Knowledge

Wallerian degeneration

Source 📝

545:, as NMNAT enzymes have been shown to prevent SARM1-mediated depletion of NAD. This relationship is further supported by the fact that mice lacking NMNAT2, which are normally not viable, are completely rescued by SARM1 deletion, placing NMNAT2 activity upstream of SARM1. Other pro-degeneration signaling pathways, such as the MAP kinase pathway, have been linked to SARM1 activation. MAPK signaling has been shown to promote the loss of NMNAT2, thereby promoting SARM1 activation, although SARM1 activation also triggers the MAP kinase cascade, indicating some form of feedback loop exists. One explanation for the protective effect of the Wld mutation is that the NMNAT1 region, which is normally localized to the soma, substitutes for the labile survival factor NMNAT2 to prevent SARM1 activation when the N-terminal Ube4 region of the WldS protein localizes it to the axon. The fact that the enhanced survival of Wld axons is due to the slower turnover of Wld compared to NMNAT2 also helps explain why SARM1 knockout confers longer protection, as SARM1 will be completely inactive regardless of inhibitor activity whereas Wld will eventually be degraded. Possibles implications of the SARM1 pathway in regard to human health may be found in animal models which exhibit 128:
the portion of the nerve fiber proximal to the lesion sends out sprouts towards those tubes and these sprouts are attracted by growth factors produced by Schwann cells in the tubes. If a sprout reaches the tube, it grows into it and advances about 1 mm per day, eventually reaching and reinnervating the target tissue. If the sprouts cannot reach the tube, for instance because the gap is too wide or scar tissue has formed, surgery can help to guide the sprouts into the tubes. Regeneration is efficient in the PNS, with near complete recovery in case of lesions that occur close to the distal nerve terminal. However recovery is hardly observed at all in the
32: 303:
attributed to the ErbB2 receptors and the ErbB3 receptors. This proliferation could further enhance the myelin cleaning rates and plays an essential role in regeneration of axons observed in PNS. Schwann cells emit growth factors that attract new axonal sprouts growing from the proximal stump after complete degeneration of the injured distal stump. This leads to possible reinnervation of the target cell or organ. However, the reinnervation is not necessarily perfect, as possible misleading occurs during reinnervation of the proximal axons to target cells.
57: 371:(NGF) is produced in very small amounts. However, upon injury, NGF mRNA expression increases by five to seven-fold within a period of 14 days. Nerve fibroblasts and Schwann cells play an important role in increased expression of NGF mRNA. Macrophages also stimulate Schwann cells and fibroblasts to produce NGF via macrophage-derived interleukin-1. Other neurotrophic molecules produced by Schwann cells and fibroblasts together include 283:
source of macrophage recruitment factors is serum. Delayed macrophage recruitment was observed in B-cell deficient mice lacking serum antibodies. These signaling molecules together cause an influx of macrophages, which peaks during the third week after injury. While Schwann cells mediate the initial stage of myelin debris clean up, macrophages come in to finish the job. Macrophages are facilitated by
112:(CNS). It occurs in the section of the axon distal to the site of injury and usually begins within 24–36 hours of a lesion. Prior to degeneration, the distal section of the axon tends to remain electrically excitable. After injury, the axonal skeleton disintegrates, and the axonal membrane breaks apart. Axonal degeneration is followed by degradation of the 177:(the part nearer the cell body) and distal ends within 30 minutes of injury. After separation, dystrophic bulb structures form at both terminals and the transected membranes are sealed. A brief latency phase occurs in the distal segment during which it remains electrically excitable and structurally intact. Degeneration follows with swelling of the 355:
almost absent in most vertebrate species. The primary cause for this could be the delay in clearing up myelin debris. Myelin debris, present in CNS or PNS, contains several inhibitory factors. The prolonged presence of myelin debris in CNS could possibly hinder the regeneration. An experiment conducted on
483:
mutated mice, macrophage infiltration was considerably delayed by up to six to eight days. However, once the axonal degradation has begun, degeneration takes its normal course, and, respective of the nervous system, degradation follows at the above-described rates. Possible effects of this late onset
446:
Although the protein created localizes within the nucleus and is barely detectable in axons, studies suggest that its protective effect is due to its presence in axonal and terminal compartments. The protection provided by the Wld protein is intrinsic to the neurons and not surrounding support cells,
2018:
Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (December 2001). "Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat
160:
