Knowledge

Neuroscience of music

Source 📝

252:(AP) is defined as the ability to identify the pitch of a musical tone or to produce a musical tone at a given pitch without the use of an external reference pitch. Neuroscientific research has not discovered a distinct activation pattern common for possessors of AP. Zatorre, Perry, Beckett, Westbury and Evans (1998) examined the neural foundations of AP using functional and structural brain imaging techniques. Positron emission tomography (PET) was utilized to measure cerebral blood flow (CBF) in musicians possessing AP and musicians lacking AP. When presented with musical tones, similar patterns of increased CBF in auditory cortical areas emerged in both groups. AP possessors and non-AP subjects demonstrated similar patterns of left dorsolateral frontal activity when they performed relative pitch judgments. However, in non-AP subjects activation in the right inferior frontal cortex was present whereas AP possessors showed no such activity. This finding suggests that musicians with AP do not need access to working memory devices for such tasks. These findings imply that there is no specific regional activation pattern unique to AP. Rather, the availability of specific processing mechanisms and task demands determine the recruited neural areas. 653:
found that the professional piano players showed lower levels of cortical activation in motor areas of the brain. It was concluded that a lesser amount of neurons needed to be activated for the piano players due to long-term motor practice which results in the different cortical activation patterns. Koeneke, Lutz, Wustenberg and Jancke (2004) reported similar findings in keyboard players. Skilled keyboard players and a control group performed complex tasks involving unimanual and bimanual finger movements. During task conditions, strong hemodynamic responses in the cerebellum were shown by both non-musicians and keyboard players, but non-musicians showed the stronger response. This finding indicates that different cortical activation patterns emerge from long-term motor practice. This evidence supports previous data showing that musicians require fewer neurons to perform the same movements.
278:
tune than that which was out of key. Ratings of musical incongruity were higher for out of tune pitch melodies than for out of key pitch. In the focused attention condition, out of key and out of tune pitches produced late parietal positivity. The findings of Brattico et al. (2006) suggest that there is automatic and rapid processing of melodic properties in the secondary auditory cortex. The findings that pitch incongruities were detected automatically, even in processing unfamiliar melodies, suggests that there is an automatic comparison of incoming information with long term knowledge of musical scale properties, such as culturally influenced rules of musical properties (common chord progressions, scale patterns, etc.) and individual expectations of how the melody should proceed.
716:(MMN) can be based solely on imagery of sounds. The task involved participants listening to the beginning of a melody, continuation of the melody in his/her head and finally hearing a correct/incorrect tone as further continuation of the melody. The imagery of these melodies was strong enough to obtain an early preattentive brain response to unanticipated violations of the imagined melodies in the musicians. These results indicate similar neural correlates are relied upon for trained musicians imagery and perception. Additionally, the findings suggest that modification of the imagery mismatch negativity (iMMN) through intense musical training results in achievement of a superior ability for imagery and preattentive processing of music. 944:, is a syndrome of selective impairment in music recognition. Three cases of music agnosia are examined by Dalla Bella and Peretz (1999); C.N., G.L., and I.R.. All three of these patients suffered bilateral damage to the auditory cortex which resulted in musical difficulties while speech understanding remained intact. Their impairment is specific to the recognition of once familiar melodies. They are spared in recognizing environmental sounds and in recognizing lyrics. Peretz (1996) has studied C.N.'s music agnosia further and reports an initial impairment of pitch processing and spared temporal processing. C.N. later recovered in pitch processing abilities but remained impaired in tune recognition and familiarity judgments. 680:
bilaterally and males process music with a right-hemispheric predominance. However, the early negativity of males was also present over the left hemisphere. This indicates that males do not exclusively utilize the right hemisphere for musical information processing. In a follow-up study, Koelsch, Grossman, Gunter, Hahne, Schroger and Friederici (2003) found that boys show lateralization of the early anterior negativity in the left hemisphere but found a bilateral effect in girls. This indicates a developmental effect as early negativity is lateralized in the right hemisphere in men and in the left hemisphere in boys.
723:(CBF) changes related to auditory imagery and perceptual tasks. These tasks examined the involvement of particular anatomical regions as well as functional commonalities between perceptual processes and imagery. Similar patterns of CBF changes provided evidence supporting the notion that imagery processes share a substantial neural substrate with related perceptual processes. Bilateral neural activity in the secondary auditory cortex was associated with both perceiving and imagining songs. This implies that within the secondary auditory cortex, processes underlie the phenomenological impression of imagined sounds. The 1014:
small right occipitotemporal lesion. After sustaining damage to these regions, P.K.C. was selectively impaired in the areas of reading, writing and understanding musical notation but maintained other musical skills. The ability to read aloud letters, words, numbers and symbols (including musical ones) was retained. However, P.K.C. was unable to read aloud musical notes on the staff regardless of whether the task involved naming with the conventional letter or by singing or playing. Yet despite this specific deficit, P.K.C. retained the ability to remember and play familiar and new melodies.
920:
study reproduced task-specific hand dystonia by having guitarists use a real guitar neck inside the scanner as well as performing a guitar exercise to trigger abnormal hand movement. The dystonic guitarists showed significantly more activation of the contralateral primary sensorimotor cortex as well as a bilateral underactivation of premotor areas. This activation pattern represents abnormal recruitment of the cortical areas involved in motor control. Even in professional musicians, widespread bilateral cortical region involvement is necessary to produce complex hand movements such as
948:
representational system which disrupts music recognition. Many of the cases of music agnosia have resulted from surgery involving the middle cerebral artery. Patient studies have surmounted a large amount of evidence demonstrating that the left side of the brain is more suitable for holding long-term memory representations of music and that the right side is important for controlling access to these representations. Associative music agnosias tend to be produced by damage to the left hemisphere, while apperceptive music agnosia reflects damage to the right hemisphere.
610:, though the roles played by the two sides of the brain in processing different aspects of language are still unclear. Music is also processed by both the left and the right sides of the brain. Recent evidence further suggest shared processing between language and music at the conceptual level. It has also been found that, among music conservatory students, the prevalence of absolute pitch is much higher for speakers of tone language, even controlling for ethnic background, showing that language influences how musical tones are perceived. 883:
one or several notes deviating from an otherwise repetitive pattern. Contrasting attended versus unattended instruments, ERP analysis shows subject- and instrument-specific responses including P300 and early auditory components. The attended instrument could be classified offline with high accuracy. This indicates that attention paid to a particular instrument in polyphonic music can be inferred from ongoing EEG, a finding that is potentially relevant for building more ergonomic music-listing based brain-computer interfaces.
454:
ganglia, the SMA and the pre-SMA, the cerebellum, and the premotor and prefrontal cortices, all involved in the production and learning of motor sequences but without explicit evidence of their specific contributions or interactions amongst one another. In animals, neurophysiological studies have demonstrated an interaction between the frontal cortex and the basal ganglia during the learning of movement sequences. Human neuroimaging studies have also emphasized the contribution of the basal ganglia for well-learned sequences.
866:. Altenmuller et al. studied the difference between active and passive musical instruction and found both that over a longer (but not short) period of time, the actively taught students retained much more information than the passively taught students. The actively taught students were also found to have greater cerebral cortex activation. The passively taught students weren't wasting their time; they, along with the active group, displayed greater left hemisphere activity, which is typical in trained musicians. 896:
musical exposure before the age of seven, and a great increase in the size of the corpus callosum. These fibers join together the left and right hemispheres and indicate an increased relaying between both sides of the brain. This suggests the merging between the spatial- emotiono-tonal processing of the right brain and the linguistical processing of the left brain. This large relaying across many different areas of the brain might contribute to music's ability to aid in memory function.
445:(SMA). Specifically the basal ganglia and possibly the SMA have been implicated in interval timing at longer timescales (1 second and above), while the cerebellum may be more important for controlling motor timing at shorter timescales (milliseconds). Furthermore, these results indicate that motor timing is not controlled by a single brain region, but by a network of regions that control specific parameters of movement and that depend on the relevant timescale of the rhythmic sequence. 671:
The ability to process information musically supports the idea of an implicit musical ability in the human brain. In a follow-up study, Koelsch, Schroger, and Gunter (2002) investigated whether ERAN and N5 could be evoked preattentively in non-musicians. Findings showed that both ERAN and N5 can be elicited even in a situation where the musical stimulus is ignored by the listener indicating that there is a highly differentiated preattentive musicality in the human brain.
964:, is a term for lifelong musical problems which are not attributable to mental retardation, lack of exposure to music or deafness, or brain damage after birth. Amusic brains have been found in fMRI studies to have less white matter and thicker cortex than controls in the right inferior frontal cortex. These differences suggest abnormal neuronal development in the auditory cortex and inferior frontal gyrus, two areas which are important in musical-pitch processing. 854:
performance scores in a pitch memory task resulted in a significant correlation between good task performance and the supramarginal gyrus (SMG) as well as the dorsolateral cerebellum. Findings indicate that the dorsolateral cerebellum may act as a pitch discrimination processor and the SMG may act as a short-term pitch information storage site. The left hemisphere was found to be more prominent in the pitch memory task than the right hemispheric regions.
846:
the middle temporal gyri. These patterns support the functional asymmetry favouring the left hemisphere for semantic memory. Left anterior temporal and inferior frontal regions that were activated in the musical semantic memory task produced activation peaks specifically during the presentation of musical material, suggestion that these regions are somewhat functionally specialized for musical semantic representations.
505:
affected. When auditory feedback is experimentally manipulated by delays or distortions, motor performance is significantly altered: asynchronous feedback disrupts the timing of events, whereas alteration of pitch information disrupts the selection of appropriate actions, but not their timing. This suggests that disruptions occur because both actions and percepts depend on a single underlying mental representation.
236: 1026:
Patient H.J., who acquired arrhythmia after sustaining a right temporoparietal infarct. Damage to this region impaired H.J.'s central timing system which is essentially the basis of his global rhythmic impairment. H.J. was unable to generate steady pulses in a tapping task. These findings suggest that keeping a musical beat relies on functioning in the right temporal auditory cortex.
989: 781:
associated with increases in left frontal EEG activity whereas fearful and sad musical segments were associated with increases in right frontal EEG activity. Additionally, the intensity of emotions was differentiated by the pattern of overall frontal EEG activity. Overall frontal region activity increased as affective musical stimuli became more intense.
383:(which has a skew towards the right hemisphere). Hemispheric asymmetries in the processing of dissonant/consonant sounds have been demonstrated. ERP studies have shown larger evoked responses over the left temporal area in response to dissonant chords, and over the right one, in response to consonant chords. 849:
Episodic memory of musical information involves the ability to recall the former context associated with a musical excerpt. In the condition invoking episodic memory for music, activations were found bilaterally in the middle and superior frontal gyri and precuneus, with activation predominant in the
788:
activates, which indicates a sense of conflict or emotional pain. The right hemisphere has also been found to be correlated with emotion, which can also activate areas in the cingulate in times of emotional pain, specifically social rejection (Eisenberger). This evidence, along with observations, has
656:
Musicians have been shown to have significantly more developed left planum temporales, and have also shown to have a greater word memory. Chan's study controlled for age, grade point average and years of education and found that when given a 16 word memory test, the musicians averaged one to two more
320:
activity, which was not found to be phase-locked, was also found to correspond with each beat. However, induced gamma activity did not subside when a gap was present in the rhythm, indicating that induced gamma activity may possibly serve as a sort of internal metronome independent of auditory input.
277:
independent of where attention was directed. This negativity originated in the auditory cortex, more precisely in the supratemporal lobe (which corresponds with the secondary auditory cortex) with greater activity from the right hemisphere. The negativity response was larger for pitch that was out of
711:
Musical imagery refers to the experience of replaying music by imagining it inside the head. Musicians show a superior ability for musical imagery due to intense musical training. Herholz, Lappe, Knief and Pantev (2008) investigated the differences in neural processing of a musical imagery task in
648:
bilaterally. This strong association between musician status and gray matter differences supports the notion that musicians' brains show use-dependent structural changes. Due to the distinct differences in several brain regions, it is unlikely that these differences are innate but rather due to the
594:
However, production of melody and production of speech may be subserved by different neural networks. Stewart, Walsh, Frith and Rothwell (2001) studied the differences between speech production and song production using transcranial magnetic stimulation (TMS). Stewart et al. found that TMS applied
586:
Syntactical information mechanisms in both music and language have been shown to be processed similarly in the brain. Jentschke, Koelsch, Sallat and Friederici (2008) conducted a study investigating the processing of music in children with specific language impairments (SLI). Children with typical
526:
system has an important role in neural models of sensory–motor integration. There is considerable evidence that neurons respond to both actions and the accumulated observation of actions. A system proposed to explain this understanding of actions is that visual representations of actions are mapped
513:
Several models of auditory–motor interactions have been advanced. The model of Hickok and Poeppel, which is specific for speech processing, proposes that a ventral auditory stream maps sounds onto meaning, whereas a dorsal stream maps sounds onto articulatory representations. They and others suggest
222:
Many neuroimaging studies have found evidence of the importance of right secondary auditory regions in aspects of musical pitch processing, such as melody. Many of these studies such as one by Patterson, Uppenkamp, Johnsrude and Griffiths (2002) also find evidence of a hierarchy of pitch processing.
210:
The right secondary auditory cortex has finer pitch resolution than the left. Hyde, Peretz and Zatorre (2008) used functional magnetic resonance imaging (fMRI) in their study to test the involvement of right and left auditory cortical regions in the frequency processing of melodic sequences. As well
895:
in a study by Cowell et al. in 1992. This was confirmed by a study by Schlaug et al. in 1995 that found that classical musicians between the ages of 21 and 36 have significantly greater anterior corpora callosa than the non-musical control. Schlaug also found that there was a strong correlation of
823:
involves both explicit and implicit memory systems. Explicit musical memory is further differentiated between episodic (where, when and what of the musical experience) and semantic (memory for music knowledge including facts and emotional concepts). Implicit memory centers on the 'how' of music and
727:(SMA) was active in both imagery and perceptual tasks suggesting covert vocalization as an element of musical imagery. CBF increases in the inferior frontal polar cortex and right thalamus suggest that these regions may be related to retrieval and/or generation of auditory information from memory. 652:
Brains of musicians also show functional differences from those of non-musicians. Krings, Topper, Foltys, Erberich, Sparing, Willmes and Thron (2000) utilized fMRI to study brain area involvement of professional pianists and a control group while performing complex finger movements. Krings et al.
