Knowledge

Dynamical mean-field theory

Source ๐Ÿ“

112:. In the Ising model, the lattice problem is mapped onto an effective single site problem, whose magnetization is to reproduce the lattice magnetization through an effective "mean-field". This condition is called the self-consistency condition. It stipulates that the single-site observables should reproduce the lattice "local" observables by means of an effective field. While the N-site Ising Hamiltonian is hard to solve analytically (to date, analytical solutions exist only for the 1D and 2D case), the single-site problem is easily solved. 944: 656: 939:{\displaystyle H_{\text{AIM}}=\underbrace {\sum _{p}\epsilon _{p}a_{p}^{\dagger }a_{p}} _{H_{\text{bath}}}+\underbrace {\sum _{p\sigma }\left(V_{p}^{\sigma }c_{\sigma }^{\dagger }a_{p\sigma }+h.c.\right)} _{H_{\text{mix}}}+\underbrace {Un_{\uparrow }n_{\downarrow }-\mu \left(n_{\uparrow }+n_{\downarrow }\right)} _{H_{\text{loc}}}} 1390:
This hybridization function describes the dynamics of electrons hopping in and out of the bath. It should reproduce the lattice dynamics such that the impurity Green's function is the same as the local lattice Green's function. It is related to the non-interacting Green's function by the relation:
185:
is time-dependent, or dynamical. This also points to the major difference between the Ising MFT and DMFT: Ising MFT maps the N-spin problem into a single-site, single-spin problem. DMFT maps the lattice problem onto a single-site problem, but the latter fundamentally remains a N-body problem which
2144:
In order to find the local lattice Green's function, one has to determine the hybridization function such that the corresponding impurity Green's function will coincide with the sought-after local lattice Green's function. The most widespread way of solving this problem is by using a forward
2120:
This approximation becomes exact in the limit of lattices with infinite coordination, that is when the number of neighbors of each site is infinite. Indeed, one can show that in the diagrammatic expansion of the lattice self-energy, only local diagrams survive when one goes into the infinite
3131:
In order to improve on the DMFT approximation, the Hubbard model can be mapped on a multi-site impurity (cluster) problem, which allows one to add some spatial dependence to the impurity self-energy. Clusters contain 4 to 8 sites at low temperature and up to 100 sites at high temperature.
68:
problem, called an impurity model. While the lattice problem is in general intractable, the impurity model is usually solvable through various schemes. The mapping in itself does not constitute an approximation. The only approximation made in ordinary DMFT schemes is to assume the lattice
1969: 353: 2809: 2591: 1349: 2124:
Thus, as in classical mean-field theories, DMFT is supposed to get more accurate as the dimensionality (and thus the number of neighbors) increases. Put differently, for low dimensions, spatial fluctuations will render the DMFT approximation less reliable.
1505: 3148:, can be obtained also through diagrammatic extensions of DMFT using a combination of analytical and numerical techniques. The starting point of the dynamical vertex approximation and of the dual fermion approach is the local 2391: 3135:
The Typical Medium Dynamical Cluster Approximation (TMDCA) is a non-perturbative approach for obtaining the electronic ground state of strongly correlated many-body systems, built on the dynamical cluster approximation (DCA).
1790: 1198: 3611:
G. Rohringer; H. Hafermann; A. Toschi; A. Katanin; A. E. Antipov; M. I. Katsnelson; A. I. Lichtenstein; A. N. Rubtsov; K. Held (2018). "Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory".
2115: 1798: 230: 127:. Thus, the self-consistency condition for DMFT is for the impurity Green's function to reproduce the lattice local Green's function through an effective mean-field which, in DMFT, is the hybridization function 630:) through a hybridization function. The Anderson model corresponding to our single-site model is a single-orbital Anderson impurity model, whose hamiltonian formulation, on suppressing some spin 1/2 indices 2883: 2652: 2454: 3065: 2647: 2447: 1229: 496: 2303: 1693: 1385: 2252: 2017: 628: 421: 1587: 2027:
The only DMFT approximations (apart from the approximation that can be made in order to solve the Anderson model) consists in neglecting the spatial fluctuations of the lattice
1629: 1548: 1113: 977: 1081: 1033: 183: 154: 1004: 1634: 593: 3085: 648: 376: 3105: 1613: 1397: 1224: 3318:
G. Kotliar; S. Y. Savrasov; K. Haule; V. S. Oudovenko; O. Parcollet; C. A. Marianetti (2006). "Electronic structure calculations with dynamical mean-field theory".
3184:
A. Georges; G. Kotliar; W. Krauth; M. Rozenberg (1996). "Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions".
2932: 2183: 2999: 2952: 2912: 2203: 2163: 1053: 565:(AIM). This model describes the interaction of one site (the impurity) with a "bath" of electronic levels (described by the annihilation and creation operators 550: 527: 441: 222: 2311: 49:
calculations, breaks down. Dynamical mean-field theory, a non-perturbative treatment of local interactions between electrons, bridges the gap between the
2894:
The local lattice Green's function and other impurity observables can be used to calculate a number of physical quantities as a function of correlations
1698: 1121: 3119:
Extended DMFT yields a local impurity self energy for non-local interactions and hence allows us to apply DMFT for more general models such as the
1964:{\displaystyle G_{\mathrm {imp} }(i\omega _{n})=G_{ii}(i\omega _{n})=\sum _{k}{\frac {1}{i\omega _{n}+\mu -\epsilon (k)-\Sigma (k,i\omega _{n})}}} 348:{\displaystyle H_{\text{Hubbard}}=t\sum _{\langle ij\rangle \sigma }c_{i\sigma }^{\dagger }c_{j\sigma }+U\sum _{i}n_{i\uparrow }n_{i\downarrow }} 2037: 3009:
DMFT has several extensions, extending the above formalism to multi-orbital, multi-site problems, long-range correlations and non-equilibrium.
561:
The Hubbard model is in general intractable under usual perturbation expansion techniques. DMFT maps this lattice model onto the so-called
17: 3789:"Numerical implementation of dynamical mean field theory for disordered systems: application to the Lotkaโ€“Volterra model of ecosystems" 2804:{\displaystyle \Sigma _{\mathrm {imp} }(i\omega _{n})=({\mathcal {G}}_{0})^{-1}(i\omega _{n})-(G_{\mathrm {imp} })^{-1}(i\omega _{n})} 2816: 3420:. Lectures on the Physics of Highly Correlated Electron Systems VIII. Vol. 715. American Institute of Physics. pp. 3โ€“74. 2586:{\displaystyle \Delta (i\omega )=i\omega _{n}+\mu -G_{\mathrm {loc} }^{-1}(i\omega _{n})-\Sigma _{\mathrm {imp} }(i\omega _{n})} 506: 3160:
DMFT has been employed to study non-equilibrium transport and optical excitations. Here, the reliable calculation of the AIM's
124: 3929: 3020: 3164:
remains a big challenge. DMFT has also been applied to ecological models in order to describe the mean-field dynamics of a
73:
to be a momentum-independent (local) quantity. This approximation becomes exact in the limit of lattices with an infinite
1639: 3416:
Antoine Georges (2004). "Strongly Correlated Electron Materials: Dynamical Mean-Field Theory and Electronic Structure".
