Knowledge

Well-covered graph

Source đź“ť

22: 689: 681: 295: 288: 281: 274: 267: 260: 253: 246: 240: 697: 916:; that is, complementarily, testing whether a graph is well-covered is coNP-complete. Although it is easy to find maximum independent sets in graphs that are known to be well-covered, it is also NP-hard for an algorithm to produce as output, on all graphs, either a maximum independent set or a guarantee that the input is not well-covered. 156:, although they are meaningful for disconnected graphs as well. Some later authors have replaced the connectivity requirement with the weaker requirement that a well-covered graph must not have any isolated vertices. For both connected well-covered graphs and well-covered graphs without isolated vertices, there can be no 873:, or equivalently the well-covered maximal planar graphs. Every maximal planar graph with five or more vertices has vertex connectivity 3, 4, or 5. There are no well-covered 5-connected maximal planar graphs, and there are only four 4-connected well-covered maximal planar graphs: the graphs of the 655:
is a tree with more than two vertices, it is well-covered if and only if each non-leaf node of the tree is adjacent to exactly one leaf. The same characterization applies to graphs that are locally tree-like, in the sense that low-diameter neighborhoods of every vertex are acyclic: if a graph has
112:
is a set of vertices that touches every edge in the graph. A vertex cover is minimal, or irredundant, if removing any vertex from it would destroy the covering property: the removal would cause some edge to become uncovered. It is minimum if there is no other vertex cover with fewer vertices. A
113:
well-covered graph is one in which every minimal cover is also minimum. In the original paper defining well-covered graphs, Plummer writes that this is "obviously equivalent" to the property that every two minimal covers have the same number of vertices as each other.
148:
is a minimum vertex cover if and only if its complement is a maximum independent set. Therefore, a well-covered graph is, equivalently, a graph in which every maximal independent set has the same size, or a graph in which every maximal independent set is maximum.
543:
to be a well-covered graph (possibly disconnected, but with no isolated vertices) in which each maximal independent set (and therefore also each minimal vertex cover) contains exactly half of the vertices. This definition includes the rooted products of a graph
1297:
The complete graphs on 1, 2, 3, and 4 vertices are all maximal planar and well-covered; their vertex connectivity is either unbounded or at most three, depending on details of the definition of vertex connectivity that are irrelevant for larger maximal planar
556:: in a bipartite graph without isolated vertices, both sides of any bipartition form maximal independent sets (and minimal vertex covers), so if the graph is well-covered both sides must have equally many vertices. In a well-covered graph with 838:
to replace some of the path nodes (and the other two fragments for the remaining nodes) is a 1-vertex-connected cubic well-covered graph. All 1-vertex-connected cubic well-covered graphs have this form, and all such graphs are planar.
443:
so that no two rooks are attacking each other, it is always possible to continue placing more non-attacking rooks until there is one on every row and column of the chessboard. The graph whose vertices are the diagonals of a
1083:
The rook's graphs are, equivalently, the line graphs of complete bipartite graphs, so the well-covered property of rook's graphs is equivalent to the fact that complete bipartite graphs are equimatchable, for which see
448:
and whose edges connect pairs of diagonals that cross each other is well-covered, because its maximal independent sets are triangulations of the polygon and all triangulations have the same number of edges.
394:
A non-attacking placement of eight rooks on a chessboard. If fewer than eight rooks are placed in a non-attacking way on a chessboard, they can always be extended to eight rooks that remain non-attacking.
651:
Trees are a special case of bipartite graphs, and testing whether a tree is well-covered can be handled as a much simpler special case of the characterization of well-covered bipartite graphs: if
973:
The characterizations of well-covered graphs with girth five or more, and of well-covered graphs that are 3-regular, also lead to efficient polynomial time algorithms to recognize these graphs.
966:. The only connected randomly matchable graphs are the complete graphs and the balanced complete bipartite graphs. It is possible to test whether a line graph, or more generally a 404:
of length four or five is well-covered: in each case, every maximal independent set has size two. A cycle of length seven, and a path of length three, are also well-covered. Every
191:. A simplicial complex is said to be pure if all its maximal simplices have the same cardinality, so a well-covered graph is equivalently a graph with a pure independence complex. 1141:, Lemma 3.2. This source states its results in terms of the purity of the independence complex, and uses the term "fully-whiskered" for the special case of the rooted product. 900:
disjoint triangle faces, then these faces will form a clique cover. Therefore, the clique cover construction, which for these graphs consists of subdividing each of these
1353: 672:
greater than one has exactly one neighbor of degree one. A closely related but more complex characterization applies to well-covered graphs of girth five or more.
991:. Plummer uses "point" to mean a vertex in a graph, "line" to mean an edge, and "point cover" to mean a vertex cover; this terminology has fallen out of use. 889:) with 12 vertices, 30 edges, and 20 triangular faces. However, there are infinitely many 3-connected well-covered maximal planar graphs. For instance, if a 935:
consisting of the edges that satisfy the two properties of a matched edge in a very well covered graph, and then use a matching algorithm to test whether
842:
There are two types of 2-vertex-connected cubic well-covered graphs. One of these two families is formed by replacing the nodes of a cycle by fragments
33:. The three red vertices form one of its 14 equal-sized maximal independent sets, and the six blue vertices form the complementary minimal vertex cover. 2028: 798:
The 1- and 2-connected cubic well-covered graphs are all formed by replacing the nodes of a path or cycle by three fragments of graphs which
416:
is well covered if the two sides of its bipartition have equal numbers of vertices, for these are its only two maximal independent sets. The
869:
Complementing the characterization of well-covered simple polyhedra in three dimensions, researchers have also considered the well-covered
80:
whose vertices represent squares of a chessboard and edges represent moves of a chess rook. Known characterizations of the well-covered
428:
is well-covered: it has no independent sets larger than two, and every single vertex can be extended to a two-vertex independent set.
