Knowledge

Weak gravitational lensing

Source 📝

680:, detection of a galaxy-galaxy shear signal requires one to measure the shapes of background source galaxies, and then look for statistical shape correlations (specifically, source galaxy shapes should be aligned tangentially, relative to the lens center.) In principle, this signal could be measured around any individual foreground lens. In practice, however, due to the relatively low mass of field lenses and the inherent randomness in intrinsic shape of background sources (the "shape noise"), the signal is impossible to measure on a galaxy-by-galaxy basis. However, by combining the signals of many individual lens measurements together (a technique known as "stacking"), the signal-to-noise ratio will improve, allowing one to determine a statistically significant signal, averaged over the entire lens set. 278:(PSF) due to instrumental and atmospheric effects, which causes the observed images to be smeared relative to the "true sky". This smearing tends to make small objects more round, destroying some of the information about their true ellipticity. As a further complication, the PSF typically adds a small level of ellipticity to objects in the image, which is not at all random, and can in fact mimic a true lensing signal. Even for the most modern telescopes, this effect is usually at least the same order of magnitude as the gravitational lensing shear, and is often much larger. Correcting for the PSF requires building for the telescope a model for how it varies across the field. Stars in our own galaxy provide a direct measurement of the PSF, and these can be used to construct such a model, usually by 33: 315: 567: 2817:", makes it possible to map out the 3D distribution of mass. Because the third dimension involves not only distance but cosmic time, tomographic weak lensing is sensitive not only to the matter power spectrum today, but also to its evolution over the history of the universe, and the expansion history of the universe during that time. This is a much more valuable cosmological probe, and many proposed experiments to measure the properties of 2735:. Detecting the extremely faint cosmic shear signal requires averaging over many background galaxies, so surveys must be both deep and wide, and because these background galaxies are small, the image quality must be very good. Measuring the shear correlations at small scales also requires a high density of background objects (again requiring deep, high quality data), while measurements at large scales push for wider surveys. 2848:. Even though there are no distinct resolved sources, perturbations on the origining surface are sheared in a similar way to galaxy weak lensing, resulting in changes to the power spectrum and statistics of the observed signal. Since the source plane for the CMB and high-redshift diffuse 21 cm are at higher redshift than resolved galaxies, the lensing effect probes cosmology at higher redshifts than galaxy lensing. 244: 271:
intrinsic ellipticity is much greater than the shear (by a factor of 3-300, depending on the foreground mass). The measurements of many background galaxies must be combined to average down this "shape noise". The orientation of intrinsic ellipticities of galaxies should be almost entirely random, so any systematic alignment between multiple galaxies can generally be assumed to be caused by lensing.
2283: 3653:; Schneider, Donald P.; Smith, J. Allyn; Stoughton, Chris; Szalay, Alexander S.; Szokoly, Gyula P.; Thakar, Aniruddha R.; Vogeley, Michael S.; Waddell, Patrick; Weinberg, David H.; York, Donald G.; The SDSS Collaboration (September 2000). "Weak Lensing with Sloan Digital Sky Survey Commissioning Data: The Galaxy-Mass Correlation Function to 1 H Mpc". 738:) mass to light ratio – again due to the insensitivity of lensing to matter type. Assuming that luminous matter can trace dark matter, this quantity is of particular importance, since measuring the ratio of luminous (baryonic) matter to total matter can provide information regarding the overall ratio of baryonic to dark matter in the universe. 768:, which act as tracers of (among other things) stellar population, galaxy age, and local mass environment. By separating lens galaxies based on these properties, and then further segregating samples based on redshift, it is possible to use galaxy-galaxy lensing to see how several different types of galaxies evolve through time. 1690: 1056: 1976: 1534: 342:, this effect can cause dramatic distortions of a background source object detectable by eye such as multiple images, arcs, and rings (cluster strong lensing). More generally, the effect causes small, but statistically coherent, distortions of background sources on the order of 10% (cluster weak lensing). 699:
Using techniques similar to those in cluster-scale lensing, galaxy-galaxy lensing can provide information about the shape of mass density profiles, though these profiles correspond to galaxy-sized objects instead of larger clusters or groups. Given a high enough number density of background sources,
2894:
Instead of running statistical analysis on the distortion of galaxies based on the assumption of a positive weak lensing that usually reveals locations of positive mass "dark clusters", these researchers propose to locate "negative mass clumps" using negative weak lensing, i.e. where the deformation
659:
have greatly increased the observed number density of both background source and foreground lens galaxies, allowing for a much more robust statistical sample of galaxies, making the lensing signal much easier to detect. Today, measuring the shear signal due to galaxy-galaxy lensing is a widely used
578:
of the cluster in question. Lensing mass maps can also potentially reveal "dark clusters," clusters containing overdense concentrations of dark matter but relatively insignificant amounts of baryonic matter. Comparison of the dark matter distribution mapped using lensing with the distribution of the
4374:
Van Waerbeke, L.; Mellier, Y.; Erben, T.; Cuillandre, J.C.; Bernardeau, F.; Maoli, R.; Bertin, E.; McCracken, H.J.; Le Fèvre, O.; Fort, B.; Dantel-Fort, M.; Jain, B.; Schneider, P. (June 2000). "Detection of correlated galaxy ellipticities from CFHT data: first evidence for gravitational lensing by
3648:
Fischer, Philippe; McKay, Timothy A.; Sheldon, Erin; Connolly, Andrew; Stebbins, Albert; Frieman, Joshua A.; Jain, Bhuvnesh; Joffre, Michael; Johnston, David; Bernstein, Gary; Annis, James; Bahcall, Neta A.; Brinkmann, J.; Carr, Michael A.; Csabai, István; Gunn, James E.; Hennessy, G. S.; Hindsley,
270:
of the background galaxies and construct a statistical estimate of their systematic alignment. The fundamental problem is that galaxies are not intrinsically circular, so their measured ellipticity is a combination of their intrinsic ellipticity and the gravitational lensing shear. Typically, the
297:
are unavailable. Redshift information is also important in separating the background source population from other galaxies in the foreground, or those associated with the mass responsible for the lensing. With no redshift information, the foreground and background populations can be split by an
748:
is finite, an observer on the Earth will see distant galaxies not as they look today, but rather as they appeared at some earlier time. By restricting the lens sample of a galaxy-galaxy lensing study to lie at only one particular redshift, it is possible to understand the mass properties of the
654:
J.A. Tyson and collaborators first postulated the concept of galaxy-galaxy lensing in 1984, though the observational results of their study were inconclusive. It was not until 1996 that evidence of such distortion was tentatively discovered, with the first statistically significant results not
318:
The effects of foreground galaxy cluster mass on background galaxy shapes. The upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right panel shows this same
3873:
Sheldon, Erin S.; Johnston, David E.; Frieman, Joshua A.; Scranton, Ryan; McKay, Timothy A.; Connolly, A. J.; Budavári, Tamás; Zehavi, Idit; Bahcall, Neta A.; Brinkmann, J.; Fukugita, Masataka (May 2004). "The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky
426:
and collaborators published the first sample of galaxy clusters detected via their lensing signals, completely independent of their baryon content. Clusters discovered through lensing are subject to mass selection effects because the more massive clusters produce lensing signals with higher
282:
between the points where stars appear on the image. This model can then be used to reconstruct the "true" ellipticities from the smeared ones. Ground-based and space-based data typically undergo distinct reduction procedures due to the differences in instruments and observing conditions.
1406: 3706:
Gavazzi, Raphaël; Treu, Tommaso; Rhodes, Jason D.; Koopmans, Léon V. E.; Bolton, Adam S.; Burles, Scott; Massey, Richard J.; Moustakas, Leonidas A. (September 2007). "The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii".
749:
field galaxies that existed during this earlier time. Comparing the results of several such redshift-restricted lensing studies (with each study encompassing a different redshift), one can begin to observe changes in the mass features of galaxies over a period of several
759:
Lens redshift is not the only quantity of interest that can be varied when studying mass differences between galaxy populations, and often there are several parameters used when segregating objects into galaxy-galaxy lens stacks. Two widely used criteria are galaxy
1964:
correlation functions. In analogy with electric and magnetic fields, the E-mode field is curl-free and the B-mode field is divergence-free. Because gravitational lensing can only produce an E-mode field, the B-mode provides yet another test for systematic errors.
2278:{\displaystyle \langle M_{ap}^{2}\rangle (\theta )=\int _{0}^{2\theta }{\frac {\phi d\phi }{\theta ^{2}}}\leftT_{+}\left({\frac {\phi }{\theta }}\right)=\int _{0}^{2\theta }{\frac {\phi d\phi }{\theta ^{2}}}\leftT_{-}\left({\frac {\phi }{\theta }}\right)} 1540: 877: 319:
scenario, but includes the effects of lensing. The middle panel shows a 3-d representation of the positions of cluster and source galaxies, relative to the observer. Note that the background galaxies appear stretched tangentially around the cluster.
2813:) to divide the survey into multiple redshift bins. The low-redshift bins will only be lensed by structures very near to us, while the high-redshift bins will be lensed by structures over a wide range of redshift. This technique, dubbed "cosmic 2742:
cameras enabled surveys of the necessary size and quality. In 2000, four independent groups published the first detections of cosmic shear, and subsequent observations have started to put constraints on cosmological parameters (particularly the
1223: 785:
usually used in cluster and galaxy lensing does not always work in this regime, because structures can be elongated along the line of sight. Instead, the distortion can be derived by assuming that the deflection angle is always small (see
646:). Of the three typical mass regimes in weak lensing, galaxy-galaxy lensing produces a "mid-range" signal (shear correlations of ~1%) that is weaker than the signal due to cluster lensing, but stronger than the signal due to cosmic shear. 3168:
Wittman, D.; Dell'Antonio, I.P.; Hughes, J.P.; Margoniner, V.E.; Tyson, J.A.; Cohen, J.G.; Norman, D. (May 2006). "First Results on Shear-selected Clusters from the Deep Lens Survey: Optical Imaging, Spectroscopy, and X-Ray Follow-up".
1412: 520: 2551: 2417: 230:
is impossible to detect in a single background source. However, even in these cases, the presence of the foreground mass can be detected, by way of a systematic alignment of background sources around the lensing mass.