3451: 3017:
DMFT can be extended to Hubbard models with multiple orbitals, namely with electron-electron interactions of the form
2598: 2398: 3667:
A. Toschi; A. Katanin; K. Held (2007). "Dynamical vertex approximation: A step beyond dynamical mean-field theory".
1344:{\displaystyle \Delta _{\sigma }(i\omega _{n})=\sum _{p}{\frac {|V_{p}^{\sigma }|^{2}}{i\omega _{n}-\epsilon _{p}}}} 505:
only one orbital contributes to the electronic properties (as might be the case of copper atoms in superconducting
1619: 446: 2257: 1654: 1511:
Solving the Anderson impurity model consists in computing observables such as the interacting Green's function
1354: 204:
The Hubbard model describes the onsite interaction between electrons of opposite spin by a single parameter,
3914: 2212: 1977: 598: 38: 3144:
Spatial dependencies of the self energy beyond DMFT, including long-range correlations in the vicinity of a
381: 3846: 3564:"Typical medium dynamical cluster approximation for the study of Anderson localization in three dimensions" 1553: 3722:
Aoki, Hideo; Tsuji, Naoto; Eckstein, Martin; Kollar, Marcus; Oka, Takashi; Werner, Philipp (2014-06-24).
1615:. It is a difficult but not intractable problem. There exists a number of ways to solve the AIM, such as 93: 1083:
describes the hybridization (or coupling) between the impurity and the bath through hybridization terms
3924: 3919: 50: 3858: 3896:
DMFT for two-site Hubbard dimer: in Solving the strong-correlation problem in materials, Eva Pavarini
3614: 3320: 3186: 3108: 1514: 1086: 955: 42: 1059: 1011: 159: 130: 3891: 3563: 982: 54: 568: 3272: 562: 2136:, the pronounced changes before the phase transition are not reflected in the DMFT self-energy. 1500:{\displaystyle ({\mathcal {G}}_{0})^{-1}(i\omega _{n})=i\omega _{n}+\mu -\Delta (i\omega _{n})} 89: 3788: 3549:"Embedded Dynamical Mean Field Theory, an electronic structure package implementing DFT+DMFT" 3070: 1624: 633: 423:
denote the creation and annihilation operators of an electron on a localized orbital on site
361: 3267: 3090: 1592: 1203: 3888:
DMFT for two-site Hubbard dimer: in Dynamical Mean-Field Theory for Materials, Eva Pavarini
3810: 3745: 3688: 3633: 3585: 3514: 3460: 3388: 3339: 3281: 3232: 3195: 2917: 2168: 92:
is increased. It has been successfully applied to real materials, in combination with the
8: 3165: 74: 3814: 3749: 3692: 3637: 3589: 3518: 3464: 3392: 3343: 3285: 3236: 3199: 3800: 3769: 3735: 3704: 3678: 3649: 3623: 3575: 3530: 3504: 3494:
K. Held (2007). "Electronic Structure Calculations using Dynamical Mean Field Theory".
3476: 3421: 3379: 3355: 3329: 2984: 2937: 2897: 2188: 2148: 2133: 1038: 535: 512: 426: 207: 3882: 3876: 3870: 3826: 3773: 3761: 3723: 3708: 3669: 3653: 3562:
Ekuma, C.E.; Terletska, H.; Tam, K.-M.; Meng, Z.-Y.; Moreno, J.; Jarrell, M. (2014).
3359: 3297: 3248: 3223: 3161: 2959: 2386:{\displaystyle \Sigma (k,i\omega _{n})\approx \Sigma _{\mathrm {imp} }(i\omega _{n})} 2129: 105: 61: 3864: 3534: 3480: 3818: 3753: 3696: 3641: 3593: 3522: 3468: 3431: 3396: 3347: 3289: 3240: 3203: 3145: 81: 41:. In such materials, the approximation of independent electrons, which is used in 3645: 3149: 2974: 3111:(DFT+DMFT) then allows for a realistic calculation of correlated materials. 3822: 3700: 3597: 3317: 3293: 2966: 1785:{\displaystyle G_{ii}(\tau )=-\langle Tc_{i}(\tau )c_{i}^{\dagger }(0)\rangle } 1193:{\displaystyle G_{\text{imp}}(\tau )=-\langle Tc(\tau )c^{\dagger }(0)\rangle } 1035:
describes the impurity, where two electrons interact with the energetical cost
85: 46: 3757: 3526: 3351: 3908: 3899: 3830: 3765: 3244: 3207: 120: 27:
Method to determine the electronic structure of strongly correlated materials
3885:
Eva Pavarini, Erik Koch, Dieter Vollhardt, and Alexander Lichtenstein (eds.)
3879:
Eva Pavarini, Erik Koch, Dieter Vollhardt, and Alexander Lichtenstein (eds.)
3873:
Eva Pavarini, Erik Koch, Dieter Vollhardt, and Alexander Lichtenstein (eds.)
3867:
Eva Pavarini, Erik Koch, Dieter Vollhardt, and Alexander Lichtenstein (eds.)
3610: 3472: 3401: 3374: 3301: 3252: 2110:{\displaystyle \Sigma (k,i\omega _{n})\approx \Sigma _{imp}(i\omega _{n})} 2022: 186:
captures the temporal fluctuations due to electron-electron correlations.
156:
of the impurity model. DMFT owes its name to the fact that the mean-field
3683: 3548: 3509: 3426: 3334: 3221:
A. Georges and G.Kotliar (1992). "Hubbard model in infinite dimensions".
3183: 2028: 123:) onto a single-site problem. In DMFT, the local observable is the local 109: 70: 3859:
Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory
3865:
Lecture notes on the LDA+DMFT approach to strongly correlated materials
3496: 3435: 1651:
The self-consistency condition requires the impurity Green's function
3449:
John Hubbard (1963). "Electron Correlations in Narrow Energy Bands".
3120: 556: 2132:. Here, DMFT and classical mean-field theories result in mean-field 3805: 3628: 3740: 3580: 3883:
Lecture notes Dynamical Mean-Field Theory of Correlated Electrons
3724:"Nonequilibrium dynamical mean-field theory and its applications" 532:
the orbitals are so localized that only nearest-neighbor hopping
3892:
https://www.cond-mat.de/events/correl21/manuscripts/pavarini.pdf
3877:
Lecture notes DMFT โ€“ From Infinite Dimensions to Real Materials
2878:{\displaystyle G_{\mathrm {imp} }^{n}=G_{\mathrm {imp} }^{n+1}} 104:
The DMFT treatment of lattice quantum models is similar to the
2128:
Spatial fluctuations also become relevant in the vicinity of
189: 3666: 1118:
The Matsubara Green's function of this model, defined by
3787:
Roy, F; Biroli, G; Bunin, G; Cammarota, C (2019-11-29).