516:
formed by adding another vertex to each clique is well-covered; the rooted product is the special case of this construction when
2391:
Tankus, David; Tarsi, Michael (1997), "The structure of well-covered graphs and the complexity of their recognition problems",
1117:; they are also (together with the four-edge cycle, which is also well-covered) exactly the graphs whose domination number is 57:
if removing any vertex from it would leave some edge uncovered. Equivalently, well-covered graphs are the graphs in which all
1503: 567:, so very well covered graphs are the well covered graphs in which the maximum independent set size is as large as possible. 1124:. Its well-covering property is also stated in different terminology (having a pure independence complex) as Theorem 4.4 of 1685: 605:. The characterization in terms of matchings can be extended from bipartite graphs to very well covered graphs: a graph 1979:
Fink, J. F.; Jacobson, M. S.; Kinch, L. F.; Roberts, J. (1985), "On graphs having domination number half their order",
1798:
Finbow, A.; Hartnell, B.; Nowakowski, R. J. (1993), "A characterization of well covered graphs of girth 5 or greater",
2161: 1683:
Dochtermann, Anton; Engström, Alexander (2009), "Algebraic properties of edge ideals via combinatorial topology",
939:
has a perfect matching. Some problems that are NP-complete for arbitrary graphs, such as the problem of finding a
692:
A cubic 1-connected well-covered graph, formed by replacing each node of a six-node path by one of three fragments
2393: 2360: 2126: 1800: 1721: 760: 117: 2106:
Graph Theory and Combinatorics: Proceedings of the Cambridge Combinatorial Conference, in Honour of Paul Erdős
904:
triangles into three new triangles meeting at a central vertex, produces a well-covered maximal planar graph.
2257: 1775:
Finbow, A.; Hartnell, B.; Nowakowski, R. (1988), "Well-dominated graphs: a collection of well-covered ones",
1948: 1911: 1874: 1837: 1359:; additional examples can be constructed by an operation they call an O-join for combining smaller graphs. 153: 2104:
Lesk, M.; Plummer, M. D.; Pulleyblank, W. R. (1984), "Equi-matchable graphs", in Bollobás, Béla (ed.),
1777: 1754: 1570: 764: 1055: 1053: 2285: 717: 602: 548:
and a one-edge graph. It also includes, for instance, the bipartite well-covered graphs studied by
461: 413: 160:, vertices which belong to every minimum vertex cover. Additionally, every well-covered graph is a 73: 2434: 2329: 1486:
Graph theory and algorithms (Proc. Sympos., Res. Inst. Electr. Comm., Tohoku Univ., Sendai, 1980)
1050: 129: 58: 2280: 1644:
Cook, David II; Nagel, Uwe (2010), "Cohen-Macaulay graphs and face vectors of flag complexes",
492:
together with the degree-one neighbors of the complementary set, and must therefore have size
831: 669: 408:
is well-covered: every maximal independent set consists of a single vertex. Similarly, every
1631:, Annals of Discrete Mathematics, vol. 55, Amsterdam: North-Holland, pp. 179–181, 822:
may be used to replace the nodes of a cycle or the interior nodes of a path, while fragment
2416: 2383: 2350: 2302: 2248: 2219: 2185: 2149: 2113: 2096: 2057: 2000: 1971: 1934: 1897: 1860: 1823: 1790: 1767: 1744: 1708: 1663: 1636: 1616: 1583: 1556: 1513: 1331: 878: 657: 89: 854:; a graph of this type is planar if and only if it does not contain any fragments of type 720:
examples, together with three infinite families of cubic graphs with lesser connectivity.