1885:
can be related to projections (integrals with certain weight functions) of the dark matter density correlation function, which can be predicted from theory for a cosmological model through its Fourier transform, the
622:. In order for lensing clusters to be a precision probe of cosmology in the future, the projection effects and the scatter in the lensing mass-observable relation need to be thoroughly characterized and modeled. 370:
who discovered giant luminous arcs in a survey of galaxy clusters in the late 1970s. Lynds and Petrosian published their findings in 1986 without knowing the origin of the arcs. In 1987, Genevieve Soucail of the
3819:
Parker, Laura C.; Hoekstra, Henk; Hudson, Michael J.; van Waerbeke, Ludovic; Mellier, Yannick (November 2007). "The Masses and Shapes of Dark Matter Halos from Galaxy-Galaxy Lensing in the CFHT Legacy Survey".
1284: 1279:, which measure the mean product of the shear at two points as a function of the distance between those points. Because there are two components of shear, three different correlation functions can be defined: 247:
Distortions of the type produced by lensing, acting on circles and a distribution of ellipses similar to that of real galaxies. The distortion shown here is greatly exaggerated relative to real astronomical
533:
for the cluster, which can be determined by using a reconstructed mass distribution or optical or X-ray data, a model can be fit to the shear profile as a function of clustrocentric radius. For example, the
4232:
Wittman, David; Tyson, J. A.; Kirkman, David; Dell'Antonio, Ian; Bernstein, Gary (May 2000). "Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales".
4059:
Samuroff, S.; Mandelbaum, R.; Blazek, J.; Campos, A.; MacCrann, N.; Zacharegkas, G.; Amon, A.; Prat, J.; Singh, S.; Elvin-Poole, J.; Ross, A. J.; Alarcon, A.; Baxter, E.; Bechtol, K.; Becker, M. R. (2023).
704:). Since the effects of lensing are insensitive to the matter type, a galaxy-galaxy mass density profile can be used to probe a wide range of matter environments: from the central cores of galaxies where 781:
also produces intrinsic alignment (IA) - an observable pattern of alignments in background galaxies. This distortion is only ~0.1%-1% - much more subtle than cluster or galaxy-galaxy lensing. The
2622:
An exact decomposition thus requires knowledge of the shear correlation functions at zero separation, but an approximate decomposition is fairly insensitive to these values because the filters
235:
is thus an intrinsically statistical measurement, but it provides a way to measure the masses of astronomical objects without requiring assumptions about their composition or dynamical state.
558:. Individual mass estimates from weak lensing can only be derived for the most massive clusters, and the accuracy of these mass estimates are limited by projections along the line of sight. 1685:{\displaystyle \xi _{\times +}(\Delta \theta )=\xi _{+\times }(\Delta \theta )=\langle \gamma _{+}({\vec {\theta }})\gamma _{\times }({\vec {\theta }}+{\vec {\Delta \theta }})\rangle } 4696:
Kitamura, T.; Izumi, K.; Nakajima, K.; Hagiwara, C.; Asada, H. (April 2014). "Microlensed image centroid motions by an exotic lens object with negative convergence or negative mass".
1051:{\displaystyle {\frac {\partial \beta _{i}}{\partial \theta _{j}}}=\delta _{ij}+\int _{0}^{r_{\infty }}drg(r){\frac {\partial ^{2}\Phi ({\vec {x}}(r))}{\partial x^{i}\partial x^{j}}}} 3400:
Clowe, D.; Gonzalez, A. H.; Markevitch, M. (April 2004). "Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence of Dark Matter".
1756: 3649:
Robert B.; Hull, Charles; Ivezić, Željko; Knapp, G. R.; Limmongkol, Siriluk; Lupton, Robert H.; Munn, Jeffrey A.; Nash, Thomas; Newberg, Heidi Jo; Owen, Russell; Pier, Jeffrey R.;
1954: 1883: 2738:
While weak lensing of large-scale structure was discussed as early as 1967, due to the challenges mentioned above, it was not detected until more than 30 years later when large
550:
and the redshift distribution of the background galaxies is also necessary for estimation of the mass and size from a model fit; these redshifts can be measured precisely using
443:
can be recovered from the measurement of the ellipticities of the lensed background galaxies through techniques that can be classified into two types: direct reconstruction and
1783: 4643:
Izumi, K.; Hagiwara, C.; Nakajima, K.; Kitamura, T.; Asada, H. (July 2013). "Gravitational lensing shear by an exotic lens object with negative convergence or negative mass".
846: 1813: 817: 2803: 2773: 1722: 121: 3929:"Galaxy halo masses and satellite fractions from galaxy-galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies" 2709: 1924: 1853: 1116: 289:
to the lenses and background sources are important for converting the lensing observables to physically meaningful quantities. These distances are often estimated using
3310:
Schneider, P.; Seitz, C. (February 1995). "Steps towards nonlinear cluster inversion through gravitational distortions. 1: Basic considerations and circular clusters".
2680: 2650: 2613: 2583: 1275:
Because large-scale cosmological structures do not have a well-defined location, detecting cosmological gravitational lensing typically involves the computation of
1529:{\displaystyle \xi _{\times \times }(\Delta \theta )=\langle \gamma _{\times }({\vec {\theta }})\gamma _{\times }({\vec {\theta }}+{\vec {\Delta \theta }})\rangle } 1109: 870: 1258: 522:
where λ is an arbitrary constant. This degeneracy can be broken if an independent measurement of the magnification is available because the magnification is not
1078: 655:
published until the year 2000. Since those initial discoveries, the construction of larger, high resolution telescopes and the advent of dedicated wide field
263:. The convergence term magnifies the background objects by increasing their size, and the shear term stretches them tangentially around the foreground mass. 1785:
is the component at 45°. These correlation functions are typically computed by averaging over many pairs of galaxies. The last correlation function,
618:
the mass-observable relation via a stacked weak lensing signal around an ensemble of clusters, although this relation is expected to have an intrinsic
465: 222:
While the presence of any mass bends the path of light passing near it, this effect rarely produces the giant arcs and multiple images associated with
2961: 2423: 2289: 570:
Image of the Bullet Cluster from the Hubble Space Telescope with total mass contours (dominated by dark matter) from a lensing analysis overlaid.
209: 396: 259:
that distorts the images of background objects (usually galaxies) near a foreground mass. The transformation can be split into two terms, the
1815:, is not affected at all by lensing, so measuring a value for this function that is inconsistent with zero is often interpreted as a sign of 1401:{\displaystyle \xi _{++}(\Delta \theta )=\langle \gamma _{+}({\vec {\theta }})\gamma _{+}({\vec {\theta }}+{\vec {\Delta \theta }})\rangle } 379:
and proposed a gravitational lensing interpretation. The first cluster weak lensing analysis was conducted in 1990 by J. Anthony Tyson of
4511:. 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions. Boston: American Institute of Physics. 2957:"Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys" 782: 3565:
Tyson, J. A.; Valdes, F.; Jarvis, J. F.; Mills, A. P. Jr. (June 1984). "Galaxy mass distribution from gravitational light deflection".
418:
surveys). The sample of galaxy clusters studied with lensing was thus subject to various selection effects; for example, only the most
3096:
Soucail, G.; Mellier, Y.; Fort, B.; Mathez, G.; Hammer, F. (October 1987). "Further data on the blue ring-like structure in A 370".
4144:
Schneider, P.; van Waerbekere, L.; Kilbinger, M.; Mellier, Y. (December 2002). "Analysis of two-point statistics of cosmic shear".
2911:). Such negative mass clumps would be located elsewhere than assumed dark clusters, as they would reside at the center of observed 141: 1264: 260: 574:
Cluster mass estimates determined by lensing are valuable because the method requires no assumption about the dynamical state or
126: 2723:
makes it a potentially powerful probe of cosmological parameters, especially when combined with other observations such as the
452: 363: 778: 688:
Galaxy-galaxy lensing (like all other types of gravitational lensing) is used to measure several quantities pertaining to
610:
should be able to constrain cosmological parameters. In practice, however, projections along the line of sight cause many
643: 202: 2955:
Hirata, C.M.; Mandelbaum, R.; Ishak, M.; Seljak, U.; Nichol, R.; Pimbblet, K.A.; Ross, N.P.; Wake, D. (November 2007).
2887:
As the presence of exotic matter would bend spacetime and light differently than positive mass, a Japanese team at the
535: 4062:"The Dark Energy Survey Year 3 and eBOSS: Constraining galaxy intrinsic alignments across luminosity and colour space" 3347:
Metzler, C.A.; White, M.; Norman, M.; Loken, C. (July 1999). "Weak Gravitational Lensing and Cluster Mass Estimates".
2809:
For current and future surveys, one goal is to use the redshifts of the background galaxies (often approximated using
634:, in which the foreground object responsible for distorting the shapes of background galaxies is itself an individual 602:
In principle, since the number density of clusters as a function of mass and redshift is sensitive to the underlying
423: 4353:
Kaiser, Nick; Wilson, Gillian; Luppino, Gerard (March 2000). "Large-Scale Cosmic Shear Measurements". p. 3338.
4749:
Nakajima, K.; Izumi, K.; Asada, H. (October 2014). "Negative time delay of light by a gravitational concave lens".
591:. The Bullet Cluster data provide constraints on models relating light, gas, and dark matter distributions such as 2936: 2895:
of galaxies is interpreted as being due to a diverging lensing effect producing radial distortions (similar to a
849: 787: 668:, often used in parallel with other measurements in determining physical characteristics of foreground galaxies. 171: 44: 3927:
Mandelbaum, Rachel; Seljak, Uroš; Kauffmann, Guinevere; Hirata, Christopher M.; Brinkmann, Jonathan (May 2006).
3257:
Bartelmann, M.; Narayan, R.; Seitz, S.; Schneider, P. (June 1996). "Maximum-likelihood Cluster Reconstruction".
4877: 2920: 195: 4197:
Gunn, James E. (December 1967). "On the Propagation of Light in Inhomogeneous Cosmologies. I. Mean Effects".
