Knowledge

Zussmanite

Source 📝

499:). Zussmanite was discovered in combination with deerite and howieite, two new minerals discovered in the Franciscan formation, Mendocino County, California. Deerite and howieite have been found at other locations while zussmanite has only been found at this type locality, making it a rare occurring mineral. Experiments have revealed that zussmanite is stable up to 600 Â°C at pressures between 10 kb and 30 kb and that the end members of zussmanite are orthoferrosilite, biotite and quartz. The example of the reaction is 619:). The six-member rings are not directly linked to one another which allows for adjustment by tilting outwards of all tetrahedral, as opposed to many micas where rotations and tilts are used to achieve the larger dimensions of the octahedral layer. The flattening of the octahedral layer perpendicular to the layer is pronounced in zussmanite due to shared and unshared edges. This flattening could be due to the tendency for shared oxygens to come closer and shields iron (Fe) atoms from other neighboring iron (Fe) atoms. 615:). The Fe-(O,OH) mean distance in the first octahedron is 2.1 Angstroms, the second octahedron is 2.14 Angstroms, and in the third octahedron is 2.17 Angstroms. The mean distance in the Si-O bonds in zussmanite are 1.61 Angstroms for the first tetrahedron, 1.61 Angstroms for the second tetrahedron, and 1.65 Angstroms for the third tetrahedron; data given in table I ( 611:). Zussmanite's structure has a close affinity to that of the trioctahedral micas which have a layer of Fe-O octahedral sandwiched between inward pointing tetrahedral. It differs from the micas because its Si-O ratio is 9:21 which results in a sharing coefficient 1.83, as compared with 2.5 and 1.75 for micas, and 1.2 and 2.0 for framework silicates ( 638:
octahedra parallel to (0001). The optical properties result from virtually pure zussmanite that was separated from thin sections, approximately 200 micrometers thick, under a polarizing microscope by means of a microdrill. The indices of refraction compare well with those determined be
401:). The three principal Barrovian types are low P/T type, medium P/T type, and high P/T type. The high P/T type, referred to as glaucophanic metamorphism, is characterized by the presence of 607:). These layers are linked to one another by potassium (K) atoms and also by three-member rings of tetrahedra that share oxygens with the six-members; displayed in figure 2 ( 929: 847:
Massonne, H.-J.; Hervé, F.; Medenbach, O.; Muñoz, V.; Willner, A. P. (December 1998). "Zussmanite in ferruginous metasediments from Southern Central Chile".
410: 627:
Zussmanite occurs in pale green tabular crystals with perfect cleavage. It tends to be uniaxial, weakly pleochroic and a specific gravity of 3.146 (
924: 495:) substitutes are mainly magnesium (Mg) with trace amounts that could include: manganese (Mn), aluminium (Al), iron (Fe) and titanium (Ti) ( 752: 351: 576: 631:). Other types of zussmanite found in Laytonville, which are of fine-grained samples are assumed to be late-stage metamorphic products. 383: 379: 733:"Deerite, howieite and zussmanite, three new minerals from the Franciscan of the Laytonville District, Mendocino County, California" 595:). The structure of Zussmanite contains continuous sheets of rhombohedrally stacked layers of Fe-O octahedral parallel to (0001) ( 919: 428:). Glaucophane schists are characterized by low temperature (100–250 Â°C) high pressure (4–9 kbar) metamorphism ( 877: 468:
rocks and oceanic-continental margin sediments along convergent plate boundaries. The ideal formula for zussmanite is
397:
type of metamorphism is usually distinguished by the P/T range rather than the ranges in pressure and temperatures (
80: 394: 213: 393:
The locality in which zussmanite occurs is one of ultra high to high pressure and low temperatures. This
914: 909: 346: 70: 130: 183: 173: 827: 791: 368: 702: 487:
with possible substitutions of sodium (Na) for potassium (K), in extremely small amounts (
8: 203: 193: 831: 795: 326: 314: 163: 873: 457: 444:
up to 1 mm in size, in the newly discovered locality in Southern Central Chile (
372: 701:
Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005).