8: 1624: 870: 421: 152:
In the original paper defining well-covered graphs, these definitions were restricted to
1667: 1488:, Lecture Notes in Computer Science, vol. 108, Berlin: Springer, pp. 108–123, 2223: 2157: 2121: 2074: 2045: 2004: 1943: 1906: 1869: 1832: 1653: 1565: 874: 184: 62: 26: 2211: 2140: 1851: 560:
vertices, without isolated vertices, the size of a maximum independent set is at most
2198:
Raghavan, Vijay; Spinrad, Jeremy (2003), "Robust algorithms for restricted domains",
2008: 1735: 1499: 940: 785: 2227: 912:
Testing whether a graph contains two maximal independent sets of different sizes is
834:, so the result of performing this replacement process on a path and using fragment 2402: 2369: 2338: 2290: 2207: 2173: 2135: 2084: 2037: 1988: 1957: 1920: 1883: 1846: 1809: 1730: 1694: 1671: 1604: 1592: 1489: 1480:(1981), "Some common properties for regularizable graphs, edge-critical graphs and 963: 951: 858:. The other family is formed by replacing the nodes of a path by fragments of type 778: 740: 736: 590: 575: 525: 417: 109: 46: 2177: 788:) that are well-covered. Four of the graphs (the two prisms, the DĂĽrer graph, and 2412: 2379: 2346: 2298: 2244: 2215: 2181: 2145: 2109: 2092: 2053: 1996: 1967: 1930: 1893: 1856: 1819: 1786: 1763: 1740: 1704: 1632: 1612: 1579: 1552: 1509: 967: 924: 882: 782: 701: 432: 425: 93: 85: 77: 54: 2088: 1536: 724: 445: 405: 176: 161: 120:
in a graph is a set of vertices no two of which are adjacent to each other. If
69: 2065:
Holroyd, Fred; Talbot, John (2005), "Graphs with the Erdős-Ko-Rado property",
1962: 1925: 1888: 1752:
Finbow, A. S.; Hartnell, B. L. (1983), "A game related to covering by stars",
744: 2428: 2268: 1716: 1494: 748: 713: 409: 97: 2407: 2374: 2342: 2324: 2294: 1814: 1608: 1540: 1477: 774: 501: 436: 50: 38: 704:, one of four well-covered 4-connected 3-dimensional simplicial polyhedra. 2189: 913: 886: 709: 401: 81: 2358:
Tankus, David; Tarsi, Michael (1996), "Well-covered claw-free graphs",
2049: 1992: 955: 440: 61:
have equal size. Well-covered graphs were defined and first studied by
1675: 943:, may also be solved in polynomial time for very well covered graphs. 2079: 531: 172:
from the graph produces a graph with a smaller minimum vertex cover.
21: 2041: 688: 680: 668:
is acyclic) then it is well-covered if and only if every vertex of
49:
in which the minimal vertex covers all have the same size. Here, a
1658: 1406: 716:) well-covered graphs have been classified: they consist of seven 696: 96:, but testing whether other kinds of graph are well-covered is a 30: 2314:, Ph.D. thesis, Vanderbilt University, Department of Mathematics 2259:
Well-covered graphs: some new sub-classes and complexity results
1699: 1545:
Journal of Combinatorial Mathematics and Combinatorial Computing
1525:, Ph.D. thesis, Vanderbilt University, Department of Mathematics 1941: 1904: 1867: 1830: 1356: 1316: 1312: 1308: 480:, each of degree one and each adjacent to a distinct vertex in 1942:
Finbow, Arthur S.; Hartnell, Bert L.; Nowakowski, Richard J.;
1905:
Finbow, Arthur S.; Hartnell, Bert L.; Nowakowski, Richard J.;
1868:
Finbow, Arthur S.; Hartnell, Bert L.; Nowakowski, Richard J.;
1307:
Finbow, Hartnell, and Nowakowski et al. (
609:
is very well covered if and only if it has a perfect matching
759:, an eight-vertex graph obtained from the utility graph by a 1627:; Slater, Peter J. (1993), "A note on well-covered graphs", 1543:(1993), "A characterisation of well-covered cubic graphs", 1279: 1595:; Tarsi, Michael (1996), "Recognizing greedy structures", 919:
In contrast, it is possible to test whether a given graph
2237:
Journal of Combinatorics, Information and System Sciences
826:
is used to replace the two end nodes of a path. Fragment
412:(a disjoint union of complete graphs) is well-covered. A 1978: 1797: 1774: 1265: 1114: 1065: 723:
The seven 3-connected cubic well-covered graphs are the
164:
for vertex covering in the sense that, for every vertex
140:
is a minimal vertex cover if and only if its complement
53:
is a set of vertices that touches all edges, and it is
2271:(1992), "Complexity results for well-covered graphs", 2266: 2103: 1534: 1456: 1436: 1412: 1400: 1368: 1269: 1089: 636:, then the two endpoints of the path must be adjacent. 1334: 1011: 1009: 644:
is very well covered, then every perfect matching in
484:) is well-covered. For, a maximal independent set in 1095: 664:, the subgraph of vertices within distance three of 1682: 1125: 1040: 1039:For examples of papers using this terminology, see 850:, with at least two of the fragments being of type 1418: 1347: 1328:The graphs constructed in this way are called the 1021: 1006: 994: 532:Bipartiteness, very well covered graphs, and girth 2029:Transactions of the American Mathematical Society 1144: 2426: 1946:(2016), "Well-covered triangulations: Part IV", 954:is maximum; that is, it is equimatchable if its 488:must consist of an arbitrary independent set in 200: 2255: 2197: 1909:(2010), "On well-covered triangulations. III", 1563: 1388: 1285: 1245: 1059: 684:The seven cubic 3-connected well-covered graphs 2262:(Doctoral dissertation), University of Alberta 1872:(2009), "On well-covered triangulations. II", 1751: 1220: 1204: 16:Graph with equal-size maximal independent sets 2064: 1835:(2003), "On well-covered triangulations. I", 1623: 1590: 1376: 1372: 1071: 187:having a simplex for each independent set in 2235:Ravindra, G. (1977), "Well-covered graphs", 2124:(1970), "Some covering concepts in graphs", 2108:, London: Academic Press, pp. 239–254, 958:is well-covered. More strongly it is called 632:is the central edge of a three-edge path in 524:one-vertex cliques. Thus, every graph is an 136:must be an independent set, and vice versa. 2390: 2357: 1444: 1440: 885:, and an irregular polyhedron (a nonconvex 675: 1831:Finbow, A.; Hartnell, B.; Nowakowski, R.; 1523:Some results on planar well-covered graphs 468:with a one-edge graph (that is, the graph 435:is well covered: if one places any set of 2406: 2373: 2312:On some subclasses of well-covered graphs 2284: 2139: 2078: 2015: 1961: 1924: 1887: 1850: 1813: 1734: 1698: 1657: 1643: 1493: 1161: 1159: 1138: 1101: 1044: 660:eight or more (so that, for every vertex 2234: 1520: 1266:Finbow, Hartnell & Nowakowski (1988) 1261: 1241: 1165: 695: 687: 679: 574:is well-covered if and only if it has a 549: 20: 2317: 2309: 2156: 2120: 1715: 1568:(1988), "On well-covered 3-polytopes", 1528: 1460: 1273: 1249: 1237: 1235: 1233: 1224: 1208: 1192: 1188: 1184: 1169: 1137:For the clique cover construction, see 1027: 1015: 1000: 988: 799: 581:with the property that, for every edge 536: 92:allow these graphs to be recognized in 2427: 2323: 1457:Campbell, Ellingham & Royle (1993) 1437:Lesk, Plummer & Pulleyblank (1984) 1424: 1413:Lesk, Plummer & Pulleyblank (1984) 1270:Campbell, Ellingham & Royle (1993) 1180: 1178: 1156: 1113:This class of examples was studied by 1090:Lesk, Plummer & Pulleyblank (1984) 1085: 970:, is well-covered in polynomial time. 773:. Of these graphs, the first four are 2327:(1979), "Randomly matchable graphs", 1476: 1150: 553: 294: 287: 280: 273: 266: 259: 252: 245: 236: 2016:Greenberg, Peter (1993), "Piecewise 1719:(1982), "Very well covered graphs", 1646:SIAM Journal on Discrete Mathematics 1401:Sankaranarayana & Stewart (1992) 1369:Sankaranarayana & Stewart (1992) 1230: 1131: 68:The well-covered graphs include all 2256:Sankaranarayana, Ramesh S. (1994), 1686:Electronic Journal of Combinatorics 1175: 795:) are generalized Petersen graphs. 613:with the following two properties: 13: 496:. More generally, given any graph 144:is a maximal independent set, and 88:, and well-covered graphs of high 14: 2446: 1126:Dochtermann & Engström (2009) 1041:Dochtermann & Engström (2009) 896:-vertex maximal planar graph has 1062:, Section 2.4, "Examples", p. 7. 293: 286: 279: 272: 265: 258: 251: 244: 238: 2394:Journal of Combinatorial Theory 2361:Journal of Combinatorial Theory 2162:"Well-covered graphs: a survey" 2127:Journal of Combinatorial Theory 1801:Journal of Combinatorial Theory 1450: 1430: 1394: 1382: 1362: 1322: 1301: 1291: 1255: 1214: 1198: 1107: 962:if every maximal matching is a 777:. They are the only four cubic 1077: 1033: 982: 927:. To do so, find the subgraph 866:; all such graphs are planar. 