535:
and the vPMC, as of 2011, experiments have begun to shed light on how these interactions are needed for musical performance. Results point to a broader involvement of the dPMC and other motor areas. The literature has shown a highly specialized cortical network in the skilled musician's brain that
1004:
with the rest of the temporal lobe undamaged and found that S.M. was impaired in recognition of scary and sad music. S.M.'s perception of happy music was normal, as was her ability to use cues such as tempo to distinguish between happy and sad music. It appears that damage specific to the amygdala
882:
Treder et al. identified neural correlates of attention when listening to simplified polyphonic music patterns. In a musical oddball experiment, they had participants shift selective attention to one out of three different instruments in music audio clips, with each instrument occasionally playing
845:
found distinct activation patterns. Semantic musical memory involves the sense of familiarity of songs. The semantic memory for music condition resulted in bilateral activation in the medial and orbital frontal cortex, as well as activation in the left angular gyrus and the left anterior region of
780:
induced by music activate similar frontal brain regions compared to emotions elicited by other stimuli. Schmidt and Trainor (2001) discovered that valence (i.e. positive vs. negative) of musical segments was distinguished by patterns of frontal EEG activity. Joyful and happy musical segments were
773:
According to the National Institute of Health, children and adults who are suffering from emotional trauma have been able to benefit from the use of music in a variety of ways. The use of music has been essential in helping children who struggle with focus, anxiety, and cognitive function by using
670:
and the degree of probability of violation on music processing in both musicians and non-musicians. Findings showed that the human brain unintentionally extrapolates expectations about impending auditory input. Even in non-musicians, the extrapolated expectations are consistent with music theory.
558:
and melody have been shown to be processed in near identical functional brain areas. Brown, Martinez and Parsons (2006) examined the neurological structural similarities between music and language. Utilizing positron emission tomography (PET), the findings showed that both linguistic and melodic
530:
Some mirror neurons are activated both by the observation of goal-directed actions, and by the associated sounds produced during the action. This suggests that the auditory modality can access the motor system. While these auditory–motor interactions have mainly been studied for speech processes,
453:
Motor sequencing has been explored in terms of either the ordering of individual movements, such as finger sequences for key presses, or the coordination of subcomponents of complex multi-joint movements. Implicated in this process are various cortical and sub-cortical regions, including the basal
103:
of the inner ear. Different frequencies of sound will cause vibrations in different locations of the basilar membrane. We are able to hear different pitches because each sound wave with a unique frequency is correlated to a different location along the basilar membrane. This spatial arrangement of
1025:
is defined as a disturbance of rhythmic sense; and includes deficits such as the inability to rhythmically perform music, the inability to keep time to music and the inability to discriminate between or reproduce rhythmic patterns. A study investigating the elements of rhythmic function examined
1013:
Specific musical impairments may result from brain damage leaving other musical abilities intact. Cappelletti, Waley-Cohen, Butterworth and Kopelman (2000) studied a single case study of patient P.K.C., a professional musician who sustained damage to the left posterior temporal lobe as well as a
919:
is a task-related movement disorder associated with occupational activities that require repetitive hand movements. Focal hand dystonia is associated with abnormal processing in the premotor and primary sensorimotor cortices. An fMRI study examined five guitarists with focal hand dystonia. The
688:
It has been found that subjects who are lefthanded, particularly those who are also ambidextrous, perform better than righthanders on short term memory for the pitch. It was hypothesized that this handedness advantage is due to the fact that lefthanders have more duplication of storage in the two
679:
Minor neurological differences regarding hemispheric processing exist between brains of males and females. Koelsch, Maess, Grossmann and Friederici (2003) investigated music processing through EEG and ERPs and discovered gender differences. Findings showed that females process music information
599:
disturbs speech but not melody supporting the idea that they are subserved by different areas of the brain. The authors suggest that a reason for the difference is that speech generation can be localized well but the underlying mechanisms of melodic production cannot. Alternatively, it was also
492:
An auditory–motor interaction may be loosely defined as any engagement of or communication between the two systems. Two classes of auditory-motor interaction are "feedforward" and "feedback". In feedforward interactions, it is the auditory system that predominately influences the motor output,
422:
or clock mechanism where time is represented through oscillations or pulses. An opposing view to this metronome mechanism has also been hypothesized stating that it is an emergent property of the kinematics of movement itself. Kinematics is defined as parameters of movement through space without
363:
note (the first note in a scale) and the tonic chord (the first note in the scale with the third and fifth note) with the rest of the scale. The tonic is the element which tends to assert its dominance and attraction over all others, and it functions as the ultimate point of attraction, rest and
461:
and for the integration of individual movements into unified sequences, while the pre-SMA and SMA have been shown to be involved in organizing or chunking of more complex movement sequences. Chunking, defined as the re-organization or re-grouping of movement sequences into smaller sub-sequences
223:
Patterson et al. (2002) used spectrally matched sounds which produced: no pitch, fixed pitch or melody in an fMRI study and found that all conditions activated HG and PT. Sounds with pitch activated more of these regions than sounds without. When a melody was produced activation spread to the
741:
Music is able to create an intensely pleasurable experience that can be described as "chills". Blood and Zatorre (2001) used PET to measure changes in cerebral blood flow while participants listened to music that they knew to give them the "chills" or any sort of intensely pleasant emotional
504:
Feedback interactions are particularly relevant in playing an instrument such as a violin, or in singing, where pitch is variable and must be continuously controlled. If auditory feedback is blocked, musicians can still execute well-rehearsed pieces, but expressive aspects of performance are
319:
gamma activity. Evoked gamma activity was found after the onset of each tone in the rhythm; this activity was found to be phase-locked (peaks and troughs were directly related to the exact onset of the tone) and did not appear when a gap (missed beat) was present in the rhythm. Induced gamma
268:
which does not fit with their previous music experience. This automatic processing occurs in the secondary auditory cortex. Brattico, Tervaniemi, Naatanen, and Peretz (2006) performed one such study to determine if the detection of tones that do not fit an individual's expectations can occur
947:
Musical agnosias may be categorized based on the process which is impaired in the individual. Apperceptive music agnosia involves an impairment at the level of perceptual analysis involving an inability to encode musical information correctly. Associative music agnosia reflects an impaired
853:
When it comes to memory for pitch, there appears to be a dynamic and distributed brain network subserves pitch memory processes. Gaab, Gaser, Zaehle, Jancke and Schlaug (2003) examined the functional anatomy of pitch memory using functional magnetic resonance imaging (fMRI). An analysis of
979:
amusics lack the ability to distinguish between pitches and so are for example unmoved by dissonance and playing the wrong key on a piano. They also cannot be taught to remember a melody or to recite a song; however, they are still capable of hearing the intonation of speech, for example,
199: 493:
often in a predictive way. An example is the phenomenon of tapping to the beat, where the listener anticipates the rhythmic accents in a piece of music. Another example is the effect of music on movement disorders: rhythmic auditory stimuli have been shown to improve walking ability in
689:
hemispheres than do righthanders. Other work has shown that there are pronounced differences between righthanders and lefthanders (on a statistical basis) in how musical patterns are perceived, when sounds come from different regions of space. This has been found, for example, in the
536:
codes the relationship between musical gestures and their corresponding sounds. The data hint at the existence of an audiomotor mirror network involving the right superior temporal gyrus, the premotor cortex, the inferior frontal and inferior parietal areas, among other areas.  
396:
Musical performance usually involves at least three elementary motor control functions: timing, sequencing, and spatial organization of motor movements. Accuracy in timing of movements is related to musical rhythm. Rhythm, the pattern of temporal intervals within a musical measure or
474:
Few studies of complex motor control have distinguished between sequential and spatial organization, yet expert musical performances demand not only precise sequencing but also spatial organization of movements. Studies in animals and humans have established the involvement of
347:. These relationships are often characterized as hierarchical, such that one of the elements dominates or attracts another. They occur both within and between every type of element, creating a rich and time-varying perception between tones and their melodic, harmonic, and 3703:
Krings, Timo; Töpper, Rudolf; Foltys, Henrik; Erberich, Stephan; Sparing, Roland; Willmes, Klaus; Thron, Armin (2000). "Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study".
850:
right hemisphere. Other studies have found the precuneus to become activated in successful episodic recall. As it was activated in the familiar memory condition of episodic memory, this activation may be explained by the successful recall of the melody.
479:, sensory–motor and premotor cortices in the control of movements, when the integration of spatial, sensory and motor information is required. Few studies so far have explicitly examined the role of spatial processing in the context of musical tasks. 712:
musicians and non-musicians. Utilizing magnetoencephalography (MEG), Herholz et al. examined differences in the processing of a musical imagery task with familiar melodies in musicians and non-musicians. Specifically, the study examined whether the
273:(ERPs) in nonmusicians as they were presented unfamiliar melodies with either an out of tune pitch or an out of key pitch while participants were either distracted from the sounds or attending to the melody. Both conditions revealed an early frontal 408:
These functions and their neural mechanisms have been investigated separately in many studies, but little is known about their combined interaction in producing a complex musical performance. The study of music requires examining them together.
828:
and motor skill learning – in other words skills critical for playing an instrument. Samson and Baird (2009) found that the ability of musicians with Alzheimer's Disease to play an instrument (implicit procedural memory) may be preserved.
635:
volume differences in motor, auditory and visual-spatial brain regions. Specifically, positive correlations were discovered between musician status (professional, amateur and non-musician) and gray matter volume in the primary motor and
762:. Many of these areas appear to be linked to reward, motivation, emotion, and arousal, and are also activated in other pleasurable situations. The resulting pleasure responses enable the release dopamine, serotonin, and oxytocin. 869:
Research suggests we listen to the same songs repeatedly because of musical nostalgia. One major study, published in the journal Memory & Cognition, found that music enables the mind to evoke memories of the past, known as
4941:
Pujol, J.; Roset-Llobet, J.; Rosinés-Cubells, D.; Deus, J.; Narberhaus, B.; Valls-Solé, J.; Capdevila, A.; Pascual-Leone, A. (2000). "Brain Cortical Activation during Guitar-Induced Hand Dystonia Studied by Functional MRI".
3513:
Deutsch, Diana; Henthorn, Trevor; Marvin, Elizabeth; Xu, Hongshuai (2006). "Absolute pitch among American and Chinese conservatory students: Prevalence differences, and evidence for a speech-related critical period".
417:
Although neural mechanisms involved in timing movement have been studied rigorously over the past 20 years, much remains controversial. The ability to phrase movements in precise time has been accredited to a neural
306:
recordings have also shown a relationship between brain electrical activity and rhythm perception. Snyder and Large (2005) performed a study examining rhythm perception in human subjects, finding that activity in the
665:
Studies have shown that the human brain has an implicit musical ability. Koelsch, Gunter, Friederici and Schoger (2000) investigated the influence of preceding musical context, task relevance of unexpected
587:
language development (TLD) showed ERP patterns different from those of children with SLI, which reflected their challenges in processing music-syntactic regularities. Strong correlations between the ERAN (
514:
that posterior auditory regions at the parieto-temporal boundary are crucial parts of the auditory–motor interface, mapping auditory representations onto motor representations of speech, and onto melodies.
583:. Differences were found in lateralization tendencies as language tasks favoured the left hemisphere, but the majority of activations were bilateral which produced significant overlap across modalities. 4670:
Kapur, Shitij; Craik, Fergus I. M.; Jones, Corey; Brown, Gregory M.; Houle, Sylvain; Tulving, Endel (1995). "Functional role of the prefrontal cortex in retrieval of memories: A PET study".
367:
The right auditory cortex is primarily involved in perceiving pitch, and parts of harmony, melody and rhythm. One study by Petr Janata found that there are tonality-sensitive areas in the
631:
Brain structure within musicians and non-musicians is distinctly different. Gaser and Schlaug (2003) compared brain structures of professional musicians with non-musicians and discovered
619: 3315:
Jentschke, Sebastian; Koelsch, Stefan; Sallat, Stephan; Friederici, Angela D. (2008). "Children with Specific Language Impairment Also Show Impairment of Music-syntactic Processing".
1000:
Damage to the amygdala has selective emotional impairments on musical recognition. Gosselin, Peretz, Johnsen and Adolphs (2007) studied S.M., a patient with bilateral damage of the
719:
Perceptual musical processes and musical imagery may share a neural substrate in the brain. A PET study conducted by Zatorre, Halpern, Perry, Meyer and Evans (1996) investigated
359:
scale types – examples of scales whose elements are capable of maintaining a consistent set of functional relationships. The most important functional relationship is that of the
136:. These nuclei are also tonotopically organized, and the process of achieving this tonotopy after the cochlea is not well understood. This tonotopy is in general maintained up to 4482:
Collins, Francis S.; Fleming, Renée; Rutter, Deborah; Iyengar, Sunil; Tottenham, Nim; Patel, Aniruddh D.; Limb, Charles; Johnson, Julene K.; Holochwost, Steven J. (2018-03-21).
891:
Musical four-year-olds have been found to have one greater left hemisphere intrahemispheric coherence. Musicians have been found to have more developed anterior portions of the
3557:
Deutsch, Diana; Dooley, Kevin; Henthorn, Trevor; Head, Brian (2009). "Absolute pitch among students in an American music conservatory: Association with tone language fluency".
466:. Lastly, the premotor cortex has been shown to be involved in tasks that require the production of relatively complex sequences, and it may contribute to motor prediction. 3269:
Brown, Steven; Martinez, Michael J.; Parsons, Lawrence M. (2006). "Music and language side by side in the brain: A PET study of the generation of melodies and sentences".
591:—a specific ERP measure) amplitude and linguistic and musical abilities provide additional evidence for the relationship of syntactical processing in music and language. 4713:
Gaab, Nadine; Gaser, Christian; Zaehle, Tino; Jancke, Lutz; Schlaug, Gottfried (2003). "Functional anatomy of pitch memory—an fMRI study with sparse temporal sampling".
1632:
Brattico, Elvira; Tervaniemi, Mari; Näätänen, Risto; Peretz, Isabelle (2006). "Musical scale properties are automatically processed in the human auditory cortex".