591:
The space group and cell of Zussmanite are R*3, ahex 11.66 and chex28.69 Angstroms (
856: 839: 835: 803: 799: 776: 732: 375: 334: 291: 241: 223: 39: 812: 683: 90: 32: 894: 903: 465: 441: 433: 259: 153: 102: 860: 342: 664: 418: 413:, commonly referred to as blueschist-facies, result from metamorphism of 402: 330: 269: 117: 670: 461: 338: 109: 643:
for the chemically different zussmanite from the Laytonville quarry (
364: 360: 762:
Dempsey, M.J. (1981). "Zussmanite Stability; A Preliminary Study".
95: 421: 355:. In the Laytonville quarry, zussmanite occurs in metamorphosed 437: 414: 371:. It is a location of high pressure and low temperatures where 634:
The perfect cleavage is a result of the continuous sheets of
603:–O tetrahedral in a way to produce a rhombohedral unit cell ( 580: 356: 846: 644: 445: 387: 386:
were first discovered. This type of locality also produces
700: 579:, has been found in manganese-rich siliceous rocks in the 813:"Further Detail on the Crystal Structure of Zussmanite" 810: 774: 616: 612: 608: 604: 596: 496: 488: 777:"The Crystal Structure of the Mineral Zussmanite" 901: 750: 429: 425: 390:, which have a similar structure as zussmanite. 313:. It occurs as pale green crystals with perfect 930:Natural history of Mendocino County, California 730: 640: 628: 592: 460:phyllosilicate mineral occurs as a result of 754:An introduction to the rock-forming minerals 731:Agrell, S.O.; Bown, M.G.; McKie, D. (1965). 599:) and to either side of these are attached 320: 135:a = 11.66, c = 28.69 ; Z = 3 757:(2nd ed.). Pearson Education Limited. 378:occur. This is also the locality in which 349:'s Department of Geology and co-author of 867: 575:). The manganese analogue of zussmanite, 406: 398: 751:Deer, W.; Howie, R; Zussman, J. (1993). 417:rocks and are usually located in folded 925:Geology of Mendocino County, California 761: 572: 902: 811:Lopes-Vieira, A.; Zussman, J. (1969). 775:Lopes-Vieira, A.; Zussman, J. (1967). 622: 676: 432:). Zussmanite is commonly found with 274:Weak; O = pale green; E = colorless 13: 870:Metamorphism and metamorphic belts 764:Progress in Experimental Petrology 694: 341:. Zussmanite is named in honor of 325:It was first described in 1964 by 14: 941: 888: 872:. London: G. Allen & Unwin. 617:Lopes-Vieira & Zussman 1969 613:Lopes-Vieira & Zussman 1969 609:Lopes-Vieira & Zussman 1967 605:Lopes-Vieira & Zussman 1969 597:Lopes-Vieira & Zussman 1967 497:Lopes-Vieira & Zussman 1969 489:Lopes-Vieira & Zussman 1969 405:and forms glaucophane schists ( 840:10.1180/minmag.1969.037.285.06 804:10.1180/minmag.1967.036.278.11 657: 451: 430:Deer, Howie & Zussman 1993 426:Deer, Howie & Zussman 1993 198:Sub-vitreous, resinous, greasy 1: 650: 641:Agrell, Bown & McKie 1965 629:Agrell, Bown & McKie 1965 593:Agrell, Bown & McKie 1965 586: 7: 920:Minerals in space group 146 440:, usually forming abundant 10: 946: 294:with the chemical formula 868:Miyashiro, Akiho (1973). 