103: 1: 2212:10.1016/S0196-6774(03)00048-8 2178:10.1080/16073606.1993.9631737 2141:10.1016/S0021-9800(70)80011-4 1852:10.1016/S0166-218X(03)00393-7 1469: 1389:Raghavan & Spinrad (2003) 1377:Caro, SebĹ‘ & Tarsi (1996) 1286:Campbell & Plummer (1988) 1246:Campbell & Plummer (1988) 907: 124:is a vertex cover in a graph 2267:Sankaranarayana, Ramesh S.; 1949:Discrete Applied Mathematics 1912:Discrete Applied Mathematics 1875:Discrete Applied Mathematics 1838:Discrete Applied Mathematics 1736:10.1016/0012-365X(82)90215-1 1221:Finbow & Hartnell (1983) 1205:Finbow & Hartnell (1983) 648:satisfies these properties. 7: 1373:Chvátal & Slater (1993) 1072:Holroyd & Talbot (2005) 194: 29:of the nine diagonals of a 10: 2451: 2089:10.1016/j.disc.2004.08.028 765:generalized Petersen graph 25:A well-covered graph, the 1963:10.1016/j.dam.2016.06.030 1926:10.1016/j.dam.2009.08.002 1889:10.1016/j.dam.2009.03.014 1445:Tankus & Tarsi (1997) 1441:Tankus & Tarsi (1996) 621:belongs to a triangle in 528:of a well-covered graph. 512:into cliques), the graph 74:complete bipartite graphs 2166:Quaestiones Mathematicae 1629:Quo vadis, graph theory? 1521:Campbell, S. R. (1987), 1495:10.1007/3-540-10704-5_10 976: 923:is very well covered in 676:Regularity and planarity 603:complete bipartite graph 460:-vertex graph, then the 414:complete bipartite graph 59:maximal independent sets 2330:Journal of Graph Theory 1693:(2): Research Paper 2, 1139:Cook & Nagel (2010) 1045:Cook & Nagel (2010) 541:very well covered graph 2408:10.1006/jctb.1996.1742 2375:10.1006/jctb.1996.0022 2343:10.1002/jgt.3190030209 2295:10.1002/net.3230220304 1815:10.1006/jctb.1993.1005 1609:10.1006/jagm.1996.0006 1564:Campbell, Stephen R.; 1349: 1060:Sankaranarayana (1994) 946:A graph is said to be 705: 693: 685: 34: 2200:Journal of Algorithms 1981:Period. Math. Hungar. 1597:Journal of Algorithms 1350: 1348:{\displaystyle K_{4}} 699: 691: 683: 108:A vertex cover in an 24: 2310:Staples, J. (1975), 2067:Discrete Mathematics 1722:Discrete Mathematics 1357:Finbow et al. (2016) 1332: 879:pentagonal dipyramid 871:simplicial polyhedra 763:, and the 14-vertex 735:, the graphs of the 593:of the neighbors of 177:independence complex 2158:Plummer, Michael D. 2122:Plummer, Michael D. 1944:Plummer, Michael D. 1907:Plummer, Michael D. 1870:Plummer, Michael D. 1833:Plummer, Michael D. 1668:2010arXiv1003.4447C 1566:Plummer, Michael D. 508:of the vertices of 422:triangle-free graph 1993:10.1007/BF01848079 1345: 1115:Fink et al. (1985) 960:randomly matchable 875:regular octahedron 706: 694: 686: 570:A bipartite graph 185:simplicial complex 158:essential vertices 63:Michael D. Plummer 43:well-covered graph 35: 27:intersection graph 2269:Stewart, Lorna K. 1882:(13): 2799–2817, 1676:10.1137/100818170 1535:Campbell, S. R.; 1505:978-3-540-10704-0 941:Hamiltonian cycle 779:polyhedral graphs 472:formed by adding 426:isolated vertices 392: 391: 2442: 2419: 2410: 2386: 2377: 2353: 2325:Sumner, David P. 2315: 2305: 2288: 2263: 2251: 2230: 2193: 2188:, archived from 2152: 2143: 2116: 2099: 2082: 2073:(1–3): 165–176, 2060: 2025: 2011: 1974: 1965: 1937: 1928: 1900: 1891: 1863: 1854: 1826: 1817: 1793: 1778:Ars Combinatoria 1770: 1755:Ars Combinatoria 1747: 1738: 1729:(2–3): 177–187, 1711: 1702: 1678: 1661: 1639: 1619: 1586: 1571:Ars Combinatoria 1559: 1541:Royle, Gordon F. 1537:Ellingham, M. N. 1526: 1516: 1497: 1483: 1464: 1454: 1448: 1434: 1428: 1422: 1416: 1410: 1404: 1398: 1392: 1386: 1380: 1366: 1360: 1354: 1352: 1351: 1346: 1344: 1343: 1326: 1320: 1305: 1299: 1295: 1289: 1283: 1277: 1259: 1253: 1239: 1228: 1218: 1212: 1202: 1196: 1182: 1173: 1163: 1154: 1148: 1142: 1135: 1129: 1123: 1111: 1105: 1102:Greenberg (1993) 1099: 1093: 1081: 1075: 1069: 1063: 1057: 1048: 1037: 1031: 1025: 1019: 1013: 1004: 998: 992: 986: 964:perfect matching 