3127:"Detection of systematic gravitational lens galaxy image alignments - Mapping dark matter in galaxy clusters" 1727: 1929: 1858: 223: 176: 48: 2873: 2841: 2724: 539: 181: 4857: 790:). As in the thin lens case, the effect can be written as a mapping from the unlensed angular position 3098: 1761: 52: 822: 753:, leading towards a better understanding of the evolution of mass on the smallest cosmological scales. 3131: 2884:
in cosmology as an alternative interpretation to dark matter, which classically has a positive mass.
2834: 1788: 793: 460: 286: 256: 3222:
Kaiser, N.; Squires, G. (February 1993). "Mapping the dark matter with weak gravitational lensing".
2904: 2896: 3987: 3453:
Hoekstra, H.; Jain, B. (May 2008). "Weak Gravitational Lensing and its Cosmological Applications".
3016:
Diaferio, A.; Schindler, S.; Dolag, K. (February 2008). "Clusters of Galaxies: Setting the Stage".
1218:{\displaystyle g(r)=2r\int _{r}^{r_{\infty }}\left(1-{\frac {r^{\prime }}{r}}\right)W(r^{\prime })} 750: 456: 131: 3872: 2778: 2748: 1697: 700:
a typical galaxy-galaxy mass density profile can cover a wide range of distances (from ~1 to ~100
338:. The gravitational fields of these clusters deflect light-rays traveling near them. As seen from 661: 523: 411: 400: 3926: 2685: 1896: 1825: 4540:
Mbarek, S.; Paranjape, M. B. (November 2014). "Negative mass bubbles in de Sitter space-time".
3647: 2826: 765: 226:. Most lines of sight in the universe are thoroughly in the weak lensing regime, in which the 3508:"Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements" 2739: 2720: 1887: 631: 428: 275: 4613: 4398: 4167: 3333: 3111: 2655: 2625: 2588: 2558: 4821: 4768: 4715: 4662: 4609: 4559: 4473: 4428: 4394: 4317: 4252: 4206: 4163: 4116: 4009: 3950: 3893: 3839: 3818: 3783: 3726: 3672: 3650: 3622: 3574: 3529: 3472: 3419: 3366: 3329: 3276: 3231: 3188: 3140: 3107: 3078: 3035: 2980: 2810: 1087: 855: 555: 372: 290: 227: 3603:; Blanford, Roger D.; Smail, Ian (August 1996). "Weak Gravitational Lensing by Galaxies". 3484: 2927:
proposing exotic matter of negative mass as an alternative interpretation to dark matter.
1234: 8: 3167: 2888: 2861: 734:
of field galaxies. Specifically, the quantity measured through lensing is the total (or
731: 607: 584: 367: 4825: 4772: 4719: 4666: 4563: 4477: 4432: 4321: 4256: 4210: 4120: 4021: 4013: 3954: 3897: 3843: 3787: 3730: 3705: 3676: 3626: 3578: 3533: 3476: 3423: 3370: 3280: 3235: 3192: 3144: 3082: 3039: 2984: 32: 4837: 4811: 4784: 4758: 4731: 4705: 4678: 4652: 4625: 4575: 4549: 4512: 4489: 4463: 4384: 4354: 4335: 4307: 4276: 4242: 4179: 4153: 4073: 4041: 3999: 3968: 3940: 3909: 3883: 3855: 3829: 3801: 3773: 3742: 3716: 3688: 3662: 3612: 3547: 3519: 3488: 3462: 3435: 3409: 3382: 3356: 3319: 3292: 3266: 3204: 3178: 3051: 3025: 2998: 2970: 2924: 1063: 603: 579:
baryons using optical and X-ray data reveals the interplay of the dark matter with the
419: 299: 252: 166: 24: 4231: 4788: 4629: 4579: 4493: 4330: 4295: 4268: 4033: 4025: 3963: 3928: 3805: 3796: 3761: 3542: 3507: 3492: 3069:
Lynds, R.; Petrosian, V. (September 1986). "Giant Luminous Arcs in Galaxy Clusters".
2993: 2956: 2891:
proposed to use "negative" weak gravitational lensing related to such negative mass.
2728: 1081: 448: 399:. Lensing has been used as a tool to investigate a tiny fraction of the thousands of 388: 380: 146: 4735: 4682: 4339: 4183: 4105:"The Correlation Function of Galaxy Ellipticities Produced By Gravitational Lensing" 3972: 3859: 3746: 3692: 3551: 3439: 3386: 3296: 3208: 3055: 406:
Historically, lensing analyses were conducted on galaxy clusters detected via their
4841: 4829: 4776: 4723: 4670: 4617: 4567: 4522: 4481: 4436: 4325: 4280: 4260: 4214: 4171: 4143: 4124: 4083: 4017: 3958: 3913: 3901: 3847: 3791: 3760:
Hoekstra, H.; Franx, M.; Kuijken, K.; Carlberg, R. G.; Yee, H. K. C. (April 2003).
3734: 3680: 3630: 3600: 3582: 3537: 3480: 3427: 3374: 3284: 3239: 3196: 3148: 3043: 3002: 2988: 2912: 2877: 2744: 2616: 1816: 709: 701: 596: 543: 151: 4045: 4175: 2916: 2732: 727: 656: 611: 515:{\displaystyle \kappa \rightarrow \kappa ^{\prime }=\lambda \kappa +(1-\lambda )} 444: 415: 323: 93: 4454:
Hossenfelder, S. (15 August 2008). "A Bi-Metric Theory with Exchange Symmetry".
4373: 3506:
Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U. (February 2008).
852:
of the transform can be written as an integral over the gravitational potential
362:
The effects of cluster strong lensing were first detected by Roger Lynds of the
4780: 4727: 4674: 4571: 4485: 2869: 2546:{\displaystyle T_{-}(x)=576\int _{0}^{\infty }{\frac {dt}{t^{3}}}J_{4}(xt)^{2}} 2412:{\displaystyle T_{+}(x)=576\int _{0}^{\infty }{\frac {dt}{t^{3}}}J_{0}(xt)^{2}} 745: 639: 588: 575: 351: 88: 84: 4833: 4621: 3047: 4871: 4088: 4061: 4029: 2881: 2865: 2845: 279: 40: 3564: 4272: 4037: 3759: 3256: 2908: 2857: 635: 630:
Galaxy-galaxy lensing is a specific type of weak (and occasionally strong)
551: 314: 294: 459:, where the cluster surface mass density κ can be determined only up to a 4389: 4359: 4312: 4247: 4158: 3945: 3888: 3778: 3721: 3667: 3617: 3414: 3361: 3324: 3271: 3183: 2975: 2822: 2818: 761: 713: 566: 335: 327: 303: 102: 4594: 3505: 2833:, and the Legacy Survey of Space and Time (LSST) to be conducted by the 1231:, which defines the efficiency of lensing for a distribution of sources 587:
components. A notable example of such a joint analysis is the so-called
4293: 2954: 2830: 2814: 1263:
As in the thin-lens approximation, the Jacobian can be decomposed into
723: 392: 347: 343: 267: 156: 97: 79: 75: 70: 4862: 4816: 4526: 4413: 375:
and her collaborators presented data of a blue ring-like structure in
4595:"Negative mass hypothesis in cosmology and the nature of dark energy" 4264: 665: 615: 383:
and collaborators. Tyson et al. detected a coherent alignment of the
376: 266:
To measure this tangential alignment, it is necessary to measure the
4352: 3599: 3095: 4440: 4294:
Bacon, David; Refregier, Alexandre; Ellis, Richard (October 2000).
4218: 4129: 4104: 4078: 3905: 3851: 3738: 3684: 3634: 3586: 3431: 3378: 3346: 3288: 3243: 3200: 3153: 3126: 619: 547: 530: 331: 4763: 4710: 4657: 4554: 4517: 4468: 4296:"Detection of weak gravitational lensing by large-scale structure" 4004: 3834: 3524: 3467: 3399: 3030: 2923:. Such test based on negative weak lensing could help to falsify 2900: 440: 384: 735: 705: 407: 274:
Another major challenge for weak lensing is correction for the
4058: 3015: 4695: 4642: 1956:
are not independent, and they can be decomposed further into
339: 243: 4802:
Piran, Tsvi (November 1997). "On Gravitational Repulsion".
1893:
Because they both depend on a single scalar density field,
689: 592: 580: 354:
are among the most prominent examples of lensing clusters.
161: 730:, galaxy-galaxy lensing can also provide insight into the 422:
clusters were investigated. In 2006, David Wittman of the
3124: 677: 334:
with approximately 80% of cluster content in the form of
2806:) that are competitive with other cosmological probes. 309: 726:(averaged over the entire galaxy stack) in a specific 2781: 2751: 2688: 2658: 2628: 2591: 2561: 2426: 2292: 1979: 1968:
The E-mode correlation function is also known as the
1932: 1899: 1861: 1828: 1791: 1764: 1730: 1700: 1543: 1415: 1287: 1237: 1119: 1090: 1066: 880: 858: 825: 796: 468: 3988:"Cosmology with cosmic shear observations: a review" 3125:
Tyson, J.A.; Valdes, F.; Wenk, R.A. (January 1990).
526:
under the aforementioned degeneracy transformation.