712:. Mineral Data Publishing 684:"Zussmanite Mineral Data" 345:(born 1924), Head of the 278: 268: 258: 240: 232: 222: 212: 202: 192: 182: 172: 162: 152: 144: 139: 129: 116: 101: 89: 79: 69: 38: 28: 23: 18: 895:Properties of Zussmanite 347:University of Manchester 321:Discovery and occurrence 290:is a hydrated iron-rich 861:10.1180/002646198548098 728: 491:). The possible iron ( 849:Mineralogical Magazine 820:Mineralogical Magazine 784:Mineralogical Magazine 710:Handbook of Mineralogy 740:American Mineralogist 521:(orthoferrosilite) + 352:Rock-Forming Minerals 148:Light to medium green 81:Strunz classification 645:Massonne et al. 1998 514:(zussmanite) yields 446:Massonne et al. 1998 369:Franciscan Formation 832:1969MinM...37...49L 796:1967MinM...36..292L 623:Physical properties 411:Glaucophane schists 327:Stuart Olof Agrell 233:Optical properties 915:Trigonal minerals 458:blueschist facies 376:metamorphic rocks 373:blueschist facies 285: 284: 937: 883: 864: 843: 817: 807: 790:(278): 292–293. 781: 771: 758: 747: 737: 722: 721: 719: 717: 707: 698: 692: 691: 680: 674: 673: 661: 637: 602: 583:in New Zealand. 570: 563: 556: 530: 529: 525: 520: 513: 494: 486: 335:Mendocino County 312: 292:silicate mineral 242:Refractive index 224:Specific gravity 158:Tabular crystals 65: 45: 44:(repeating unit) 16: 15: 945: 944: 940: 939: 938: 936: 935: 934: 910:Phyllosilicates 900: 899: 891: 886: 880: 815: 779: 735: 726: 725: 715: 713: 705: 699: 695: 682: 681: 677: 663: 662: 658: 653: 635: 625: 600: 589: 569: 565: 562: 558: 555: 551: 547: 543: 539: 535: 531: 527: 523: 522: 519: 515: 512: 508: 504: 500: 492: 485: 481: 477: 473: 469: 466:oceanic crustal 454: 323: 311: 307: 303: 299: 295: 253: 249: 108: 64: 60: 56: 52: 48: 43: 42: 12: 11: 5: 943: 933: 932: 927: 922: 917: 912: 898: 897: 890: 889:External links 887: 885: 884: 879:978-0045500178 878: 865: 855:(6): 869–876. 844: 826:(285): 28–60. 808: 772: 759: 748: 727: 724: 723: 693: 688:Webmineral.com 675: 655: 654: 652: 649: 624: 621: 588: 585: 567: 560: 553: 549: 545: 541: 537: 533: 517: 510: 506: 502: 483: 479: 475: 471: 453: 450: 442:porphyroblasts 407:Miyashiro 1973 399:Miyashiro 1973 322: 319: 309: 305: 301: 297: 283: 282: 280: 276: 275: 272: 266: 265: 262: 256: 255: 251: 247: 244: 238: 237: 234: 230: 229: 226: 220: 219: 216: 210: 209: 206: 200: 199: 196: 190: 189: 186: 180: 179: 176: 170: 169: 168:Perfect {0001} 166: 160: 159: 156: 150: 149: 146: 142: 141: 140:Identification 137: 136: 133: 127: 126: 120: 114: 113: 107:Pyramidal (3) 105: 99: 98: 93: 91:Crystal system 87: 86: 83: 77: 76: 73: 67: 66: 62: 58: 54: 50: 46: 36: 35: 33:Phyllosilicate 30: 26: 25: 21: 20: 9: 6: 4: 3: 2: 942: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 907: 905: 896: 893: 892: 881: 875: 871: 866: 862: 858: 854: 850: 845: 841: 837: 833: 829: 825: 821: 814: 809: 805: 801: 797: 793: 789: 785: 778: 773: 769: 765: 760: 756: 755: 749: 745: 741: 734: 729: 711: 704: 697: 689: 685: 679: 672: 668: 667: 660: 656: 648: 646: 642: 636:(Fe,Mg)(O,OH) 632: 630: 620: 618: 614: 610: 606: 598: 