952:maximal matching 938: 934: 930: 922: 903: 899: 895: 865: 861: 857: 853: 849: 845: 837: 829: 825: 821: 817: 813: 809: 805: 794: 786:convex polyhedra 772: 758: 741:pentagonal prism 737:triangular prism 734: 667: 663: 654: 647: 643: 635: 631: 624: 620: 612: 608: 600: 596: 591:induced subgraph 588: 584: 580: 576:perfect matching 573: 566: 559: 547: 526:induced subgraph 523: 519: 515: 511: 507: 500:together with a 499: 495: 491: 487: 483: 479: 476:new vertices to 475: 471: 467: 459: 455: 418:complement graph 297: 296: 290: 289: 283: 282: 276: 275: 269: 268: 262: 261: 255: 254: 248: 247: 242: 241: 201: 190: 182: 171: 167: 154:connected graphs 147: 143: 139: 135: 127: 123: 110:undirected graph 86:claw-free graphs 47:undirected graph 2450: 2449: 2445: 2444: 2443: 2441: 2440: 2439: 2425: 2424: 2423: 2192:on May 27, 2012 2042:10.2307/2154401 2021: 2017: 1845:(1–3): 97–108, 1625:Chvátal, Václav 1506: 1481: 1472: 1467: 1455: 1451: 1435: 1431: 1423: 1419: 1411: 1407: 1399: 1395: 1387: 1383: 1367: 1363: 1339: 1335: 1333: 1330: 1329: 1327: 1323: 1306: 1302: 1296: 1292: 1284: 1280: 1262:Campbell (1987) 1260: 1256: 1242:Campbell (1987) 1240: 1231: 1219: 1215: 1203: 1199: 1183: 1176: 1166:Ravindra (1977) 1164: 1157: 1149: 1145: 1136: 1132: 1118: 1112: 1108: 1100: 1096: 1082: 1078: 1070: 1066: 1058: 1051: 1038: 1034: 1026: 1022: 1014: 1007: 999: 995: 987: 983: 979: 968:claw-free graph 936: 932: 928: 925:polynomial time 920: 910: 901: 897: 890: 883:snub disphenoid 863: 859: 855: 851: 847: 843: 835: 827: 823: 819: 815: 811: 807: 803: 789: 767: 757: 751: 733: 727: 702:snub disphenoid 678: 665: 661: 652: 645: 641: 633: 629: 622: 618: 610: 606: 598: 594: 586: 582: 578: 571: 561: 557: 550:Ravindra (1977) 545: 534: 521: 517: 513: 509: 505: 497: 493: 489: 485: 481: 477: 473: 469: 465: 457: 453: 398: 397: 396: 299: 298: 291: 284: 277: 270: 263: 256: 249: 239: 197: 188: 180: 169: 165: 145: 141: 137: 133: 125: 121: 118:independent set 106: 94:polynomial time 84:, well-covered 70:complete graphs 17: 12: 11: 5: 2448: 2438: 2437: 2435:Graph families 2422: 2421: 2401:(2): 230–233, 2388: 2368:(2): 293–302, 2355: 2337:(2): 183–186, 2321: 2318:Plummer (1993) 2316:. As cited by 2307: 2286:10.1.1.47.9278 2279:(3): 247–262, 2264: 2253: 2232: 2206:(1): 160–172, 2195: 2172:(3): 253–287, 2154: 2118: 2101: 2062: 2036:(2): 705–720, 2019: 2013: 1987:(4): 287–293, 1976: 1939: 1919:(8): 894–912, 1902: 1865: 1828: 1795: 1772: 1762:(A): 189–198, 1749: 1713: 1680: 1641: 1621: 1603:(1): 137–156, 1588: 1578:(A): 215–242, 1561: 1532: 1529:Plummer (1993) 1527:. As cited by 1518: 1504: 1473: 1471: 1468: 1466: 1465: 1461:Plummer (1993) 1449: 1429: 1417: 1405: 1393: 1381: 1361: 1342: 1338: 1321: 1300: 1290: 1278: 1274:Plummer (1993) 1254: 1250:Plummer (1993) 1229: 1227:, Theorem 4.2. 1225:Plummer (1993) 1213: 1211:, Theorem 4.1. 1209:Plummer (1993) 1197: 1193:Plummer (1993) 1189:Favaron (1982) 1185:Staples (1975) 1174: 1170:Plummer (1993) 1155: 1143: 1130: 1106: 1094: 1076: 1064: 1049: 1032: 1028:Favaron (1982) 1020: 1016:Plummer (1970) 1005: 1001:Plummer (1993) 993: 989:Plummer (1970) 980: 978: 975: 909: 906: 800:Plummer (1993) 755: 731: 725:complete graph 677: 674: 638: 637: 628:If an edge of 626: 537:Favaron (1982) 533: 530: 462:rooted product 446:simple polygon 406:complete graph 393: 390: 389: 387: 384: 381: 378: 375: 372: 369: 366: 363: 360: 359: 356: 352: 351: 348: 344: 343: 340: 336: 335: 332: 328: 327: 324: 320: 319: 316: 312: 311: 308: 304: 303: 300: 292: 285: 278: 271: 264: 257: 250: 243: 237: 235: 231: 230: 228: 225: 222: 219: 216: 213: 210: 207: 204: 199: 198: 196: 193: 162:critical graph 105: 102: 15: 9: 6: 4: 3: 2: 2447: 2436: 2433: 2432: 2430: 2418: 2414: 2409: 2404: 2400: 2396: 2395: 2389: 2385: 2381: 2376: 2371: 2367: 2363: 2362: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2331: 2326: 2322: 2319: 2313: 2308: 2304: 2300: 2296: 2292: 2287: 2282: 2278: 2274: 2270: 2265: 2261: 2260: 2254: 2250: 2246: 2242: 2238: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2196: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2142: 