4592: 4748: 3309: 2797: 2767: 2703: 2674: 2644: 2607: 2577: 2545: 2411: 2277: 1948: 1918: 1877: 1847: 1807: 1777: 1750: 1716: 1684: 1528: 1400: 1252: 1217: 1103: 1072: 1050: 864: 840: 811: 514: 455:suffers from a limitation known as the mass sheet 4500: 4447: 4066:Monthly Notices of the Royal Astronomical Society 3933:Monthly Notices of the Royal Astronomical Society 3766:Monthly Notices of the Royal Astronomical Society 3221: 2962:Monthly Notices of the Royal Astronomical Society 2840:Weak lensing also has an important effect on the 606:, cluster counts derived from large weak lensing 4869: 3452: 4539: 708:dominate the total mass fraction, to the outer 4593:Petit, J.-P.; d'Agostini, G. (December 2014). 4102: 3068: 1270: 4742: 4689: 3455:Annual Review of Nuclear and Particle Science 3071:Bulletin of the American Astronomical Society 2719:The ability of weak lensing to constrain the 2714: 203: 4506: 4453: 4405: 2856:Minimal coupling of general relativity with 2001: 1980: 1679: 1600: 1523: 1444: 1395: 1316: 4533: 1724:is the component along or perpendicular to 4795: 4636: 4586: 2825:have focused on weak lensing, such as the 683: 561: 210: 196: 31: 4815: 4762: 4709: 4656: 4553: 4516: 4467: 4388: 4358: 4329: 4311: 4246: 4157: 4128: 4087: 4077: 4003: 3985: 3962: 3944: 3887: 3833: 3795: 3777: 3720: 3666: 3616: 3541: 3523: 3466: 3413: 3360: 3323: 3270: 3182: 3152: 3029: 2992: 2974: 434: 2851: 625: 565: 536:singular isothermal sphere (SIS) profile 364:National Optical Astronomy Observatories 313: 242: 4858:Weak gravitational lensing on arxiv.org 4411: 1751:{\displaystyle {\vec {\Delta \theta }}} 451:reconstructed without knowledge of the 4870: 4103:Miralda-Escudé, Jordi (October 1991). 4801: 3762:"Lensing by galaxies in CNOC2 fields" 3485:10.1146/annurev.nucl.58.110707.171151 2921:large-scale structure of the universe 1949:{\displaystyle \xi _{\times \times }} 1878:{\displaystyle \xi _{\times \times }} 306:cut, but this is much less accurate. 4196: 310:Weak lensing by clusters of galaxies 2907:similar to the image produced by a 722:Comparing the measured mass to the 644:large-scale structure of the cosmos 614:. Weak lensing can also be used to 546:. Knowledge of the lensing cluster 13: 4804:General Relativity and Gravitation 4507:Hossenfelder, Sabine (June 2009). 4414:"Can the hidden mass be negative?" 2753: 2462: 2328: 1735: 1663: 1588: 1560: 1507: 1432: 1379: 1304: 1207: 1181: 1156: 1111:are the transverse distances, and 1032: 1019: 987: 978: 949: 899: 884: 859: 593:Modified Newtonian dynamics (MOND) 480: 19:Part of a series of articles about 14: 4889: 4851: 1778:{\displaystyle \gamma _{\times }} 540:Navarro-Frenk-White (NFW) profile 424:University of California at Davis 4331:10.1046/j.1365-8711.2000.03851.x 3986:Kilbinger, Martin (2015-07-01). 3964:10.1111/j.1365-2966.2006.10156.x 3797:10.1046/j.1365-8711.2003.06350.x 3543:10.1111/j.1365-2966.2008.13818.x 2994:10.1111/j.1365-2966.2007.12312.x 841:{\displaystyle {\vec {\theta }}} 4367: 4346: 4287: 4225: 4190: 4137: 4096: 4052: 3979: 3920: 3866: 3812: 3753: 3699: 3641: 3593: 3558: 3499: 3446: 3393: 3340: 2937:Large Synoptic Survey Telescope 1808:{\displaystyle \xi _{\times +}} 812:{\displaystyle {\vec {\beta }}} 788:Gravitational Lensing Formalism 772: 4602:Astrophysics and Space Science 3992:Reports on Progress in Physics 3303: 3250: 3215: 3161: 3118: 3089: 3062: 3009: 2948: 2534: 2530: 2524: 2511: 2508: 2499: 2443: 2437: 2400: 2396: 2390: 2377: 2374: 2365: 2309: 2303: 2239: 2233: 2214: 2208: 2108: 2102: 2083: 2077: 2010: 2004: 1742: 1676: 1670: 1650: 1641: 1628: 1622: 1613: 1594: 1585: 1566: 1557: 1520: 1514: 1494: 1485: 1472: 1466: 1457: 1438: 1429: 1392: 1386: 1366: 1357: 1344: 1338: 1329: 1310: 1301: 1247: 1241: 1212: 1199: 1129: 1123: 1014: 1011: 1005: 999: 990: 971: 965: 832: 803: 509: 497: 472: 238: 1: 4022:10.1088/0034-4885/78/8/086901 3259:Astrophysical Journal Letters 2942: 2919:within the lacunar, web-like 2775:and power spectrum amplitude 777:The gravitational lensing by 2878:bimetric theories of gravity 2798:{\displaystyle \sigma _{8}~} 2768:{\displaystyle \Omega _{m}~} 1717:{\displaystyle \gamma _{+~}} 649: 224:strong gravitational lensing 7: 2930: 2874:Modified Newtonian Dynamics 2842:Cosmic Microwave Background 2725:cosmic microwave background 1277:shear correlation functions 1271:Shear correlation functions 1265:shear and convergence terms 671: 10: 4894: 4781:10.1103/PhysRevD.90.084026 4728:10.1103/PhysRevD.89.084020 4675:10.1103/PhysRevD.88.024049 4572:10.1103/PhysRevD.90.101502 4486:10.1103/PhysRevD.78.044015 4377:Astronomy and Astrophysics 4176:10.1051/0004-6361:20021341 4146:Astronomy and Astrophysics 3312:Astronomy and Astrophysics 3099:Astronomy and Astrophysics 2715:Weak lensing and cosmology 2704:{\displaystyle \theta =0~} 1919:{\displaystyle \xi _{++~}} 1848:{\displaystyle \xi _{++~}} 678:cluster-scale weak lensing 597:Λ-Cold Dark Matter (Λ-CDM) 556:estimated using photometry 357: 287:Angular diameter distances 233:Weak gravitational lensing 4622:10.1007/s10509-014-2106-5 4412:Milgrom, M. (July 1986). 4375:large-scale structures". 3822:The Astrophysical Journal 3709:The Astrophysical Journal 3605:The Astrophysical Journal 3402:The Astrophysical Journal 3349:The Astrophysical Journal 3171:The Astrophysical Journal 3132:The Astrophysical Journal 3048:10.1007/s11214-008-9324-5 2899:instead of the classical 2835:Vera C. Rubin Observatory 257:coordinate transformation 3876:The Astronomical Journal 3655:The Astronomical Journal 872:along the line of sight 330:bound structures in the 4834:10.1023/A:1018877928270 4614:2014Ap&SS.354..611P 4399:2000A&A...358...30V 4168:2002A&A...396....1S 3334:1995A&A...294..411S 3112:1987A&A...184L...7S 819:to the lensed position 783:thin lens approximation 684:Scientific applications 662:observational astronomy 562:Scientific implications 295:spectroscopic redshifts 4089:10.1093/mnras/stad2013 2860:allows solutions like 2799: 2769: 2705: 2676: 2675:{\displaystyle T_{-}~} 2646: 2645:{\displaystyle T_{+}~} 2609: 2608:{\displaystyle J_{4}~} 2579: 2578:{\displaystyle J_{0}~} 2547: 2413: 2279: 1970:aperture mass variance 1950: 1920: 1879: 1849: 1809: 1779: 1752: 1718: 1686: 1530: 1402: 1254: 1219: 1105: 1074: 1052: 866: 842: 813: 576:star formation history 571: 542:are two commonly used 516: 435:Observational products 366:and Vahe Petrosian of 320: 249: 4878:Gravitational lensing 4863:Observing Dark Worlds 4421:Astrophysical Journal 4199:Astrophysical Journal 4109:Astrophysical Journal 3651:Rockosi, Constance M. 3567:Astrophysical Journal 3224:Astrophysical Journal 3018:Space Science Reviews 2862:traversable wormholes 2852:Negative weak lensing 2811:photometric redshifts 2800: 2770: 2721:matter power spectrum 2706: 2677: 2647: 2610: 2580: 2548: 2414: 2280: 1951: 1921: 1888:matter power spectrum 1880: 1850: 1810: 1780: 1753: 1719: 1687: 1531: 