nerves. He then observed the distal nerves from the site of injury, which were separated from their cell bodies in the brain stem. Waller described the disintegration of myelin, which he referred to as "medulla", into separate particles of various sizes. The degenerating axons formed droplets that
469:
synthesis. This in turn activates SIRT1-dependent process within the nucleus, causing changes in gene transcription. NAD by itself may provide added axonal protection by increasing the axon's energy resources. More recent work, however, raises doubt that either NMNAT1 or NAD can substitute for the
319:
were found for up to 22 months. Therefore, CNS rates of myelin sheath clearance are very slow and could possibly be the cause for hindrance in the regeneration capabilities of the CNS axons as no growth factors are available to attract the proximal axons. Another feature that results eventually is
318:
Experiments in Wallerian degeneration have shown that upon injury oligodendrocytes either undergo programmed cell death or enter a state of rest. Therefore, unlike Schwann cells, oligodendrocytes fail to clean up the myelin sheaths and their debris. In experiments conducted on rats, myelin sheaths
216:
proteases (caused by influx of calcium ion), suggesting that axonal degeneration is an active process and not a passive one as previously misunderstood. Thus the axon undergoes complete fragmentation. The rate of degradation is dependent on the type of injury and is also slower in the CNS than in
127:
Schwann cells respond to loss of axons by extrusion of their myelin sheaths, downregulation of myelin genes, dedifferentiation and proliferation. They finally align in tubes (Büngner bands) and express surface molecules that guide regenerating fibers. Within 4 days of the injury, the distal end of
399:
within the basal laminar tube. Axons have been observed to regenerate in close association to these cells. Schwann cells upregulate the production of cell surface adhesion molecule ninjurin further promoting growth. These lines of cell guide the axon regeneration in proper direction. The possible
282:
of axonal injury. The recruitment of macrophages helps improve the clearing rate of myelin debris. The resident macrophages present in the nerves release further chemokines and cytokines to attract further macrophages. The degenerating nerve also produce macrophage chemotactic molecules. Another
354:
Regeneration follows degeneration. Regeneration is rapid in PNS, allowing for rates of up to 1 millimeter a day of regrowth. Grafts may also be needed to allow for appropriate reinnervation. It is supported by Schwann cells through growth factors release. CNS regeneration is much slower, and is
302:
Murinson et al. (2005) observed that non-myelinated or myelinated Schwann cells in contact with an injured axon enter cell cycle thus leading to proliferation. Observed time duration for Schwann cell divisions were approximately 3 days after injury. Possible sources of proliferation signal are
236:
in the CNS. Myelin clearance is the next step in Wallerian degeneration following axonal degeneration. The cleaning up of myelin debris is different for PNS and CNS. PNS is much faster and efficient at clearing myelin debris in comparison to CNS, and Schwann cells are the primary cause of this
474:
gene. These authors demonstrated by both in vitro and in vivo methods that the protective effect of overexpression of NMNAT1 or the addition of NAD did not protect axons from degeneration. However, later studies showed that NMNAT1 is protective when combined with an axonal targeting peptide,
338:(MHC) class I and II during Wallerian degeneration. The rate of clearance is very slow among microglia in comparison to macrophages. Possible source for variations in clearance rates could include lack of opsonin activity around microglia, and the lack of increased permeability in the 395:. These factors together create a favorable environment for axonal growth and regeneration. Apart from growth factors, Schwann cells also provide structural guidance to further enhance regeneration. During their proliferation phase, Schwann cells begin to form a line of cells called 533:
having intrinsic NAD cleavage activity. The SARM1 protein has four domains, a mitochondrial localization signal, an auto-inhibitory N-terminus region consisting of armadillo/HEAT motifs, two sterile alpha motifs responsible for multimerization, and a C-terminus
460:
mutation slows down the macrophage infiltration, but recent studies suggest that the mutation protects axons rather than slowing down the macrophages. The process by which the axonal protection is achieved is poorly understood. However, studies suggest that the
39:
Fluorescent micrographs (100x) of Wallerian degeneration in cut and crushed peripheral nerves. Left column is proximal to the injury, right is distal. A and B: 37 hours post cut. C and D: 40 hours post crush. E and F: 42 hours post cut. G and H: 44 hours post
2433:
Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM, Ziegenfuss JS, Milde S, Hou YJ, Nathan C, Ding A, Brown RH, Conforti L, Coleman M, Tessier-Lavigne M, Züchner S, Freeman MR (July 2012).