594: 584: 582: 578: 574: 498: 490: 467: 463: 459: 449: 447: 443: 439: 435: 434:stilpnomelane 431: 427: 423: 420: 416: 412: 408: 404: 400: 396: 391: 389: 385: 381: 377: 374: 370: 366: 362: 358: 354: 353: 348: 344: 340: 336: 332: 328: 318: 316: 293: 289: 281: 277: 273: 271: 267: 263: 261: 260:Birefringence 257: 245: 243: 239: 235: 231: 227: 225: 221: 217: 215: 211: 207: 205: 201: 197: 195: 191: 187: 185: 181: 177: 175: 171: 167: 165: 161: 157: 155: 154:Crystal habit 151: 147: 143: 138: 134: 132: 128: 124: 121: 119: 115: 111: 106: 104: 103:Crystal class 100: 97: 94: 92: 88: 84: 82: 78: 74: 72: 68: 47: 41: 37: 34: 31: 27: 22: 17: 869: 852: 848: 823: 819: 787: 783: 767: 763: 753: 743: 739: 714:. Retrieved 709: 703:"Zussmanite" 696: 687: 678: 665: 659: 633: 626: 590: 581:Otago Schist 573:Dempsey 1981 557:(biotite) + 455: 419:geosynclinal 392: 359:, siliceous 350: 343:Jack Zussman 324: 287: 286: 236:Uniaxial (−) 122: 571:0 (water) ( 564:(quartz) + 452:Composition 403:glaucophane 363:and impure 331:Laytonville 296:K(Fe,Mg,Mn) 270:Pleochroism 218:Translucent 214:Diaphaneity 118:Space group 49:K(Fe,Mg,Mn) 904:Categories 671:Mindat.org 666:Zussmanite 651:References 462:subduction 365:limestones 361:ironstones 339:California 288:Zussmanite 279:References 110:H-M symbol 71:IMA symbol 19:Zussmanite 587:Structure 577:coombsite 505:[AlSi 395:Barrovian 300:[AlSi 264:ÎŽ = 0.020 250:= 1.643 n 178:Micaceous 131:Unit cell 53:[AlSi 770:: 58–60. 716:14 March 422:terranes 415:basaltic 384:Howieite 333:quarry, 315:cleavage 188:Flexible 184:Tenacity 174:Fracture 164:Cleavage 96:Trigonal 29:Category 828:Bibcode 792:Bibcode 601:(Si,Al) 526:⁄ 516:10FeSiO 380:Deerite 367:of the 329:in the 254:= 1.623 85:9.EG.35 40:Formula 24:General 876:  746:: 278. 438:quartz 357:shales 204:Streak 194:Luster 816:(PDF) 780:(PDF) 736:(PDF) 706:(PDF) 509:](OH) 507:17042 388:micas 308:](OH) 228:3.146 208:White 145:Color 112:: (3) 61:](OH) 874:ISBN 718:2022 559:4SiO 552:(OH) 482:(OH) 456:The 436:and 382:and 857:doi 836:doi 800:doi 647:). 501:KFe 478:AlO 470:KFe 464:of 448:). 409:). 75:Zus 906:: 853:62 851:. 834:. 824:37 822:. 818:. 798:. 788:36 786:. 782:. 766:. 744:50 742:. 738:. 708:. 686:. 669:, 566:6H 550:20 544:Al 540:Si 536:Fe 511:14 503:13 493:Fe 484:14 480:42 476:17 474:Si 472:13 337:, 317:. 310:14 306:42 302:17 298:13 63:14 59:42 55:17 51:13 882:. 863:. 859:: 842:. 838:: 830:: 806:. 802:: 794:: 768:5 720:. 690:. 568:2 561:2 554:4 548:O 546:2 542:6 538:6 534:2 532:K 528:2 524:1 518:3 424:( 304:O 252:Δ 248:ω 246:n 125:3 123:R 57:O

Index

Phyllosilicate
Formula
IMA symbol
Strunz classification
Crystal system
Trigonal
Crystal class
H-M symbol
Space group
Unit cell
Crystal habit
Cleavage
Fracture
Tenacity
Luster
Streak
Diaphaneity
Specific gravity
Refractive index
Birefringence
Pleochroism
silicate mineral
cleavage
Stuart Olof Agrell
Laytonville
Mendocino County
California
Jack Zussman
University of Manchester
Rock-Forming Minerals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