Knowledge

Honeycomb conjecture

Source 📝

28: 17: 497: 718: 317: 114: 422: 194: 174: 154: 134: 85: 379: 229: 427: 344: 276: 249: 563:
The case when the problem is restricted to a square grid was solved in 1989 by Jaigyoung Choe who proved that the optimal figure is an irregular hexagon.
553:, who mentions in his work that there is reason to believe that the conjecture may have been present in the minds of mathematicians before Varro. 795: 759: 176:
has additional components that are unbounded or whose area is not one; allowing these additional components cannot shorten
608: 690:
Fejes, László (1943). "Über das kürzeste Kurvennetz, das eine Kugeloberfläche in flächengleiche konvexe Teile zerlegt".
560:
of the plane, in which every circle is tangent to six other circles, which fill just over 90% of the area of the plane.
790: 577: 136:) all of which are bounded and have unit area. Then, averaged over large disks in the plane, the average length of 499:
The value on the right hand side of the inequality is the limiting length per unit area of the hexagonal tiling.
55:
of any subdivision of the plane into regions of equal area. The conjecture was proven in 1999 by mathematician
156:
per unit area is at least as large as for the hexagon tiling. The theorem applies even if the complement of
572: 281: 785: 90: 557: 384: 542: 603: 545:
published a proof for a special case of the conjecture, in which each cell is required to be a
508: 179: 159: 139: 119: 70: 349: 199: 703: 639: 512: 322: 254: 8: 665: 643: 617: 234: 740: 647: 730: 627: 27: 764: 719:"On the existence and regularity of fundamental domains with least boundary area" 699: 635: 550: 381:
covered by bounded unit-area components. (If these are the only components, then
56: 116:, subdividing the plane into regions (connected components of the complement of 546: 44: 32: 21: 492:{\displaystyle \limsup _{r\to \infty }{\frac {L_{r}}{A_{r}}}\geq {\sqrt{12}}.} 779: 744: 735: 527: 631: 669: 622: 538: 535: 52: 48: 507:
The first record of the conjecture dates back to 36 BC, from
16: 760:"Mathematicians Complete Quest to Build 'Spherical Cubes'" 549:. The full conjecture was proven in 1999 by mathematician 531: 430: 387: 352: 325: 284: 257: 237: 202: 182: 162: 142: 122: 93: 73: 491: 416: 373: 338: 311: 270: 243: 223: 188: 168: 148: 128: 108: 79: 777: 432: 582:on the solution of the similar problem in 3D. 606:(January 2001). "The Honeycomb Conjecture". 734: 621: 96: 35:, with circles centered on each hexagon. 26: 15: 692:Math. Naturwiss. Anz. Ungar. Akad. Wiss 778: 757: 598: 596: 689: 663: 602: 716: 659: 657: 530:used a similar theorem to argue why 609:Discrete and Computational Geometry 593: 13: 556:It is also related to the densest 442: 312:{\displaystyle \Gamma \cap B(0,r)} 285: 183: 163: 143: 123: 87:be any system of smooth curves in 74: 14: 807: 796:Conjectures that have been proved 654: 723:Journal of Differential Geometry 424:.) Then the theorem states that 109:{\displaystyle \mathbb {R} ^{2}} 417:{\displaystyle A_{r}=\pi r^{2}} 751: 717:Choe, Jaigyoung (1989-01-01). 710: 683: 439: 368: 356: 306: 294: 218: 206: 1: 586: 516: 511:, but is often attributed to 251:centered at the origin, let 7: 575:, a counter-example to the 566: 278:denote the total length of 10: 812: 502: 231:denote the disk of radius 62: 346:denote the total area of 791:Euclidean plane geometry 526:). In the 17th century, 573:Weaire–Phelan structure 189:{\displaystyle \Gamma } 169:{\displaystyle \Gamma } 149:{\displaystyle \Gamma } 129:{\displaystyle \Gamma } 80:{\displaystyle \Gamma } 31:This honeycomb forms a 736:10.4310/jdg/1214443065 666:"Honeycomb Conjecture" 509:Marcus Terentius Varro 493: 418: 375: 374:{\displaystyle B(0,r)} 340: 313: 272: 245: 225: 224:{\displaystyle B(0,r)} 190: 170: 150: 130: 110: 81: 43:states that a regular 36: 24: 758:Cepelewicz, Jordana. 