Knowledge

Mikheyev–Smirnov–Wolfenstein effect

Source 📝

1603: 1623:
For the low-energy solar neutrinos, on the other hand, the matter effect is negligible, and the formalism of oscillations in vacuum is valid. The size of the source (i.e. the solar core) is significantly larger than the oscillation length, therefore, averaging over the oscillation factor, one obtains
1606:
Survival probability of solar neutrinos as predicted by the MSW theory. The continuous line is for neutrinos that are detected in the day, the dotted one for neutrinos that are detected in the night and that pass through the Earth, experiencing "regeneration". The 4 vertical strips indicate the
1842:
carry away about 99% of the gravitational energy of the supernova and are considered strongest source of cosmic neutrinos in the MeV range. As such, scientists have attempted to simulate and mathematically characterize the action of MSW dynamics on SN neutrinos.
627:) has an opposite sign. If the electron density of matter changes along the path of neutrinos, the mixing of neutrinos grows to maximum at some value of the density, and then turns back; it leads to resonant conversion of one type of neutrinos to another one. 1366: 1792:
The transition between the low energy regime (the MSW effect is negligible) and the high energy regime (the oscillation probability is determined by matter effects) lies in the region of about 2 MeV for the solar neutrinos.
791: 1706: 967: 878: 458: 1139: 1934: 589: 1546: 1452: 1217: 1888: 1583:(SNO), which has resolved the solar neutrino problem. SNO measured the flux of solar electron neutrinos to be ~34% of the total neutrino flux (the electron neutrino flux measured via the 50:– the analysis is more complicated, as shown by Mikheyev, Smirnov and Wolfenstein. It leads to a wide admixture of emanating neutrino flavors, which provides a compelling solution to the 2279: 1599:
measured a mixture of charged current and neutral current reactions, that also support the occurrence of the MSW effect with a similar suppression, but with less confidence.
161: 1037: 285: 1168: 1733: 1573: 616: 488: 1485: 1402: 1253: 1073: 1000: 700: 670: 339: 1988: 1961: 239: 212: 1836: 2211: 460:. Since neutrino oscillations depend upon the squared mass difference of the neutrinos, neutrino oscillations experience different dynamics than they did in vacuum. 515: 366: 2128:
Lunardini, C.; Smirnov, A. Yu. (7 March 2001). "Neutrinos from SN 1987A, Earth matter effects, and the large mixing angle solution of the solar neutrino problem".
1258: 386: 185: 39:
of varying density. The MSW effect is broadly analogous to the differential retardation of sound waves in density-variable media, however it also involves the
672:, and remain as such as the density of solar material changes. Thus, the neutrinos of high energy leaving the Sun are in a vacuum propagation eigenstate, 705: 1627: 883: 1995: 1782:
alone verify the MSW pattern; however all these experiments are consistent with each other and provide us strong evidence of the MSW effect.
1755: 808: 46:
In free space, the separate rates of neutrino eigenstates lead to standard neutrino flavor oscillation. Within matter – such as within the
391: 1080: 2104: 2277:
Mikheyev, S. P.; Smirnov, A. Yu. (1985). "Resonance enhancement of oscillations in matter and solar neutrino spectroscopy".
2192: 2002:
within the Earth, the MSW effect can partially explain the difference of the Kamiokande and IMB energy spectrum of events.
1893: 621:
With antineutrinos, the conceptual point is the same but the effective charge that the weak interaction couples to (called
490:
describes the change of flavors of the eigenstates. In matter, the mixing angle depends on the number density of electrons
2241: 1796:
The MSW effect can also modify neutrino oscillations in the Earth, and future search for new oscillations and/or leptonic
520: 1219:
that is, the eigenfrequency for a system of mixed neutrinos becomes approximately equal to the eigenfrequency of medium.
2269: 2049:, but it happens that this probability is negligibly small—this is sometimes called propagation in the adiabatic regime. 1498: 1407: 1173: 1789:, that is uniquely able to measure the parameters of oscillation that are also consistent with all other measurements. 2200: 77:
predicted that a slow decrease of the density of matter can resonantly enhance the neutrino mixing. Later in 1986,
2060: 1853: 114: 2516: 2460:"Mikheyev-Smirnov-Wolfenstein enhancement of oscillations as a possible solution to the solar-neutrino problem" 98: 388:
change, which means that the neutrinos in matter now have a different effective mass than they did in vacuum:
1742: ≈ 60%. This is consistent with the experimental observations of low energy solar neutrinos by the 1751: 1580: 635: 1999: 1487:
itself fluctuates – the interval between its maximum and minimum values is called the resonance layer.