3220: 3786: 3721: 2023:
DMFT approximation: locality of the lattice self-energy
224:. The Hubbard Hamiltonian may take the following form: 37:) is a method to determine the electronic structure of 3375:"Dynamical mean-field theory for correlated electrons" 3265: 3060:{\displaystyle U_{\alpha \beta }n_{\alpha }n_{\beta }} 2977:(compressibility, optical conductivity, specific heat) 3561: 3093: 3073: 3023: 2987: 2940: 2920: 2900: 2819: 2655: 2601: 2457: 2401: 2314: 2260: 2215: 2191: 2171: 2151: 2040: 1980: 1801: 1701: 1657: 1595: 1556: 1517: 1400: 1357: 1232: 1206: 1124: 1089: 1062: 1041: 1014: 985: 958: 659: 636: 601: 571: 538: 515: 449: 429: 384: 364: 233: 210: 162: 133: 1695:
to coincide with the local lattice Green's function
2981:In particular, the drop of the double-occupancy as 1351:, which is the imaginary-time Fourier-transform of 3793:Journal of Physics A: Mathematical and Theoretical 3099: 3079: 3059: 2993: 2946: 2926: 2906: 2877: 2803: 2641: 2595:Solve the AIM for a new impurity Green's function 2585: 2441: 2385: 2297: 2246: 2197: 2177: 2157: 2109: 2011: 1963: 1784: 1687: 1607: 1581: 1542: 1499: 1379: 1343: 1218: 1192: 1107: 1075: 1047: 1027: 998: 971: 938: 642: 622: 587: 557:The auxiliary problem: the Anderson impurity model 544: 521: 490: 435: 415: 370: 347: 216: 177: 148: 3268:"Correlated Lattice Fermions in d = โˆž Dimensions" 3001:increases is a signature of the Mott transition. 2813:Go back to step 2 until convergence, namely when 3906: 3107:denote different orbitals. The combination with 2642:{\displaystyle G_{\mathrm {imp} }(i\omega _{n})} 2442:{\displaystyle G_{\mathrm {loc} }(i\omega _{n})} 108:(MFT) treatment of classical models such as the 99: 80:One of DMFT's main successes is to describe the 3415: 979:describes the non-correlated electronic levels 199: 3214: 2031:, by equating it to the impurity self-energy: 3871:Lecture notes DMFT at 25: Infinite Dimensions 1646: 3448: 3372: 1779: 1730: 1187: 1150: 264: 255: 1200:, is entirely determined by the parameters 491:{\displaystyle n_{i}=c_{i}^{\dagger }c_{i}} 358:where, on suppressing the spin 1/2 indices 3900:https://doi.org/10.1007/s40766-021-00025-8 3313: 3311: 3139: 3012: 501:The following assumptions have been made: 3804: 3739: 3682: 3627: 3604: 3579: 3508: 3425: 3400: 3333: 2914:, bandwidth, filling (chemical potential 2298:{\displaystyle \Sigma (k,i\omega _{n})=0} 1688:{\displaystyle G_{\mathrm {imp} }(\tau )} 1226:and the so-called hybridization function 190:Description of DMFT for the Hubbard model 3409: 3366: 3168:with a thermodynamic number of species. 1380:{\displaystyle \Delta _{\sigma }(\tau )} 3493: 3308: 3171: 2247:{\displaystyle \Sigma (k,i\omega _{n})} 2012:{\displaystyle \Sigma (k,i\omega _{n})} 623:{\displaystyle a_{p\sigma }^{\dagger }} 115:Likewise, DMFT maps a lattice problem ( 14: 3907: 3660: 3442: 3259: 3177: 2145:recursion method, namely, for a given 416:{\displaystyle c_{i}^{\dagger },c_{i}} 3004: 1582:{\displaystyle \Delta (i\omega _{n})} 3487: 2395:Compute the local Green's function 1640:Continuous-time quantum Monte Carlo 1550:for a given hybridization function 194: 24: 3452:Proceedings of the Royal Society A 3155: 2858: 2855: 2852: 2832: 2829: 2826: 2763: 2760: 2757: 2702: 2668: 2665: 2662: 2657: 2614: 2611: 2608: 2558: 2555: 2552: 2547: 2510: 2507: 2504: 2458: 2414: 2411: 2408: 2358: 2355: 2352: 2347: 2315: 2261: 2216: 2073: 2041: 1981: 1930: 1814: 1811: 1808: 1670: 1667: 1664: 1557: 1475: 1407: 1359: 1234: 163: 134: 53:gas limit and the atomic limit of 25: 3941: 3852: 3266:W. Metzner; D. Vollhardt (1989). 3162:Green function out of equilibrium 2451:Compute the dynamical mean field 2019:denotes the lattice self-energy. 3114: 2962:(which gives the band structure) 2139: 3780: 3715: 3555: 3126: 2889: 1620:Numerical renormalization group 1543:{\displaystyle G(i\omega _{n})} 1108:{\displaystyle V_{p}^{\sigma }} 972:{\displaystyle H_{\text{bath}}} 64:lattice problem to a many-body 3541: 2971:the double occupancy of a site 2798: 2782: 2770: 2748: 2742: 2726: 2714: 2696: 2690: 2674: 2636: 2620: 2580: 2564: 2540: 2524: 2470: 2461: 2436: 2420: 2380: 2364: 2340: 2318: 2308:Make the DMFT approximation: 2286: 2264: 2241: 2219: 2104: 2088: 2066: 2044: 2006: 1984: 1955: 1933: 1924: 1918: 1871: 1855: 1836: 1820: 1776: 1770: 1752: 1746: 1721: 1715: 1682: 1676: 1576: 1560: 1537: 1521: 1494: 1478: 1447: 1431: 1419: 1401: 1374: 1368: 1300: 1279: 1259: 1243: 1184: 1178: 1165: 1159: 1141: 1135: 1076:{\displaystyle H_{\text{mix}}} 1028:{\displaystyle H_{\text{loc}}} 907: 894: 873: 863: 340: 327: 178:{\displaystyle \Delta (\tau )} 172: 166: 149:{\displaystyle \Delta (\tau )} 143: 137: 96:of density functional theory. 