Knowledge

Weaire–Phelan structure

Source 📝

513: 347: 437: 26: 335: 91: 415:. These prisms surround cubical voids which form one fourth of the cells of the cubical tiling; the remaining three fourths of the cells fill the prisms, offset by half a unit from the integer grid aligned with the prism walls. Similarly, in the Weaire–Phelan structure itself, which has the same symmetries as the tetrastix structure, 1/4 of the cells are dodecahedra and 3/4 are tetrakaidecahedra. 400: 410:
The tetrakaidecahedron cells, linked up in face-to-face chains of cells along their hexagonal faces, form chains in three perpendicular directions. A combinatorially equivalent structure to the Weaire–Phelan structure can be made as a tiling of space by unit cubes, lined up face-to-face into infinite
312:
Since the discovery of the Weaire–Phelan structure, other counterexamples to the Kelvin conjecture have been found, but the Weaire–Phelan structure continues to have the smallest known surface area per cell of these counterexamples. Although numerical experiments suggest that the Weaire–Phelan
422:
associated with the Weaire–Phelan structure (obtained by flattening the faces and straightening the edges) is also referred to loosely as the Weaire–Phelan structure. It was known well before the Weaire–Phelan structure was discovered, but the application to the Kelvin problem was overlooked.
395:
symmetry. Like the hexagons in the Kelvin structure, the pentagons in both types of cells are slightly curved. The surface area of the Weaire–Phelan structure is 0.3% less than that of the Kelvin structure.
234: 126:
asked the corresponding question for three-dimensional space: how can space be partitioned into cells of equal volume with the least area of surface between them? Or, in short, what was the most efficient
1170:
Cros, Christian; Pouchard, Michel; Hagenmuller, Paul (December 1970), "Sur une nouvelle famille de clathrates minéraux isotypes des hydrates de gaz et de liquides, interprétation des résultats obtenus",
359:
The Weaire–Phelan structure differs from Kelvin's in that it uses two kinds of cells, although they have equal volume. Like the cells in Kelvin's structure, these cells are combinatorially equivalent to
297:
Although Kelvin did not state it explicitly as a conjecture, the idea that the foam of the bitruncated cubic honeycomb is the most efficient foam, and solves Kelvin's problem, became known as the
962: 309:
and his student Robert Phelan discovered the Weaire–Phelan structure through computer simulations of foam, and showed that it was more efficient, disproving the Kelvin conjecture.
288: 186: 261: 1075:
Frank, F. C.; Kasper, J. S. (1959), "Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures",
317:. The minimality of the sphere as a surface enclosing a single volume was not proven until the 19th century, and the next simplest such problem, the 1228: 668: 294:
for its faces, obeying Plateau's laws and reducing the area of the structure by 0.2% compared with the corresponding polyhedral structure.
313:
structure is optimal, this remains unproven. In general, it has been very difficult to prove the optimality of structures involving
191: 910: 25: 618: 82:
of tiling space by equal volume cells of minimum surface area than the previous best-known solution, the Kelvin structure.
106:
In two dimensions, the subdivision of the plane into cells of equal area with minimum average perimeter is given by the
831: 1243: 384: 527: 516: 392: 373: 544: 512: 33: 873: 1104:
Kasper, J. S.; Hagenmuller, P.; Pouchard, M.; Cros, C. (December 1965), "Clathrate structure of silicon Na
1273: 749:
Gabbrielli, Ruggero (1 August 2009), "A new counter-example to Kelvin's conjecture on minimal surfaces",
142: 95: 731:, NATO Advanced Science Institutes Series E: Applied Sciences, vol. 354, Kluwer, pp. 379–402, 301:. It was widely believed, and no counter-example was known for more than 100 years. Finally, in 1993, 290:
on hexagonal faces. Therefore, Kelvin's proposed structure uses curvilinear edges and slightly warped
1258: 391:
with two hexagonal and twelve pentagonal faces, in this case only possessing two mirror planes and a
161:, formulated by Joseph Plateau in the 19th century, according to which minimal foam surfaces meet at 474:
Where the components of the crystal lie at the corners of the polyhedra, it is known as the "Type I
900: 318: 146: 691: 266: 236:. The angles of the polyhedral structure are different; for instance, its edges meet at angles of 164: 1206: 1048: 239: 41: 613: 302: 115: 948: 896: 463:. Where the components of the crystal lie at the centres of the polyhedra it forms one of the 1268: 827:"Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture" 406:, modeling the face-to-face chains of tetrakaidecahedron cells in the Weaire–Phelan structure 800: 482:
formed by methane, propane and carbon dioxide at low temperatures have a structure in which
1180: 1129: 1049:"Complex alloy structures regarded as sphere packings. I. Definitions and basic principles" 977: 920: 852: 758: 736: 651: 587: 531: 419: 150: 111: 99: 46: 504:
also form this structure, with silicon or germanium at nodes, and alkali metals in cages.