1141:
which is when the neutrino system experiences resonance and the mixing becomes maximal. For very small
805:
and becomes maximal under certain conditions of the relationship between the vacuum oscillation length
74: 65:
led to understanding that the oscillation parameters of neutrinos are changed in matter. In 1985, the
2046: 139: 1009: 244: 1144: 2421: 2364: 1767: 1711: 1608: 1551: 594: 466: 302:
In the presence of matter, the Hamiltonian of the system changes with respect to the potential:
1576: 1495:
For high-energy solar neutrinos the MSW effect is important, and leads to the expectation that
1457: 1371: 1225: 1046: 1003: 972: 675: 645: 305: 128:). This coherent forward scattering is analogous to the electromagnetic process leading to the 51: 2186: 1966: 1939: 217: 190: 2011: 1990:
oscillated inside the Earth. Due to the differences in the distance traveled by neutrinos to
1814: 32: 1361:{\displaystyle \ n_{r}={\frac {\Delta m^{2}}{\ 2{\sqrt {2\ }}E\ G_{f}\ }}\ \cos(2\theta )\ } 2473: 2430: 2383: 2342: 2311: 2288: 2225: 2147: 1743: 493: 344: 8: 1839: 62: 2477: 2434: 2387: 2346: 2315: 2292: 2229: 2151: 2511: 2407: 2373: 2163: 2137: 2110: 2082: 634:
where electron neutrinos are produced. The high-energy neutrinos seen, for example, in
371: 368:
is the Hamiltonian in vacuum. Correspondingly, the mass eigenstates and eigenvalues of
170: 164: 90: 70: 2362:
Parke, S. J. (1986). "Nonadiabatic level crossing in resonant neutrino oscillations".
2489: 2464: 2446: 2399: 2333: 2302: 2256:
Brooijmans, Gustaaf (28 July 1998). Neutrino oscillations in matter: The MSW effect.
2196: 2167: 2114: 2100: 288: 125: 2411: 1779: 2481: 2438: 2391: 2350: 2319: 2233: 2212:"Antineutrinos From Distant Reactors Simulate the Disappearance of Solar Neutrinos" 2155: 2092: 1607:
values of the energies at which the survival probability was measured, by means of
1596: 786:{\displaystyle \nu _{\text{e}}=\nu _{1m}\cos \theta _{m}+\nu _{2m}\sin \theta _{m}} 639: 133: 129: 40: 28: 1701:{\displaystyle P_{\text{ee}}=1-{\tfrac {1}{2}}\sin ^{2}\left(2\theta _{s}\right)} 1588: 1584: 121: 2442: 2395: 2096: 2061:"Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism1" 2159: 94: 2505: 2354: 2323: 2216: 1602: 1040: 292: 78: 58: 2485: 962:{\displaystyle \ \ell _{0}={\frac {{\sqrt {2\ }}\pi }{\ G_{f}\ n_{e}\ }}\ ,} 2450: 2403: 1797: 623: 296: 66: 2493: 2419:
Bethe, H. A. (1986). "Possible explanation of the solar-neutrino puzzle".
1454:
the resonance density goes to zero. In a medium with fluctuating density,
1746:(the first experiment to reveal the solar neutrino problem), followed by 117: 2142: 1991: 1592: 1591:
reaction). The SNO results agree well with the expectations. Earlier,
86: 2331:
Wolfenstein, L. (1979). "Neutrino oscillations and stellar collapse".
2237: 1808: 1771: 1612: 873:{\displaystyle \ \ell _{\nu }={\frac {\ 4\pi \ E\ }{\Delta m^{2}}}\ } 802: 2459: 630:
The effect is important at the very large electron densities of the
2378: 2087: 1847: 1763: 110: 82: 1846:
Some effect of MSW flavor conversion has already been observed in
132:
of light in a medium and can be described either as the classical
1786: 1759: 453:{\displaystyle \nu _{1},\nu _{2}\rightarrow \nu _{1m},\nu _{2m}} 1747: 1735: = 34° this corresponds to a survival probability of 124:'s elastic forward scattering of the electron neutrinos (i.e., 36: 1785:
These results are further supported by the reactor experiment
642:, are produced mainly as the higher mass eigenstate in matter 43:
of three separate quantum fields which experience distortion.
1775: 1616: 591:. As the neutrinos propagate through density-variant matter, 2300:
Wolfenstein, L. (1978). "Neutrino oscillations in matter".
2045:
the neutrinos have the maximal probability to change their
2077:
Janka, H.-Th (2017). "Neutrino Emission from Supernovae".