13: 1: 1630:Iterative perturbation theory 999:{\displaystyle \epsilon _{p}} 100:Relation to mean-field theory 39:strongly correlated materials 3930:Electronic structure methods 3847:Strongly correlated material 3646:10.1103/RevModPhys.90.025003 588:{\displaystyle a_{p\sigma }} 200:Single-orbital Hubbard model 7: 3861:G. Kotliar and D. Vollhardt 3840: 2649:, extract its self-energy: 529:-bands are non-degenerate), 94:local density approximation 60:DMFT consists in mapping a 31:Dynamical mean-field theory 18:Dynamical mean field theory 10: 3946: 3701:10.1103/PhysRevB.75.045118 3598:10.1103/PhysRevB.89.081107 3418:AIP Conference Proceedings 3294:10.1103/PhysRevLett.62.324 1647:Self-consistency equations 1635:Non-crossing approximation 3758:10.1103/RevModPhys.86.779 3728:Reviews of Modern Physics 3615:Reviews of Modern Physics 3527:10.1080/00018730701619647 3352:10.1103/RevModPhys.78.865 3321:Reviews of Modern Physics 3187:Reviews of Modern Physics 3109:density functional theory 43:density functional theory 3823:10.1088/1751-8121/ab1f32 3245:10.1103/PhysRevB.45.6479 3208:10.1103/RevModPhys.68.13 55:condensed-matter physics 3273:Physical Review Letters 3140:Diagrammatic extensions 3080:{\displaystyle \alpha } 3013:Multi-orbital extension 2209:Start with a guess for 643:{\displaystyle \sigma } 563:Anderson impurity model 371:{\displaystyle \sigma } 90:electronic correlations 3473:10.1098/rspa.1963.0204 3402:10.1002/andp.201100250 3101: 3100:{\displaystyle \beta } 3081: 3061: 2995: 2948: 2928: 2908: 2879: 2805: 2643: 2587: 2443: 2387: 2299: 2248: 2199: 2179: 2159: 2111: 2013: 1965: 1786: 1689: 1609: 1608:{\displaystyle U,\mu } 1583: 1544: 1501: 1381: 1345: 1220: 1219:{\displaystyle U,\mu } 1194: 1109: 1077: 1049: 1029: 1000: 973: 940: 644: 624: 589: 546: 523: 492: 437: 417: 372: 349: 218: 179: 150: 84:between a metal and a 3373:D. Vollhardt (2012). 3102: 3082: 3062: 2996: 2949: 2929: 2909: 2880: 2806: 2644: 2588: 2444: 2388: 2300: 2249: 2200: 2180: 2160: 2112: 2014: 1966: 1787: 1690: 1625:Exact diagonalization 1610: 1584: 1545: 1502: 1382: 1346: 1221: 1195: 1110: 1078: 1050: 1030: 1001: 974: 941: 645: 625: 590: 552:is taken into account 547: 524: 493: 438: 418: 373: 350: 219: 180: 151: 88:when the strength of 3915:Correlated electrons 3172:References and notes 3091: 3071: 3021: 2985: 2938: 2927:{\displaystyle \mu } 2918: 2898: 2817: 2653: 2599: 2455: 2399: 2312: 2258: 2213: 2189: 2178:{\displaystyle \mu } 2169: 2149: 2121:coordination limit. 2038: 1978: 1799: 1699: 1655: 1593: 1554: 1515: 1398: 1355: 1230: 1204: 1122: 1087: 1060: 1039: 1012: 983: 956: 657: 634: 599: 569: 536: 513: 447: 427: 382: 362: 231: 208: 160: 131: 51:nearly free electron 3815:2019JPhA...52V4001R 3750:2014RvMP...86..779A 3693:2007PhRvB..75d5118T 3638:2018RvMP...90b5003R 3590:2014PhRvB..89h1107E 3519:2007AdPhy..56..829H 3465:1963RSPSA.276..238H 3393:2012AnP...524....1V 3344:2006RvMP...78..865K 3286:1989PhRvL..62..324M 3237:1992PhRvB..45.6479G 3200:1996RvMP...68...13G 3150:two-particle vertex 2934:), and temperature 2874: 2842: 2523: 1769: 1297: 1104: 795: 780: 711: 619: 477: 399: 289: 3380:Annalen der Physik 3097: 3077: 3057: 3005:Extensions of DMFT 2991: 2975:response functions 2944: 2924: 2904: 2875: 2846: 2820: 2801: 2639: 2583: 2498: 2439: 2383: 2295: 2244: 2195: 2175: 2155: 2134:critical exponents 2107: 2009: 1961: 1886: 1782: 1755: 1685: 1605: 1579: 1540: 1497: 1377: 1341: 1283: 1274: 1216: 1190: 1105: 1090: 1073: 1045: 1025: 996: 969: 936: 935: 921: 847: 833: 781: 766: 760: 740: 726: 697: 686: 640: 620: 602: 585: 542: 519: 488: 463: 433: 413: 385: 368: 345: 318: 272: 271: 214: 175: 146: 3925:Quantum mechanics 3920:Materials science 3670:Physical Review B 3568:Physical Review B 3459:(1365): 238โ€“257. 3436:10.1063/1.1800733 3231:(12): 6479โ€“6483. 3224:Physical Review B 2994:{\displaystyle U} 2960:spectral function 2947:{\displaystyle T} 2907:{\displaystyle U} 2198:{\displaystyle T} 2158:{\displaystyle U} 2130:phase transitions 1959: 1877: 1339: 1265: 1132: 1070: 1048:{\displaystyle U} 1022: 966: 931: 853: 851: 843: 748: 746: 744: 736: 677: 675: 673: 667: 545:{\displaystyle t} 522:{\displaystyle d} 436:{\displaystyle i} 309: 250: 241: 217:{\displaystyle U} 106:mean-field theory 16:(Redirected from 3937: 3835: 3834: 3808: 3784: 3778: 3777: 3743: 3719: 3713: 3712: 3686: 3684:cond-mat/0603100 3664: 3658: 3657: 3631: 3608: 3602: 3601: 3583: 3574:(8): 081107(R). 