2080:
Spencer, R. M.; Zelaznik, H. N.; Diedrichson, J.; Ivry, R. B. (2003). "Disrupted timing of discontinuous but not continuous movements by cerebellar lesions".
3949:
Koelsch, Stefan; Maess, Burkhard; Grossmann, Tobias; Friederici, Angela D. (2003). "Electric brain responses reveal gender differences in music processing".
3027:
Hickok, G.; Buchsbaum, B.; Humphries, C.; Muftuler, T. (2003). "Auditory–motor interaction revealed by fMRI: speech, music, and working memory in area SPT".
2301:
Doyon, J.; Penhune, V. B.; Ungerleider, L. G. (2003). "Distinct contribution of the cortico-striatal and corticocerebellar systems to motor skill learning".
290:. Rhythm is a strong repeated pattern of movement or sound. When individuals are preparing to tap out a rhythm of regular intervals (1:2 or 1:3) the left 1091:
Arlinger, S; Elberling, C; Bak, C; Kofoed, B; Lebech, J; Saermark, K (1982). "Cortical magnetic fields evoked by frequency glides of a continuous tone".
4627:; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis (2003). "Semantic and episodic memory of music are subserved by distinct neural networks". 1812:
Janata, P.; Birk, JL; Van Horn, JD; Leman, M; Tillmann, B; Bharucha, JJ (2002). "The Cortical Topography of Tonal Structures Underlying Western Music".
3747:
Koeneke, Susan; Lutz, Kai; Wüstenberg, Torsten; Jäncke, Lutz (2004). "Long-term training affects cerebellar processing in skilled keyboard players".
401:, in turn creates the perception of stronger and weaker beats. Sequencing and spatial organization relate to the expression of individual notes on a 4796:
Schulkind, Matthew D.; Hennis, Laura Kate; Rubin, David C. (1999-11-01). "Music, emotion, and autobiographical memory: They're playing your song".
4542:
Schmidt, Louis A.; Trainor, Laurel J. (2001). "Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions".
789:
led many musical theorists, philosophers and neuroscientists to link emotion with tonality. This seems almost obvious because the tones in music
3858:
Koelsch, Stefan; Gunter, Tomas; Friederici, Angela D.; Schröger, Erich (2000). "Brain Indices of Music Processing: "Nonmusicians" are Musical".
4330:
Herholz, Sibylle C.; Lappe, Claudia; Knief, Arne; Pantev, Christo (2008). "Neural basis of music imagery and the effect of musical expertise".
2212:
Lewis, P. A.; Miall, R. C. (2003). "Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging".
1407:
Hyde, Krista L.; Peretz, Isabelle; Zatorre, Robert J. (2008). "Evidence for the role of the right auditory cortex in fine pitch resolution".
801:
of a song are elongated for a dramatic effect, and it seems as though musical tones are simply exaggerations of the normal verbal tonality.
2971:
Hickok, G.; Poeppel, D. (2004). "Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language".
2651:
Schubotz, R. I.; von Cramon, D. Y. (2003). "Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies".
5284: 5131:
Gosselin, Nathalie; Peretz, Isabelle; Johnsen, Erica; Adolphs, Ralph (2007). "Amygdala damage impairs emotion recognition from music".
3062:
Rizzolatti, G.; Fogassi, L.; Gallese, V. (2001). "Neurophysiological mechanisms underlying the understanding and imitation of action".
5174:
Cappelletti, M.; Waley-Cohen, H.; Butterworth, B.; Kopelman, M. (2000). "A selective loss of the ability to read and to write music".
3470:
Daltrozzo, Jérôme; Schön, Daniele (2009). "Conceptual Processing in Music as Revealed by N400 Effects on Words and Musical Targets".
2608:
Janata, P.; Grafton, S. T. (2003). "Swinging in the brain: shared neural substrates for behaviors related to sequencing and music".
774:
music in therapeutic way. Music therapy has also helped children cope with autism, pediatric cancer, and pain from treatments.
155:
of action potentials to frequencies in a stimulus. Phase-locking to stimulus frequencies has been shown in the auditory nerve, the
2803:
Thaut, M. H.; McIntosh, G. C.; Rice, R. R. (1997). "Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation".
2696:"Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb" 5520: 1675: 622:
Professional pianists show less cortical activation for complex finger movement tasks due to structural differences in the brain.
4985:
Dalla Bella, Simone; Peretz, Isabelle (1999). "Music Agnosias: Selective Impairments of Music Recognition After Brain Damage".
302:
are all activated. With more difficult rhythms such as a 1:2.5, more areas in the cerebral cortex and cerebellum are involved.
928:. The abnormal shift from premotor to primary sensorimotor activation directly correlates with guitar-induced hand dystonia. 742:
response. They found that as these chills increase, many changes in cerebral blood flow are seen in brain regions such as the
4761:
Burriss, Kathleen Glascott; Strickland, Susan J. (2001). "Review of Research: Music and the Brain in Childhood Development".
1940: 1796: 75: 871: 1752:
Snyder, Joel S.; Large, Edward W. (2005). "Gamma-band activity reflects the metric structure of rhythmic tone sequences".
211:
as finding superior pitch resolution in the right secondary auditory cortex, specific areas found to be involved were the
3904:
Koelsch, Stefan; Schroger, Erich; Gunter, Thomas C. (2002). "Music matters: Preattentive musicality of the human brain".
1315:
Wallace, M. N.; Anderson, L. A.; Palmer, A. R. (2007). "Phase-Locked Responses to Pure Tones in the Auditory Thalamus".
3419:
Koelsch, Stefan; Gunter, Thomas C.; v Cramon, D.Yves; Zysset, Stefan; Lohmann, Gabriele; Friederici, Angela D. (2002).
1184:"Phase Locking of Auditory-Nerve Fibers to the Envelopes of High-Frequency Sounds: Implications for Sound Localization" 600:
suggested that speech production may be less robust than melodic production and thus more susceptible to interference.
5212:
Wilson, Sarah J; Pressing, Jeffrey L; Wales, Roger J (2002). "Modelling rhythmic function in a musician post-stroke".
2565:
Kennerley, S. W.; Sakai, K.; Rushworth, M. F. (2004). "Organization of action sequences and the role of the pre-SMA".
167:. By phase- and mode-locking in this way, the auditory brainstem is known to preserve a good deal of the temporal and 5465: 1516: 4425:"Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion" 5410: 3994:
Koelsch, Stefan; Grossmann, Tobias; Gunter, Thomas C.; Hahne, Anja; Schröger, Erich; Friederici, Angela D. (2003).
603: 3105:
Kohler, E.; et al. (2002). "Hearing sounds, understanding actions: action representation in mirror neurons".
2344:
Penhune, V. B.; Doyon, J. (2005). "Cerebellum and M1 interaction during early learning of timed motor sequences".
5898: 5420: 1233:"Mode-Locked Spike Trains in Responses of Ventral Cochlear Nucleus Chopper and Onset Neurons to Periodic Stimuli" 2735:
Rizzolatti, G.; Luppino, G.; Matelli, M. (1998). "The organization of the cortical motor system: new concepts".
5470: 5277: 3201:"Audio-visuomotor processing in the Musician's brain: an ERP study on professional violinists and clarinetists" 1280:
Liu, L.-F.; Palmer, AR; Wallace, MN (2006). "Phase-Locked Responses to Pure Tones in the Inferior Colliculus".
1131:"Phase Locking to High Frequencies in the Auditory Nerve and Cochlear Nucleus Magnocellularis of the Barn Owl, 1991:
Buhusi, C. V.; Meck, W. H. (2005). "What makes us tick? Functional and neural mechanisms of interval timing".
315:
in a simple rhythm. Two types of gamma activity were found by Snyder & Large: induced gamma activity, and
5893: 5857: 5400: 1570:
Zatorre, Robert J.; Perry, David W.; Beckett, Christine A.; Westbury, Christopher F.; Evans, Alan C. (1998).
316: 5684: 5425: 4167:
Deutsch, Diana (1983). "The octave illusion in relation to handedness and familial handedness background".
3013:
Scott, S. K. & Johnsrude, I. S. "The neuroanatomical and functional organization of speech perception.
79: 2387:
Hikosaka, O.; Nakamura, H.; Sakai, K.; Nakahara, H. (2002). "Central mechanisms of motor skill learning".
95:
Sounds consist of waves of air molecules that vibrate at different frequencies. These waves travel to the
5871: 5850: 5836: 5390: 5375: 172: 133: 39:, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for 1865:"Brain processing of consonance/dissonance in musicians and controls: a hemispheric asymmetry revisited" 462:
during performance, is thought to facilitate the smooth performance of complex movements and to improve
5644: 5614: 5322: 4862:"Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification" 3996:"Children Processing Music: Electric Brain Responses Reveal Musical Competence and Gender Differences" 239:
Musicians possessing perfect pitch can identify the pitch of musical tones without external reference.
5908: 5370: 5342: 5270: 260:
Studies suggest that individuals are capable of automatically detecting a difference or anomaly in a
180: 164: 606:
is a function more of the left side of the brain than the right side, particularly Broca's area and
5903: 5659: 5573: 5540: 5385: 5012:
Peretz, Isabelle (1996). "Can We Lose Memory for Music? A Case of Music Agnosia in a Nonmusician".
905: 724: 564: 442: 376: 368: 274: 227:(STG) and planum polare (PP). These results support the existence of a pitch processing hierarchy. 43:
and musical emotion. Scientists working in this field may have training in cognitive neuroscience,
559:
phrases produced activation in almost identical functional brain areas. These areas included the
5515: 5327: 4577:
Baird, Amee; Samson, Séverine (2009). "Memory for Music in Alzheimer's Disease: Unforgettable?".
645: 426: 380: 270: 224: 216: 203: 188: 184: 137: 23:
is the scientific study of brain-based mechanisms involved in the cognitive processes underlying
2895:
Repp, B. H. (1999). "Effects of auditory feedback deprivation on expressive piano performance".
5864: 5807: 5563: 4860:
Treder, Matthias; Purwins, Hendrik; Miklody, Daniel; Sturm, Irene; Blankertz, Benjamin (2014).
2134:
Wing, A. M. (2002). "Voluntary timing and brain function: an information processing approach".
494: 147:
A widely postulated mechanism for pitch processing in the early central auditory system is the
129: 4373:
Zatorre, Robert J.; Halpern, Andrea R.; Perry, David W.; Meyer, Ernst; Evans, Alan C. (1996).
1722: 1572:"Functional anatomy of musical processing in listeners with absolute pitch and relative pitch" 763: 429:
studies, as well as studies of brain-damaged patients, have linked movement timing to several
5669: 74:
in its reliance on direct observations of the brain and use of brain imaging techniques like
2848:"Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease" 2475:"Shared brain areas but not functional connections in controlling movement timing and order" 1864: 793:
like a characterization of the tones in human speech, which indicate emotional content. The
104:
sounds and their respective frequencies being processed in the basilar membrane is known as
5475: 5312: 5144: 4876: 4436: 4288: 4219: 4125: 4060: 3803: 3566: 3523: 3377: 3362: 3212: 3156:
Keysers, C.; et al. (2003). "Audiovisual mirror neurons and action recognition. Exp".
3114: 2522:
Sakai, K.; Hikosaka, O.; Nakamura, H. (2004). "Emergence of rhythm during motor learning".
2190: 2089: 1821: 1583: 1420: 820: 810: 747: 637: 560: 112:
on the basilar membrane move back and forth due to the vibrating sound waves, they release
71: 4020: 3971: 3926: 3447: 1523: 152: 8: 5762: 5654: 5649: 5594: 5553: 5440: 5435: 1022: 720: 713: 160: 40: 36: 4888: 4880: 4440: 4292: 4223: 4129: 4064: 3807: 3570: 3527: 3381: 3216: 3118: 2093: 1825: 1587: 5742: 5712: 5415: 5395: 5237: 5191: 5156: 5113: 5037: 4967: 4900: 4861: 4839: 4778: 4738: 4695: 4652: 4602: 4559: 4516: 4483: 4402: 4355: 4312: 4300: 4192: 4149: 4033: 3883: 3837: 3772: 3760: 3729: 3680: 3653: 3626: 3617: 3601: 3495: 3401: 3389: 3340: 3294: 3241: 3200: 3181: 3138: 3087: 2996: 2912: 2828: 2676: 2633: 2590: 2547: 2499: 2474: 2455: 2412: 2369: 2326: 2280: 2237: 2159: 2113: 2059: 2016: 1970: 1900: 1845: 1734: 1657: 1508: 1481: 1450:
Patterson, Roy D; Uppenkamp, Stefan; Johnsrude, Ingrid S; Griffiths, Timothy D (2002).
1432: 1384: 1359: 1340: 1257: 1232: 1208: 1183: 1159: 1150: 1130: 1068: 1043: 607: 402: 5225: 4726: 4640: 3717: 2872: 2847: 2816: 2748: 2400: 2314: 2225: 1765: 1683: 1468: 1451: 5629: 5505: 5485: 5455: 5355: 5229: 5195: 5148: 5109: 5078: 5029: 4959: 4923: 4892: 4831: 4823: 4782: 4730: 4687: 4683: 4644: 4624: 4594: 4521: 4503: 4464: 4459: 4424: 4394: 4359: 4347: 4343: 4304: 4235: 4184: 4180: 4141: 4076: 4025: 3976: 3962: 3931: 3875: 3829: 3821: 3764: 3721: 3685: 3631: 3582: 3539: 3487: 3452: 3393: 3332: 3286: 3282: 3246: 3228: 3173: 3130: 3079: 3044: 2988: 2953: 2877: 2820: 2752: 2717: 2668: 2664: 2625: 2582: 2539: 2504: 2447: 2404: 2361: 2357: 2318: 2272: 2229: 2194: 2151: 2105: 2051: 2008: 1962: 1892: 1884: 1837: 1792: 1769: 1738: 1726: 1649: 1611: 1606: 1571: 1552: 1512: 1473: 1424: 1389: 1332: 1297: 1262: 1213: 1164: 1108: 1104: 1073: 825: 759: 736: 545: 458: 117: 113: 5241: 5160: 5117: 5041: 4971: 4904: 4843: 4699: 4656: 4606: 4406: 4374: 4316: 4276: 4037: 3776: 3499: 3405: 3298: 3199:
Mado Proverbio, Alice; Calbi, Marta; Manfredi, Mirella; Zani, Alberto (2014-07-29).