2023: 1803: 631: 47: 1368:
and is directly related the number density of electrons
1134:{\displaystyle \ \ell _{\nu }=\ell _{0}\cos(\theta )\ ,} 702:, that has a reduced overlap with the electron neutrino 287:
induces the evolution of mixed neutrino flavors (either
618:
changes – and with it, the flavors of the eigenstates.
187:. The difference of potentials for different neutrinos 1651: 1969: 1942: 1929:{\displaystyle \nu _{\mu ,\tau }\rightarrow \nu _{2}} 1896: 1856: 1817: 1714: 1630: 1554: 1501: 1490: 1460: 1410: 1374: 1261: 1228: 1176: 1147: 1083: 1049: 1039:
is understood as the distance over which the matter "
1012: 975: 886: 811: 708: 678: 648: 597: 523: 496: 469: 394: 374: 347: 308: 247: 220: 193: 173: 142: 1774: (862 keV), pep (1.44 MeV), and 1762:
radiochemical experiments), and, more recently, the
793:
seen by charged current reactions in the detectors.
584:{\displaystyle \theta _{m}(x)=\theta _{m}(n_{e}(x))} 880:and the matter density-dependent refraction length 1982: 1955: 1928: 1882: 1830: 1727: 1700: 1567: 1541:{\displaystyle P_{\text{ee}}=\sin ^{2}\theta _{s}} 1540: 1479: 1447:{\displaystyle \ \theta ={\frac {\pi }{\ 4\ }}\ ,} 1446: 1396: 1360: 1247: 1212:{\displaystyle \ \ell _{\nu }\approx \ell _{0}\ ,} 1211: 1162: 1133: 1067: 1031: 994: 961: 872: 785: 694: 664: 610: 583: 509: 482: 452: 380: 360: 333: 279: 233: 206: 179: 155: 1850:. In the case of normal neutrino mass hierarchy, 2503: 2127: 1838:neutrinos and antineutrinos of all flavors, and 2276: 1766:experiment, which observed the neutrinos from 796: 2209: 1936:, transitions occurred inside the star, then 1404:If vacuum density reaches the maximal value, 463:Similar to the vacuum case, the mixing angle 101:provided analytic treatments of this effect. 2184: 2029: 1883:{\displaystyle \nu _{e}\rightarrow \nu _{1}} 16:Particle physics process affecting neutrinos 2330: 2299: 1043:" from the coherent scattering is equal to 120:(mass eigenstates) of neutrinos due to the 2255: 2457: 2377: 2141: 2086: 1579:. This was dramatically confirmed in the 1778:(< 15 MeV) separately. The 1601: 1255:is informed by the resonance condition: 1811:are calculated to emit of the order of 2504: 2066:. Max-Planck-Institut für Astrophysik. 1804:Supernova neutrinos and the MSW effect 2418: 2361: 2193:Springer Science & Business Media 2076: 2058: 1587:reaction, and the total flux via the 1077:The resonance condition is given by 113:in matter changes the instantaneous 801:Neutrino flavor mixing experiences 21:Mikheyev–Smirnov–Wolfenstein effect 13: 2458:Rosen, S. P.; Gelb, J. M. (1986). 1491:Solar neutrinos and the MSW effect 1281: 851: 14: 2528: 2280:Soviet Journal of Nuclear Physics 517:and the energy of the neutrinos: 2270:Université catholique de Louvain 1768:pp (< 420 keV) 2177: 1800:may make use of this property. 1619:solar neutrinos, respectively. 