1403: 1255: 1220: 1106: 1104:{\displaystyle x^{i}} 1075: 1053: 867: 865:{\displaystyle \Phi } 843: 814: 779:large-scale structure 741:Galaxy mass evolution 696:Mass density profiles 632:gravitational lensing 626:Galaxy-galaxy lensing 569: 517: 429:signal-to-noise ratio 401:known galaxy clusters 317: 291:photometric redshifts 276:point spread function 261:convergence and shear 253:Gravitational lensing 246: 25:Gravitational lensing 3601:Brainerd, Tereasa G. 2779: 2749: 2745:dark matter density 2686: 2656: 2626: 2589: 2559: 2424: 2290: 1977: 1930: 1897: 1859: 1826: 1789: 1762: 1728: 1698: 1541: 1413: 1285: 1253:{\displaystyle W(r)} 1235: 1117: 1088: 1064: 878: 856: 823: 794: 732:mass to light ratios 719:Mass-to-light ratios 466: 373:Toulouse Observatory 4826:1997GReGr..29.1363P 4773:2014PhRvD..90h4026N 4720:2014PhRvD..89h4020K 4667:2013PhRvD..88b4049I 4564:2014PhRvD..90j1502M 4478:2008PhRvD..78d4015H 4433:1986ApJ...306....9M 4322:2000MNRAS.318..625B 4257:2000Natur.405..143W 4211:1967ApJ...150..737G 4121:1991ApJ...380....1M 4014:2015RPPh...78h6901K 3955:2006MNRAS.368..715M 3898:2004AJ....127.2544S 3844:2007ApJ...669...21P 3788:2003MNRAS.340..609H 3731:2007ApJ...667..176G 3677:2000AJ....120.1198F 3627:1996ApJ...466..623B 3579:1984ApJ...281L..59T 3534:2008MNRAS.390.1157R 3477:2008ARNPS..58...99H 3424:2004ApJ...604..596C 3371:1999ApJ...520L...9M 3281:1996ApJ...464L.115B 3236:1993ApJ...404..441K 3193:2006ApJ...643..128W 3145:1990ApJ...349L...1T 3083:1986BAAS...18R1014L 3040:2008SSRv..134....7D 2985:2007MNRAS.381.1197H 2925:cosmological models 2889:Hirosaki University 2880:consider invisible 2846:21cm line radiation 2466: 2332: 2164: 2033: 2000: 1162: 955: 410:content (e.g. from 389:faint blue galaxies 368:Stanford University 65:Strong lens systems 2827:Dark Energy Survey 2795: 2765: 2701: 2672: 2642: 2605: 2575: 2543: 2452: 2409: 2318: 2275: 2147: 2016: 1983: 1946: 1916: 1875: 1845: 1805: 1775: 1748: 1714: 1682: 1526: 1398: 1250: 1215: 1141: 1101: 1070: 1048: 934: 862: 838: 809: 716:is more prevalent. 572: 512: 321: 300:apparent magnitude 250: 4810:(11): 1363–1370. 4751:Physical Review D 4698:Physical Review D 4645:Physical Review D 4542:Physical Review D 4527:10.1063/1.3327545 4456:Physical Review D 4241:(6783): 143–148. 2794: 2764: 2700: 2671: 2641: 2604: 2574: 2487: 2353: 2269: 2188: 2138: 2057: 1913: 1842: 1745: 1711: 1673: 1653: 1625: 1517: 1497: 1469: 1389: 1369: 1341: 1189: 1082:comoving distance 1073:{\displaystyle r} 1046: 1002: 913: 835: 806: 756:Other mass trends 638:(as opposed to a 544:parametric models 449:mass distribution 381:Bell Laboratories 220: 219: 4885: 4846: 4845: 4819: 4799: 4793: 4792: 4766: 4746: 4740: 4739: 4713: 4693: 4687: 4686: 4660: 4640: 4634: 4633: 4599: 4590: 4584: 4583: 4557: 4537: 4531: 4530: 4520: 4504: 4498: 4497: 4471: 4451: 4445: 4444: 4418: 4409: 4403: 4402: 4392: 4390:astro-ph/0002500 4371: 4365: 4364: 4362: 4360:astro-ph/0003338 4350: 4344: 4343: 4333: 4315: 4313:astro-ph/0003008 4291: 4285: 4284: 4265:10.1038/35012001 4250: 4248:astro-ph/0003014 4229: 4223: 4222: 4194: 4188: 4187: 4161: 4159:astro-ph/0206182 4141: 4135: 4134: 4132: 4100: 4094: 4093: 4091: 4081: 4072:(2): 2195–2223. 4056: 4050: 4049: 4007: 3983: 3977: 3976: 3966: 3948: 3946:astro-ph/0511164 3924: 3918: 3917: 3891: 3889:astro-ph/0312036 3882:(5): 2544–2564. 3870: 3864: 3863: 3837: 3816: 3810: 3809: 3799: 3781: 3779:astro-ph/0211633 3757: 3751: 3750: 3724: 3722:astro-ph/0701589 3703: 3697: 3696: 3670: 3668:astro-ph/9912119 3661:(3): 1198–1208. 3645: 3639: 3638: 3620: 3618:astro-ph/9503073 3597: 3591: 3590: 3562: 3556: 3555: 3545: 3527: 3518:(3): 1157–1169. 3503: 3497: 3496: 3470: 3450: 3444: 3443: 3417: 3415:astro-ph/0312273 3397: 3391: 3390: 3364: 3362:astro-ph/9904156 3344: 3338: 3337: 3327: 3325:astro-ph/9407032 3307: 3301: 3300: 3274: 3272:astro-ph/9601011 3254: 3248: 3247: 3219: 3213: 3212: 3186: 3184:astro-ph/0507606 3165: 3159: 3158: 3156: 3122: 3116: 3115: 3093: 3087: 3086: 3066: 3060: 3059: 3033: 3013: 3007: 3006: 2996: 2978: 2976:astro-ph/0701671 2969:(3): 1197–1218. 2952: 2917:galaxy filaments 2915:located between 2876:as well as some 2804: 2802: 2801: 2796: 2792: 2791: 2790: 2774: 2772: 2771: 2766: 2762: 2761: 2760: 2710: 2708: 2707: 2702: 2698: 2681: 2679: 2678: 2673: 2669: 2668: 2667: 2651: 2649: 2648: 2643: 2639: 2638: 2637: 2617:Bessel Functions 2614: 2612: 2611: 2606: 2602: 2601: 2600: 2584: 2582: 2581: 2576: 2572: 2571: 2570: 2552: 2550: 2549: 2544: 2542: 2541: 2523: 2522: 2498: 2497: 2488: 2486: 2485: 2476: 2468: 2465: 2460: 2436: 2435: 2418: 2416: 2415: 2410: 2408: 2407: 2389: 2388: 2364: 2363: 2354: 2352: 2351: 2342: 2334: 2331: 2326: 2302: 2301: 2284: 2282: 2281: 2276: 2274: 2270: 2262: 2256: 2255: 2246: 2242: 2232: 2231: 2207: 2206: 2189: 2187: 2186: 2177: 2166: 2163: 2155: 2143: 2139: 2131: 2125: 2124: 2115: 2111: 2101: 2100: 2076: 2075: 2058: 2056: 2055: 2046: 2035: 2032: 2024: 1999: 1994: 1955: 1953: 1952: 1947: 1945: 1944: 1925: 1923: 1922: 1917: 1915: 1914: 1911: 1884: 1882: 1881: 1876: 1874: 1873: 1854: 1852: 1851: 1846: 1844: 1843: 1840: 1817:systematic error 1814: 1812: 1811: 1806: 1804: 1803: 1784: 1782: 1781: 1776: 1774: 1773: 1757: 1755: 1754: 1749: 1747: 1746: 1741: 1733: 1723: 1721: 1720: 1715: 1713: 1712: 1709: 1691: 1689: 1688: 1683: 1675: 1674: 1669: 1661: 1655: 1654: 1646: 1640: 1639: 1627: 1626: 1618: 1612: 1611: 1584: 1583: 1556: 1555: 1535: 1533: 1532: 1527: 1519: 1518: 1513: 1505: 1499: 1498: 1490: 1484: 1483: 1471: 1470: 1462: 1456: 1455: 1428: 1427: 1407: 1405: 1404: 1399: 1391: 1390: 1385: 1377: 1371: 1370: 1362: 1356: 1355: 1343: 1342: 1334: 1328: 1327: 1300: 1299: 1259: 1257: 1256: 1251: 1224: 1222: 1221: 1216: 1211: 1210: 1195: 1191: 1190: 1185: 1184: 1175: 1161: 1160: 1159: 1149: 1110: 1108: 1107: 1102: 1100: 1099: 1079: 1077: 1076: 1071: 1057: 1055: 1054: 1049: 1047: 1045: 1044: 1043: 1031: 1030: 1017: 1004: 1003: 995: 986: 985: 975: 954: 953: 952: 942: 930: 929: 914: 912: 911: 910: 897: 896: 895: 882: 871: 869: 868: 863: 847: 845: 844: 839: 837: 836: 828: 818: 816: 815: 810: 808: 807: 799: 521: 519: 518: 513: 484: 483: 326:are the largest 212: 205: 198: 35: 16: 15: 4893: 4892: 4888: 4887: 4886: 4884: 4883: 4882: 4868: 4867: 4854: 4849: 4800: 4796: 4747: 4743: 4694: 4690: 4641: 4637: 4597: 4591: 4587: 4538: 4534: 4509:Antigravitation 4505: 4501: 4452: 4448: 4416: 4410: 4406: 4372: 4368: 4351: 4347: 4292: 4288: 4230: 4226: 4195: 4191: 4142: 4138: 4101: 4097: 4057: 4053: 3984: 3980: 3925: 3921: 3871: 3867: 3817: 3813: 3758: 3754: 3704: 3700: 3646: 3642: 3598: 3594: 3563: 3559: 3504: 3500: 3451: 3447: 3398: 3394: 3345: 3341: 3308: 3304: 3255: 3251: 3220: 3216: 3166: 3162: 3123: 3119: 3094: 3090: 3067: 3063: 3014: 3010: 2953: 2949: 2945: 2933: 2903:distortions of 2854: 2786: 2782: 2780: 2777: 2776: 2756: 2752: 2750: 2747: 2746: 2717: 2687: 2684: 2683: 2682:are small near 2663: 2659: 2657: 