188:
angles at their edges, with these edges meeting each other in sets of four with angles of
8: 1014:(2011), "Scientists make the 'perfect' foam: Theoretical low-energy foam made for real", 464: 445: 1184: 1133: 981: 963:"An experimental realization of the Weaire-Phelan structure in monodisperse liquid foam" 762: 591: 1263: 1153: 1029: 993: 892: 856: 782: 388: 321:
on enclosing two volumes, remained open for over 100 years until being proven in 2002.
37: 1236:
page with illustrations and freely downloadable 'nets' for printing and making models.
1192: 1145: 1033: 941: 906: 786: 774: 578:; Phelan, R. (1994), "A counter-example to Kelvin's conjecture on minimal surfaces", 456: 361: 158: 154: 1157: 997: 157:
with 6 square faces and 8 hexagonal faces. However, this honeycomb does not satisfy
1188: 1137: 1084: 1063: 1021: 1016: 985: 860: 840: 766: 717:
write that it is "implicit rather than directly stated in Kelvin's original papers"
683: 637: 627: 595: 523: 436: 346: 107: 1233: 1141: 989: 916: 848: 844: 732: 647: 490:
together, and the larger gas molecules are trapped in the polyhedral cages. Some
314: 291: 119: 826: 411:
square prisms in the same way to form a structure of interlocking prisms called
1211: 1089: 1068: 770: 687: 599: 1252: 1025: 961:
Gabbrielli, R.; Meagher, A.J.; Weaire, D.; Brakke, K.A.; Hutzler, S. (2012),
936: 778: 487: 449: 1149: 575: 491: 369: 365: 306: 75: 632: 455:
The associated polyhedral honeycomb is found in two related geometries of
1239: 1011: 642: 479: 334: 128: 123: 78:
and Robert Phelan found that this structure was a better solution of the
90: 501: 497: 475: 468: 460: 412: 403: 494: 440:
A close-up of the mold used for the growth of ordered liquid foams.
63: 486:
molecules lie at the nodes of the Weaire–Phelan structure and are
666: 522:
The Weaire–Phelan structure is the inspiration for the design by
727:
Sullivan, John M. (1999), "The geometry of bubbles and foams",
229:{\displaystyle \arccos {\tfrac {1}{3}}\approx 109.47^{\circ }} 74:
of equal-sized bubbles, with two different shapes. In 1993,
1103: 960: 483: 891: 399: 71: 70:
is a three-dimensional structure representing an idealised
1229:
3D models of the Weaire–Phelan, Kelvin and P42a structures
23: 876:(2009), "Chapter 14. Proof of Double Bubble Conjecture", 669:"On the Division of Space with Minimum Partitional Area" 102:
cells are deformed slightly to form the Kelvin structure
1169: 202: 905:, Wellesley, Massachusetts: A K Peters, p. 351, 269: 242: 194: 167: 131:
foam? This problem has since been referred to as the
947:(3rd ed.), Cornell University Press, p.  940: 282: 255: 228: 180: 118:(116-27 BCE), it was not proven until the work of 1242:, Alexandru Pintea, 2017, Individual First Prize 895:; Burgiel, Heidi; Goodman-Strauss, Chaim (2008), 85: 1250: 1207:"A Problem of Bubbles Frames an Olympic Design" 548:, a book by Weaire on this and related problems 1240:"Weaire-Phelan Smart Modular Space Settlement" 878:Geometric Measure Theory: A Beginner's Guide 714: 574: 444:Experiments have shown that, with favorable 1074: 1046: 18: 931: 929: 799:Freiberger, Marianne (24 September 2009), 