2121: 2070: 2052: 2041:When neutrinos go through the 2035: 1913: 1867: 1352: 1343: 1122: 1116: 578: 575: 569: 556: 540: 534: 418: 156:{\displaystyle n_{\text{ref}}} 99:Los Alamos National Laboratory 1: 2017: 1032:{\displaystyle \ \ell _{0}\ } 280:{\displaystyle V=V_{1}-V_{2}} 1581:Sudbury Neutrino Observatory 1163:{\displaystyle \ \theta \ ,} 636:Sudbury Neutrino Observatory 7: 2443:10.1103/PhysRevLett.56.1305 2396:10.1103/PhysRevLett.57.1275 2188:The Science of Astrobiology 2097:10.1007/978-3-319-21846-5_4 2005: 1728:{\displaystyle \theta _{s}} 1568:{\displaystyle \theta _{s}} 797:Resonance in the MSW effect 611:{\displaystyle \theta _{m}} 483:{\displaystyle \theta _{m}} 10: 2533: 2210:Schwarzschild, B. (2003). 2160:10.1103/PhysRevD.63.073009 104: 57:Works in 1978 and 1979 by 23:(often referred to as the 2185:Chela-Flores, J. (2011). 1480:{\displaystyle \ n_{r}\ } 1397:{\displaystyle \ n_{e}~.} 1248:{\displaystyle \ n_{r}\ } 1068:{\displaystyle \ 2\pi ~.} 995:{\displaystyle \ G_{f}\ } 695:{\displaystyle \nu _{2m}} 665:{\displaystyle \nu _{2m}} 334:{\displaystyle H=H_{0}+V} 2355:10.1103/PhysRevD.20.2634 2324:10.1103/PhysRevD.17.2369 1983:{\displaystyle \nu _{2}} 1956:{\displaystyle \nu _{1}} 1780:measurements of Borexino 1006:. The refraction length 234:{\displaystyle \nu _{2}} 207:{\displaystyle \nu _{1}} 2486:10.1103/PhysRevD.34.969 2422:Physical Review Letters 2365:Physical Review Letters 1831:{\displaystyle 10^{58}} 1170:this condition becomes 1004:Fermi coupling constant 31:process which modifies 2081:. pp. 1575–1604. 2079:Handbook of Supernovae 1984: 1957: 1930: 1884: 1832: 1729: 1702: 1620: 1569: 1542: 1481: 1448: 1398: 1362: 1249: 1222:The resonance density 1213: 1164: 1135: 1069: 1033: 996: 963: 874: 787: 696: 666: 612: 585: 511: 484: 454: 382: 362: 335: 281: 235: 208: 181: 157: 52:solar neutrino problem 2517:Astroparticle physics 2012:Neutrino oscillations 1985: 1958: 1931: 1885: 1833: 1730: 1703: 1605: 1570: 1543: 1482: 1449: 1399: 1363: 1250: 1214: 1165: 1136: 1070: 1034: 997: 964: 875: 788: 697: 667: 613: 586: 512: 510:{\displaystyle n_{e}} 485: 455: 383: 363: 361:{\displaystyle H_{0}} 336: 282: 236: 209: 182: 158: 33:neutrino oscillations 1967: 1940: 1894: 1854: 1815: 1744:Homestake experiment 1712: 1628: 1552: 1499: 1458: 1408: 1372: 1259: 1226: 1174: 1145: 1081: 1047: 1010: 973: 884: 809: 706: 676: 646: 595: 521: 494: 467: 392: 372: 345: 306: 245: 218: 191: 171: 140: 41:propagation dynamics 2478:1986PhRvD..34..969R 2435:1986PhRvL..56.1305B 2388:1986PhRvL..57.1275P 2347:1979PhRvD..20.2634W 2316:1978PhRvD..17.2369W 2293:1985YaFiz..42.1441M 2230:2003PhT....56c..14S 2152:2001PhRvD..63g3009L 1840:supernova neutrinos 63:Lincoln Wolfenstein 2059:Janka, HT (1996). 1980: 1953: 1926: 1880: 1828: 1725: 1698: 1660: 1621: 1565: 1538: 1477: 1444: 1394: 1358: 1245: 1209: 1160: 1131: 1065: 1029: 992: 959: 870: 783: 692: 662: 608: 581: 507: 480: 450: 378: 358: 331: 277: 231: 204: 177: 165:electric potential 153: 97:and James Gelb of 91:Cornell University 71:Stanislav Mikheyev 2465:Physical Review D 2429:(12): 1305–1308. 2372:(10): 1275–1278. 2341:(10): 2634–2635. 