3142: 2984: 2680: 2551: 2459: 2430:
Thach, W. T. (1998). "A role for the cerebellum in learning movement coordination".
2416: 2373: 2284: 2117: 2063: 2020: 1436: 1344: 5829: 5772: 5757: 5707: 5692: 5365: 5360: 5293: 5221: 5183: 5140: 5105: 5068: 5021: 4994: 4951: 4884: 4813: 4805: 4774: 4770: 4742: 4722: 4679: 4636: 4586: 4563: 4551: 4511: 4495: 4454: 4444: 4386: 4339: 4296: 4227: 4196: 4176: 4153: 4133: 4068: 4015: 4007: 3966: 3958: 3921: 3913: 3887: 3867: 3841: 3811: 3756: 3733: 3713: 3675: 3665: 3621: 3613: 3574: 3531: 3479: 3442: 3432: 3385: 3344: 3324: 3278: 3236: 3220: 3185: 3165: 3122: 3091: 3071: 3036: 2980: 2943: 2904: 2867: 2859: 2832: 2812: 2783: 2744: 2707: 2660: 2637: 2617: 2594: 2574: 2531: 2494: 2490: 2486: 2439: 2396: 2353: 2330: 2310: 2264: 2221: 2186: 2163: 2143: 2097: 2043: 2000: 1974: 1952: 1904: 1876: 1849: 1829: 1761: 1718: 1661: 1645: 1641: 1601: 1591: 1544: 1504: 1485: 1463: 1416: 1379: 1371: 1324: 1289: 1252: 1244: 1203: 1195: 1154: 1146: 1100: 1063: 1055: 941: 785: 751: 336: 212: 156: 96: 67: 60: 4375:"Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception" 3000: 2241: 5702: 5664: 5619: 5604: 5530: 5495: 5480: 5445: 5405: 5332: 4499: 4095: 2177:
Mauk, M. D.; Buonomano, D. V. (2004). "The neural basis of temporal processing".
1957: 1375: 892: 842: 838: 690: 641: 568: 532: 430: 348: 295: 168: 2255:
Graybiel, A. M. (2005). "The basal ganglia: learning new tricks and loving it".
1548: 171:
frequency information from the original sound; this is evident by measuring the
5752: 5727: 5568: 5500: 5490: 5430: 5350: 5073: 5056: 4998: 4011: 3040: 2788: 2771: 2535: 2268: 2047: 1576:
Proceedings of the National Academy of Sciences of the United States of America
980:
distinguishing between "You speak French" and "You speak French?" when spoken.
694: 549: 398: 291: 286:
The belt and parabelt areas of the right hemisphere are involved in processing
249: 244: 121: 5187: 5025: 4918:
Chen, R; Hallett, M (1998). "Focal dystonia and repetitive motion disorders".
4590: 4051:
Deutsch, D (February 1978). "Pitch memory: An advantage for the left-handed".
3917: 3363:"Transcranial Magnetic Stimulation Produces Speech Arrest but Not Song Arrest" 3169: 1709:
Tramo, M. J. (2001). "BIOLOGY AND MUSIC: Enhanced: Music of the Hemispheres".
5887: 5812: 5792: 5782: 5767: 5722: 5717: 5674: 5639: 5624: 5578: 5558: 5450: 5307: 4827: 4507: 4390: 3825: 3670: 3232: 2712: 2695: 1888: 961: 921: 667: 572: 523: 476: 438: 360: 344: 340: 265: 3871: 3483: 3328: 3126: 2101: 1833: 1452:"The Processing of Temporal Pitch and Melody Information in Auditory Cortex" 5843: 5797: 5777: 5747: 5599: 5525: 5510: 5233: 5152: 5082: 5057:"Patterns of music agnosia associated with middle cerebral artery infarcts" 5033: 4963: 4955: 4896: 4835: 4734: 4648: 4598: 4555: 4525: 4468: 4449: 4398: 4351: 4308: 4254: 4072: 4029: 3980: 3935: 3879: 3768: 3725: 3689: 3635: 3586: 3543: 3491: 3456: 3437: 3421:"Bach Speaks: A Cortical "Language-Network" Serves the Processing of Music" 3420: 3397: 3336: 3290: 3250: 3177: 3134: 3083: 3048: 2992: 2957: 2672: 2629: 2586: 2543: 2508: 2443: 2408: 2365: 2322: 2276: 2233: 2198: 2155: 2147: 2109: 2055: 2012: 1966: 1896: 1841: 1773: 1730: 1653: 1596: 1477: 1428: 1393: 1336: 1301: 1266: 1217: 1077: 596: 571:, anterior insula, primary and secondary auditory cortices, temporal pole, 463: 312: 192: 56: 48: 4927: 4691: 4239: 4188: 4145: 3833: 2932:"Effects of hearing the past, present, or future during music performance" 2881: 2824: 2756: 2721: 2578: 2451: 1615: 1556: 1328: 1293: 1248: 1199: 1168: 1112: 770:) is involved in both music related emotions, as well as rhythmic timing. 423:
reference to forces (for example, direction, velocity and acceleration).
5802: 5732: 5173: 4080: 2863: 2034:
Ivry, R. B.; Spencer, R. M. (2004). "The neural representation of time".
632: 356: 352: 32: 2916: 618: 5787: 5737: 5697: 5634: 4818: 4809: 2948: 2931: 976: 580: 434: 372: 308: 299: 148: 66:
The cognitive neuroscience of music represents a significant branch of
52: 5096:
Peretz, Isabelle (2008). "Musical Disorders: From Behavior to Genes".
3578: 3535: 3224: 1880: 517: 4484:"NIH/Kennedy Center Workshop on Music and the Brain: Finding Harmony" 4231: 4137: 3075: 2908: 706: 419: 109: 44: 28: 4940: 3361:
Stewart, Lauren; Walsh, Vincent; Frith, UTA; Rothwell, John (2006).
2004: 1449: 1059: 1044:"Tonotopic reorganization of developing auditory brainstem circuits" 5262: 2621: 1001: 993: 972: 925: 916: 798: 767: 755: 743: 576: 555: 328: 206:
is one of the main areas associated with superior pitch resolution.
125: 105: 5257: 4210:
Deutsch, Diana (1975). "Two-channel listening to musical scales".
3816: 3791: 1863:
Proverbio, Alice Mado; Orlandi, Andrea; Pisanu, Francesca (2016).
649:
long-term acquisition and repetitive rehearsal of musical skills.
179:. This temporal preservation is one way to argue directly for the 5609: 5380: 3654:"Music, Neuroscience, and the Psychology of Well-Being: A Précis" 2846:
McIntosh, G. C.; Brown, S. H.; Rice, R. R.; Thaut, M. H. (1997).
1676:"rhythm | Definition of rhythm in English by Oxford Dictionaries" 1231:
Laudanski, J.; Coombes, S.; Palmer, A. R.; Sumner, C. J. (2009).
937: 777: 351:
contexts. In one conventional sense, tonality refers to just the
332: 198: 141: 100: 3314: 3026: 2694:
Johnson, P. B.; Ferraina, S.; Bianchi, L.; Caminiti, R. (1996).
1631: 1535:
Takeuchi, Annie H.; Hulse, Stewart H. (1993). "Absolute pitch".
5548: 3948: 3857: 3198: 968: 957: 863: 794: 498: 331:
describes the relationships between the elements of melody and
287: 261: 2693: 2079: 235: 5460: 3602:"Brain structures differ between musicians and non-musicians" 2386: 24: 5130: 4622: 3995: 1360:"Auditory Brain Stem Response to Complex Sounds: A Tutorial" 1230: 4481: 3993: 3746: 3418: 1569: 988: 3702: 1499:
Deutsch, D. (2013). "Absolute pitch In D. Deutsch (Ed.)".
1090: 837:
A PET study looking into the neural correlates of musical
4859: 3556: 3360: 857: 303: 176: 4372: 3061: 2734: 508: 487: 5258:
MusicCognition.info - A Resource and Information Center
4329: 3512: 2564: 2300: 1811: 613: 3790:
Chan, Agnes S.; Ho, Yim-Chi; Cheung, Mei-Chun (1998).
2845: 1941:"Mental concerts: musical imagery and auditory cortex" 1862: 1124: 1122: 832: 4712: 3903: 2521: 1314: 1008: 124:. The auditory nerve then leads to several layers of 4795: 4669: 3268: 815: 16:
Scientific study of brain processes related to music
5211: 1119: 1093:
Electroencephalography and Clinical Neurophysiology
1042:Kandler, Karl; Clause, Amanda; Noh, Jihyun (2009). 1005:can selectively impair recognition of scary music. 971:suggest different processes are involved in speech 784:When unpleasant melodies are played, the posterior 518:
Mirror/echo neurons and auditory–motor interactions
386: 70:, and is distinguished from related fields such as 3899: 3897: 3647: 3645: 2650: 4984: 4760: 2929: 2802: 1406: 5885: 4212:The Journal of the Acoustical Society of America 3853: 3851: 3559:The Journal of the Acoustical Society of America 3516:The Journal of the Acoustical Society of America 1279: 1041: 4429:Proceedings of the National Academy of Sciences 4116:Deutsch, Diana (1974). "An auditory illusion". 3894: 3642: 215:(PT) in the secondary auditory cortex, and the 4541: 3469: 1938: 1181: 644:, anterior superior parietal areas and in the 482: 219:in the medial section of Heschl's gyrus (HG). 5278: 4756: 4754: 4752: 3848: 2970: 2607: 2176: 1534: 4422: 3789: 3599: 3310: 3308: 2343: 657:words above their non musical counterparts. 5098:Current Directions in Psychological Science 4917: 4576: 3463: 2923: 2769: 2033: 1934: 1751: 1627: 1625: 1498: 5285: 5271: 4920:Clinical Orthopaedics and Related Research 4749: 4537: 4535: 4281:Annals of the New York Academy of Sciences 3370:Annals of the New York Academy of Sciences 3356: 3354: 2211: 2075: 2073: 1990: 1932: 1930: 1928: 1926: 1924: 1922: 1920: 1918: 1916: 1914: 391: 5207: 5205: 5072: 4855: 4853: 4817: 4618: 4616: 4515: 4458: 4448: 4019: 3970: 3925: 3815: 3679: 3669: 3625: 3446: 3436: 3305: 3240: 2947: 2871: 2787: 2772:"Perceiving temporal regularity in music" 2711: 2558: 2498: 1986: 1984: 1956: 1786: 1605: 1595: 1467: 1383: 1357: 1256: 1207: 1158: 1067: 683: 457:The cerebellum is arguably important for 4418: 4416: 4277:"Cerebral Substrates of Musical Imagery" 3550: 3264: 3262: 3260: 2839: 2644: 2380: 2296: 2294: 2254: 2248: 1704: 1702: 1700: 1622: 1492: 987: 617: 433:and sub-cortical regions, including the 234: 197: 5521:Temporal dynamics of music and language 4532: 4274: 4252: 4246: 4209: 4166: 4115: 4109: 4096:"Handedness and Memory for Tonal Pitch" 4093: 4087: 4050: 3792:"Music training improves verbal memory" 3506: 3351: 3155: 3149: 2930:Pfordresher, P. Q.; Palmer, C. (2006). 2687: 2472: 2466: 2337: 2129: 2127: 2070: 1939:Zatorre, R. J.; Halpern, A. R. (2005). 1911: 1723:10.1126/science.10.1126/science.1056899 862:Musical training has been shown to aid 469: 5886: 5202: 5145:10.1016/j.neuropsychologia.2006.07.012 5095: 5054: 5011: 4850: 4613: 4203: 4160: 4044: 3104: 3098: 2737:Electroencephalogr. Clin. Neurophysiol 2601: 2191:10.1146/annurev.neuro.27.070203.144247 1981: 1789:Cognitive Foundations of Musical Pitch 1421:10.1016/j.neuropsychologia.2007.09.004 1017: 996:may impair recognition of scary music. 910: 872:music-evoked autobiographical memories 858:Therapeutic effects of music on memory 5266: 4423:Blood, A. J.; Zatorre, R. J. (2001). 4413: 3651: 3257: 3007: 2796: 2763: 2515: 2429: 2423: 2291: 2205: 1791:. New York: Oxford University Press. 1708: 1697: 1128: 824:involves automatic processes such as 674: 539: 509:Models of auditory–motor interactions 488:Feedforward and feedback interactions 311:(20 – 60 Hz) corresponds to the 76:functional magnetic resonance imaging 5292: 2894: 2888: 2170: 2133: 2124: 2027: 1501:The Psychology of Music, 3rd Edition 951: 614:Musician vs. non-musician processing 128:at numerous clusters of neurons, or 85: 3412: 1023:Arrhythmia in the auditory modality 833:Neural correlates of musical memory 13: 4301:10.1111/j.1749-6632.2001.tb05733.x 3761:10.1097/01.wnr.0000127463.10147.e7 3618:10.1523/JNEUROSCI.23-27-09240.2003 3390:10.1111/j.1749-6632.2001.tb05762.x 1509:10.1016/B978-0-12-381460-9.00005-5 1151:10.1523/JNEUROSCI.17-09-03312.1997 1009:Selective deficit in music reading 983: 700: 14: 5920: 5466:Music in psychological operations 5251: 5014:Journal of Cognitive Neuroscience 4379:Journal of Cognitive Neuroscience 4264:(2nd ed.). pp. 299–348. 