graph families 1552: 1551: 1523: 1504: 1485: 1483:on 2011-10-23. 1470: 1469:External links 1467: 1465: 1464: 1431: 1418:(4): 455–471, 1400: 1369: 1332:(2): 713–741, 1316: 1309: 1273: 1222: 1179: 1168:(5): 191–196, 1147: 1140: 1112: 1063: 1052:(2): 363–374, 1036: 1023:(3): 350–353, 1005: 996: 987: 971: 952:(3): 221–239, 931: 894:(4): 365–378, 876: 859: 807: 788:(2): 309–317, 769: 767: 764: 763: 762: 755: 752: 724:dominating set 668: 665: 635:Leonhard Euler 595: 582: 568: 562: 559: 556: 543: 538: 533: 528: 525: 510:David Eppstein 473:Mark Ellingham 436: 433: 383:pairs of pants 362: 359: 351:Szekeres snark 339:Blanuša snarks 335:Tietze's graph 331:Petersen graph 288: 277: 272:complete graph 263: 260: 233:Semi-symmetric 167:Petersen graph 146: 143: 81: 78: 75: 71: 48:Petersen graph 15: 9: 6: 4: 3: 2: 1581: 1570: 1567: 1565: 1562: 1561: 1559: 1548: 1544: 1540: 1536: 1529: 1524: 1519: 1518: 1513: 1512:"Cubic Graph" 1510: 1505: 1500: 1499: 1494: 1491: 1486: 1482: 1478: 1473: 1472: 1460: 1456: 1451: 1446: 1442: 1435: 1426: 1421: 1417: 1413: 1412: 1404: 1395: 1390: 1386: 1382: 1381: 1373: 1365: 1361: 1357: 1353: 1349: 1345: 1340: 1335: 1331: 1327: 1320: 1312: 1306: 1302: 1298: 1293: 1288: 1284: 1277: 1269: 1265: 1261: 1257: 1252: 1247: 1243: 1239: 1238: 1233: 1226: 1218: 1214: 1209: 1204: 1200: 1196: 1195: 1190: 1183: 1175: 1171: 1167: 1163: 1162: 1154: 1152: 1143: 1141:9781611972986 1137: 1133: 1129: 1125: 1124: 1116: 1108: 1104: 1099: 1098:cs.DS/0302030 1094: 1090: 1086: 1085: 1077: 1073: 1067: 1059: 1055: 1051: 1047: 1040: 1031: 1026: 1022: 1018: 1017: 1009: 1000: 991: 982: 975: 967: 963: 959: 955: 951: 947: 946: 941: 935: 927: 923: 919: 915: 911: 907: 902: 897: 893: 889: 888: 880: 872: 871: 863: 849:on 2011-07-16 848: 844: 840: 835: 830: 826: 822: 821:Can. J. Math. 818: 811: 803: 799: 795: 791: 787: 783: 782: 774: 770: 761: 758: 757: 751: 749: 745: 741: 737: 736:graph drawing 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 692: 690: 686: 682: 678: 674: 664: 662: 658: 654: 650: 646: 642: 638: 636: 632: 627: 625: 621: 617: 613: 609: 605: 598: 580: 572: 555: 536: 531: 523: 515: 511: 507: 505: 501: 497: 493: 488: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 442: 441:Hamiltonicity 435:Hamiltonicity 432: 429: 425: 421: 418:An arbitrary 412: 408: 406: 402: 398: 397: 392: 388: 384: 380: 376: 372: 368: 358: 356: 355:Watkins snark 352: 348: 344: 340: 336: 332: 328: 323: 321: 317: 313: 312:edge coloring 309: 306:According to 304: 302: 298: 294: 287: 283: 276: 273: 269: 266:According to 259: 257: 253: 248: 246: 245:Tutte 12-cage 242: 238: 234: 230: 229:from 1 to 5. 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 191:Coxeter graph 188: 184: 180: 176: 172: 171:Heawood graph 168: 164: 163:utility graph 160: 159:Foster census 156: 152: 142: 140: 136: 135:bicubic graph 131: 129: 125: 124:regular graph 121: 117: 114:in which all 113: 109: 105: 101: 79: 76: 73: 69: 61: 56: 49: 44: 38: 37:cubical graph 34: 30: 26: 22: 1538: 1534: 1515: 1496: 1481:the original 1440: 1434: 1415: 1414:, Series B, 1409: 1403: 1384: 1378: 1372: 1329: 1326:Algorithmica 1325: 1319: 1282: 1276: 1241: 1235: 1232:Kráľ, Daniel 1225: 1198: 1192: 1182: 1165: 1159: 1122: 1115: 1091:(1): 61–81, 1088: 1082: 1066: 1049: 1045: 1039: 1020: 1019:, Series B, 1014: 1008: 999: 990: 980: 974: 949: 943: 934: 891: 885: 879: 869: 862: 851:, retrieved 847:the original 824: 820: 810: 785: 779: 773: 716:vertex