2334:Physical Review D 2303:Physical Review D 2238:10.1063/1.1570758 2130:Physical Review D 2106:978-3-319-21845-8 2030:Chela-Flores 2011 1659: 1638: 1509: 1476: 1463: 1440: 1436: 1434: 1428: 1413: 1390: 1377: 1357: 1336: 1332: 1330: 1317: 1310: 1309: 1298: 1264: 1244: 1231: 1205: 1179: 1156: 1150: 1127: 1086: 1061: 1052: 1028: 1015: 991: 978: 955: 951: 949: 936: 923: 914: 913: 889: 869: 865: 848: 842: 833: 814: 716: 381:{\displaystyle H} 180:{\displaystyle V} 150: 126:weak interactions 2524: 2497: 2454: 2415: 2381: 2358: 2327: 2310:(9): 2369–2374. 2296: 2273: 2258:A New Limit on ν 2252: 2250: 2249: 2240:. Archived from 2206: 2172: 2171: 2145: 2125: 2119: 2118: 2090: 2074: 2068: 2067: 2065: 2056: 2050: 2039: 2033: 2027: 1989: 1987: 1986: 1981: 1979: 1978: 1962: 1960: 1959: 1954: 1952: 1951: 1935: 1933: 1932: 1927: 1925: 1924: 1912: 1911: 1889: 1887: 1886: 1881: 1879: 1878: 1866: 1865: 1837: 1835: 1834: 1829: 1827: 1826: 1734: 1732: 1731: 1726: 1724: 1723: 1707: 1705: 1704: 1699: 1697: 1693: 1692: 1691: 1671: 1670: 1661: 1652: 1640: 1639: 1636: 1597:Super-Kamiokande 1574: 1572: 1571: 1566: 1564: 1563: 1547: 1545: 1544: 1539: 1537: 1536: 1524: 1523: 1511: 1510: 1507: 1486: 1484: 1483: 1478: 1474: 1473: 1472: 1461: 1453: 1451: 1450: 1445: 1438: 1437: 1435: 1432: 1426: 1421: 1411: 1403: 1401: 1400: 1395: 1388: 1387: 1386: 1375: 1367: 1365: 1364: 1359: 1355: 1334: 1333: 1331: 1328: 1327: 1326: 1315: 1311: 1307: 1303: 1296: 1294: 1293: 1292: 1279: 1274: 1273: 1262: 1254: 1252: 1251: 1246: 1242: 1241: 1240: 1229: 1218: 1216: 1215: 1210: 1203: 1202: 1201: 1189: 1188: 1177: 1169: 1167: 1166: 1161: 1154: 1148: 1140: 1138: 1137: 1132: 1125: 1109: 1108: 1096: 1095: 1084: 1074: 1072: 1071: 1066: 1059: 1050: 1038: 1036: 1035: 1030: 1026: 1025: 1024: 1013: 1001: 999: 998: 993: 989: 988: 987: 976: 968: 966: 965: 960: 953: 952: 950: 947: 946: 945: 934: 933: 932: 921: 919: 915: 911: 907: 904: 899: 898: 887: 879: 877: 876: 871: 867: 866: 864: 863: 862: 849: 846: 840: 831: 829: 824: 823: 812: 792: 790: 789: 784: 782: 781: 766: 765: 750: 749: 734: 733: 718: 717: 714: 701: 699: 698: 693: 691: 690: 671: 669: 668: 663: 661: 660: 640:Super-Kamiokande 617: 615: 614: 609: 607: 606: 590: 588: 587: 582: 568: 567: 555: 554: 533: 532: 516: 514: 513: 508: 506: 505: 489: 487: 486: 481: 479: 478: 459: 457: 456: 451: 449: 448: 433: 432: 417: 416: 404: 403: 387: 385: 384: 379: 367: 365: 364: 359: 357: 356: 340: 338: 337: 332: 324: 323: 286: 284: 283: 278: 276: 275: 263: 262: 240: 238: 237: 232: 230: 229: 213: 211: 210: 205: 203: 202: 186: 184: 183: 178: 162: 160: 159: 154: 152: 151: 148: 134:refractive index 130:refractive index 109:The presence of 29:particle physics 2532: 2531: 2527: 2526: 2525: 2523: 2522: 2521: 2502: 2501: 2500: 2265: 2261: 2247: 2245: 2203: 2180: 2175: 2126: 2122: 2107: 2075: 2071: 2063: 2057: 2053: 2040: 2036: 2028: 2024: 2020: 2008: 1974: 1970: 1968: 1965: 1964: 1947: 1943: 1941: 1938: 1937: 1920: 1916: 1901: 1897: 1895: 1892: 1891: 1874: 1870: 1861: 1857: 1855: 1852: 1851: 1822: 1818: 1816: 1813: 1812: 1806: 1758:(collectively, 1741: 1719: 1715: 1713: 1710: 1709: 1687: 1683: 1679: 1675: 1666: 1662: 1650: 1635: 1631: 1629: 1626: 1625: 1589:neutral current 