2654: 2653: 2633: 2629: 2627: 2624: 2623: 2596: 2592: 2590: 2587: 2586: 2566: 2562: 2560: 2557: 2556: 2537: 2533: 2518: 2514: 2493: 2489: 2481: 2477: 2469: 2467: 2461: 2456: 2431: 2427: 2425: 2422: 2421: 2403: 2399: 2384: 2380: 2359: 2355: 2347: 2343: 2335: 2333: 2327: 2322: 2297: 2293: 2291: 2288: 2287: 2261: 2257: 2251: 2247: 2224: 2220: 2199: 2195: 2194: 2190: 2182: 2178: 2167: 2165: 2156: 2151: 2130: 2126: 2120: 2116: 2093: 2089: 2068: 2064: 2063: 2059: 2051: 2047: 2036: 2034: 2025: 2020: 1995: 1987: 1978: 1975: 1974: 1937: 1933: 1931: 1928: 1927: 1904: 1900: 1898: 1895: 1894: 1866: 1862: 1860: 1857: 1856: 1833: 1829: 1827: 1824: 1823: 1796: 1792: 1790: 1787: 1786: 1769: 1765: 1763: 1760: 1759: 1734: 1732: 1731: 1729: 1726: 1725: 1705: 1701: 1699: 1696: 1695: 1662: 1660: 1659: 1645: 1644: 1635: 1631: 1617: 1616: 1607: 1603: 1576: 1572: 1548: 1544: 1542: 1539: 1538: 1506: 1504: 1503: 1489: 1488: 1479: 1475: 1461: 1460: 1451: 1447: 1420: 1416: 1414: 1411: 1410: 1378: 1376: 1375: 1361: 1360: 1351: 1347: 1333: 1332: 1323: 1319: 1292: 1288: 1286: 1283: 1282: 1273: 1236: 1233: 1232: 1206: 1202: 1180: 1176: 1174: 1167: 1163: 1155: 1151: 1150: 1145: 1118: 1115: 1114: 1095: 1091: 1089: 1086: 1085: 1065: 1062: 1061: 1039: 1035: 1026: 1022: 1018: 994: 993: 981: 977: 976: 974: 948: 944: 943: 938: 922: 918: 906: 902: 898: 891: 887: 883: 881: 879: 876: 875: 857: 854: 853: 827: 826: 824: 821: 820: 798: 797: 795: 792: 791: 775: 702:effective radii 686: 674: 652: 628: 612:false positives 564: 479: 475: 467: 464: 463: 437: 360: 328:gravitationally 324:Galaxy clusters 312: 241: 216: 187: 186: 149: 116: 108: 107: 96: 87: 78: 66: 55: 51: 47: 43: 12: 11: 5: 4891: 4881: 4880: 4866: 4865: 4860: 4853: 4852:External links 4850: 4848: 4847: 4794: 4741: 4688: 4635: 4608:(2): 611–615. 4585: 4548:(10): 101502. 4532: 4499: 4446: 4441:10.1086/164314 4404: 4366: 4345: 4306:(2): 625–640. 4286: 4224: 4219:10.1086/149378 4189: 4136: 4130:10.1086/170555 4095: 4051: 3978: 3939:(2): 715–731. 3919: 3906:10.1086/383293 3865: 3852:10.1086/521541 3811: 3772:(2): 609–622. 3752: 3739:10.1086/519237 3715:(1): 176–190. 3698: 3685:10.1086/301540 3640: 3635:10.1086/177537 3592: 3587:10.1086/184285 3557: 3498: 3445: 3432:10.1086/381970 3408:(2): 596–603. 3392: 3379:10.1086/312144 3339: 3318:(2): 411–431. 3302: 3289:10.1086/310114 3249: 3244:10.1086/172297 3230:(2): 441–450. 3214: 3201:10.1086/502621 3177:(1): 128–143. 3160: 3154:10.1086/185636 3117: 3106:(1–2): L7–L9. 3088: 3061: 3008: 2946: 2944: 2941: 2940: 2939: 2932: 2929: 2870:energy density 2864:stabilized by 2853: 2850: 2789: 2785: 2759: 2755: 2733:galaxy surveys 2716: 2713: 2697: 2694: 2691: 2666: 2662: 2636: 2632: 2599: 2595: 2569: 2565: 2540: 2536: 2532: 2529: 2526: 2521: 2517: 2513: 2510: 2507: 2504: 2501: 2496: 2492: 2484: 2480: 2475: 2472: 2464: 2459: 2455: 2451: 2448: 2445: 2442: 2439: 2434: 2430: 2406: 2402: 2398: 2395: 2392: 2387: 2383: 2379: 2376: 2373: 2370: 2367: 2362: 2358: 2350: 2346: 2341: 2338: 2330: 2325: 2321: 2317: 2314: 2311: 2308: 2305: 2300: 2296: 2273: 2268: 2265: 2260: 2254: 2250: 2245: 2241: 2238: 2235: 2230: 2227: 2223: 2219: 2216: 2213: 2210: 2205: 2202: 2198: 2193: 2185: 2181: 2176: 2173: 2170: 2162: 2159: 2154: 2150: 2146: 2142: 2137: 2134: 2129: 2123: 2119: 2114: 2110: 2107: 2104: 2099: 2096: 2092: 2088: 2085: 2082: 2079: 2074: 2071: 2067: 2062: 2054: 2050: 2045: 2042: 2039: 2031: 2028: 2023: 2019: 2015: 2012: 2009: 2006: 2003: 1998: 1993: 1990: 1986: 1982: 1943: 1940: 1936: 1910: 1907: 1903: 1872: 1869: 1865: 1839: 1836: 1832: 1822:The functions 1802: 1799: 1795: 1772: 1768: 1744: 1740: 1737: 1708: 1704: 1681: 1678: 1672: 1668: 1665: 1658: 1652: 1649: 1643: 1638: 1634: 1630: 1624: 1621: 1615: 1610: 1606: 1602: 1599: 1596: 1593: 1590: 1587: 1582: 1579: 1575: 1571: 1568: 1565: 1562: 1559: 1554: 1551: 1547: 1525: 1522: 1516: 1512: 1509: 1502: 1496: 1493: 1487: 1482: 1478: 1474: 1468: 1465: 1459: 1454: 1450: 1446: 1443: 1440: 1437: 1434: 1431: 1426: 1423: 1419: 1397: 1394: 1388: 1384: 1381: 1374: 1368: 1365: 1359: 1354: 1350: 1346: 1340: 1337: 1331: 1326: 1322: 1318: 1315: 1312: 1309: 1306: 1303: 1298: 1295: 1291: 1272: 1269: 1249: 1246: 1243: 1240: 1229:lensing kernel 1214: 1209: 1205: 1201: 1198: 1194: 1188: 1183: 1179: 1173: 1170: 1166: 1158: 1154: 1148: 1144: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1098: 1094: 1069: 1042: 1038: 1034: 1029: 1025: 1021: 1016: 1013: 1010: 1007: 1001: 998: 992: 989: 984: 980: 973: 970: 967: 964: 961: 958: 951: 947: 941: 937: 933: 928: 925: 921: 917: 909: 905: 901: 894: 890: 886: 861: 834: 831: 805: 802: 774: 771: 770: 769: 757: 754: 746:speed of light 742: 739: 720: 717: 697: 685: 682: 673: 670: 657:galaxy surveys 651: 648: 640:galaxy cluster 627: 624: 589:Bullet Cluster 563: 560: 511: 508: 505: 502: 499: 496: 493: 490: 487: 482: 478: 474: 471: 461:transformation 439:The projected 436: 433: 359: 356: 352:Bullet Cluster 311: 308: 240: 237: 218: 217: 215: 214: 207: 200: 192: 189: 188: 185: 184: 179: 174: 169: 164: 159: 154: 144: 137: 136: 135: 134: 124: 117: 114: 113: 110: 109: 106: 105: 100: 94:SDSSJ0946+1006 91: 85:Bullet Cluster 82: 73: 67: 64: 63: 60: 59: 49:Strong lensing 37: 36: 28: 27: 21: 20: 9: 6: 4: 3: 2: 4890: 4879: 4876: 4875: 4873: 4864: 4861: 4859: 4856: 4855: 4843: 4839: 4835: 4831: 4827: 4823: 4818: 4817:gr-qc/9706049 4813: 4809: 4805: 4798: 4790: 4786: 4782: 4778: 4774: 4770: 4765: 4760: 4757:(8): 084026. 4756: 4752: 4745: 4737: 4733: 4729: 4725: 4721: 4717: 4712: 4707: 4704:(8): 084020. 4703: 4699: 4692: 4684: 4680: 4676: 4672: 4668: 4664: 4659: 4654: 4651:(2): 024049. 4650: 4646: 4639: 4631: 4627: 4623: 4619: 4615: 4611: 4607: 4603: 4596: 4589: 4581: 4577: 4573: 4569: 4565: 4561: 4556: 4551: 4547: 4543: 4536: 4528: 4524: 4519: 4514: 4510: 4503: 4495: 4491: 4487: 4483: 4479: 4475: 4470: 4465: 4462:(4): 044015. 4461: 4457: 4450: 4442: 4438: 4434: 4430: 4426: 4422: 4415: 4408: 4400: 4396: 4391: 4386: 4382: 4378: 4370: 4361: 4356: 4349: 4341: 4337: 4332: 4327: 4323: 4319: 4314: 4309: 4305: 4301: 4297: 4290: 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4254: 4249: 4244: 4240: 4236: 4228: 4220: 4216: 4212: 4208: 4204: 4200: 4193: 4185: 4181: 4177: 4173: 4169: 4165: 4160: 4155: 4151: 4147: 4140: 4131: 4126: 4122: 4118: 4114: 4110: 4106: 4099: 4090: 4085: 4080: 4075: 4071: 4067: 4063: 4055: 4047: 4043: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4011: 4006: 4001: 3998:(8): 086901. 3997: 3993: 3989: 3982: 3974: 3970: 3965: 3960: 3956: 3952: 3947: 3942: 3938: 3934: 3930: 3923: 3915: 3911: 3907: 3903: 3899: 3895: 3890: 3885: 3881: 3877: 3869: 3861: 3857: 3853: 3849: 3845: 3841: 3836: 3831: 3827: 3823: 3815: 3807: 3803: 3798: 3793: 3789: 3785: 3780: 3775: 3771: 3767: 3763: 3756: 3748: 3744: 3740: 3736: 3732: 3728: 3723: 3718: 3714: 3710: 3702: 3694: 3690: 3686: 3682: 3678: 3674: 3669: 3664: 3660: 3656: 3652: 3644: 3636: 3632: 3628: 3624: 3619: 3614: 3610: 3606: 3602: 3596: 3588: 3584: 3580: 3576: 3572: 3568: 3561: 3553: 3549: 3544: 3539: 3535: 3531: 3526: 3521: 3517: 3513: 3509: 3502: 3494: 3490: 3486: 3482: 3478: 3474: 3469: 3464: 3461:(1): 99–123. 