cover 693: 670: 660: 647:graph has a 639: 633:, proven by 628: 623: 615: 611: 607: 601: 513: 508: 503: 499: 495: 489: 485:LCF notation 469:Horton graph 438: 417: 394: 378: 370: 364: 343:flower snark 324: 305: 300: 296: 295:of at least 285: 274: 265: 252:Frucht graph 249: 231: 226: 222: 218: 214: 203:Foster graph 179:Pappus graph 148: 134: 132: 127: 107: 104:graph theory 100:mathematical 97: 827:: 621–624, 728:maximum cut 620:lower bound 465:Tutte graph 211:W. T. Tutte 187:Nauru graph 137:is a cubic 108:cubic graph 1558:Categories 940:Isaacs, R. 853:2010-07-21 766:References 722:, minimum 645:bridgeless 494:among all 391:CW complex 243:, and the 237:Gray graph 199:Dyck graph 33:cube graph 1547:1941-3955 1517:MathWorld 1498:MathWorld 1450:1304.6800 1339:1212.6831 1292:1212.6831 1251:1012.2878 1217:123779343 926:124723321 910:0008-414X 843:124273238 604:pathwidth 571:pathwidth 471:. Later, 445:P.G. Tait 377:of genus 149:In 1932, 102:field of 1074:(2007), 802:51638449 754:See also 696:APX hard 622:and the 367:topology 353:and the 205:and the 145:Symmetry 116:vertices 1455:Bibcode 1364:7654681 1344:Bibcode 1268:4401537 966:2319844 918:0032987 748:NP-hard 740:NP-hard 657:Plummer 606:of any 396:generic 375:surface 291:has an 98:In the 1545:  1362:  1307:  1266:  1215:  1138:  964:  924:  916:  908:  841:  800:  730:. The 726:, and 702:whose 653:Lovász 573:of an 451:has a 349:, the 345:, the 341:, the 337:, the 327:snarks 280:has a 201:, the 197:, the 193:, the 189:, the 185:, the 181:, the 177:, the 173:, the 169:, the 165:, the 120:degree 21:graphs 1531:(PDF) 1445:arXiv 1360:S2CID 1334:arXiv 1287:arXiv 1264:S2CID 1246:arXiv 1213:S2CID 1093:arXiv 1079:(PDF) 962:JSTOR 922:S2CID 839:S2CID 798:S2CID 679:to a 532:1.276 387:graph 381:into 379:g ≥ 2 318:. By 118:have 112:graph 110:is a 106:, a 1543:ISSN 1305:ISBN 1136:ISBN 906:ISSN 712:P=NP 655:and 602:The 428:flag 371:2g-2 250:The 58:The 46:The 1420:doi 1389:doi 1385:237 1352:doi 1297:doi 1256:doi 1242:227 1203:doi 1170:doi 1128:doi 1103:doi 1054:doi 1025:doi 954:doi 896:doi 829:doi 790:doi 455:. 23:of 1560:: 1537:. 1533:. 1514:. 1495:. 1453:, 1443:, 1416:96 1383:, 1358:, 1350:, 1342:, 1330:74 1328:, 1303:, 1295:, 1262:, 1254:, 1240:, 1211:, 1199:15 1197:, 1191:, 1166:97 1164:, 1150:^ 1134:, 1101:, 1089:11 1087:, 1081:, 1048:, 1021:34 960:, 950:82 948:, 920:, 914:MR 912:, 904:, 890:, 837:, 825:11 823:, 819:, 796:, 786:51 784:, 718:, 651:. 554:. 479:. 333:, 247:. 209:. 141:. 133:A 130:. 35:, 31:, 27:, 1549:. 1539:5 1520:. 1501:. 1462:. 1457:: 1447:: 1429:. 1422:: 1398:. 1391:: 1367:. 1354:: 1346:: 1336:: 1314:. 1299:: 1289:: 1271:. 1258:: 1248:: 1220:. 1205:: 1177:. 1172:: 1145:. 1130:: 1110:. 1105:: 1095:: 1061:. 1056:: 1050:5 1034:. 1027:: 985:. 969:. 956:: 929:. 898:: 892:1 857:. 831:: 805:. 792:: 661:n 624:n 616:n 612:n 608:n 581:n 566:: 542:) 537:n 527:( 524:O 514:n 504:n 500:n 496:n 301:n 297:n 289:4 286:K 278:4 275:K 227:s 223:s 219:s 215:s 80:3 77:, 74:3 70:K 39:.

Index

graphs
cubic functions
hypercube graph
cube graph
cubical graph

Petersen graph

complete bipartite graph
mathematical
graph theory
graph
vertices
degree
regular graph
bipartite graph
Ronald M. Foster
symmetric graphs
Foster census
utility graph
Petersen graph
Heawood graph
Möbius–Kantor graph
Pappus graph
Desargues graph
Nauru graph
Coxeter graph
Tutte–Coxeter graph
Dyck graph
Foster graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