798: 748: 667:Lord Kelvin (Sir William Thomson) (1887), 15: 1088: 1067: 792: 641: 631: 1204: 1198: 742: 726: 662: 660: 511: 435: 398: 110:, but although the first record of this 89: 935: 926: 720: 114:goes back to the ancient Roman scholar 1251: 872: 431: 954: 866: 824: 657: 619:Discrete & Computational Geometry 612: 448:, equal-volume bubbles spontaneously 1097: 1047:Frank, F. C.; Kasper, J. S. (1958), 1010: 1004: 885: 818: 616:(2001), "The honeycomb conjecture", 606: 570: 568: 566: 564: 562: 1244:NASA Ames Space Settlement Contest: 1163: 729:Foams and emulsions (Cargèse, 1997) 13: 1205:Fountain, Henry (August 5, 2008), 1040: 507: 452:into the Weaire–Phelan structure. 372:with pentagonal faces, possessing 137:Kelvin proposed a foam called the 14: 1285: 1222: 897:"Understanding the Irish Bubbles" 559: 385:truncated hexagonal trapezohedron 1173:Journal of Solid State Chemistry 528:Beijing National Aquatics Centre 517:Beijing National Aquatics Centre 345: 333: 24: 943:The Nature of the Chemical Bond 426: 32: 880:(4th ed.), Academic Press 751:Philosophical Magazine Letters 708: 545:The Pursuit of Perfect Packing 324: 86:History and the Kelvin problem 1: 1142:10.1126/science.150.3704.1713 801:"Kelvin's bubble burst again" 552: 1193:10.1016/0022-4596(70)90053-8 990:10.1080/09500839.2011.645898 845:10.1080/10586458.2011.565233 530:, the 'Water Cube', for the 283:{\displaystyle 120^{\circ }} 181:{\displaystyle 120^{\circ }} 7: 537: 383:). The second is a form of 256:{\displaystyle 90^{\circ }} 143:bitruncated cubic honeycomb 141:. His foam is based on the 98:, a convex honeycomb whose 96:bitruncated cubic honeycomb 10: 1290: 715:Weaire & Phelan (1994) 1090:10.1107/s0365110x59001499 1069:10.1107/s0365110x58000487 807:, University of Cambridge 771:10.1080/09500830903022651 688:10.1080/14786448708628135 600:10.1080/09500839408241577 1026:10.1038/nature.2011.9504 902:The Symmetries of Things 832:Experimental Mathematics 319:double bubble conjecture 147:convex uniform honeycomb 19:Weaire–Phelan structure 825:Oudet, Édouard (2011), 68:Weaire–Phelan structure 676:Philosophical Magazine 519: 441: 407: 340:Irregular dodecahedron 303:Trinity College Dublin 284: 257: 230: 182: 116:Marcus Terentius Varro 103: 1234:Weaire–Phelan Bubbles 633:10.1007/s004540010071 515: 439: 402: 285: 258: 231: 183: 93: 532:2008 Summer Olympics 374:tetrahedral symmetry 267: 263:on square faces, or 240: 192: 165: 151:truncated octahedron 112:honeycomb conjecture 100:truncated octahedron 1185:1970JSSCh...2..570C 1134:1965Sci...150.1713K 1128:(3704): 1713–1714, 982:2012PMagL..92....1G 763:2009PMagL..89..483G 592:1994PMagL..69..107W 465:Frank–Kasper phases 446:boundary conditions 432:In physical systems 1274:1994 introductions 520: 442: 408: 389:tetrakaidecahedron 352:Tetrakaidecahedron 280: 253: 226: 211: 178: 153:, a space-filling 122:in 1999. In 1887, 104: 38:Fibrifold notation 1077:Acta Crystallogr. 1056:Acta Crystallogr. 