632:10.1007/s004540010071 494: 419: 376: 341: 339:{\displaystyle A_{r}} 314: 273: 271:{\displaystyle L_{r}} 246: 226: 191: 171: 151: 131: 111: 82: 30: 19: 513:Pappus of Alexandria 428: 385: 350: 323: 282: 255: 235: 200: 180: 160: 140: 120: 91: 71: 51:has the least total 41:honeycomb conjecture 664:Weisstein, Eric W. 489: 446: 414: 371: 336: 309: 268: 241: 221: 186: 166: 146: 126: 106: 77: 37: 25: 786:Discrete geometry 543:László Fejes Tóth 484: 469: 431: 244:{\displaystyle r} 803: 770: 769: 755: 749: 748: 738: 714: 708: 707: 687: 681: 680: 678: 676: 661: 652: 651: 625: 604:Hales, Thomas C. 600: 525: 521: 518: 498: 496: 495: 490: 485: 483: 475: 470: 468: 467: 458: 457: 448: 445: 423: 421: 420: 415: 413: 412: 397: 396: 380: 378: 377: 372: 345: 343: 342: 337: 335: 334: 318: 316: 315: 310: 277: 275: 274: 269: 267: 266: 250: 248: 247: 242: 230: 228: 227: 222: 196:. Formally, let 195: 193: 192: 187: 175: 173: 172: 167: 155: 153: 152: 147: 135: 133: 132: 127: 115: 113: 112: 107: 105: 104: 99: 86: 84: 83: 78: 811: 810: 806: 805: 804: 802: 801: 800: 776: 775: 774: 773: 765:Quanta Magazine 756: 752: 715: 711: 688: 684: 674: 672: 662: 655: 601: 594: 589: 569: 551:Thomas C. Hales 523: 519: 505: 479: 474: 463: 459: 453: 449: 447: 435: 429: 426: 425: 408: 404: 392: 388: 386: 383: 382: 351: 348: 347: 330: 326: 324: 321: 320: 283: 280: 279: 262: 258: 256: 253: 252: 236: 233: 232: 201: 198: 197: 181: 178: 177: 161: 158: 157: 141: 138: 137: 121: 118: 117: 100: 95: 94: 92: 89: 88: 72: 69: 68: 65: 57:Thomas C. Hales 12: 11: 5: 809: 799: 798: 793: 788: 772: 771: 750: 709: 682: 653: 591: 590: 588: 585: 584: 583: 568: 565: 558:circle packing 547:convex polygon 504: 501: 488: 482: 478: 473: 466: 462: 456: 452: 444: 441: 438: 434: 433:lim sup 411: 407: 403: 400: 395: 391: 370: 367: 364: 361: 358: 355: 333: 329: 308: 305: 302: 299: 296: 293: 290: 287: 265: 261: 240: 220: 217: 214: 211: 208: 205: 185: 165: 145: 125: 103: 98: 76: 64: 61: 45:hexagonal grid 33:circle packing 22:hexagonal grid 9: 6: 4: 3: 2: 808: 797: 794: 792: 789: 787: 784: 783: 781: 767: 766: 761: 754: 746: 742: 737: 732: 728: 724: 720: 713: 705: 701: 697: 693: 686: 671: 667: 660: 658: 649: 645: 641: 637: 633: 629: 624: 619: 615: 611: 610: 605: 599: 597: 592: 581: 579: 574: 571: 570: 564: 561: 559: 554: 552: 548: 544: 540: 537: 533: 529: 514: 510: 500: 486: 480: 476: 471: 464: 460: 454: 450: 436: 409: 405: 401: 398: 393: 389: 365: 362: 359: 353: 331: 327: 303: 300: 297: 291: 288: 263: 259: 238: 215: 212: 209: 203: 101: 60: 58: 54: 50: 46: 42: 34: 29: 23: 18: 763: 753: 726: 722: 712: 695: 691: 685: 673:. Retrieved 623:math/9906042 613: 607: 576: 562: 555: 506: 66: 40: 38: 698:: 349–354. 616:(1): 1–22. 541:. In 1943, 780:Categories 587:References 580:conjecture 539:honeycombs 528:Jan Brożek 524: 350 522: – c. 520: 290 319:, and let 20:A regular 745:0022-040X 670:MathWorld 536:hexagonal 472:≥ 443:∞ 440:→ 402:π 289:∩ 286:Γ 184:Γ 164:Γ 144:Γ 124:Γ 75:Γ 53:perimeter 49:honeycomb 648:14849112 567:See also 704:0024155 640:1797293 534:create 503:History 63:Theorem 743:  702:  675:27 Dec 646:  638:  578:Kelvin 729:(3). 644:S2CID 618:arXiv 741:ISSN 677:2010 532:bees 67:Let 39:The 731:doi 628:doi 47:or 782:: 762:. 739:. 727:29 725:. 721:. 700:MR 696:62 694:. 668:. 656:^ 642:. 636:MR 634:. 626:. 614:25 612:. 595:^ 517:c. 477:12 59:. 768:. 747:. 733:: 706:. 679:. 650:. 630:: 620:: 515:( 487:. 481:4 465:r 461:A 455:r 451:L 437:r 410:2 406:r 399:= 394:r 390:A 369:) 366:r 363:, 360:0 357:( 354:B 332:r 328:A 307:) 304:r 301:, 298:0 295:( 292:B 264:r 260:L 239:r 219:) 216:r 213:, 210:0 207:( 204:B 102:2 97:R

Index


hexagonal grid

circle packing
hexagonal grid
honeycomb
perimeter
Thomas C. Hales
Marcus Terentius Varro
Pappus of Alexandria
Jan Brożek
bees
hexagonal
honeycombs
László Fejes Tóth
convex polygon
Thomas C. Hales
circle packing
Weaire–Phelan structure
Kelvin


Hales, Thomas C.
Discrete and Computational Geometry
arXiv
math/9906042
doi
10.1007/s004540010071
MR
1797293

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.