3559: 3553: 3552: 3545: 3539: 3538: 3512: 3510:cond-mat/0511293 3491: 3485: 3484: 3446: 3440: 3439: 3429: 3427:cond-mat/0403123 3413: 3407: 3406: 3404: 3370: 3364: 3363: 3337: 3335:cond-mat/0511085 3315: 3306: 3305: 3263: 3257: 3256: 3218: 3212: 3211: 3181: 3146:phase transition 3106: 3104: 3103: 3098: 3086: 3084: 3083: 3078: 3066: 3064: 3063: 3058: 3056: 3055: 3046: 3045: 3036: 3035: 3000: 2998: 2997: 2992: 2953: 2951: 2950: 2945: 2933: 2931: 2930: 2925: 2913: 2911: 2910: 2905: 2884: 2882: 2881: 2876: 2873: 2862: 2861: 2841: 2836: 2835: 2810: 2808: 2807: 2802: 2797: 2796: 2781: 2780: 2768: 2767: 2766: 2741: 2740: 2725: 2724: 2712: 2711: 2706: 2705: 2689: 2688: 2673: 2672: 2671: 2648: 2646: 2645: 2640: 2635: 2634: 2619: 2618: 2617: 2592: 2590: 2589: 2584: 2579: 2578: 2563: 2562: 2561: 2539: 2538: 2522: 2514: 2513: 2488: 2487: 2448: 2446: 2445: 2440: 2435: 2434: 2419: 2418: 2417: 2392: 2390: 2389: 2384: 2379: 2378: 2363: 2362: 2361: 2339: 2338: 2304: 2302: 2301: 2296: 2285: 2284: 2253: 2251: 2250: 2245: 2240: 2239: 2204: 2202: 2201: 2196: 2185:and temperature 2184: 2182: 2181: 2176: 2164: 2162: 2161: 2156: 2116: 2114: 2113: 2108: 2103: 2102: 2087: 2086: 2065: 2064: 2018: 2016: 2015: 2010: 2005: 2004: 1970: 1968: 1967: 1962: 1960: 1958: 1954: 1953: 1905: 1904: 1888: 1885: 1870: 1869: 1854: 1853: 1835: 1834: 1819: 1818: 1817: 1791: 1789: 1788: 1783: 1768: 1763: 1745: 1744: 1714: 1713: 1694: 1692: 1691: 1686: 1675: 1674: 1673: 1614: 1612: 1611: 1606: 1588: 1586: 1585: 1580: 1575: 1574: 1549: 1547: 1546: 1541: 1536: 1535: 1506: 1504: 1503: 1498: 1493: 1492: 1465: 1464: 1446: 1445: 1430: 1429: 1417: 1416: 1411: 1410: 1386: 1384: 1383: 1378: 1367: 1366: 1350: 1348: 1347: 1342: 1340: 1338: 1337: 1336: 1324: 1323: 1310: 1309: 1308: 1303: 1296: 1291: 1282: 1276: 1273: 1258: 1257: 1242: 1241: 1225: 1223: 1222: 1217: 1199: 1197: 1196: 1191: 1177: 1176: 1134: 1133: 1130: 1114: 1112: 1111: 1106: 1103: 1098: 1082: 1080: 1079: 1074: 1072: 1071: 1068: 1054: 1052: 1051: 1046: 1034: 1032: 1031: 1026: 1024: 1023: 1020: 1005: 1003: 1002: 997: 995: 994: 978: 976: 975: 970: 968: 967: 964: 945: 943: 942: 937: 934: 933: 932: 929: 922: 917: 916: 912: 911: 910: 898: 897: 877: 876: 867: 866: 846: 845: 844: 841: 834: 829: 828: 824: 808: 807: 794: 789: 779: 774: 759: 739: 738: 737: 734: 727: 722: 721: 720: 710: 705: 696: 695: 685: 669: 668: 665: 649: 647: 646: 641: 629: 627: 626: 621: 618: 613: 594: 592: 591: 586: 584: 583: 551: 549: 548: 543: 528: 526: 525: 520: 497: 495: 494: 489: 487: 486: 476: 471: 459: 458: 442: 440: 439: 434: 422: 420: 419: 414: 412: 411: 398: 393: 377: 375: 374: 369: 354: 352: 351: 346: 344: 343: 331: 330: 317: 302: 301: 288: 283: 270: 243: 242: 239: 223: 221: 220: 215: 195:The DMFT mapping 184: 182: 181: 176: 155: 153: 152: 147: 125:Green's function 82:phase transition 21: 3945: 3944: 3940: 3939: 3938: 3936: 3935: 3934: 3905: 3904: 3855: 3843: 3838: 3785: 3781: 3720: 3716: 3665: 3661: 3609: 3605: 3560: 3556: 3547: 3546: 3542: 3492: 3488: 3447: 3443: 3414: 3410: 3371: 3367: 3316: 3309: 3264: 3260: 3219: 3215: 3182: 3178: 3174: 3158: 3156:Non-equilibrium 3142: 3129: 3117: 3092: 3089: 3088: 3072: 3069: 3068: 3051: 3047: 3041: 3037: 3028: 3024: 3022: 3019: 3018: 3015: 3007: 2986: 2983: 2982: 2939: 2936: 2935: 2919: 2916: 2915: 2899: 2896: 2895: 2892: 2863: 2851: 2850: 2837: 2825: 2824: 2818: 2815: 2814: 2792: 2788: 2773: 2769: 2756: 2755: 2751: 2736: 2732: 2717: 2713: 2707: 2701: 2700: 2699: 2684: 2680: 2661: 2660: 2656: 2654: 2651: 2650: 2630: 2626: 2607: 2606: 2602: 2600: 2597: 2596: 2574: 2570: 2551: 2550: 2546: 2534: 2530: 2515: 2503: 2502: 2483: 2479: 2456: 2453: 2452: 2430: 2426: 2407: 2406: 2402: 2400: 2397: 2396: 2374: 2370: 2351: 2350: 2346: 2334: 2330: 2313: 2310: 2309: 2280: 2276: 2259: 2256: 2255: 2235: 2231: 2214: 2211: 2210: 2190: 2187: 2186: 2170: 2167: 2166: 2150: 2147: 2146: 2142: 2098: 2094: 2076: 2072: 2060: 2056: 2039: 2036: 2035: 2025: 2000: 1996: 1979: 1976: 1975: 1949: 1945: 1900: 1896: 1892: 1887: 1881: 1865: 1861: 1846: 1842: 1830: 1826: 1807: 1806: 1802: 1800: 1797: 1796: 1764: 1759: 1740: 1736: 1706: 1702: 1700: 1697: 1696: 1663: 1662: 1658: 1656: 1653: 1652: 1649: 1594: 1591: 1590: 1570: 1566: 1555: 1552: 1551: 1531: 1527: 1516: 1513: 1512: 1488: 1484: 1460: 1456: 1441: 1437: 1422: 1418: 1412: 1406: 1405: 1404: 1399: 1396: 1395: 1362: 1358: 1356: 1353: 1352: 1332: 1328: 1319: 1315: 1311: 1304: 1299: 1298: 1292: 1287: 1278: 1277: 1275: 1269: 1253: 1249: 1237: 1233: 1231: 1228: 1227: 1205: 1202: 1201: 1172: 1168: 1129: 1125: 1123: 1120: 1119: 1099: 1094: 1088: 1085: 1084: 1067: 1063: 1061: 1058: 1057: 1040: 1037: 1036: 1019: 1015: 1013: 1010: 1009: 990: 986: 984: 981: 980: 963: 959: 957: 954: 953: 