3460: 3456: 3449: 3441: 3437: 3433: 3429: 3425: 3421: 3416: 3411: 3407: 3403: 3396: 3388: 3384: 3380: 3376: 3372: 3368: 3363: 3358: 3355:(1): L9–L12. 3354: 3350: 3343: 3335: 3331: 3326: 3321: 3317: 3313: 3306: 3298: 3294: 3290: 3286: 3282: 3278: 3273: 3268: 3264: 3260: 3253: 3245: 3241: 3237: 3233: 3229: 3225: 3218: 3210: 3206: 3202: 3198: 3194: 3190: 3185: 3180: 3176: 3172: 3164: 3155: 3150: 3146: 3142: 3138: 3134: 3133: 3128: 3121: 3113: 3109: 3105: 3101: 3100: 3092: 3084: 3080: 3076: 3072: 3065: 3057: 3053: 3049: 3045: 3041: 3037: 3032: 3027: 3024:(1–4): 7–24. 3023: 3019: 3012: 3004: 3000: 2995: 2990: 2986: 2982: 2977: 2972: 2968: 2964: 2963: 2958: 2951: 2947: 2938: 2935: 2934: 2928: 2926: 2922: 2918: 2914: 2910: 2906: 2905:convex lenses 2902: 2898: 2892: 2890: 2885: 2883: 2882:negative mass 2879: 2875: 2871: 2867: 2866:exotic matter 2863: 2859: 2858:scalar fields 2849: 2847: 2843: 2838: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2807: 2805: 2787: 2783: 2757: 2741: 2736: 2734: 2730: 2726: 2722: 2712: 2695: 2692: 2689: 2664: 2660: 2634: 2630: 2620: 2618: 2597: 2593: 2567: 2563: 2553: 2538: 2527: 2519: 2515: 2505: 2502: 2494: 2490: 2482: 2478: 2473: 2470: 2457: 2453: 2449: 2446: 2440: 2432: 2428: 2419: 2404: 2393: 2385: 2381: 2371: 2368: 2360: 2356: 2348: 2344: 2339: 2336: 2323: 2319: 2315: 2312: 2306: 2298: 2294: 2285: 2271: 2266: 2263: 2258: 2252: 2248: 2243: 2236: 2228: 2225: 2221: 2217: 2211: 2203: 2200: 2196: 2191: 2183: 2179: 2174: 2171: 2168: 2160: 2157: 2152: 2148: 2144: 2140: 2135: 2132: 2127: 2121: 2117: 2112: 2105: 2097: 2094: 2090: 2086: 2080: 2072: 2069: 2065: 2060: 2052: 2048: 2043: 2040: 2037: 2029: 2026: 2021: 2017: 2013: 2007: 1996: 1991: 1988: 1984: 1972: 1971: 1966: 1963: 1959: 1941: 1938: 1934: 1908: 1905: 1901: 1891: 1889: 1870: 1867: 1863: 1837: 1834: 1830: 1820: 1818: 1800: 1797: 1793: 1770: 1766: 1738: 1706: 1702: 1692: 1666: 1656: 1647: 1636: 1632: 1619: 1608: 1604: 1597: 1591: 1580: 1577: 1573: 1569: 1563: 1552: 1549: 1545: 1536: 1510: 1500: 1491: 1480: 1476: 1463: 1452: 1448: 1441: 1435: 1424: 1421: 1417: 1408: 1382: 1372: 1363: 1352: 1348: 1335: 1324: 1320: 1313: 1307: 1296: 1293: 1289: 1280: 1278: 1268: 1266: 1261: 1244: 1238: 1230: 1225: 1203: 1196: 1192: 1186: 1177: 1171: 1168: 1164: 1152: 1146: 1142: 1138: 1135: 1132: 1126: 1120: 1112: 1096: 1092: 1083: 1067: 1058: 1040: 1036: 1027: 1023: 1008: 996: 982: 968: 962: 959: 956: 945: 939: 935: 931: 926: 923: 919: 915: 907: 903: 892: 888: 873: 851: 829: 800: 789: 784: 780: 767: 763: 758: 755: 752: 747: 743: 740: 737: 733: 729: 725: 721: 718: 715: 711: 707: 703: 698: 695: 694: 693: 691: 681: 679: 676:Much like in 669: 667: 663: 660:technique in 658: 647: 645: 641: 637: 633: 623: 621: 617: 613: 609: 605: 600: 598: 594: 590: 586: 582: 577: 568: 559: 557: 553: 549: 545: 541: 537: 532: 527: 525: 506: 503: 500: 494: 491: 488: 485: 476: 469: 462: 458: 454: 453:magnification 450: 447:. However, a 446: 442: 432: 430: 425: 421: 417: 413: 409: 404: 402: 398: 394: 390: 386: 385:ellipticities 382: 378: 374: 369: 365: 355: 353: 349: 345: 341: 337: 333: 329: 325: 316: 307: 305: 301: 296: 292: 288: 284: 281: 280:interpolating 277: 272: 269: 268:ellipticities 264: 262: 258: 254: 245: 236: 234: 229: 225: 213: 208: 206: 201: 199: 194: 193: 191: 190: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 148: 145: 143: 139: 138: 133: 130: 129: 128: 125: 123: 119: 118: 112: 111: 104: 101: 99: 95: 92: 90: 86: 83: 81: 77: 74: 72: 69: 68: 62: 61: 58: 54: 50: 46: 42: 41:Einstein ring 39: 38: 34: 30: 29: 26: 23: 22: 18: 17: 4807: 4803: 4797: 4754: 4750: 4744: 4701: 4697: 4691: 4648: 4644: 4638: 4605: 4601: 4588: 4545: 4541: 4535: 4508: 4502: 4459: 4455: 4449: 4424: 4420: 4407: 4380: 4376: 4369: 4348: 4303: 4299: 4289: 4238: 4234: 4227: 4202: 4198: 4192: 4149: 4145: 4139: 4112: 4108: 4098: 4069: 4065: 4054: 3995: 3991: 3981: 3936: 3932: 3922: 3879: 3875: 3868: 3828:(1): 21–31. 3825: 3821: 3814: 3769: 3765: 3755: 3712: 3708: 3701: 3658: 3654: 3643: 3608: 3604: 3595: 3570: 3566: 3560: 3515: 3511: 3501: 3458: 3454: 3448: 3405: 3401: 3395: 3352: 3348: 3342: 3315: 3311: 3305: 3262: 3258: 3252: 3227: 3223: 3217: 3174: 3170: 3163: 3136: 3130: 3120: 3103: 3097: 3091: 3074: 3070: 3064: 3021: 3017: 3011: 2966: 2960: 2950: 2913:cosmic voids 2897:concave lens 2893: 2886: 2872:. Moreover, 2868:of negative 2855: 2844:and diffuse 2839: 2808: 2737: 2718: 2621: 2554: 2420: 2286: 1973: 1969: 1967: 1961: 1957: 1892: 1821: 1693: 1537: 1409: 1281: 1276: 1274: 1262: 1228: 1226: 1113: 1059: 874: 776: 773:Cosmic shear 687: 675: 653: 636:field galaxy 629: 601: 573: 552:spectroscopy 528: 441:mass density 438: 405: 391:behind both 361: 322: 285: 273: 265: 251: 232: 221: 103:QSO 0957+561 89:QSO2237+0305 57:Weak lensing 56: 53:Microlensing 3573:: L59–L62. 3265:(2): L115. 2823:dark matter 2819:dark energy 714:dark matter 397:CL 1409+524 336:dark matter 239:Methodology 4079:2212.11319 2943:References 2831:Pan-STARRS 2815:tomography 2729:supernovae 766:morphology 744:Since the 724:luminosity 457:degeneracy 393:Abell 1689 350:, and the 344:Abell 1689 255:acts as a 228:deflection 157:Pan-STARRS 76:Abell 2218 71:Abell 1689 4789:119267234 4764:1404.2720 4711:1307.6637 4658:1305.5037 4630:121164013 4580:119167780 4555:1407.1457 4518:0909.3456 4494:119152509 4469:0807.2838 4383:: 30–44. 4030:0034-4885 4005:1411.0115 3874:Survey". 3835:0707.1698 3806:119099969 3525:0802.2365 3493:118354061 3468:0805.0139 3139:: L1–L4. 3031:0801.0968 2901:azimuthal 2784:σ 2754:Ω 2690:θ 2665:− 2463:∞ 2454:∫ 2433:− 2329:∞ 2320:∫ 2267:θ 2264:ϕ 2253:− 2237:ϕ 2229:× 2226:× 2222:ξ 2218:− 2212:ϕ 2197:ξ 2180:θ 2175:ϕ 2169:ϕ 2161:θ 2149:∫ 2136:θ 2133:ϕ 2106:ϕ 2098:× 2095:× 2091:ξ 2081:ϕ 2066:ξ 2049:θ 2044:ϕ 2038:ϕ 2030:θ 2018:∫ 2008:θ 2002:⟩ 1981:⟨ 1942:× 1939:× 1935:ξ 1902:ξ 1871:× 1868:× 1864:ξ 1831:ξ 1798:× 1794:ξ 1771:× 1767:γ 1743:→ 1739:θ 1736:Δ 1703:γ 1680:⟩ 1671:→ 1667:θ 1664:Δ 1651:→ 1648:θ 1637:× 1633:γ 1623:→ 1620:θ 1605:γ 1601:⟨ 1592:θ 1589:Δ 1581:× 1574:ξ 1564:θ 1561:Δ 1550:× 1546:ξ 1524:⟩ 1515:→ 1511:θ 1508:Δ 1495:→ 1492:θ 1481:× 1477:γ 1467:→ 1464:θ 1453:× 1449:γ 1445:⟨ 1436:θ 1433:Δ 1425:× 1422:× 1418:ξ 1396:⟩ 1387:→ 1383:θ 1380:Δ 1367:→ 1364:θ 1349:γ 1339:→ 1336:θ 1321:γ 1317:⟨ 1308:θ 1305:Δ 1290:ξ 1208:′ 1182:′ 1172:− 1157:∞ 1143:∫ 1033:∂ 1020:∂ 1000:→ 988:Φ 979:∂ 950:∞ 936:∫ 920:δ 904:θ 900:∂ 889:β 885:∂ 860:Φ 833:→ 830:θ 804:→ 801:β 666:cosmology 616:calibrate 604:cosmology 524:invariant 507:λ 504:− 492:κ 489:λ 481:′ 477:κ 473:→ 470:κ 445:inversion 377:Abell 370 348:CL0024+17 98:B1359+154 80:CL0024+17 45:Formalism 4872:Category 4736:56113166 4683:62809527 4427:: 9–15. 