1585:charged current 1559: 1555: 1553: 1550: 1549: 1532: 1528: 1519: 1515: 1506: 1502: 1500: 1497: 1496: 1493: 1468: 1464: 1459: 1456: 1455: 1425: 1420: 1409: 1406: 1405: 1382: 1378: 1373: 1370: 1369: 1322: 1318: 1302: 1295: 1288: 1284: 1280: 1278: 1269: 1265: 1260: 1257: 1256: 1236: 1232: 1227: 1224: 1223: 1197: 1193: 1184: 1180: 1175: 1172: 1171: 1146: 1143: 1142: 1104: 1100: 1091: 1087: 1082: 1079: 1078: 1048: 1045: 1044: 1020: 1016: 1011: 1008: 1007: 983: 979: 974: 971: 970: 941: 937: 928: 924: 920: 906: 905: 903: 894: 890: 885: 882: 881: 858: 854: 850: 830: 828: 819: 815: 810: 807: 806: 799: 777: 773: 758: 754: 745: 741: 726: 722: 713: 709: 707: 704: 703: 683: 679: 677: 674: 673: 653: 649: 647: 644: 643: 602: 598: 596: 593: 592: 563: 559: 550: 546: 528: 524: 522: 519: 518: 501: 497: 495: 492: 491: 474: 470: 468: 465: 464: 441: 437: 425: 421: 412: 408: 399: 395: 393: 390: 389: 373: 370: 369: 352: 348: 346: 343: 342: 319: 315: 307: 304: 303: 271: 267: 258: 254: 246: 243: 242: 225: 221: 219: 216: 215: 198: 194: 192: 189: 188: 172: 169: 168: 147: 143: 141: 138: 137: 122:charged current 107: 17: 12: 11: 5: 2530: 2520: 2519: 2514: 2499: 2498: 2472:(4): 969–979. 2455: 2416: 2359: 2328: 2297: 2287:(6): 913–917. 2274: 2263: 2259: 2253: 2207: 2201: 2181: 2179: 2176: 2174: 2173: 2143:hep-ph/0009356 2120: 2105: 2069: 2051: 2034: 2032:, p. 305. 2021: 2019: 2016: 2015: 2014: 2007: 2004: 1977: 1973: 1950: 1946: 1923: 1919: 1915: 1910: 1907: 1904: 1900: 1877: 1873: 1869: 1864: 1860: 1825: 1821: 1805: 1802: 1739: 1722: 1718: 1696: 1690: 1686: 1682: 1678: 1674: 1669: 1665: 1658: 1655: 1649: 1646: 1643: 1634: 1562: 1558: 1535: 1531: 1527: 1522: 1518: 1514: 1505: 1492: 1489: 1471: 1467: 1443: 1431: 1424: 1419: 1416: 1393: 1385: 1381: 1354: 1351: 1348: 1345: 1342: 1339: 1325: 1321: 1314: 1306: 1301: 1291: 1287: 1283: 1277: 1272: 1268: 1239: 1235: 1208: 1200: 1196: 1192: 1187: 1183: 1159: 1153: 1130: 1124: 1121: 1118: 1115: 1112: 1107: 1103: 1099: 1094: 1090: 1064: 1058: 1055: 1023: 1019: 986: 982: 958: 944: 940: 931: 927: 918: 910: 902: 897: 893: 861: 857: 853: 845: 839: 836: 827: 822: 818: 798: 795: 780: 776: 772: 769: 764: 761: 757: 753: 748: 744: 740: 737: 732: 729: 725: 721: 712: 689: 686: 682: 659: 656: 652: 605: 601: 580: 577: 574: 571: 566: 562: 558: 553: 549: 545: 542: 539: 536: 531: 527: 504: 500: 477: 473: 447: 444: 440: 436: 431: 428: 424: 420: 415: 411: 407: 402: 398: 377: 355: 351: 330: 327: 322: 318: 314: 311: 274: 270: 266: 261: 257: 253: 250: 228: 224: 201: 197: 176: 146: 106: 103: 95:S. Peter Rosen 75:Alexei Smirnov 15: 9: 6: 4: 3: 2: 2529: 2518: 2515: 2513: 2510: 2509: 2507: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2466: 2461: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2424: 2423: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2389: 2385: 2380: 2375: 2371: 2367: 2366: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2335: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2304: 2298: 2294: 2290: 2286: 2282: 2281: 2275: 2272:. p. 40. 