2346:
Fujiki M, Zhang Z, Guth L, Steward O (July 1996). "Genetic influences on cellular reactions to spinal cord injury: activation of macrophages/microglia and astrocytes is delayed in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration".
237:
difference. Another key aspect is the change in permeability of the blood-tissue barrier in the two systems. In PNS, the permeability increases throughout the distal stump, but the barrier disruption in CNS is limited to just the site of injury.
266:
extracellular myelin and attract macrophages to myelin debris for further phagocytosis. However, the macrophages are not attracted to the region for the first few days; hence the Schwann cells take the major role in myelin cleaning until then.
185:. The process takes roughly 24 hours in the PNS, and longer in the CNS. The signaling pathways leading to axolemma degeneration are currently poorly understood. However, research has shown that this AAD process is calcium–independent. 503:
The Wallerian degeneration pathway has been further illuminated by the discovery that sterile alpha and TIR motif containing 1 (SARM1) protein plays a central role in the Wallerian degeneration pathway. The gene was first identified in a
418:
have delayed Wallerian degeneration, and, thus, allow for the study of the roles of various cell types and the underlying cellular and molecular processes. Current understanding of the process has been possible via experimentation on the
345:
These findings have suggested that the delay in Wallerian degeneration in CNS in comparison to PNS is caused not due to a delay in axonal degeneration, but rather is due to the difference in clearance rates of myelin in CNS and PNS.
1889:
Perry, V. H., Lunn, E. R., Brown, M. C., Cahusac, S. and Gordon, S. (1990), Evidence that the Rate of Wallerian Degeneration is Controlled by a Single Autosomal Dominant Gene. European Journal of Neuroscience, 2: 408-413.
478:
The provided axonal protection delays the onset of Wallerian degeneration. Schwann cell activation should therefore be delayed, as they would not detect axonal degradation signals from ErbB2 receptors. In experiments on
359:, animals that have fast CNS axon regeneration capabilities, found that Wallerian degeneration of an optic nerve injury took up to 10 to 14 days on average, further suggesting that slow clearance inhibits regeneration. 488:
mice, but this is likely a result of the environment being unfavorable for regeneration due to the continued existence of the undegenerated distal fiber, whereas normally debris is cleared, making way for new growth.
2975: 257:
mechanism of Schwann cells is yet to be fully understood. The 'sensing' is followed by decreased synthesis of myelin lipids and eventually stops within 48 hrs. The myelin sheaths separate from the axons at the
334:, and fail to transform into fully phagocytic cells. Those microglia that do transform, clear out the debris effectively. Differentiating phagocytic microglia can be accomplished by testing for expression of 455:
The mutation causes no harm to the mouse. The only known effect is that the Wallerian degeneration is delayed by up to three weeks on average after injury of a nerve. At first, it was suspected that the
330:
play a vital role in CNS Wallerian degeneration. However, their recruitment is slower in comparison to macrophage recruitment in PNS by approximately 3 days. Further, microglia might be activated but
311:
In comparison to Schwann cells, oligodendrocytes require axon signals to survive. In their developmental stages, oligodendrocytes that fail to make contact to axon and receive axon signals undergo
217:
the PNS. Another factor that affects degradation rate is the diameter of the axon: larger axons require a longer time for the cytoskeleton to degrade and thus take a longer time to degenerate.