4340:10710233 4273:10821262 4205:: 737G. 4184:18912727 4152:: 1–19. 4038:26181770 3973:15254269 3860:16278249 3747:13181480 3693:13925698 3552:12831134 3440:12184057 3387:13905836 3297:16251456 3209:14088089 3077:: 1014. 3056:16807030 2931:See also 850:Jacobian 672:Stacking 548:redshift 538:and the 531:centroid 529:Given a 420:luminous 332:Universe 248:systems. 120:Strong: 4842:9458336 4822:Bibcode 4769:Bibcode 4716:Bibcode 4663:Bibcode 4610:Bibcode 4560:Bibcode 4474:Bibcode 4429:Bibcode 4395:Bibcode 4318:Bibcode 4281:4413399 4253:Bibcode 4207:Bibcode 4164:Bibcode 4117:Bibcode 4115:: 1–8. 4010:Bibcode 3951:Bibcode 3914:7749179 3894:Bibcode 3840:Bibcode 3784:Bibcode 3727:Bibcode 3673:Bibcode 3623:Bibcode 3611:: 623. 3575:Bibcode 3530:Bibcode 3473:Bibcode 3420:Bibcode 3367:Bibcode 3330:Bibcode 3277:Bibcode 3232:Bibcode 3189:Bibcode 3141:Bibcode 3108:Bibcode 3079:Bibcode 3036:Bibcode 3003:9238511 2981:Bibcode 2909:fisheye 1227:is the 1080:is the 848:. The 706:baryons 650:History 642:or the 620:scatter 608:surveys 581:stellar 412:optical 387:of the 358:History 182:DESTINY 140:Micro: 115:Surveys 4840:  4787:  4734:  4681:  4628:  4578:  4492:  4338:  4279:  4271:  4235:Nature 4182:  4046:343416 4044:  4036:  4028:  3971:  3912:  3858:  3804:  3745:  3691:  3550:  3491:  3438:  3385:  3295:  3207:  3054:  3001:  2793:  2763:  2731:, and 2699:  2670:  2640:  2603:  2573:  2555:where 1962:B-mode 1958:E-mode 1912:  1841:  1758:, and 1710:  1694:where 1060:where 751:epochs 736:virial 728:filter 712:where 408:baryon 162:CFHTLS 150:Weak: 4838:S2CID 4812:arXiv 4785:S2CID 4759:arXiv 4732:S2CID 4706:arXiv 4679:S2CID 4653:arXiv 4626:S2CID 4598:(PDF) 4576:S2CID 4550:arXiv 4513:arXiv 4490:S2CID 4464:arXiv 4417:(PDF) 4385:arXiv 4355:arXiv 4336:S2CID 4308:arXiv 4300:MNRAS 4277:S2CID 4243:arXiv 4180:S2CID 4154:arXiv 4074:arXiv 4042:S2CID 4000:arXiv 3969:S2CID 3941:arXiv 3910:S2CID 3884:arXiv 3856:S2CID 3830:arXiv 3802:S2CID 3774:arXiv 3743:S2CID 3717:arXiv 3689:S2CID 3663:arXiv 3613:arXiv 3548:S2CID 3520:arXiv 3512:MNRAS 3489:S2CID 3463:arXiv 3436:S2CID 3410:arXiv 3383:S2CID 3357:arXiv 3320:arXiv 3293:S2CID 3267:arXiv 3205:S2CID 3179:arXiv 3052:S2CID 3026:arXiv 2999:S2CID 2971:arXiv 762:color 710:halos 416:X-ray 340:Earth 304:color 302:or a 293:when 127:SLACS 122:CLASS 4269:PMID 4034:PMID 4026:ISSN 2821:and 2652:and 2615:are 2585:and 1960:and 1926:and 1855:and 764:and 690:mass 664:and 595:and 583:and 395:and 177:SNAP 172:LSST 147:Gaia 142:OGLE 132:SDSS 4830:doi 4777:doi 4724:doi 4671:doi 4618:doi 4606:354 4568:doi 4523:doi 4482:doi 4437:doi 4425:306 4381:358 4326:doi 4304:318 4261:doi 4239:405 4215:doi 4203:150 4172:doi 4150:396 4125:doi 4113:380 4084:doi 4070:524 4018:doi 3959:doi 3937:368 3902:doi 3880:127 3848:doi 3826:669 3792:doi 3770:340 3735:doi 3713:667 3681:doi 3659:466 3631:doi 3609:466 3583:doi 3571:281 3538:doi 3516:390 3481:doi 3428:doi 3406:604 3375:doi 3353:520 3316:294 3285:doi 3263:464 3240:doi 3228:404 3197:doi 3175:643 3149:doi 3137:349 3104:184 3044:doi 3022:134 2989:doi 2967:381 2740:CCD 2450:576 2316:576 585:gas 554:or 414:or 167:DES 152:DLS 4874:: 4836:. 4828:. 4820:. 4808:29 4806:. 4783:. 4775:. 4767:. 4755:90 4753:. 4730:. 4722:. 4714:. 4702:89 4700:. 4677:. 4669:. 4661:. 4649:88 4647:. 4624:. 4616:. 4604:. 4600:. 4574:. 4566:. 4558:. 4546:90 4544:. 4521:. 4488:. 4480:. 4472:. 4460:78 4458:. 4435:. 4423:. 4419:. 4393:. 4379:. 4334:. 4324:. 4316:. 4302:. 4298:. 4275:. 4267:. 4259:. 4251:. 4237:. 4213:. 4201:. 4178:. 4170:. 4162:. 4148:. 4123:. 4111:. 4107:. 4082:. 4068:. 4064:. 4040:. 4032:. 4024:. 4016:. 4008:. 3996:78 3994:. 3990:. 3967:. 3957:. 3949:. 3935:. 3931:. 3908:. 3900:. 3892:. 3878:. 3854:. 3846:. 3838:. 3824:. 3800:. 3790:. 3782:. 3768:. 3764:. 3741:. 3733:. 3725:. 3711:. 3687:. 3679:. 3671:. 3657:. 3629:. 3621:. 3607:. 3581:. 3569:. 3546:. 3536:. 3528:. 3514:. 3510:. 3487:. 3479:. 3471:. 3459:58 3457:. 3434:. 3426:. 3418:. 3404:. 3381:. 3373:. 3365:. 3351:. 3328:. 3314:. 3291:. 3283:. 3275:. 3261:. 3238:. 3226:. 3203:. 3195:. 3187:. 3173:. 3147:. 3135:. 3129:. 3102:. 3075:18 3073:. 3050:. 3042:. 3034:. 3020:. 2997:. 2987:. 2979:. 2965:. 2959:. 2837:. 2829:, 2727:, 2711:. 2619:. 1890:. 1819:. 1267:. 1260:. 1084:, 692:: 599:. 431:. 403:. 346:, 4844:. 4832:: 4824:: 4814:: 4791:. 4779:: 4771:: 4761:: 4738:. 4726:: 4718:: 4708:: 4685:. 4673:: 4665:: 4655:: 4632:. 4620:: 4612:: 4582:. 4570:: 4562:: 4552:: 4529:. 4525:: 4515:: 4496:. 4484:: 4476:: 4466:: 4443:. 4439:: 4431:: 4401:. 4397:: 4387:: 4363:. 4357:: 4342:. 4328:: 4320:: 4310:: 4283:. 4263:: 4255:: 4245:: 4221:. 4217:: 4209:: 4186:. 4174:: 4166:: 4156:: 4133:. 4127:: 4119:: 4092:. 4086:: 4076:: 4048:. 4020:: 4012:: 4002:: 3975:. 3961:: 3953:: 3943:: 3916:. 3904:: 3896:: 3886:: 3862:. 3850:: 3842:: 3832:: 3808:. 3794:: 3786:: 3776:: 3749:. 3737:: 3729:: 3719:: 3695:. 3683:: 3675:: 3665:: 3637:. 3633:: 3625:: 3615:: 3589:. 3585:: 3577:: 3554:. 3540:: 3532:: 3522:: 3495:. 3483:: 3475:: 3465:: 3442:. 3430:: 3422:: 3412:: 3389:. 3377:: 3369:: 3359:: 3336:. 3332:: 3322:: 3299:. 3287:: 3279:: 3269:: 3246:. 3242:: 3234:: 3211:. 3199:: 3191:: 3181:: 3157:. 3151:: 3143:: 3114:. 3110:: 3085:. 3081:: 3058:. 3046:: 3038:: 3028:: 3005:. 2991:: 2983:: 2973:: 2788:8 2758:m 2696:0 2693:= 2661:T 2635:+ 2631:T 2598:4 2594:J 2568:0 2564:J 2539:2 2535:] 2531:) 2528:t 2525:( 2520:4 2516:J 2512:[ 2509:) 2506:t 2503:x 2500:( 2495:4 2491:J 2483:3 2479:t 2474:t 2471:d 2458:0 2447:= 2444:) 2441:x 2438:( 2429:T 2405:2 2401:] 2397:) 2394:t 2391:( 2386:4 2382:J 2378:[ 2375:) 2372:t 2369:x 2366:( 2361:0 2357:J 2349:3 2345:t 2340:t 2337:d 2324:0 2313:= 2310:) 2307:x 2304:( 2299:+ 2295:T 2272:) 2259:( 2249:T 2244:] 2240:) 2234:( 2215:) 2209:( 2204:+ 2201:+ 2192:[ 2184:2 2172:d 2158:2 2153:0 2145:= 2141:) 2128:( 2122:+ 2118:T 2113:] 2109:) 2103:( 2087:+ 2084:) 2078:( 2073:+ 2070:+ 2061:[ 2053:2 2041:d 2027:2 2022:0 2014:= 2011:) 2005:( 1997:2 1992:p 1989:a 1985:M 1909:+ 1906:+ 1838:+ 1835:+ 1801:+ 1707:+ 1677:) 1657:+ 1642:( 1629:) 1614:( 1609:+ 1598:= 1595:) 1586:( 1578:+ 1570:= 1567:) 1558:( 1553:+ 1521:) 1501:+ 1486:( 1473:) 1458:( 1442:= 1439:) 1430:( 1393:) 1373:+ 1358:( 1353:+ 1345:) 1330:( 1325:+ 1314:= 1311:) 1302:( 1297:+ 1294:+ 1248:) 1245:r 1242:( 1239:W 1213:) 1204:r 1200:( 1197:W 1193:) 1187:r 1178:r 1169:1 1165:( 1153:r 1147:r 1139:r 1136:2 1133:= 1130:) 1127:r 1124:( 1121:g 1097:i 1093:x 1068:r 1041:j 1037:x 1028:i 1024:x 1015:) 1012:) 1009:r 1006:( 997:x 991:( 983:2 972:) 969:r 966:( 963:g 960:r 957:d 946:r 940:0 932:+ 927:j 924:i 916:= 908:j 893:i 510:) 501:1 498:( 495:+ 486:= 211:e 204:t 197:v

Index

Gravitational lensing

Einstein ring
Formalism
Strong lensing
Microlensing
Weak lensing
Abell 1689
Abell 2218
CL0024+17
Bullet Cluster
QSO2237+0305
SDSSJ0946+1006
B1359+154
QSO 0957+561
CLASS
SLACS
SDSS
OGLE
Gaia
DLS
Pan-STARRS
CFHTLS
DES
LSST
SNAP
DESTINY
v
t
e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.