2137: 2133: 2129: 2128: 2123: 2119: 2115: 2111: 2107: 2102: 2098: 2094: 2090: 2086: 2081: 2076: 2072: 2068: 2063: 2059: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2030: 2024: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1977: 1973: 1969: 1964: 1959: 1955: 1951: 1950: 1945: 1940: 1936: 1932: 1927: 1922: 1918: 1914: 1913: 1908: 1903: 1899: 1895: 1890: 1885: 1881: 1877: 1876: 1871: 1866: 1862: 1858: 1853: 1848: 1844: 1840: 1839: 1834: 1829: 1825: 1821: 1816: 1811: 1807: 1803: 1802: 1796: 1792: 1788: 1784: 1780: 1779: 1773: 1769: 1765: 1761: 1757: 1756: 1750: 1746: 1742: 1737: 1732: 1728: 1724: 1723: 1718: 1714: 1710: 1706: 1701: 1696: 1692: 1688: 1687: 1681: 1677: 1673: 1669: 1665: 1660: 1655: 1651: 1647: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1589: 1585: 1581: 1577: 1573: 1572: 1567: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1533: 1530: 1524: 1519: 1515: 1511: 1507: 1501: 1496: 1491: 1487: 1479: 1478:Berge, Claude 1475: 1474: 1462: 1458: 1453: 1446: 1442: 1438: 1433: 1426: 1425:Sumner (1979) 1421: 1414: 1409: 1402: 1397: 1390: 1385: 1378: 1374: 1370: 1365: 1358: 1340: 1336: 1325: 1318: 1314: 1310: 1304: 1294: 1287: 1282: 1275: 1271: 1267: 1263: 1258: 1251: 1247: 1243: 1238: 1236: 1234: 1226: 1222: 1217: 1210: 1206: 1201: 1194: 1190: 1186: 1181: 1179: 1171: 1167: 1162: 1160: 1152: 1147: 1140: 1134: 1127: 1121: 1116: 1110: 1103: 1098: 1091: 1087: 1086:Sumner (1979) 1080: 1073: 1068: 1061: 1056: 1054: 1046: 1042: 1036: 1029: 1024: 1017: 1012: 1010: 1002: 997: 990: 985: 981: 974: 971: 969: 965: 961: 957: 953: 949: 948:equimatchable 944: 942: 926: 917: 915: 905: 894: 888: 884: 880: 876: 872: 867: 840: 833: 801: 796: 792: 787: 784: 780: 776: 775:planar graphs 770: 766: 762: 761:Y-Δ transform 754: 750: 749:utility graph 746: 742: 738: 730: 726: 721: 719: 715: 711: 703: 698: 690: 682: 673: 671: 659: 649: 640:Moreover, if 627: 616: 615: 614: 604: 592: 577: 568: 564: 555: 551: 542: 538: 529: 527: 504:(a partition 503: 463: 450: 447: 442: 438: 434: 429: 427: 423: 419: 415: 411: 410:cluster graph 407: 403: 388: 385: 382: 379: 376: 373: 370: 367: 364: 362: 361: 357: 354: 353: 349: 346: 345: 341: 338: 337: 333: 330: 329: 325: 322: 321: 317: 314: 313: 309: 306: 305: 301: 233: 232: 229: 226: 223: 220: 217: 214: 211: 208: 205: 203: 202: 192: 186: 178: 173: 163: 159: 155: 150: 131: 119: 114: 111: 101: 99: 98:coNP-complete 95: 91: 87: 83: 79: 78:rook's graphs 75: 71: 66: 64: 60: 56: 52: 48: 44: 40: 32: 28: 23: 19: 2398: 2397:, Series B, 2392: 2365: 2364:, Series B, 2359: 2334: 2328: 2311: 2276: 2272: 2258: 2243:(1): 20–21, 2240: 2236: 2203: 2199: 2190:the original 2169: 2165: 2131: 2125: 2105: 2080:math/0307073 2070: 2066: 2033: 2027: 2022: 1984: 1980: 1953: 1947: 1916: 1910: 1879: 1873: 1842: 1836: 1808:(1): 44–68, 1805: 1804:, Series B, 1799: 1782: 1776: 1759: 1753: 1726: 1720: 1690: 1684: 1649: 1645: 1628: 1600: 1596: 1593:SebĹ‘, András 1591:Caro, Yair; 1575: 1569: 1548: 1544: 1522: 1485: 1452: 1432: 1420: 1408: 1396: 1384: 1364: 1324: 1303: 1293: 1281: 1257: 1216: 1200: 1151:Berge (1981) 1146: 1133: 1119: 1109: 1097: 1079: 1067: 1035: 1023: 996: 984: 972: 959: 947: 945: 918: 911: 892: 868: 841: 814:. Fragments 797: 790: 768: 752: 728: 722: 707: 650: 639: 569: 562: 554:Berge (1981) 540: 535: 520:consists of 502:clique cover 451: 433:rook's graph 430: 399: 174: 157: 151: 115: 107: 82:cubic graphs 67: 51:vertex cover 42: 39:graph theory 36: 18: 2026:geometry", 1785:(A): 5–10, 1717:Favaron, O. 1700:10.37236/68 1551:: 193–212, 1355:-family by 914:NP-complete 887:deltahedron 830:contains a 781:(graphs of 745:DĂĽrer graph 718:3-connected 617:No edge of 402:cycle graph 179:of a graph 168:, deleting 104:Definitions 72:, balanced 1652:: 89–101, 1484:-graphs", 1470:References 956:line graph 908:Complexity 539:defines a 441:chessboard 130:complement 76:, and the 2281:CiteSeerX 2134:: 91–98, 2009:121734811 1956:: 71–94, 1659:1003.4447 950:if every 714:3-regular 100:problem. 65:in 1970. 