4103:Neuropsychology of Lefthandedness 4000:Journal of Cognitive Neuroscience 3860:Journal of Cognitive Neuroscience 3472:Journal of Cognitive Neuroscience 3317:Journal of Cognitive Neuroscience 2770:Large, E. W.; Palmer, C. (2002). 2473:Garraux, G.; et al. (2005). 1766:10.1016/j.cogbrainres.2004.12.014 1358:Skoe, Erika; Kraus, Nina (2010). 1182:Dreyer, A.; Delgutte, B. (2006). 816:Neuropsychology of musical memory 230: 27:. These behaviours include music 5411:Generative theory of tonal music 5110:10.1111/j.1467-8721.2008.00600.x 4684:10.1097/00001756-199510020-00014 4344:10.1111/j.1460-9568.2008.06515.x 4332:European Journal of Neuroscience 3963:10.1097/00001756-200304150-00010 3283:10.1111/j.1460-9568.2006.04785.x 3271:European Journal of Neuroscience 2852:J. Neurol. Neurosurg. Psychiatry 2665:10.1016/j.neuroimage.2003.09.014 2358:10.1016/j.neuroimage.2005.02.041 1869:European Journal of Neuroscience 931: 387:Music production and performance 5421:Hedonic music consumption model 5318:Cognitive neuroscience of music 5167: 5124: 5089: 5048: 5005: 4978: 4934: 4911: 4789: 4706: 4663: 4570: 4475: 4366: 4323: 4268: 3987: 3942: 3783: 3740: 3696: 3593: 3192: 3055: 3020: 2985:10.1016/j.cognition.2003.10.011 2964: 2728: 1856: 1805: 1780: 1745: 1668: 1563: 1528: 1443: 660: 589:Early Right Anterior Negativity 4775:10.1080/00094056.2002.10522714 4255:"Grouping mechanisms in music" 4021:11858/00-001M-0000-0010-A3D0-1 3972:11858/00-001M-0000-0010-B017-B 3927:11858/00-001M-0000-0010-C96E-D 3448:11858/00-001M-0000-0010-9FF9-6 2491:10.1523/jneurosci.0340-05.2005 1646:10.1016/j.brainres.2006.08.023 1400: 1351: 1308: 1273: 1224: 1175: 1084: 1035: 886: 626: 1: 5858:Psychology of Music (journal) 5401:Eye movement in music reading 5226:10.1016/S0028-3932(01)00198-1 4987:Journal of New Music Research 4889:10.1088/1741-2560/11/2/026009 4869:Journal of Neural Engineering 4727:10.1016/S1053-8119(03)00224-6 4641:10.1016/S1053-8119(03)00287-8 4101:. In Herron, Jeannine (ed.). 3718:10.1016/S0304-3940(99)00930-1 3600:Gaser, C; Schlaug, G (2003). 2817:10.1016/s0022-510x(97)00146-9 2749:10.1016/s0013-4694(98)00022-4 2401:10.1016/s0959-4388(02)00307-0 2315:10.1016/s0028-3932(02)00158-6 2226:10.1016/s0959-4388(03)00036-9 1680:Oxford Dictionaries | English 1469:10.1016/S0896-6273(02)01060-7 1029: 899: 448: 269:automatically. They recorded 63:, and other relevant fields. 5426:Illusory continuity of tones 4500:10.1016/j.neuron.2018.02.004 4181:10.1016/0028-3932(83)90047-7 1958:10.1016/j.neuron.2005.06.013 1376:10.1097/AUD.0b013e3181cdb272 1105:10.1016/0013-4694(82)90118-3 877: 379:of both hemispheres and the 80:positron emission tomography 7: 5872:This Is Your Brain on Music 5851:Music, Thought, and Feeling 5837:Musicae Scientiae (journal) 4275:Halpern, Andrea R. (2006). 3606:The Journal of Neuroscience 3064:Nature Reviews Neuroscience 1993:Nature Reviews Neuroscience 1549:10.1037/0033-2909.113.2.345 527:onto our own motor system. 483:Auditory-motor interactions 323: 173:auditory brainstem response 10: 5925: 5645:Neuronal encoding of sound 5615:Melodic intonation therapy 5323:Culture in music cognition 4999:10.1076/jnmr.28.3.209.3108 4012:10.1162/jocn.2003.15.5.683 3041:10.1162/089892903322307393 2789:10.1207/s15516709cog2601_1 2536:10.1016/j.tics.2004.10.005 2269:10.1016/j.conb.2005.10.006 2048:10.1016/j.conb.2004.03.013 1317:Journal of Neurophysiology 1282:Journal of Neurophysiology 1237:Journal of Neurophysiology 1188:Journal of Neurophysiology 903: 808: 734: 730: 704: 543: 364:resolution for the scale. 242: 5821: 5683: 5587: 5539: 5371:Consonance and dissonance 5341: 5300: 5188:10.1080/13554790008402780 5026:10.1162/jocn.1996.8.6.481 4591:10.1007/s11065-009-9085-2 3918:10.1111/1469-8986.3910038 3170:10.1007/s00221-003-1603-5 1787:Krumhansl, Carol (1990). 1129:Köppl, Christine (1997). 804: 758:, and the ventral medial 412: 281: 255: 5660:Psychoanalysis and music 5640:Neurologic music therapy 5574:Music-specific disorders 5386:Embodied music cognition 5376:Deutsch's scale illusion 5074:10.1093/brain/123.9.1926 4391:10.1162/jocn.1996.8.1.29 4260:. In Deutsch, D. (ed.). 3671:10.3389/fpsyg.2011.00393 1754:Cognitive Brain Research 906:Music-specific disorders 725:supplementary motor area 565:supplementary motor area 443:supplementary motor area 369:medial prefrontal cortex 275:error-related negativity 271:event-related potentials 90: 5516:Speech-to-song illusion 5328:Evolutionary musicology 4544:Cognition & Emotion 4262:The psychology of music 4094:Deutsch, Diana (1980). 3872:10.1162/089892900562183 3658:Frontiers in Psychology 3652:Croom, Adam M. (2012). 3484:10.1162/jocn.2009.21113 3329:10.1162/jocn.2008.20135 3127:10.1126/science.1070311 2659:(Suppl. 1): S120–S131. 2102:10.1126/science.1083661 1834:10.1126/science.1076262 1139:Journal of Neuroscience 646:inferior temporal gyrus 427:Functional neuroimaging 392:Motor control functions 377:superior temporal sulci 264:such as an out of tune 225:superior temporal gyrus 217:primary auditory cortex 204:primary auditory cortex 138:primary auditory cortex 5899:Cognitive neuroscience 5865:The World in Six Songs 5808:William Forde Thompson 5564:Musical hallucinations 4956:10.1006/nimg.2000.0615 4798:Memory & Cognition 4579:Neuropsychology Review 4556:10.1080/02699930126048 4450:10.1073/pnas.191355898 4073:10.1126/science.622558 3438:10.1006/nimg.2002.1154 2713:10.1093/cercor/6.2.102 2444:10.1006/nlme.1998.3846 2148:10.1006/brcg.2001.1301 1597:10.1073/pnas.95.6.3172 1537:Psychological Bulletin 997: 975:and musical tonality. 967:Studies on those with 684:Handedness differences 623: 381:superior temporal gyri 240: 207: 5670:Systematic musicology 2579:10.1152/jn.00651.2003 2432:Neurobiol. Learn. Mem 2389:Curr. Opin. Neurobiol 2257:Curr. Opin. Neurobiol 2214:Curr. Opin. Neurobiol 2036:Curr. Opin. Neurobiol 1686:on September 27, 2016 1329:10.1152/jn.00697.2007 1294:10.1152/jn.00497.2005 1249:10.1152/jn.00070.2009 1200:10.1152/jn.00326.2006 991: 960:, otherwise known as 621: 238: 201: 195:of pitch perception. 21:neuroscience of music 5894:Cognitive musicology 5476:Music-related memory 5313:Cognitive musicology 4253:Deutsch, D. (1999). 3706:Neuroscience Letters 3017:. 26, 100–107 (2003) 2864:10.1136/jnnp.62.1.22 811:Music-related memory 748:orbitofrontal cortex 561:primary motor cortex 531:and have focused on 470:Spatial organization 72:cognitive musicology 5763:Max Friedrich Meyer 5655:Philosophy of music 5650:Performance science 5595:Aesthetics of music 5569:Musician's dystonia 5554:Auditory arrhythmia 5441:Melodic expectation 5055:Ayotte, J. (2000). 4881:2014JNEng..11b6009T 4763:Childhood Education 4441:2001PNAS...9811818B 4435:(20): 11818–11823. 4293:2001NYASA.930..179H 4224:1975ASAJ...57.1156D 4130:1974Natur.251..307D 4065:1978Sci...199..559D 3808:1998Natur.396..128C 3571:2009ASAJ..125.2398D 3528:2006ASAJ..119..719D 3382:2001NYASA.930..433S 3217:2014NatSR...4E5866M 3119:2002Sci...297..846K 2936:Percept. Psychophys 2610:Nature Neuroscience 2179:Annu. Rev. Neurosci 2094:2003Sci...300.1437S 2088:(5624): 1437–1439. 1826:2002Sci...298.2167J 1588:1998PNAS...95.3172Z 1048:Nature Neuroscience 1018:Auditory arrhythmia 911:Focal hand dystonia 721:cerebral blood flow 714:mismatch negativity 638:somatosensory areas 604:Language processing 554:Certain aspects of 495:Parkinson's disease 161:inferior colliculus 5822:Books and journals 5743:Carol L. Krumhansl 5461:Music and movement 5416:Glissando illusion 5396:Exercise and music 4810:10.3758/BF03201225 4625:Baron, Jean-Claude 4105:. pp. 263–71. 3205:Scientific Reports 2949:10.3758/bf03193683 998: 675:Gender differences 624: 540:Music and language 403:musical instrument 241: 208: 134:auditory brainstem 120:to occur down the 41:musical aesthetics 5881: 5880: 5630:Musical acoustics 5506:Sharawadji effect 5486:Musical semantics 5456:Music and emotion 5356:Auditory illusion 4059:(4328): 559–560. 3579:10.1121/1.3081389 3536:10.1121/1.2151799 3225:10.1038/srep05866 3113:(5582): 846–848. 3029:J. Cogn. Neurosci 2485:(22): 5290–5297. 1881:10.1111/ejn.13330 1820:(5601): 2167–70. 1798:978-0-19-514836-7 952:Congenital amusia 826:procedural memory 764:Nucleus accumbens 760:prefrontal cortex 737:Music and emotion 546:Musical semantics 459:sequence learning 165:auditory thalamus 118:action potentials 114:neurotransmitters 86:Elements of music 5916: 5909:Music psychology 5830:Music Perception 5773:Richard Parncutt 5758:Leonard B. Meyer 5708:Jane W. Davidson 5693:Jamshed Bharucha 5471:Music preference 5366:Background music 5361:Auditory imagery 5294:Music psychology 5287: 5280: 5273: 5264: 5263: 5246: 5245: 5214:Neuropsychologia 5209: 5200: 5199: 5171: 5165: 5164: 5133:Neuropsychologia 5128: 5122: 5121: 5093: 5087: 5086: 5076: 5052: 5046: 5045: 5009: 5003: 5002: 4982: 4976: 4975: 4938: 4932: 4931: 4915: 4909: 4908: 4866: 4857: 4848: 4847: 4821: 4793: 4787: 4786: 4758: 4747: 4746: 4710: 4704: 4703: 4667: 4661: 4660: 4620: 4611: 4610: 4574: 4568: 4567: 4539: 4530: 4529: 4519: 4494:(6): 1214–1218. 4479: 4473: 4472: 4462: 4452: 4420: 4411: 4410: 4370: 4364: 4363: 4327: 4321: 4320: 4272: 4266: 4265: 4259: 4250: 4244: 4243: 4232:10.1121/1.380573 4207: 4201: 4200: 4169:Neuropsychologia 4164: 4158: 4157: 4138:10.1038/251307a0 4113: 4107: 4106: 4100: 4091: 4085: 4084: 4048: 4042: 4041: 4023: 3991: 3985: 3984: 3974: 3946: 3940: 3939: 3929: 3906:Psychophysiology 3901: 3892: 3891: 3855: 3846: 3845: 3819: 3787: 3781: 3780: 3744: 3738: 3737: 3700: 3694: 3693: 3683: 3673: 3649: 3640: 3639: 3629: 3597: 3591: 3590: 3554: 3548: 3547: 3510: 3504: 3503: 3467: 3461: 3460: 3450: 3440: 3416: 3410: 3409: 3367: 3358: 3349: 3348: 3312: 3303: 3302: 3277:(10): 2791–803. 