81:'s cell body) degenerates. A related process of dying back or retrograde degeneration known as 'Wallerian-like degeneration' occurs in many neurodegenerative diseases, especially those where 2164:
Adalbert R, Nógrádi A, Szabó A, Coleman MP (October 2006). "The slow Wallerian degeneration gene in vivo protects motor axons but not their cell bodies after avulsion and neonatal axotomy".
1475:
Koshinaga M, Whittemore SR (April 1995). "The temporal and spatial activation of microglia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion".
475:
suggesting that the key to the protection provided by Wld was the combination of NMNAT1's activity and the axonal localization provided by the N-terminal domain of the chimeric protein.
800:"Experiments on the Section of the Glossopharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres" 553:
deletions in addition to Wld show decreased axonal damage following injury. Specific mutations in NMNAT2 have linked the Wallerian degeneration mechanism to two neurological diseases.
431:
mutation occurring in the mouse chromosome 4. The gene mutation is an 85-kb tandem triplication, occurring naturally. The mutated region contains two associated genes:
2121:
Glass JD, Brushart TM, George EB, Griffin JW (May 1993). "Prolonged survival of transected nerve fibres in C57BL/Ola mice is an intrinsic characteristic of the axon".
1343:
Liu HM, Yang LH, Yang YJ (July 1995). "Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration".
1847:
Perry VH, Brown MC, Tsao JW (1 October 1992). "The Effectiveness of the Gene Which Slows the Rate of Wallerian Degeneration in C57BL/Ola Mice Declines With Age".
262:
first and then rapidly deteriorate and shorten to form bead-like structures. Schwann cells continue to clear up the myelin debris by degrading their own myelin,
249:
are believed to be responsible for the rapid activation. They activate ErbB2 receptors in the Schwann cell microvilli, which results in the activation of the
2390:
Brown MC, Perry VH, Hunt SP, Lapper SR (March 1994). "Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration".
173:
influx signaling to promote resealing of severed parts, axonal injuries initially lead to acute axonal degeneration (AAD), which is rapid separation of the
3467: 3041: 960:
Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T (May 2005). "In vivo imaging of axonal degeneration and regeneration in the injured spinal cord".
568: 326:
Oligodendrocytes fail to recruit macrophages for debris removal. Macrophage entry in general into CNS site of injury is very slow. In contrast to PNS,
529:
levels in the distal section of the injured axon, which then undergoes degeneration. This collapse in NAD levels was later shown to be due to SARM1's
443:
is also part of the mutation. The protective effect of the Wld protein has been shown to be due to the NMNAT1 region's NAD synthesizing active site.
2256:
Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, Adalbert R, Silva A, Bridge K, Huang XP, Magni G, Glass JD, Coleman MP (January 2007).
245:
The response of Schwann cells to axonal injury is rapid. The time period of response is estimated to be prior to the onset of axonal degeneration.
510:
mutagenesis screen, and subsequently knockouts of its homologue in mice showed robust protection of transected axons comparable to that of Wld.
1619:
Turner JE, Glaze KA (March 1977). "The early stages of Wallerian degeneration in the severed optic nerve of the newt (Triturus viridescens)".
1512:"Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model" 538:
that possesses enzymatic activity. Activation of SARM1 is sufficient to collapse NAD levels and initiate the Wallerian degeneration pathway.
750: 376: 2360: 208:
occurs and is soon followed by degradation of the neurofilaments and other cytoskeleton components. The disintegration is dependent on
1967:
Araki T, Sasaki Y, Milbrandt J (August 2004). "Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration".
447:
and is only locally protective of the axon, indicating an intracellular pathway is responsible for mediating Wallerian degeneration.
628: 3034: 632: 3501: 1755:
Thomas PK, King RH (October 1974). "The degeneration of unmyelinated axons following nerve section: an ultrastructural study".