2271: 2267: 2254: 2244:on 2007-07-10 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2218: 2217:Physics Today 2213: 2208: 2204: 2202:9789400716278 2198: 2194: 2190: 2189: 2183: 2182: 2169: 2165: 2161: 2157: 2153: 2149: 2144: 2139: 2136:(7): 073009. 2135: 2131: 2124: 2116: 2112: 2108: 2102: 2098: 2094: 2089: 2084: 2080: 2073: 2062: 2055: 2048: 2044: 2043:MSW resonance 2038: 2031: 2026: 2022: 2013: 2010: 2009: 2003: 2001: 1997: 1993: 1975: 1971: 1948: 1944: 1921: 1917: 1908: 1905: 1902: 1898: 1875: 1871: 1862: 1858: 1849: 1844: 1841: 1823: 1819: 1810: 1801: 1799: 1794: 1790: 1788: 1783: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1738: 1720: 1716: 1694: 1688: 1684: 1680: 1676: 1672: 1667: 1663: 1656: 1653: 1647: 1644: 1641: 1632: 1618: 1614: 1610: 1604: 1600: 1598: 1594: 1590: 1586: 1582: 1578: 1575:is the solar 1560: 1556: 1533: 1529: 1525: 1520: 1516: 1512: 1503: 1488: 1469: 1465: 1441: 1429: 1422: 1417: 1414: 1391: 1383: 1379: 1349: 1346: 1340: 1337: 1323: 1319: 1312: 1304: 1299: 1289: 1285: 1275: 1270: 1266: 1237: 1233: 1220: 1206: 1198: 1194: 1190: 1185: 1181: 1157: 1151: 1128: 1119: 1113: 1110: 1105: 1101: 1097: 1092: 1088: 1075: 1062: 1056: 1053: 1042: 1021: 1017: 1005: 984: 980: 956: 942: 938: 929: 925: 916: 908: 900: 895: 891: 859: 855: 843: 837: 834: 825: 820: 816: 804: 794: 778: 774: 770: 767: 762: 759: 755: 751: 746: 742: 738: 735: 730: 727: 723: 719: 710: 687: 684: 680: 657: 654: 650: 641: 638:(SNO) and in 637: 633: 628: 626: 625: 619: 603: 599: 572: 564: 560: 551: 547: 543: 537: 529: 525: 502: 498: 475: 471: 461: 445: 442: 438: 434: 429: 426: 422: 413: 409: 405: 400: 396: 375: 353: 349: 328: 325: 320: 316: 312: 309: 300: 298: 294: 290: 272: 268: 264: 259: 255: 251: 248: 226: 222: 199: 195: 174: 166: 144: 135: 131: 127: 123: 119: 116: 112: 102: 100: 96: 92: 88: 84: 80: 79:Stephen Parke 76: 72: 68: 64: 60: 55: 53: 49: 44: 42: 38: 34: 30: 26: 25:matter effect 22: 2469: 2463: 2426: 2420: 2369: 2363: 2338: 2332: 2307: 2301: 2284: 2278: 2266:Oscillations 2257: 2246:. Retrieved 2242:the original 2224:(3): 14–16. 2221: 2215: 2187: 2178:Bibliography 2133: 2129: 2123: 2078: 2072: 2054: 2042: 2037: 2025: 1845: 1807: 1798:CP violation 1795: 1791: 1784: 1736: 1622: 1577:mixing angle 1494: 1221: 1076: 800: 629: 624:weak isospin 622: 620: 462: 301: 108: 56: 45: 24: 20: 18: 1615:, pep, and 118:eigenstates 115:Hamiltonian 69:physicists 2506:Categories 2379:2212.06978 2268:(Report). 2248:2010-04-24 2088:1702.08713 2018:References 1992:Kamiokande 1809:Supernovae 1593:Kamiokande 87:Hans Bethe 61:physicist 2512:Neutrinos 2168:119066653 2115:119070646 1972:ν 1945:ν 1918:ν 1914:→ 1909:τ 1903:μ 1899:ν 1872:ν 1868:→ 1859:ν 1717:θ 1685:θ 1673:⁡ 1648:− 1557:θ 1530:θ 1526:⁡ 1423:π 1415:θ 1350:θ 1341:⁡ 1282:Δ 1195:ℓ 1191:≈ 1186:ν 1182:ℓ 1152:θ 1120:θ 1114:⁡ 1102:ℓ 1093:ν 1089:ℓ 1057:π 1018:ℓ 917:π 892:ℓ 852:Δ 838:π 821:ν 817:ℓ 803:resonance 775:θ 771:⁡ 756:ν 743:θ 739:⁡ 724:ν 711:ν 681:ν 651:ν 600:θ 548:θ 526:θ 472:θ 439:ν 423:ν 419:→ 410:ν 397:ν 265:− 223:ν 196:ν 111:electrons 2451:10032627 2412:26129285 2404:10033402 2006:See also 1848:SN 1987A 