3266: 3255: 3254: 3244: 3196: 3190: 3189: 3153: 3147: 3146: 3102: 3096: 3095: 3076:10.1038/35090060 3059: 3053: 3052: 3024: 3018: 3011: 3005: 3004: 2968: 2962: 2961: 2951: 2927: 2921: 2920: 2909:10.2307/40285802 2897:Music Perception 2892: 2886: 2885: 2875: 2843: 2837: 2836: 2800: 2794: 2793: 2791: 2767: 2761: 2760: 2732: 2726: 2725: 2715: 2691: 2685: 2684: 2648: 2642: 2641: 2605: 2599: 2598: 2562: 2556: 2555: 2524:Trends Cogn. Sci 2519: 2513: 2512: 2502: 2470: 2464: 2463: 2438:(1–2): 177–188. 2427: 2421: 2420: 2384: 2378: 2377: 2341: 2335: 2334: 2303:Neuropsychologia 2298: 2289: 2288: 2252: 2246: 2245: 2209: 2203: 2202: 2174: 2168: 2167: 2131: 2122: 2121: 2077: 2068: 2067: 2031: 2025: 2024: 1988: 1979: 1978: 1960: 1936: 1909: 1908: 1875:(6): 2340–2356. 1860: 1854: 1853: 1809: 1803: 1802: 1784: 1778: 1777: 1749: 1743: 1742: 1706: 1695: 1694: 1692: 1691: 1682:. Archived from 1672: 1666: 1665: 1629: 1620: 1619: 1609: 1599: 1567: 1561: 1560: 1532: 1526: 1522: 1496: 1490: 1489: 1471: 1447: 1441: 1440: 1409:Neuropsychologia 1404: 1398: 1397: 1387: 1355: 1349: 1348: 1312: 1306: 1305: 1277: 1271: 1270: 1260: 1228: 1222: 1221: 1211: 1179: 1173: 1172: 1162: 1126: 1117: 1116: 1088: 1082: 1081: 1071: 1039: 942:auditory agnosia 786:cingulate cortex 752:ventral striatum 213:planum temporale 185:pitch perception 157:cochlear nucleus 97:basilar membrane 68:music psychology 61:computer science 5924: 5923: 5919: 5918: 5917: 5915: 5914: 5913: 5904:Music cognition 5884: 5883: 5882: 5877: 5817: 5703:Robert Cutietta 5679: 5665:Sociomusicology 5620:Music education 5605:Ethnomusicology 5583: 5535: 5531:Tritone paradox 5496:Octave illusion 5481:Musical gesture 5446:Melodic fission 5436:Lipps–Meyer law 5406:Franssen effect 5337: 5333:Psychoacoustics 5296: 5291: 5254: 5249: 5220:(8): 1494–505. 5210: 5203: 5172: 5168: 5129: 5125: 5094: 5090: 5053: 5049: 5010: 5006: 4983: 4979: 4939: 4935: 4916: 4912: 4864: 4858: 4851: 4794: 4790: 4759: 4750: 4711: 4707: 4668: 4664: 4623:Platel, Hervé; 4621: 4614: 4575: 4571: 4540: 4533: 4480: 4476: 4421: 4414: 4371: 4367: 4338:(11): 2352–60. 4328: 4324: 4273: 4269: 4257: 4251: 4247: 4208: 4204: 4165: 4161: 4124:(5473): 307–9. 4114: 4110: 4098: 4092: 4088: 4049: 4045: 3992: 3988: 3947: 3943: 3902: 3895: 3856: 3849: 3788: 3784: 3745: 3741: 3701: 3697: 3650: 3643: 3598: 3594: 3565:(4): 2398–403. 3555: 3551: 3511: 3507: 3478:(10): 1882–92. 3468: 3464: 3417: 3413: 3365: 3359: 3352: 3323:(11): 1940–51. 3313: 3306: 3267: 3258: 3197: 3193: 3154: 3150: 3103: 3099: 3060: 3056: 3025: 3021: 3015:Trends Neurosci 3012: 3008: 2969: 2965: 2928: 2924: 2893: 2889: 2844: 2840: 2801: 2797: 2768: 2764: 2733: 2729: 2692: 2688: 2649: 2645: 2606: 2602: 2567:J. Neurophysiol 2563: 2559: 2530:(12): 547–553. 2520: 2516: 2471: 2467: 2428: 2424: 2385: 2381: 2342: 2338: 2299: 2292: 2253: 2249: 2210: 2206: 2175: 2171: 2132: 2125: 2078: 2071: 2032: 2028: 2005:10.1038/nrn1764 1999:(10): 755–765. 1989: 1982: 1937: 1912: 1861: 1857: 1810: 1806: 1799: 1785: 1781: 1750: 1746: 1707: 1698: 1689: 1687: 1674: 1673: 1669: 1630: 1623: 1568: 1564: 1533: 1529: 1519: 1497: 1493: 1448: 1444: 1405: 1401: 1364:Ear and Hearing 1356: 1352: 1313: 1309: 1278: 1274: 1229: 1225: 1180: 1176: 1127: 1120: 1089: 1085: 1060:10.1038/nn.2332 1040: 1036: 1032: 1020: 1011: 986: 984:Amygdala damage 954: 934: 913: 908: 902: 893:corpus callosum 889: 880: 860: 843:episodic memory 835: 818: 813: 807: 739: 733: 709: 703: 701:Musical imagery 691:Octave illusion 686: 677: 663: 629: 616: 608:Wernicke's area 552: 542: 520: 511: 490: 485: 472: 451: 415: 394: 389: 326: 296:parietal cortex 284: 258: 247: 233: 187:, and to argue 181:temporal theory 93: 88: 17: 12: 11: 5: 5922: 5912: 5911: 5906: 5901: 5896: 5879: 5878: 5876: 5875: 5868: 5861: 5854: 5847: 5840: 5833: 5825: 5823: 5819: 5818: 5816: 5815: 5810: 5805: 5800: 5795: 5790: 5785: 5780: 5775: 5770: 5765: 5760: 5755: 5753:Daniel Levitin 5750: 5745: 5740: 5735: 5730: 5728:Henkjan Honing 5725: 5720: 5715: 5710: 5705: 5700: 5695: 5689: 5687: 5681: 5680: 5678: 5677: 5672: 5667: 5662: 5657: 5652: 5647: 5642: 5637: 5632: 5627: 5622: 5617: 5612: 5607: 5602: 5597: 5591: 5589: 5588:Related fields 5585: 5584: 5582: 5581: 5576: 5571: 5566: 5561: 5556: 5551: 5545: 5543: 5537: 5536: 5534: 5533: 5528: 5523: 5518: 5513: 5508: 5503: 5501:Relative pitch 5498: 5493: 5491:Musical syntax 5488: 5483: 5478: 5473: 5468: 5463: 5458: 5453: 5448: 5443: 5438: 5433: 5431:Levitin effect 5428: 5423: 5418: 5413: 5408: 5403: 5398: 5393: 5388: 5383: 5378: 5373: 5368: 5363: 5358: 5353: 5351:Absolute pitch 5347: 5345: 5339: 5338: 5336: 5335: 5330: 5325: 5320: 5315: 5310: 5304: 5302: 5298: 5297: 5290: 5289: 5282: 5275: 5267: 5261: 5260: 5253: 5252:External links 5250: 5248: 5247: 5201: 5182:(4): 321–332. 5166: 5123: 5104:(5): 329–333. 5088: 5067:(9): 1926–38. 5047: 5004: 4993:(3): 209–216. 4977: 4933: 4922:(351): 102–6. 4910: 4849: 4804:(6): 948–955. 4788: 4769:(2): 100–103. 4748: 4721:(4): 1417–26. 4705: 4678:(14): 1880–4. 4662: 4612: 4569: 4550:(4): 487–500. 4531: 4474: 4412: 4365: 4322: 4267: 4245: 4218:(5): 1156–60. 4202: 4159: 4108: 4086: 4043: 3986: 3941: 3893: 3847: 3782: 3755:(8): 1279–82. 3739: 3695: 3641: 3612:(27): 9240–5. 3592: 3549: 3505: 3462: 3411: 3350: 3304: 3256: 3191: 3164:(4): 628–636. 3148: 3097: 3070:(9): 661–670. 3054: 3035:(5): 673–682. 3019: 3006: 2979:(1–2): 67–99. 2963: 2942:(3): 362–376. 2922: 2903:(4): 409–438. 2887: 2838: 2811:(2): 207–212. 2805:J. Neurol. Sci 2795: 2762: 2743:(4): 283–296. 2727: 2706:(2): 102–119. 2686: 2643: 2622:10.1038/nn1081 2616:(7): 682–687. 2600: 2573:(2): 978–993. 2557: 2514: 2465: 2422: 2395:(2): 217–222. 2379: 2352:(3): 801–812. 2336: 2309:(3): 252–262. 2290: 2263:(6): 638–644. 2247: 2220:(2): 250–255. 2204: 2169: 2123: 2069: 2042:(2): 225–232. 2026: 1980: 1910: 1855: 1804: 1797: 1779: 1744: 1717:(5501): 54–6. 1696: 1667: 1634:Brain Research 1621: 1562: 1527: 1517: 1491: 1442: 1399: 1350: 1323:(4): 1941–52. 1307: 1288:(3): 1926–35. 1272: 1243:(3): 1226–37. 1223: 1194:(5): 2327–41. 1174: 1145:(9): 3312–21. 1118: 1083: 1033: 1031: 1028: 1019: 1016: 1010: 1007: 992:Damage to the 985: 982: 953: 950: 933: 930: 912: 909: 904:Main article: 901: 898: 888: 885: 879: 876: 859: 856: 834: 831: 821:Musical memory 817: 814: 809:Main article: 806: 803: 735:Main article: 732: 729: 702: 699: 695:Scale illusion 685: 682: 676: 673: 662: 659: 642:premotor areas 628: 625: 615: 612: 579:and posterior 550:Musical syntax 541: 538: 519: 516: 510: 507: 489: 486: 484: 481: 471: 468: 450: 447: 414: 411: 393: 390: 388: 385: 325: 322: 292:frontal cortex 283: 280: 257: 254: 250:Absolute pitch 245:Absolute pitch 243:Main article: 232: 231:Absolute pitch 229: 122:auditory nerve 92: 89: 87: 84: 15: 9: 6: 4: 3: 2: 5921: 5910: 5907: 5905: 5902: 5900: 5897: 5895: 5892: 5891: 5889: 5874: 5873: 5869: 5867: 5866: 5862: 5860: 5859: 5855: 5853: 5852: 5848: 5846: 5845: 5841: 5839: 5838: 5834: 5832: 5831: 5827: 5826: 5824: 5820: 5814: 5813:Sandra Trehub 5811: 5809: 5806: 5804: 5801: 5799: 5796: 5794: 5793:Roger Shepard 5791: 5789: 5786: 5784: 5783:Carl Seashore 5781: 5779: 5776: 5774: 5771: 5769: 5768:James Mursell 5766: 5764: 5761: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5723:Tuomas Eerola 5721: 5719: 5718:Diana Deutsch 5716: 5714: 5713:Irène Deliège 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5690: 5688: 5686: 5682: 5676: 5675:Zoomusicology 5673: 5671: 5668: 5666: 5663: 5661: 5658: 5656: 5653: 5651: 5648: 5646: 5643: 5641: 5638: 5636: 5633: 5631: 5628: 5626: 5625:Music therapy 5623: 5621: 5618: 5616: 5613: 5611: 5608: 5606: 5603: 5601: 5598: 5596: 5593: 5592: 5590: 5586: 5580: 5579:Tone deafness 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5559:Beat deafness 5557: 5555: 5552: 5550: 5547: 5546: 5544: 5542: 5538: 5532: 5529: 5527: 5524: 5522: 5519: 5517: 5514: 5512: 5509: 5507: 5504: 5502: 5499: 5497: 5494: 5492: 5489: 5487: 5484: 5482: 5479: 5477: 5474: 5472: 5469: 5467: 5464: 5462: 5459: 5457: 5454: 5452: 5451:Mozart effect 5449: 5447: 5444: 5442: 5439: 5437: 5434: 5432: 5429: 5427: 5424: 5422: 5419: 5417: 5414: 5412: 5409: 5407: 5404: 5402: 5399: 5397: 5394: 5392: 5389: 5387: 5384: 5382: 5379: 5377: 5374: 5372: 5369: 5367: 5364: 5362: 5359: 5357: 5354: 5352: 5349: 5348: 5346: 5344: 5340: 5334: 5331: 5329: 5326: 5324: 5321: 5319: 5316: 5314: 5311: 5309: 5308:Biomusicology 5306: 5305: 5303: 5299: 5295: 5288: 5283: 5281: 5276: 5274: 5269: 5268: 5265: 5259: 5256: 5255: 5243: 5239: 5235: 5231: 5227: 5223: 5219: 5215: 5208: 5206: 5197: 5193: 5189: 5185: 5181: 5177: 5170: 5162: 5158: 5154: 5150: 5146: 5142: 5139:(2): 236–44. 5138: 5134: 5127: 5119: 5115: 5111: 5107: 5103: 5099: 5092: 5084: 5080: 5075: 5070: 5066: 5062: 5058: 5051: 5043: 5039: 5035: 5031: 5027: 5023: 5020:(6): 481–96. 5019: 5015: 5008: 5000: 4996: 4992: 4988: 4981: 4973: 4969: 4965: 4961: 4957: 4953: 4950:(3): 257–67. 4949: 4945: 4937: 4929: 4925: 4921: 4914: 4906: 4902: 4898: 4894: 4890: 4886: 4882: 4878: 4875:(2): 026009. 4874: 4870: 4863: 4856: 4854: 4845: 4841: 4837: 4833: 4829: 4825: 4820: 4815: 4811: 4807: 4803: 4799: 4792: 4784: 4780: 4776: 4772: 4768: 4764: 4757: 4755: 4753: 4744: 4740: 4736: 4732: 4728: 4724: 4720: 4716: 4709: 4701: 4697: 4693: 4689: 4685: 4681: 4677: 4673: 4666: 4658: 4654: 4650: 4646: 4642: 4638: 4635:(1): 244–56. 4634: 4630: 4626: 4619: 4617: 4608: 4604: 4600: 4596: 4592: 4588: 4585:(1): 85–101. 4584: 4580: 4573: 4565: 4561: 4557: 4553: 4549: 4545: 4538: 4536: 4527: 4523: 4518: 4513: 4509: 4505: 4501: 4497: 4493: 4489: 4485: 4478: 4470: 4466: 4461: 4456: 4451: 4446: 4442: 4438: 4434: 4430: 4426: 4419: 4417: 4408: 4404: 4400: 4396: 4392: 4388: 4384: 4380: 4376: 4369: 4361: 4357: 4353: 4349: 4345: 4341: 4337: 4333: 4326: 4318: 4314: 4310: 4306: 4302: 4298: 4294: 4290: 4287:(1): 179–92. 4286: 4282: 4278: 4271: 4263: 4256: 4249: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4206: 4198: 4194: 4190: 4186: 4182: 4178: 4175:(3): 289–93. 4174: 4170: 4163: 4155: 4151: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4112: 4104: 4097: 4090: 4082: 4078: 4074: 4070: 4066: 4062: 4058: 4054: 4047: 4039: 4035: 4031: 4027: 4022: 4017: 4013: 4009: 4006:(5): 683–93. 4005: 4001: 3997: 3990: 3982: 3978: 3973: 3968: 3964: 3960: 3957:(5): 709–13. 3956: 3952: 3945: 3937: 3933: 3928: 3923: 3919: 3915: 3911: 3907: 3900: 3898: 3889: 3885: 3881: 3877: 3873: 3869: 3866:(3): 520–41. 