928: 924: 923: 906: 902: 893: 889: 888: 884: 872: 868: 862: 858: 854: 852: 840: 836: 835: 800: 796: 790: 785: 775: 770: 765: 761: 752: 747: 745: 733: 729: 728: 716: 712: 706: 701: 691: 687: 681: 676: 674: 664: 660: 658: 655: 654: 635: 632: 631: 614: 606: 600: 597: 596: 576: 572: 570: 567: 566: 559: 537: 534: 533: 514: 511: 510: 482: 478: 472: 467: 454: 450: 448: 445: 444: 428: 425: 424: 407: 403: 394: 389: 383: 380: 379: 363: 360: 359: 336: 332: 323: 319: 313: 294: 290: 284: 276: 254: 238: 234: 232: 229: 228: 209: 206: 205: 202: 197: 192: 161: 158: 157: 132: 129: 128: 102: 28: 23: 22: 15: 12: 11: 5: 3943: 3933: 3932: 3927: 3922: 3917: 3903: 3902: 3897: 3894: 3889: 3886: 3880: 3874: 3868: 3862: 3854: 3853:External links 3851: 3850: 3849: 3842: 3839: 3837: 3836: 3799:(48): 484001. 3779: 3734:(2): 779โ€“837. 3714: 3659: 3603: 3554: 3540: 3503:(6): 829โ€“926. 3486: 3441: 3408: 3365: 3307: 3280:(3): 324โ€“327. 3258: 3213: 3175: 3173: 3170: 3157: 3154: 3141: 3138: 3128: 3125: 3116: 3113: 3096: 3076: 3054: 3050: 3044: 3040: 3034: 3031: 3027: 3014: 3011: 3006: 3003: 2990: 2979: 2978: 2972: 2969: 2967:kinetic energy 2963: 2943: 2923: 2903: 2891: 2888: 2887: 2886: 2872: 2869: 2866: 2860: 2857: 2854: 2849: 2845: 2840: 2834: 2831: 2828: 2823: 2811: 2800: 2795: 2791: 2787: 2784: 2779: 2776: 2772: 2765: 2762: 2759: 2754: 2750: 2747: 2744: 2739: 2735: 2731: 2728: 2723: 2720: 2716: 2710: 2704: 2698: 2695: 2692: 2687: 2683: 2679: 2676: 2670: 2667: 2664: 2659: 2638: 2633: 2629: 2625: 2622: 2616: 2613: 2610: 2605: 2593: 2582: 2577: 2573: 2569: 2566: 2560: 2557: 2554: 2549: 2545: 2542: 2537: 2533: 2529: 2526: 2521: 2518: 2512: 2509: 2506: 2501: 2497: 2494: 2491: 2486: 2482: 2478: 2475: 2472: 2469: 2466: 2463: 2460: 2449: 2438: 2433: 2429: 2425: 2422: 2416: 2413: 2410: 2405: 2393: 2382: 2377: 2373: 2369: 2366: 2360: 2357: 2354: 2349: 2345: 2342: 2337: 2333: 2329: 2326: 2323: 2320: 2317: 2306: 2294: 2291: 2288: 2283: 2279: 2275: 2272: 2269: 2266: 2263: 2243: 2238: 2234: 2230: 2227: 2224: 2221: 2218: 2194: 2174: 2154: 2141: 2138: 2118: 2117: 2106: 2101: 2097: 2093: 2090: 2085: 2082: 2079: 2075: 2071: 2068: 2063: 2059: 2055: 2052: 2049: 2046: 2043: 2024: 2021: 2008: 2003: 1999: 1995: 1992: 1989: 1986: 1983: 1972: 1971: 1957: 1952: 1948: 1944: 1941: 1938: 1935: 1932: 1929: 1926: 1923: 1920: 1917: 1914: 1911: 1908: 1903: 1899: 1895: 1891: 1884: 1880: 1876: 1873: 1868: 1864: 1860: 1857: 1852: 1849: 1845: 1841: 1838: 1833: 1829: 1825: 1822: 1816: 1813: 1810: 1805: 1781: 1778: 1775: 1772: 1767: 1762: 1758: 1754: 1751: 1748: 1743: 1739: 1735: 1732: 1729: 1726: 1723: 1720: 1717: 1712: 1709: 1705: 1684: 1681: 1678: 1672: 1669: 1666: 1661: 1648: 1645: 1644: 1643: 1637: 1632: 1627: 1622: 1604: 1601: 1598: 1578: 1573: 1569: 1565: 1562: 1559: 1539: 1534: 1530: 1526: 1523: 1520: 1509: 1508: 1496: 1491: 1487: 1483: 1480: 1477: 1474: 1471: 1468: 1463: 1459: 1455: 1452: 1449: 1444: 1440: 1436: 1433: 1428: 1425: 1421: 1415: 1409: 1403: 1376: 1373: 1370: 1365: 1361: 1335: 1331: 1327: 1322: 1318: 1314: 1307: 1302: 1295: 1290: 1286: 1281: 1272: 1268: 1264: 1261: 1256: 1252: 1248: 1245: 1240: 1236: 1215: 1212: 1209: 1189: 1186: 1183: 1180: 1175: 1171: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1128: 1116: 1115: 1102: 1097: 1093: 1066: 1055: 1044: 1018: 1007: 993: 989: 962: 947: 946: 927: 920: 915: 909: 905: 901: 896: 892: 887: 883: 880: 875: 871: 865: 861: 857: 850: 839: 832: 827: 823: 820: 817: 814: 811: 806: 803: 799: 793: 788: 784: 778: 773: 769: 764: 758: 755: 751: 743: 732: 725: 719: 715: 709: 704: 700: 694: 690: 684: 680: 672: 663: 639: 617: 612: 609: 605: 582: 579: 575: 558: 555: 554: 553: 541: 530: 518: 485: 481: 475: 470: 466: 462: 457: 453: 432: 410: 406: 402: 397: 392: 388: 367: 356: 355: 342: 339: 335: 329: 326: 322: 316: 312: 308: 305: 300: 297: 293: 287: 282: 279: 275: 269: 266: 263: 260: 257: 253: 249: 246: 237: 213: 201: 198: 196: 193: 191: 188: 174: 171: 168: 165: 145: 142: 139: 136: 101: 98: 86:Mott insulator 47:band structure 26: 9: 6: 4: 3: 2: 3942: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3912: 3910: 3901: 3898: 3895: 3893: 3890: 3887: 3884: 3881: 3878: 3875: 3872: 3869: 3866: 3863: 3860: 3857: 3856: 3848: 3845: 3844: 3832: 3828: 3824: 3820: 3816: 3812: 3807: 3802: 3798: 3794: 3790: 3783: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3742: 3737: 3733: 3729: 3725: 3718: 3710: 3706: 3702: 3698: 3694: 3690: 3685: 3680: 3677:(4): 045118. 3676: 3672: 3671: 3663: 3655: 3651: 3647: 3643: 3639: 3635: 3630: 3625: 3622:(4): 025003. 