912:978-1-56881-220-5 457:crystal structure 299:Kelvin conjecture 210: 155:convex polyhedron 60: 59: 1281: 1259:Minimal surfaces 1216: 1215: 1202: 1196: 1195: 1167: 1161: 1160: 1101: 1095: 1093: 1092: 1072: 1071: 1053: 1044: 1038: 1036: 1008: 1002: 1000: 970:Phil. Mag. Lett. 967: 958: 952: 951: 946: 933: 924: 923: 889: 883: 881: 870: 864: 863: 822: 816: 815: 814: 812: 796: 790: 789: 746: 740: 739: 724: 718: 712: 706: 704: 703: 702: 696: 690:, archived from 673: 664: 655: 654: 645: 635: 610: 604: 602: 580:Phil. Mag. Lett. 572: 524:Tristram Carfrae 362:convex polyhedra 349: 337: 315:minimal surfaces 292:minimal surfaces 289: 287: 286: 281: 279: 278: 262: 260: 259: 254: 252: 251: 235: 233: 232: 227: 225: 224: 212: 203: 187: 185: 184: 179: 177: 176: 139:Kelvin structure 108:hexagonal tiling 50: 42:Coxeter notation 28: 16: 1289: 1288: 1284: 1283: 1282: 1280: 1279: 1278: 1249: 1248: 1225: 1220: 1219: 1203: 1199: 1168: 1164: 1119: 1115: 1111: 1107: 1102: 1098: 1051: 1045: 1041: 1009: 1005: 965: 959: 955: 934: 927: 913: 893:Conway, John H. 890: 886: 871: 867: 823: 819: 810: 808: 797: 793: 747: 743: 725: 721: 713: 709: 700: 698: 694: 671: 665: 658: 611: 607: 573: 560: 555: 540: 510: 508:In architecture 488:hydrogen bonded 434: 429: 418:The polyhedral 387:, a species of 381: 368:, an irregular 357: 356: 355: 354: 353: 350: 342: 341: 338: 327: 274: 270: 268: 265: 264: 247: 243: 241: 238: 237: 220: 216: 201: 193: 190: 189: 172: 168: 166: 163: 162: 133:Kelvin problem. 120:Thomas C. Hales 88: 55: 53: 48: 40: 36: 12: 11: 5: 1287: 1277: 1276: 1271: 1266: 1261: 1247: 1246: 1237: 1231: 1224: 1223:External links 1221: 1218: 1217: 1212:New York Times 1197: 1179:(4): 570–581, 1162: 1120:(x < 11)", 1117: 1113: 1109: 1105: 1096: 1083:(7): 483–499, 1062:(3): 184–190, 1039: 1003: 953: 937:Pauling, Linus 925: 911: 884: 865: 839:(3): 260–270, 817: 791: 757:(8): 483–491, 741: 719: 707: 656: 605: 586:(2): 107–110, 557: 556: 554: 551: 550: 549: 539: 536: 509: 506: 433: 430: 428: 425: 393:rotoreflection 379: 351: 344: 343: 339: 332: 331: 330: 329: 328: 326: 323: 277: 273: 250: 246: 223: 219: 215: 209: 206: 200: 197: 175: 171: 159:Plateau's laws 149:formed by the 87: 84: 80:Kelvin problem 58: 57: 44: 30: 29: 21: 20: 9: 6: 4: 3: 2: 1286: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1256: 1254: 1245: 1241: 1238: 1235: 1232: 1230: 1227: 1226: 1214: 1213: 1208: 1201: 1194: 1190: 1186: 1182: 1178: 1174: 1166: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1100: 1091: 1086: 1082: 1078: 1070: 1065: 1061: 1057: 1050: 1043: 1035: 1031: 1027: 1023: 1019: 1018: 1013: 1007: 999: 995: 991: 987: 983: 979: 975: 971: 964: 957: 950: 945: 944: 938: 932: 930: 922: 918: 914: 908: 904: 903: 898: 894: 888: 879: 875: 874:Morgan, Frank 869: 862: 858: 854: 850: 846: 842: 838: 834: 833: 828: 821: 806: 805:Plus Magazine 802: 795: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 745: 738: 734: 730: 723: 716: 711: 697:on 2021-11-26 693: 689: 685: 681: 677: 670: 663: 661: 653: 649: 644: 643:2027.42/42423 639: 634: 629: 625: 621: 620: 615: 609: 601: 597: 593: 589: 585: 581: 577: 571: 569: 567: 565: 563: 558: 547: 546: 542: 541: 535: 533: 529: 525: 518: 514: 505: 503: 499: 496: 493: 489: 485: 481: 477: 472: 470: 466: 462: 458: 453: 451: 450:self-assemble 447: 438: 424: 421: 416: 414: 405: 401: 397: 394: 390: 