3865: 3861: 3854: 3852: 3843: 3839: 3835: 3831: 3827: 3823: 3818: 3817:10.1038/24075 3813: 3809: 3805: 3802:(6707): 128. 3801: 3797: 3793: 3786: 3778: 3774: 3770: 3766: 3762: 3758: 3754: 3750: 3743: 3735: 3731: 3727: 3723: 3719: 3715: 3712:(3): 189–93. 3711: 3707: 3699: 3691: 3687: 3682: 3677: 3672: 3667: 3663: 3659: 3655: 3648: 3646: 3637: 3633: 3628: 3623: 3619: 3615: 3611: 3607: 3603: 3596: 3588: 3584: 3580: 3576: 3572: 3568: 3564: 3560: 3553: 3545: 3541: 3537: 3533: 3529: 3525: 3522:(2): 719–22. 3521: 3517: 3509: 3501: 3497: 3493: 3489: 3485: 3481: 3477: 3473: 3466: 3458: 3454: 3449: 3444: 3439: 3434: 3431:(2): 956–66. 3430: 3426: 3422: 3415: 3407: 3403: 3399: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3364: 3357: 3355: 3346: 3342: 3338: 3334: 3330: 3326: 3322: 3318: 3311: 3309: 3300: 3296: 3292: 3288: 3284: 3280: 3276: 3272: 3265: 3263: 3261: 3252: 3248: 3243: 3238: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3195: 3187: 3183: 3179: 3175: 3171: 3167: 3163: 3159: 3152: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3112: 3108: 3101: 3093: 3089: 3085: 3081: 3077: 3073: 3069: 3065: 3058: 3050: 3046: 3042: 3038: 3034: 3030: 3023: 3016: 3010: 3002: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2967: 2959: 2955: 2950: 2945: 2941: 2937: 2933: 2926: 2918: 2914: 2910: 2906: 2902: 2898: 2891: 2883: 2879: 2874: 2869: 2865: 2861: 2857: 2853: 2849: 2842: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2806: 2799: 2790: 2785: 2781: 2777: 2773: 2766: 2758: 2754: 2750: 2746: 2742: 2738: 2731: 2723: 2719: 2714: 2709: 2705: 2701: 2697: 2690: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2647: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2604: 2596: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2561: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2518: 2510: 2506: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2469: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2383: 2375: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2340: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2297: 2295: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2258: 2251: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2208: 2200: 2196: 2192: 2188: 2184: 2180: 2173: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2130: 2128: 2119: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2076: 2074: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2030: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1987: 1985: 1976: 1972: 1968: 1964: 1959: 1954: 1950: 1946: 1942: 1935: 1933: 1931: 1929: 1927: 1925: 1923: 1921: 1919: 1917: 1915: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1859: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1808: 1800: 1794: 1790: 1783: 1775: 1771: 1767: 1763: 1760:(1): 117–26. 1759: 1755: 1748: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1705: 1703: 1701: 1685: 1681: 1677: 1671: 1663: 1659: 1655: 1651: 1647: 1643: 1640:(1): 162–74. 1639: 1635: 1628: 1626: 1617: 1613: 1608: 1603: 1598: 1593: 1589: 1585: 1582:(6): 3172–7. 1581: 1577: 1573: 1566: 1558: 1554: 1550: 1546: 1543:(2): 345–61. 1542: 1538: 1531: 1525: 1520: 1518:9780123814609 1514: 1510: 1506: 1502: 1495: 1487: 1483: 1479: 1475: 1470: 1465: 1462:(4): 767–76. 1461: 1457: 1453: 1446: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1403: 1395: 1391: 1386: 1381: 1377: 1373: 1370:(3): 302–24. 1369: 1365: 1361: 1354: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1311: 1303: 1299: 1295: 1291: 1287: 1283: 1276: 1268: 1264: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1227: 1219: 1215: 1210: 1205: 1201: 1197: 1193: 1189: 1185: 1178: 1170: 1166: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1134: 1125: 1123: 1114: 1110: 1106: 1102: 1099:(6): 642–53. 1098: 1094: 1087: 1079: 1075: 1070: 1065: 1061: 1057: 1053: 1049: 1045: 1038: 1034: 1027: 1024: 1015: 1006: 1003: 995: 990: 981: 978: 974: 970: 965: 963: 962:tone deafness 959: 949: 945: 943: 939: 932:Music agnosia 929: 927: 923: 918: 907: 897: 894: 884: 875: 873: 867: 865: 855: 851: 847: 844: 840: 830: 827: 822: 812: 802: 800: 796: 792: 787: 782: 779: 775: 771: 769: 765: 761: 757: 753: 749: 745: 738: 728: 726: 722: 717: 715: 708: 698: 696: 692: 681: 672: 669: 658: 654: 650: 647: 643: 639: 634: 620: 611: 609: 605: 601: 598: 592: 590: 584: 582: 578: 574: 573:basal ganglia 570: 566: 562: 557: 551: 547: 537: 534: 528: 525: 524:mirror neuron 515: 506: 502: 500: 496: 480: 478: 467: 465: 460: 455: 446: 444: 440: 439:basal ganglia 436: 432: 428: 424: 421: 410: 406: 404: 400: 384: 382: 378: 374: 370: 365: 362: 358: 354: 350: 346: 342: 338: 334: 330: 321: 318: 314: 310: 305: 301: 297: 293: 289: 279: 276: 272: 267: 263: 253: 251: 246: 237: 228: 226: 220: 218: 214: 205: 200: 196: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 149:phase-locking 145: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 102: 98: 83: 81: 77: 73: 69: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 5870: 5863: 5856: 5849: 5844:Musicophilia 5842: 5835: 5828: 5798:John Sloboda 5778:Oliver Sacks 5748:Fred Lerdahl 5600:Bioacoustics 5526:Tonal memory 5511:Shepard tone 5317: 5217: 5213: 5179: 5175: 5169: 5136: 5132: 5126: 5101: 5097: 5091: 5064: 5060: 5050: 5017: 5013: 5007: 4990: 4986: 4980: 4947: 4943: 4936: 4919: 4913: 4872: 4868: 4801: 4797: 4791: 4766: 4762: 4718: 4714: 4708: 4675: 4671: 4665: 4632: 4628: 4582: 4578: 4572: 4547: 4543: 4491: 4487: 4477: 4432: 4428: 4385:(1): 29–46. 4382: 4378: 4368: 4335: 4331: 4325: 4284: 4280: 4270: 4261: 4248: 4215: 4211: 4205: 4172: 4168: 4162: 4121: 4117: 4111: 4102: 4089: 4056: 4052: 4046: 4003: 3999: 3989: 3954: 3950: 3944: 3912:(1): 38–48. 3909: 3905: 3863: 3859: 3799: 3795: 3785: 3752: 3748: 3742: 3709: 3705: 3698: 3661: 3657: 3609: 3605: 3595: 3562: 3558: 3552: 3519: 3515: 3508: 3475: 3471: 3465: 3428: 3424: 3414: 3376:(1): 433–5. 3373: 3369: 3320: 3316: 3274: 3270: 3208: 3204: 3194: 3161: 3157: 3151: 3110: 3106: 3100: 3067: 3063: 3057: 3032: 3028: 3022: 3014: 3009: 2976: 2972: 2966: 2939: 2935: 2925: 2900: 2896: 2890: 2858:(1): 22–26. 2855: 2851: 2841: 2808: 2804: 2798: 2779: 2775: 2765: 2740: 2736: 2730: 2703: 2699: 2689: 2656: 2652: 2646: 2613: 2609: 2603: 2570: 2566: 2560: 2527: 2523: 2517: 2482: 2478: 2468: 2435: 2431: 2425: 2392: 2388: 2382: 2349: 2345: 2339: 2306: 2302: 2260: 2256: 2250: 2217: 2213: 2207: 2182: 2178: 2172: 2139: 2135: 2085: 2081: 2039: 2035: 2029: 1996: 1992: 1948: 1944: 1872: 1868: 1858: 1817: 1813: 1807: 1788: 1782: 1757: 1753: 1747: 1714: 1710: 1688:. Retrieved 1684:the original 1679: 1670: 1637: 1633: 1579: 1575: 1565: 1540: 1536: 1530: 1524:PDF Document 1500: 1494: 1459: 1455: 1445: 1415:(2): 632–9. 1412: 1408: 1402: 1367: 1363: 1353: 1320: 1316: 1310: 1285: 1281: 1275: 1240: 1236: 1226: 1191: 1187: 1177: 1142: 1138: 1132: 1096: 1092: 1086: 1054:(6): 711–7. 1051: 1047: 1037: 1021: 1012: 999: 966: 955: 946: 935: 914: 890: 881: 868: 861: 852: 848: 836: 819: 790: 783: 776: 772: 740: 718: 710: 687: 678: 664: 661:Similarities 655: 651: 630: 602: 597:frontal lobe 595:to the left 593: 588: 585: 569:Broca's area 553: 533:Broca's area 529: 521: 512: 503: 491: 473: 464:motor memory 456: 452: 425: 416: 407: 395: 366: 327: 298:, and right 285: 259: 248: 221: 209: 193:place theory 191:against the 153:mode-locking 146: 94: 65: 57:music theory 49:neuroanatomy 20: 18: 5803:Carl Stumpf 5733:David Huron 5685:Researchers 5391:Entrainment 4819:10161/10143 4672:NeuroReport 3951:NeuroReport 3749:NeuroReport 2479:J. Neurosci 2185:: 307–340. 2142:(1): 7–30. 1951:(1): 9–12. 1503:: 141–182. 956:Congenital 915:Focal hand 887:Development 766:(a part of 633:gray matter 627:Differences 108:. When the 78:(fMRI) and 5888:Categories 5788:Max Schoen 5738:Nina Kraus 5698:Lola Cuddy 5635:Musicology 4944:NeuroImage 4715:NeuroImage 4629:NeuroImage 3425:NeuroImage 2653:NeuroImage 2346:NeuroImage 2136:Brain Cogn 1690:2019-05-31 1030:References 977:Congenital 900:Impairment 705:See also: 581:cerebellum 575:, ventral 544:See also: 501:patients. 449:Sequencing 435:cerebellum 373:cerebellum 309:gamma band 300:cerebellum 189:indirectly 169:low-passed 163:, and the 116:and cause 110:hair cells 53:psychology 33:performing 5541:Disorders 5196:144572937 5176:Neurocase 4828:1532-5946 4783:219597861 4508:0896-6273 4360:205513912 3826:1476-4687 3233:2045-2322 3158:Brain Res 2973:Cognition 1889:1460-9568 1739:132754452 1133:Tyto alba 926:arpeggios 878:Attention 707:Audiation 420:metronome 349:chromatic 337:intervals 335:– tones, 132:, in the 45:neurology 37:composing 29:listening 5242:16730354 5234:11931954 5161:14537793 5153:16970965 5118:15242461 5083:10960056 5042:25846736 5034:23961980 4972:24205160 4964:10944408 4905:35135614 4897:24608228 4844:34931829 4836:10586571 4735:12948699 4700:21792266 4657:17195548 4649:14527585 4607:14341862 4599:19214750 4526:29566791 4469:11573015 4407:11312311 4399:23972234 4352:19046375 4317:31277594 4309:11458829 4038:10553168 4030:12965042 3981:12692468 3936:12206294 3880:10931776 3777:14517466 3769:15167549 3726:10653025 3690:22232614 3636:14534258 3587:19354413 3544:16521731 3500:10848425 3492:18823240 3457:12377169 3406:31971115 3398:11458860 3337:18416683 3299:15189129 3291:16817882 3251:25070060 3211:: 5866. 3178:12937876 3143:16923101 3135:12161656 3084:11533734 3049:12965041 2993:15037127 2958:16900830 2917:40285802 2782:: 1–37. 2776:Cogn Sci 2681:10198110 2673:14597305 2630:12830159 2587:14573560 2552:18845950 2544:15556024 2509:15930376 2460:29972449 2417:12354147 2409:12015240 2374:14531779 2366:15955490 2323:12457751 2285:12490490 2277:16271465 2234:12744981 2199:15217335 2156:11812030 2118:16390014 2110:12775842 2064:10629859 2056:15082329 2021:29616055 2013:16163383 1967:15996544 1897:27421883 1842:12481131 1774:15922164 1731:11192009 1654:16963000 1478:12441063 1437:12414672 1429:17959204 1394:20084007 1345:10052217 1337:17699690 1302:16339005 1267:20042702 1218:16807349 1078:19471270 1002:amygdala 994:amygdala 973:tonality 917:dystonia 839:semantic 799:phonemes 778:Emotions 768:striatum 756:midbrain 744:amygdala 693:and the 577:thalamus 556:language 477:parietal 431:cortical 329:Tonality 324:Tonality 126:synapses 106:tonotopy 5610:Hearing 5381:Earworm 4928:9646753 4877:Bibcode 4743:1878442 4692:8547589 4564:5557258 4517:6688399 4437:Bibcode 4289:Bibcode 4240:1127169 4220:Bibcode 4197:3063526 4189:6877583 4154:4273134 4146:4427654 4126:Bibcode 4061:Bibcode 4053:Science 3888:6205775 3842:4425221 3834:9823892 3804:Bibcode 3734:6564482 3681:3249389 3664:: 393. 