3621: 3617: 3616: 3607: 3599: 3595: 3591: 3587: 3582: 3577: 3573: 3569: 3565: 3558: 3550: 3544: 3536: 3532: 3528: 3524: 3520: 3516: 3511: 3506: 3502: 3499: 3498: 3490: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3454: 3453: 3445: 3437: 3433: 3428: 3423: 3419: 3412: 3403: 3398: 3394: 3390: 3386: 3382: 3381: 3376: 3369: 3361: 3357: 3353: 3349: 3345: 3341: 3336: 3331: 3327: 3323: 3322: 3314: 3312: 3303: 3299: 3295: 3291: 3287: 3283: 3279: 3275: 3274: 3269: 3262: 3254: 3250: 3246: 3242: 3238: 3234: 3230: 3226: 3225: 3217: 3209: 3205: 3201: 3197: 3193: 3189: 3188: 3180: 3176: 3169: 3167: 3163: 3153: 3151: 3147: 3137: 3133: 3124: 3122: 3115:Extended DMFT 3112: 3110: 3094: 3074: 3052: 3048: 3042: 3038: 3032: 3029: 3025: 3010: 3002: 2988: 2976: 2973: 2970: 2968: 2964: 2961: 2957: 2956: 2955: 2941: 2921: 2901: 2870: 2867: 2864: 2847: 2843: 2838: 2821: 2812: 2793: 2789: 2785: 2777: 2774: 2752: 2745: 2737: 2733: 2729: 2721: 2718: 2708: 2693: 2685: 2681: 2677: 2631: 2627: 2623: 2603: 2594: 2575: 2571: 2567: 2543: 2535: 2531: 2527: 2519: 2516: 2499: 2495: 2492: 2489: 2484: 2480: 2476: 2473: 2467: 2464: 2450: 2431: 2427: 2423: 2403: 2394: 2375: 2371: 2367: 2343: 2335: 2331: 2327: 2324: 2321: 2307: 2292: 2289: 2281: 2277: 2273: 2270: 2267: 2236: 2232: 2228: 2225: 2222: 2208: 2207: 2206: 2192: 2172: 2152: 2140:The DMFT loop 2137: 2135: 2131: 2126: 2122: 2099: 2095: 2091: 2083: 2080: 2077: 2069: 2061: 2057: 2053: 2050: 2047: 2034: 2033: 2032: 2030: 2020: 2001: 1997: 1993: 1990: 1987: 1950: 1946: 1942: 1939: 1936: 1927: 1921: 1915: 1912: 1909: 1906: 1901: 1897: 1893: 1889: 1882: 1878: 1874: 1866: 1862: 1858: 1850: 1847: 1843: 1839: 1831: 1827: 1823: 1803: 1795: 1794: 1793: 1773: 1765: 1760: 1756: 1749: 1741: 1737: 1733: 1727: 1724: 1718: 1710: 1707: 1703: 1679: 1659: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1617: 1616: 1602: 1599: 1596: 1571: 1567: 1563: 1532: 1528: 1524: 1518: 1489: 1485: 1481: 1472: 1469: 1466: 1461: 1457: 1453: 1450: 1442: 1438: 1434: 1426: 1423: 1413: 1394: 1393: 1392: 1388: 1371: 1363: 1333: 1329: 1325: 1320: 1316: 1312: 1305: 1293: 1288: 1284: 1270: 1266: 1262: 1254: 1250: 1246: 1238: 1213: 1210: 1207: 1181: 1173: 1169: 1162: 1156: 1153: 1147: 1144: 1138: 1126: 1100: 1095: 1091: 1064: 1056: 1042: 1016: 1008: 991: 987: 960: 952: 951: 950: 925: 918: 913: 903: 899: 890: 885: 881: 878: 869: 859: 855: 848: 837: 830: 825: 821: 818: 815: 812: 809: 804: 801: 797: 791: 786: 782: 776: 771: 767: 762: 756: 753: 749: 741: 730: 723: 717: 713: 707: 702: 698: 692: 688: 682: 678: 670: 661: 653: 652: 651: 637: 615: 610: 607: 603: 580: 577: 573: 564: 539: 531: 516: 508: 504: 503: 502: 499: 483: 479: 473: 468: 464: 460: 455: 451: 430: 408: 404: 400: 395: 390: 386: 365: 337: 333: 324: 320: 314: 310: 306: 303: 298: 295: 291: 285: 280: 277: 273: 267: 261: 258: 251: 247: 244: 235: 227: 226: 225: 211: 187: 169: 140: 126: 122: 121:Hubbard model 118: 113: 111: 107: 97: 95: 91: 87: 83: 78: 76: 72: 67: 63: 58: 56: 52: 48: 44: 40: 36: 32: 19: 3796: 3792: 3782: 3731: 3727: 3717: 3674: 3668: 3662: 3619: 3613: 3606: 3571: 3567: 3557: 3543: 3500: 3495: 3489: 3456: 3450: 3444: 3417: 3411: 3384: 3378: 3368: 3325: 3319: 3277: 3271: 3261: 3228: 3222: 3216: 3191: 3185: 3179: 3159: 3143: 3134: 3130: 3127:Cluster DMFT 3118: 3016: 3008: 2980: 2893: 2890:Applications 2254:(typically, 2143: 2127: 2123: 2119: 2026: 1973: 1650: 1510: 1389: 1117: 948: 560: 500: 357: 203: 116: 114: 103: 79: 75:coordination 65: 59: 34: 30: 29: 3387:(1): 1โ€“19. 2029:self-energy 1006:of the bath 110:Ising model 71:self-energy 3909:Categories 3806:1901.10036 3629:1705.00024 3497:Adv. Phys. 3328:(3): 865. 1642:algorithms 45:and usual 3831:1751-8113 3774:119213862 3766:0034-6861 3741:1310.5329 3709:119538856 3654:119186041 3581:1402.4190 3360:119099745 3194:(1): 13. 3166:community 3121:t-J model 3095:β 3075:α 3053:β 3043:α 3033:β 3030:α 2922:μ 2790:ω 2775:− 2746:− 2734:ω 2719:− 2682:ω 2658:Σ 2628:ω 2572:ω 2548:Σ 2544:− 2532:ω 2517:− 2496:− 2493:μ 2481:ω 2468:ω 2459:Δ 2428:ω 2372:ω 2348:Σ 2344:≈ 2332:ω 2316:Σ 2278:ω 2262:Σ 2233:ω 2217:Σ 2173:μ 2096:ω 2074:Σ 2070:≈ 2058:ω 2042:Σ 1998:ω 1982:Σ 1947:ω 1931:Σ 1928:− 1916:ϵ 1913:− 1910:μ 1898:ω 1879:∑ 1863:ω 1828:ω 1780:⟩ 1766:† 1750:τ 1731:⟨ 1728:− 1719:τ 1680:τ 1603:μ 1568:ω 1558:Δ 1529:ω 1486:ω 1476:Δ 1473:− 1470:μ 1458:ω 1439:ω 1424:− 1372:τ 1364:σ 1360:Δ 1330:ϵ 1326:− 1317:ω 1294:σ 1267:∑ 1251:ω 1239:σ 1235:Δ 1214:μ 1188:⟩ 1174:† 1163:τ 1151:⟨ 1148:− 1139:τ 1101:σ 988:ϵ 919:⏟ 908:↓ 895:↑ 882:μ 879:− 874:↓ 864:↑ 831:⏟ 805:σ 792:† 787:σ 777:σ 757:σ 750:∑ 724:⏟ 708:† 689:ϵ 679:∑ 638:σ 616:† 611:σ 581:σ 474:† 396:† 366:σ 341:↓ 328:↑ 311:∑ 299:σ 286:† 281:σ 268:σ 265:⟩ 256:⟨ 252:∑ 170:τ 164:Δ 141:τ 