1764:Borexino 1548:, where 341:, where 289:electron 83:Fermilab 59:American 2494:9957237 2474:Bibcode 2431:Bibcode 2384:Bibcode 2343:Bibcode 2312:Bibcode 2289:Bibcode 2226:Bibcode 2148:Bibcode 1787:KamLAND 1760:gallium 1002:is the 163:or the 105:Summary 27:) is a 2492:  2449:  2410:  2402:  2199:  2166:  2113:  2103:  2047:flavor 2000:Baksan 1754:, and 1748:GALLEX 1708:. For 1475:  1462:  1439:  1433:  1427:  1412:  1389:  1376:  1356:  1335:  1329:  1316:  1308:  1297:  1263:  1243:  1230:  1204:  1178:  1155:  1149:  1126:  1085:  1060:  1051:  1027:  1014:  990:  977:  969:where 954:  948:  935:  922:  912:  888:  868:  847:  841:  832:  813:  93:, and 67:Soviet 37:matter 2408:S2CID 2374:arXiv 2164:S2CID 2138:arXiv 2111:S2CID 2083:arXiv 2064:(PDF) 1041:phase 295:, or 2490:PMID 2447:PMID 2400:PMID 2197:ISBN 2101:ISBN 1998:and 1963:and 1890:and 1756:SAGE 1595:and 293:muon 214:and 73:and 19:The 2482:doi 2439:doi 2392:doi 2351:doi 2320:doi 2262:→ ν 2234:doi 2156:doi 2093:doi 1996:IMB 1752:GNO 1664:sin 1517:sin 1338:cos 1111:cos 768:sin 736:cos 632:Sun 299:). 297:tau 149:ref 89:of 81:of 48:Sun 35:in 2508:: 2488:. 2480:. 2470:34 2468:. 2462:. 2445:. 2437:. 2427:56 2425:. 2406:. 2398:. 2390:. 2382:. 2370:57 2368:. 2349:. 2339:20 2337:. 2318:. 2308:17 2306:. 2285:42 2283:. 2232:. 2222:56 2220:. 2214:. 2195:. 2191:. 2162:. 2154:. 2146:. 2134:63 2132:. 2109:. 2099:. 2091:. 1994:, 1824:58 1820:10 1772:Be 1770:, 1750:, 1740:ee 1637:ee 1613:Be 1611:, 1609:pp 1508:ee 291:, 241:: 167:, 136:, 85:, 54:. 2496:. 2484:: 2476:: 2453:. 2441:: 2433:: 2414:. 2394:: 2386:: 2376:: 2357:. 2353:: 2345:: 2326:. 2322:: 2314:: 2295:. 2291:: 2264:τ 2260:μ 2251:. 2236:: 2228:: 2205:. 2170:. 2158:: 2150:: 2140:: 2117:. 2095:: 2085:: 1976:2 1949:1 1922:2 1906:, 1876:1 1863:e 1776:B 1737:P 1721:s 1695:) 1689:s 1681:2 1677:( 1668:2 1657:2 1654:1 1645:1 1642:= 1633:P 1617:B 1561:s 1534:s 1521:2 1513:= 1504:P 1470:r 1466:n 1442:, 1430:4 1418:= 1392:. 1384:e 1380:n 1353:) 1347:2 1344:( 1324:f 1320:G 1313:E 1305:2 1300:2 1290:2 1286:m 1276:= 1271:r 1267:n 1238:r 1234:n 1207:, 1199:0 1158:, 1129:, 1123:) 1117:( 1106:0 1098:= 1063:. 1054:2 1022:0 985:f 981:G 957:, 943:e 939:n 930:f 926:G 909:2 901:= 896:0 860:2 856:m 844:E 835:4 826:= 779:m 763:m 760:2 752:+ 747:m 731:m 728:1 720:= 715:e 688:m 685:2 658:m 655:2 604:m 579:) 576:) 573:x 570:( 565:e 561:n 557:( 552:m 544:= 541:) 538:x 535:( 530:m 503:e 499:n 476:m 446:m 443:2 435:, 430:m 427:1 414:2 406:, 401:1 376:H 354:0 350:H 329:V 326:+ 321:0 317:H 313:= 310:H 273:2 269:V 260:1 256:V 252:= 249:V 227:2 200:1 175:V 145:n

Index

particle physics
neutrino oscillations
matter
propagation dynamics
Sun
solar neutrino problem
American
Lincoln Wolfenstein
Soviet
Stanislav Mikheyev
Alexei Smirnov
Stephen Parke
Fermilab
Hans Bethe
Cornell University
S. Peter Rosen
Los Alamos National Laboratory
electrons
Hamiltonian
eigenstates
charged current
weak interactions
refractive index
refractive index
electric potential
electron
muon
tau
weak isospin
Sun

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.