3627:6740845 3567:Bibcode 3524:Bibcode 3378:Bibcode 3345:6678801 3242:5376193 3213:Bibcode 3186:7704309 3115:Bibcode 3107:Science 3092:6792943 2882:9010395 2833:2515325 2825:9349677 2757:9741757 2722:8670643 2638:7605155 2595:7763911 2500:6724991 2452:9753595 2331:1855933 2164:5596590 2090:Bibcode 2082:Science 1975:1613599 1905:3899594 1850:3031759 1822:Bibcode 1814:Science 1711:Science 1662:8401429 1616:9501235 1584:Bibcode 1557:8451339 1486:2429799 1385:2868335 1258:2887620 1209:2013745 1169:9096164 1160:6573645 1113:6183097 1069:2780022 938:agnosia 797:in the 731:Emotion 333:harmony 294:, left 142:mammals 101:cochlea 99:in the 82:(PET). 5549:Amusia 5343:Topics 5240:  5232:  5194:  5159:  5151:  5116:  5081:  5040:  5032:  4970:  4962:  4926:  4903:  4895:  4842:  4834:  4826:  4781:  4741:  4733:  4698:  4690:  4655:  4647:  4605:  4597:  4562:  4524:  4514:  4506:  4488:Neuron 4467:  4457:  4405:  4397:  4358:  4350:  4315:  4307:  4238:  4195:  4187:  4152:  4144:  4118:Nature 4081:622558 4079:  4036:  4028:  3979:  3934:  3886:  3878:  3840:  3832:  3824:  3796:Nature 3775:  3767:  3732:  3724:  3688:  3678:  3634:  3624:  3585:  3542:  3498:  3490:  3455:  3404:  3396:  3343:  3335:  3297:  3289:  3249:  3239:  3231:  3184:  3176:  3141:  3133:  3090:  3082:  3047:  3001:635860 2999:  2991:  2956:  2915:  2880:  2873:486690 2870:  2831:  2823:  2755:  2720:  2700:Cortex 2679:  2671:  2636:  2628:  2593:  2585:  2550:  2542:  2507:  2497:  2458:  2450:  2415:  2407:  2372:  2364:  2329:  2321:  2283:  2275:  2242:328258 2240:  2232:  2197:  2162:  2154:  2116:  2108:  2062:  2054:  2019:  2011:  1973:  1965:  1945:Neuron 1903:  1895:  1887:  1848:  1840:  1795:  1772:  1737:  1729:  1660:  1652:  1614:  1604:  1555:  1515:  1484:  1476:  1456:Neuron 1435:  1427:  1392:  1382:  1343:  1335:  1300:  1265:  1255:  1216:  1206:  1167:  1157:  1111:  1076:  1066:  969:amusia 958:amusia 936:Music 922:scales 864:memory 805:Memory 795:vowels 668:chords 499:stroke 413:Timing 399:phrase 375:, the 371:, the 345:scales 343:, and 341:chords 317:evoked 288:rhythm 282:Rhythm 262:melody 256:Melody 175:using 159:, the 130:nuclei 5301:Areas 5238:S2CID 5192:S2CID 5157:S2CID 5114:S2CID 5061:Brain 5038:S2CID 4968:S2CID 4901:S2CID 4865:(PDF) 4840:S2CID 4779:S2CID 4739:S2CID 4696:S2CID 4653:S2CID 4603:S2CID 4560:S2CID 4460:58814 4403:S2CID 4356:S2CID 4313:S2CID 4258:(PDF) 4193:S2CID 4150:S2CID 4099:(PDF) 4034:S2CID 3884:S2CID 3838:S2CID 3773:S2CID 3730:S2CID 3496:S2CID 3402:S2CID 3366:(PDF) 3341:S2CID 3295:S2CID 3182:S2CID 3139:S2CID 3088:S2CID 2997:S2CID 2913:JSTOR 2829:S2CID 2677:S2CID 2634:S2CID 2591:S2CID 2548:S2CID 2456:S2CID 2413:S2CID 2370:S2CID 2327:S2CID 2281:S2CID 2238:S2CID 2160:S2CID 2114:S2CID 2060:S2CID 2017:S2CID 1971:S2CID 1901:S2CID 1846:S2CID 1735:S2CID 1658:S2CID 1607:19714 1482:S2CID 1433:S2CID 1341:S2CID 940:, an 361:tonic 357:minor 353:major 313:beats 266:pitch 91:Pitch 25:music 5230:PMID 5149:PMID 5079:PMID 5030:PMID 4960:PMID 4924:PMID 4893:PMID 4832:PMID 4824:ISSN 4731:PMID 4688:PMID 4645:PMID 4595:PMID 4522:PMID 4504:ISSN 4465:PMID 4395:PMID 4348:PMID 4305:PMID 4236:PMID 4185:PMID 4142:PMID 4077:PMID 4026:PMID 3977:PMID 3932:PMID 3876:PMID 3830:PMID 3822:ISSN 3765:PMID 3722:PMID 3686:PMID 3632:PMID 3583:PMID 3540:PMID 3488:PMID 3453:PMID 3394:PMID 3333:PMID 3287:PMID 3247:PMID 3229:ISSN 3174:PMID 3131:PMID 3080:PMID 3045:PMID 2989:PMID 2954:PMID 2878:PMID 2821:PMID 2753:PMID 2718:PMID 2669:PMID 2626:PMID 2583:PMID 2540:PMID 2505:PMID 2448:PMID 2405:PMID 2362:PMID 2319:PMID 2273:PMID 2230:PMID 2195:PMID 2152:PMID 2106:PMID 2052:PMID 2009:PMID 1963:PMID 1893:PMID 1885:ISSN 1838:PMID 1793:ISBN 1770:PMID 1727:PMID 1650:PMID 1638:1117 1612:PMID 1553:PMID 1513:ISBN 1474:PMID 1425:PMID 1390:PMID 1333:PMID 1298:PMID 1263:PMID 1214:PMID 1165:PMID 1109:PMID 1074:PMID 924:and 841:and 791:seem 548:and 522:The 497:and 441:and 355:and 202:The 151:and 19:The 5222:doi 5184:doi 5141:doi 5106:doi 5069:doi 5065:123 5022:doi 4995:doi 4952:doi 4885:doi 4814:hdl 4806:doi 4771:doi 4723:doi 4680:doi 4637:doi 4587:doi 4552:doi 4512:PMC 4496:doi 4455:PMC 4445:doi 4387:doi 4340:doi 4297:doi 4285:930 4228:doi 4177:doi 4134:doi 4122:251 4069:doi 4057:199 4016:hdl 4008:doi 3967:hdl 3959:doi 3922:hdl 3914:doi 3868:doi 3812:doi 3800:396 3757:doi 3714:doi 3710:278 3676:PMC 3666:doi 3622:PMC 3614:doi 3575:doi 3563:125 3532:doi 3520:119 3480:doi 3443:hdl 3433:doi 3386:doi 3374:930 3325:doi 3279:doi 3237:PMC 3221:doi 3166:doi 3162:153 3123:doi 3111:297 3072:doi 3037:doi 2981:doi 2944:doi 2905:doi 2868:PMC 2860:doi 2813:doi 2809:151 2784:doi 2745:doi 2741:106 2708:doi 2661:doi 2618:doi 2575:doi 2532:doi 2495:PMC 2487:doi 2440:doi 2397:doi 2354:doi 2311:doi 2265:doi 2222:doi 2187:doi 2144:doi 2098:doi 2086:300 2044:doi 2001:doi 1953:doi 1877:doi 1830:doi 1818:298 1762:doi 1719:doi 1715:291 1642:doi 1602:PMC 1592:doi 1545:doi 1541:113 1505:doi 1464:doi 1417:doi 1380:PMC 1372:doi 1325:doi 1290:doi 1253:PMC 1245:doi 1241:103 1204:PMC 1196:doi 1155:PMC 1147:doi 1101:doi 1064:PMC 1056:doi 304:EEG 183:of 177:EEG 140:in 5890:: 5236:. 5228:. 5218:40 5216:. 5204:^ 5190:. 5178:. 5155:. 5147:. 5137:45 5135:. 5112:. 5102:17 5100:. 5077:. 5063:. 5059:. 5036:. 5028:. 5016:. 4991:28 4989:. 4966:. 4958:. 4948:12 4946:. 4899:. 4891:. 4883:. 4873:11 4871:. 4867:. 4852:^ 4838:. 4830:. 4822:. 4812:. 4802:27 4800:. 4777:. 4767:78 4765:. 4751:^ 4737:. 4729:. 4719:19 4717:. 4694:. 4686:. 4674:. 4651:. 4643:. 4633:20 4631:. 4615:^ 4601:. 4593:. 4583:19 4581:. 4558:. 4548:15 4546:. 4534:^ 4520:. 4510:. 4502:. 4492:97 4490:. 4486:. 4463:. 4453:. 4443:. 4433:98 4431:. 4427:. 4415:^ 4401:. 4393:. 4381:. 4377:. 4354:. 4346:. 4336:28 4334:. 4311:. 4303:. 4295:. 4283:. 4279:. 4234:. 4226:. 4216:57 4214:. 4191:. 4183:. 4173:21 4171:. 4148:. 4140:. 4132:. 4120:. 4075:. 4067:. 4055:. 4032:. 4024:. 4014:. 4004:15 4002:. 3998:. 3975:. 3965:. 3955:14 3953:. 3930:. 3920:. 3910:39 3908:. 3896:^ 3882:. 3874:. 3864:12 3862:. 3850:^ 3836:. 3828:. 3820:. 3810:. 3798:. 3794:. 3771:. 3763:. 3753:15 3751:. 3728:. 3720:. 3708:. 3684:. 3674:. 3660:. 3656:. 3644:^ 3630:. 3620:. 3610:23 3608:. 3604:. 3581:. 3573:. 3561:. 3538:. 3530:. 3518:. 3494:. 3486:. 3476:21 3474:. 3451:. 3441:. 3429:17 3427:. 3423:. 3400:. 3392:. 3384:. 3372:. 3368:. 3353:^ 3339:. 3331:. 3321:20 3319:. 3307:^ 3293:. 3285:. 3275:23 3273:. 3259:^ 3245:. 3235:. 3227:. 3219:. 3207:. 3203:. 3180:. 3172:. 3160:. 3137:. 3129:. 3121:. 3109:. 3086:. 3078:. 3066:. 3043:. 3033:15 3031:. 2995:. 2987:. 2977:92 2975:. 2952:. 2940:68 2938:. 2934:. 2911:. 2901:16 2899:. 2876:. 2866:. 2856:62 2854:. 2850:. 2827:. 2819:. 2807:. 2780:26 2778:. 2774:. 2751:. 2739:. 2716:. 2702:. 2698:. 2675:. 2667:. 2657:20 2655:. 2632:. 2624:. 2612:. 2589:. 2581:. 2571:91 2569:. 2546:. 2538:. 2526:. 2503:. 2493:. 2483:25 2481:. 2477:. 2454:. 2446:. 2436:70 2434:. 2411:. 2403:. 2393:12 2391:. 2368:. 2360:. 2350:26 2348:. 2325:. 2317:. 2307:41 2305:. 2293:^ 2279:. 2271:. 2261:15 2259:. 2236:. 2228:. 2218:13 2216:. 2193:. 2183:27 2181:. 2158:. 2150:. 2140:48 2138:. 2126:^ 2112:. 2104:. 2096:. 2084:. 2072:^ 2058:. 2050:. 2040:14 2038:. 2015:. 2007:. 1995:. 1983:^ 1969:. 1961:. 1949:47 1947:. 1943:. 1913:^ 1899:. 1891:. 1883:. 1873:44 1871:. 1867:. 1844:. 1836:. 1828:. 1816:. 1768:. 1758:24 1756:. 1733:. 1725:. 1713:. 1699:^ 1678:. 1656:. 1648:. 1636:. 1624:^ 1610:. 1600:. 1590:. 1580:95 1578:. 1574:. 1551:. 1539:. 1511:. 1480:. 1472:. 1460:36 1458:. 1454:. 1431:. 1423:. 1413:46 1411:. 1388:. 1378:. 1368:31 1366:. 1362:. 1339:. 1331:. 1321:98 1319:. 1296:. 1286:95 1284:. 1261:. 1251:. 1239:. 1235:. 1212:. 1202:. 1192:96 1190:. 1186:. 1163:. 1153:. 1143:17 1141:. 1137:. 1121:^ 1107:. 1097:54 1095:. 1072:. 1062:. 1052:12 1050:. 1046:. 874:. 754:, 750:, 746:, 697:. 640:, 567:, 563:, 437:, 405:. 339:, 144:. 59:, 55:, 51:, 47:, 35:, 31:, 5286:e 5279:t 5272:v 5244:. 5224:: 5198:. 5186:: 5180:6 5163:. 5143:: 5120:. 5108:: 5085:. 5071:: 5044:. 5024:: 5018:8 5001:. 4997:: 4974:. 4954:: 4930:. 4907:. 4887:: 4879:: 4846:. 4816:: 4808:: 4785:. 4773:: 4745:. 4725:: 4702:. 4682:: 4676:6 4659:. 4639:: 4609:. 4589:: 4566:. 4554:: 4528:. 4498:: 4471:. 4447:: 4439:: 4409:. 4389:: 4383:8 4362:. 4342:: 4319:. 4299:: 4291:: 4242:. 4230:: 4222:: 4199:. 4179:: 4156:. 4136:: 4128:: 4083:. 4071:: 4063:: 4040:. 4018:: 4010:: 3983:. 3969:: 3961:: 3938:. 3924:: 3916:: 3890:. 3870:: 3844:. 3814:: 3806:: 3779:. 3759:: 3736:. 3716:: 3692:. 3668:: 3662:2 3638:. 3616:: 3589:. 3577:: 3569:: 3546:. 3534:: 3526:: 3502:. 3482:: 3459:. 3445:: 3435:: 3408:. 3388:: 3380:: 3347:. 3327:: 3301:. 3281:: 3253:. 3223:: 3215:: 3209:4 3188:. 3168:: 3145:. 3125:: 3117:: 3094:. 3074:: 3068:2 3051:. 3039:: 3003:. 2983:: 2960:. 2946:: 2919:. 2907:: 2884:. 2862:: 2835:. 2815:: 2792:. 2786:: 2759:. 2747:: 2724:. 2710:: 2704:6 2683:. 2663:: 2640:. 2620:: 2614:6 2597:. 2577:: 2554:. 2534:: 2528:8 2511:. 2489:: 2462:. 2442:: 2419:. 2399:: 2376:. 2356:: 2333:. 2313:: 2287:. 2267:: 2244:. 2224:: 2201:. 2189:: 2166:. 2146:: 2120:. 2100:: 2092:: 2066:. 2046:: 2023:. 2003:: 1997:6 1977:. 1955:: 1907:. 1879:: 1852:. 1832:: 1824:: 1801:. 1776:. 1764:: 1741:. 1721:: 1693:. 1664:. 1644:: 1618:. 1594:: 1586:: 1559:. 1547:: 1521:. 1507:: 1488:. 1466:: 1439:. 1419:: 1396:. 1374:: 1347:. 1327:: 1304:. 1292:: 1269:. 1247:: 1220:. 1198:: 1171:. 1149:: 1135:" 1115:. 1103:: 1080:. 1058::

Index

music
listening
performing
composing
musical aesthetics
neurology
neuroanatomy
psychology
music theory
computer science
music psychology
cognitive musicology
functional magnetic resonance imaging
positron emission tomography
basilar membrane
cochlea
tonotopy
hair cells
neurotransmitters
action potentials
auditory nerve
synapses
nuclei
auditory brainstem
primary auditory cortex
mammals
phase-locking
mode-locking
cochlear nucleus
inferior colliculus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.