2429:Category 2273:Networks 2228:16327087 2160:(1993), 739:and the 601:forms a 424:with no 195:Examples 2417:1438624 2384:1376052 2351:0530304 2303:1161178 2249:0469831 2220:2006100 2186:1254158 2150:0289347 2114:0777180 2097:2136060 2058:1140914 2050:2154401 2001:0833264 1972:3548980 1935:2602814 1898:2537505 1861:2024267 1824:1198396 1791:0942485 1768:0737090 1745:0677051 1709:2515765 1664:Bibcode 1637:1217991 1617:1368720 1584:0942505 1557:1220613 1514:0622929 1298:graphs. 802:labels 456:is any 183:is the 55:minimal 31:hexagon 2415:  2382:  2349:  2301:  2283:  2247:  2226:  2218:  2184:  2148:  2112:  2095:  2056:  2048:  2007:  1999:  1970:  1933:  1896:  1859:  1822:  1789:  1766:  1743:  1707:  1635:  1615:  1582:  1555:  1512:  1502:  881:, the 877:, the 832:bridge 810:, and 783:simple 747:, the 743:, the 670:degree 589:, the 128:, the 45:is an 2224:S2CID 2075:arXiv 2046:JSTOR 2005:S2CID 1654:arXiv 977:Notes 793:(7,2) 771:(7,2) 710:cubic 658:girth 625:, and 439:on a 437:rooks 420:of a 90:girth 1500:ISBN 1317:2010 1313:2009 1309:2003 1088:and 1043:and 862:and 846:and 708:The 700:The 597:and 552:and 175:The 41:, a 2403:doi 2370:doi 2339:doi 2291:doi 2208:doi 2174:doi 2136:doi 2085:doi 2071:293 2038:doi 2034:335 1989:doi 1958:doi 1954:215 1921:doi 1917:158 1884:doi 1880:157 1847:doi 1843:132 1810:doi 1731:doi 1695:doi 1672:doi 1605:doi 1490:doi 931:of 818:or 756:3,3 585:in 464:of 452:If 132:of 116:An 37:In 2431:: 2413:MR 2411:, 2399:69 2380:MR 2378:, 2366:66 2347:MR 2345:, 2333:, 2299:MR 2297:, 2289:, 2277:22 2275:, 2245:MR 2239:, 2222:, 2216:MR 2214:, 2204:48 2202:, 2182:MR 2180:, 2170:16 2168:, 2164:, 2146:MR 2144:, 2130:, 2110:MR 2093:MR 2091:, 2083:, 2069:, 2054:MR 2052:, 2044:, 2032:, 2018:SL 2003:, 1997:MR 1995:, 1985:16 1983:, 1968:MR 1966:, 1952:, 1931:MR 1929:, 1915:, 1894:MR 1892:, 1878:, 1857:MR 1855:, 1841:, 1820:MR 1818:, 1806:57 1787:MR 1783:25 1781:, 1764:MR 1760:16 1758:, 1741:MR 1739:, 1727:42 1725:, 1705:MR 1703:, 1691:16 1689:, 1670:, 1662:, 1650:26 1648:, 1633:MR 1613:MR 1611:, 1601:20 1599:, 1580:MR 1576:25 1574:, 1553:MR 1549:13 1547:, 1539:; 1510:MR 1508:, 1498:, 1459:; 1443:; 1439:; 1375:; 1371:; 1319:). 1315:, 1311:, 1272:; 1268:; 1264:; 1248:; 1244:; 1232:^ 1223:; 1207:; 1191:; 1187:; 1177:^ 1168:; 1158:^ 1122:/2 1052:^ 1008:^ 806:, 583:uv 565:/2 431:A 400:A 2420:. 2405:: 2387:. 2372:: 2354:. 2341:: 2335:3 2320:. 2306:. 2293:: 2252:. 2241:2 2231:. 2210:: 2194:. 2176:: 2153:. 2138:: 2132:8 2117:. 2100:. 2087:: 2077:: 2061:. 2040:: 2023:Z 2020:2 2012:. 1991:: 1975:. 1960:: 1938:. 1923:: 1901:. 1886:: 1864:. 1849:: 1827:. 1812:: 1794:. 1771:. 1748:. 1733:: 1712:. 1697:: 1679:. 1674:: 1666:: 1656:: 1640:. 1620:. 1607:: 1587:. 1560:. 1531:. 1517:. 1492:: 1482:B 1463:. 1447:. 1427:. 1415:. 1403:. 1391:. 1379:. 1341:4 1337:K 1288:. 1276:. 1252:. 1195:. 1172:. 1153:. 1128:. 1120:n 1104:. 1092:. 1074:. 1047:. 1030:. 1018:. 1003:. 937:H 933:G 929:H 921:G 902:t 898:t 893:t 891:3 864:C 860:B 856:B 852:A 848:B 844:A 836:A 828:A 824:C 820:B 816:A 812:C 808:B 804:A 791:G 769:G 753:K 732:4 729:K 712:( 666:v 662:v 653:G 646:G 642:G 634:G 630:M 623:G 619:M 611:M 607:G 599:v 595:u 587:M 579:M 572:G 563:n 558:n 546:G 522:n 518:p 514:G 510:G 506:p 498:G 494:n 490:G 486:H 482:G 478:G 474:n 470:H 466:G 458:n 454:G 386:h 383:g 380:f 377:e 374:d 371:c 368:b 365:a 358:1 355:1 350:2 347:2 342:3 339:3 334:4 331:4 326:5 323:5 318:6 315:6 310:7 307:7 302:8 234:8 227:h 224:g 221:f 218:e 215:d 212:c 209:b 206:a 189:G 181:G 170:v 166:v 146:C 142:I 138:C 134:C 126:G 122:C

Index


intersection graph
hexagon
graph theory
undirected graph
vertex cover
minimal
maximal independent sets
Michael D. Plummer
complete graphs
complete bipartite graphs
rook's graphs
cubic graphs
claw-free graphs
girth
polynomial time
coNP-complete
undirected graph
independent set
complement
connected graphs
critical graph
independence complex
simplicial complex
cycle graph
complete graph
cluster graph
complete bipartite graph
complement graph
triangle-free graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