135:Δ 62:many-body 3841:See also 3535:15466043 3481:35439962 3302:10040203 3253:10000408 509:, whose 507:cuprates 3811:Bibcode 3746:Bibcode 3689:Bibcode 3634:Bibcode 3586:Bibcode 3515:Bibcode 3461:Bibcode 3389:Bibcode 3340:Bibcode 3282:Bibcode 3233:Bibcode 3196:Bibcode 240:Hubbard 3829:  3772:  3764:  3707:  3652:  3533:  3479:  3358:  3300:  3251:  3067:where 1974:where 949:where 650:, is: 443:, and 3801:arXiv 3770:S2CID 3736:arXiv 3705:S2CID 3679:arXiv 3650:S2CID 3624:arXiv 3576:arXiv 3531:S2CID 3505:arXiv 3477:S2CID 3422:arXiv 3356:S2CID 3330:arXiv 66:local 3827:ISSN 3762:ISSN 3298:PMID 3249:PMID 3087:and 2965:the 2958:the 1589:and 965:bath 735:bath 595:and 119:the 117:e.g. 35:DMFT 3819:doi 3754:doi 3697:doi 3642:doi 3594:doi 3523:doi 3469:doi 3457:276 3432:doi 3397:doi 3385:524 3348:doi 3290:doi 3241:doi 3204:doi 1507:(1) 1131:imp 1069:mix 1021:loc 930:loc 842:mix 666:AIM 3911:: 3825:. 3817:. 3809:. 3797:52 3795:. 3791:. 3768:. 3760:. 3752:. 3744:. 3732:86 3730:. 3726:. 3703:. 3695:. 3687:. 3675:75 3673:. 3648:. 3640:. 3632:. 3620:90 3618:. 3592:. 3584:. 3572:89 3570:. 3566:. 3529:. 3521:. 3513:. 3501:56 3475:. 3467:. 3455:. 3430:. 3395:. 3383:. 3377:. 3354:. 3346:. 3338:. 3326:78 3324:. 3310:^ 3296:. 3288:. 3278:62 3276:. 3270:. 3247:. 3239:. 3229:45 3227:. 3202:. 3192:68 3190:. 3152:. 3123:. 2954:: 2205:: 2165:, 1792:: 1387:. 498:. 378:, 77:. 57:. 3833:. 3821:: 3813:: 3803:: 3776:. 3756:: 3748:: 3738:: 3711:. 3699:: 3691:: 3681:: 3656:. 3644:: 3636:: 3626:: 3600:. 3596:: 3588:: 3578:: 3551:. 3537:. 3525:: 3517:: 3507:: 3483:. 3471:: 3463:: 3438:. 3434:: 3424:: 3405:. 3399:: 3391:: 3362:. 3350:: 3342:: 3332:: 3304:. 3292:: 3284:: 3255:. 3243:: 3235:: 3210:. 3206:: 3198:: 3049:n 3039:n 3026:U 2989:U 2942:T 2902:U 2885:. 2871:1 2868:+ 2865:n 2859:p 2856:m 2853:i 2848:G 2844:= 2839:n 2833:p 2830:m 2827:i 2822:G 2799:) 2794:n 2786:i 2783:( 2778:1 2771:) 2764:p 2761:m 2758:i 2753:G 2749:( 2743:) 2738:n 2730:i 2727:( 2722:1 2715:) 2709:0 2703:G 2697:( 2694:= 2691:) 2686:n 2678:i 2675:( 2669:p 2666:m 2663:i 2637:) 2632:n 2624:i 2621:( 2615:p 2612:m 2609:i 2604:G 2581:) 2576:n 2568:i 2565:( 2559:p 2556:m 2553:i 2541:) 2536:n 2528:i 2525:( 2520:1 2511:c 2508:o 2505:l 2500:G 2490:+ 2485:n 2477:i 2474:= 2471:) 2465:i 2462:( 2437:) 2432:n 2424:i 2421:( 2415:c 2412:o 2409:l 2404:G 2381:) 2376:n 2368:i 2365:( 2359:p 2356:m 2353:i 2341:) 2336:n 2328:i 2325:, 2322:k 2319:( 2305:) 2293:0 2290:= 2287:) 2282:n 2274:i 2271:, 2268:k 2265:( 2242:) 2237:n 2229:i 2226:, 2223:k 2220:( 2193:T 2153:U 2105:) 2100:n 2092:i 2089:( 2084:p 2081:m 2078:i 2067:) 2062:n 2054:i 2051:, 2048:k 2045:( 2007:) 2002:n 1994:i 1991:, 1988:k 1985:( 1956:) 1951:n 1943:i 1940:, 1937:k 1934:( 1925:) 1922:k 1919:( 1907:+ 1902:n 1894:i 1890:1 1883:k 1875:= 1872:) 1867:n 1859:i 1856:( 1851:i 1848:i 1844:G 1840:= 1837:) 1832:n 1824:i 1821:( 1815:p 1812:m 1809:i 1804:G 1777:) 1774:0 1771:( 1761:i 1757:c 1753:) 1747:( 1742:i 1738:c 1734:T 1725:= 1722:) 1716:( 1711:i 1708:i 1704:G 1683:) 1677:( 1671:p 1668:m 1665:i 1660:G 1600:, 1597:U 1577:) 1572:n 1564:i 1561:( 1538:) 1533:n 1525:i 1522:( 1519:G 1495:) 1490:n 1482:i 1479:( 1467:+ 1462:n 1454:i 1451:= 1448:) 1443:n 1435:i 1432:( 1427:1 1420:) 1414:0 1408:G 1402:( 1375:) 1369:( 1334:p 1321:n 1313:i 1306:2 1301:| 1289:p 1285:V 1280:| 1271:p 1263:= 1260:) 1255:n 1247:i 1244:( 1211:, 1208:U 1185:) 1182:0 1179:( 1170:c 1166:) 1160:( 1157:c 1154:T 1145:= 1142:) 1136:( 1127:G 1096:p 1092:V 1065:H 1043:U 1017:H 992:p 961:H 926:H 914:) 904:n 900:+ 891:n 886:( 870:n 860:n 856:U 849:+ 838:H 826:) 822:. 819:c 816:. 813:h 810:+ 802:p 798:a 783:c 772:p 768:V 763:( 754:p 742:+ 731:H 718:p 714:a 703:p 699:a 693:p 683:p 671:= 662:H 608:p 604:a 578:p 574:a 540:t 517:d 484:i 480:c 469:i 465:c 461:= 456:i 452:n 431:i 409:i 405:c 401:, 391:i 387:c 338:i 334:n 325:i 321:n 315:i 307:U 304:+ 296:j 292:c 278:i 274:c 262:j 259:i 248:t 245:= 236:H 212:U 173:) 167:( 144:) 138:( 33:( 20:)

Index

Dynamical mean field theory
strongly correlated materials
density functional theory
band structure
nearly free electron
condensed-matter physics
many-body
self-energy
coordination
phase transition
Mott insulator
electronic correlations
local density approximation
mean-field theory
Ising model
Hubbard model
Green's function
cuprates
Anderson impurity model
Numerical renormalization group
Exact diagonalization
Iterative perturbation theory
Non-crossing approximation
Continuous-time quantum Monte Carlo
self-energy
phase transitions
critical exponents
spectral function
kinetic energy
response functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