386: 382: 375: 371: 367: 363: 348: 336: 322: 320: 316: 310: 308: 304: 300: 295: 293: 275: 271: 248: 244: 221: 217: 213: 207: 204: 198: 195: 173: 169: 160: 156: 152: 148: 144: 140: 135: 134: 130: 125: 121: 117: 113: 109: 101: 97: 92: 83: 81: 77: 73: 69: 65: 52: 45: 43: 39: 35: 31: 27: 22: 17: 1269:3-honeycombs 1210: 1200: 1176: 1172: 1165: 1125: 1121: 1099: 1080: 1076: 1059: 1055: 1042: 1015: 1012:Ball, Philip 1006: 973: 969: 956: 942: 901: 887: 877: 868: 836: 830: 820: 809:, retrieved 804: 794: 754: 750: 744: 728: 722: 710: 699:, retrieved 692:the original 682:(151): 503, 679: 675: 623: 617: 614:Hales, T. C. 608: 583: 579: 543: 521: 492:alkali metal 480:Gas hydrates 478:structure". 473: 454: 443: 427:Applications 417: 409: 377: 370:dodecahedron 366:pyritohedron 358: 311: 307:Denis Weaire 298: 296: 138: 136: 132: 105: 79: 76:Denis Weaire 67: 61: 626:(1): 1–22, 364:. One is a 325:Description 129:soap bubble 124:Lord Kelvin 34:Space group 1253:Categories 976:(1): 1–6, 701:2012-06-15 576:Weaire, D. 553:References 502:germanides 305:physicist 1264:Polyhedra 1034:136626668 787:137653272 779:0950-0839 498:silicides 476:clathrate 469:A15 phase 461:chemistry 420:honeycomb 413:tetrastix 404:Tetrastix 276:∘ 249:∘ 222:∘ 214:≈ 199:⁡ 174:∘ 1158:21291705 1150:17768869 998:25427974 939:(1960), 538:See also 495:hydrides 64:geometry 1181:Bibcode 1130:Bibcode 1122:Science 978:Bibcode 921:2410150 861:2945749 853:2836251 759:Bibcode 737:1688327 652:1797293 588:Bibcode 526:of the 51:n (223) 1156:  1148:  1112:and Na 1032:  1017:Nature 996:  919:  909:  859:  851:  811:4 July 785:  777:  735:  650:  467:, the 218:109.47 196:arccos 66:, the 1154:S2CID 1052:(PDF) 1030:S2CID 994:S2CID 966:(PDF) 857:S2CID 783:S2CID 695:(PDF) 672:(PDF) 484:water 1146:PMID 907:ISBN 813:2017 775:ISSN 500:and 145:, a 94:The 72:foam 1189:doi 1138:doi 1126:150 1118:136 1085:doi 1064:doi 1022:doi 986:doi 949:471 841:doi 767:doi 684:doi 638:hdl 628:doi 596:doi 459:in 272:120 170:120 62:In 1255:: 1209:, 1187:, 1175:, 1152:, 1144:, 1136:, 1124:, 1116:Si 1110:46 1108:Si 1081:12 1079:, 1073:. 1060:11 1058:, 1054:, 1028:, 1020:, 992:, 984:, 974:92 972:, 968:, 928:^ 917:MR 915:, 899:, 855:, 849:MR 847:, 837:20 835:, 829:, 803:, 781:, 773:, 765:, 755:89 753:, 733:MR 680:24 678:, 674:, 659:^ 648:MR 646:, 636:, 624:25 622:, 594:, 584:69 582:, 561:^ 534:. 471:. 245:90 56:] 47:Pm 1191:: 1183:: 1177:2 1140:: 1132:: 1114:x 1106:8 1094:. 1087:: 1066:: 1037:. 1024:: 1001:. 988:: 980:: 882:. 843:: 769:: 761:: 705:. 686:: 640:: 630:: 603:. 598:: 590:: 380:h 378:T 376:( 208:3 205:1 54:2 49:3

Index

Weaire–Phelan structure (polyhedral cells)
Space group
Fibrifold notation
Coxeter notation
Pm3n (223)
geometry
foam
Denis Weaire

bitruncated cubic honeycomb
truncated octahedron
hexagonal tiling
honeycomb conjecture
Marcus Terentius Varro
Thomas C. Hales
Lord Kelvin
soap bubble
bitruncated cubic honeycomb
convex uniform honeycomb
truncated octahedron
convex polyhedron
Plateau's laws
minimal surfaces
Trinity College Dublin
Denis Weaire
minimal surfaces
double bubble conjecture


convex polyhedra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.