174: 3302: 1568: 423:
strain of mice. The mutation occurred first in mice in Harlan-Olac, a laboratory producing animals the United Kingdom. The
1247:"Complement depletion reduces macrophage infiltration and ctivation during Wallerian degeneration and axonal regeneration" 2072:
Beirowski B, Babetto E, Gilley J, Mazzola F, Conforti L, Janeckova L, Magni G, Ribchester RR, Coleman MP (January 2009).
3027: 2907:"Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1" 598: 1716:"Interleukin 1 increases stability and transcription of mRNA encoding nerve growth factor in cultured rat fibroblasts" 3204: 3199: 2805:
Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-Lavigne M (January 2015).
526: 518: 466: 372: 3402: 3082: 335: 250: 1296:"Degeneration of myelinated efferent fibers prompts mitosis in Remak Schwann cells of uninjured C-fiber afferents" 3437: 3153: 2546: 2856:"MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2" 1389:, Jacobson MD, Schmid R, Sendtner M, Raff MC (August 1993). "Does oligodendrocyte survival depend on axons?". 400:
source of error that could result from this is possible mismatching of the target cells as discussed earlier.
2297:
Babetto E, Beirowski B, Janeckova L, Brown R, Gilley J, Thomson D, Ribchester RR, Coleman MP (October 2010).
2258:"NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration" 535: 530: 86: 522: 3340: 3335: 608: 380: 259: 1664:"Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection" 1005:"Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury" 844:
Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, Lyon MF, Perry VH (August 1998).
603: 388: 384: 132:. One crucial difference is that in the CNS, including the spinal cord, myelin sheaths are produced by 228:
is a phospholipid membrane that wraps around axons to provide them with insulation. It is produced by
31: 3483: 3295: 484:
are weaker regenerative abilities in the mice. Studies indicate that regeneration may be impaired in
105: 3442: 56: 3513: 3387: 3013: 2990: 392: 3009: 3496: 3462: 3419: 3360: 3327: 3158: 593: 506: 342:. The decreased permeability could further hinder macrophage infiltration to the site of injury. 339: 97:
studies suggest that a failure to deliver sufficient quantities of the essential axonal protein
3518: 3392: 3319: 3242: 3194: 3138: 3113: 546: 428: 153: 145: 109: 90: 3452: 3447: 3409: 3077: 573: 201: 1800:"Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth" 3544: 3397: 3288: 3247: 3222: 2609: 2447: 2074:"Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo" 1976: 1916: 1597: 1133: 857: 1663: 8: 3414: 3377: 3237: 3143: 368: 204:
degrades and mitochondria swell up and eventually disintegrate. The depolymerization of
2613: 2451: 1980: 1920: 861: 661: 403:
Due to lack of such favorable promoting factors in CNS, regeneration is stunted in CNS.
3429: 3372: 3184: 2933: 2906: 2882: 2855: 2831: 2807:"Pathological axonal death through a MAPK cascade that triggers a local energy deficit" 2806: 2782: 2757: 2733: 2706: 2682: 2657: 2630: 2597: 2570: 2517: 2492: 2468: 2435: 2415: 2403: 2372: 2323: 2299:"Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo" 2298: 2233: 2208: 2189: 2146: 2098: 2073: 2054: 2000: 1872: 1860: 1829: 1780: 1691: 1644: 1584:
He Z, Koprivica V (21 July 2004). "The Nogo signaling pathway for regeneration block".
1541: 1457: 1414: 1368: 1320: 1295: 1271: 1262: 1246: 1222: 1197: 1082: 1057: 1029: 1020: 1004: 985: 942: 929: 920: 904: 821: 772: 745: 721: 694: 670: 645: 578: 1816: 1799: 1732: 1715: 1173: 1156: 161:
could be stained, thus allowing for studies of the course of individual nerve fibres.
3523: 3355: 3350: 3227: 3174: 2938: 2887: 2836: 2787: 2738: 2687: 2635: 2575: 2522: 2473: 2407: 2364: 2328: 2279: 2238: 2181: 2177: 2138: 2103: 2046: 1992: 1944: 1939: 1904: 1891: 1864: 1821: 1772: 1737: 1696: 1636: 1601: 1564: 1533: 1492: 1449: 1406: 1402: 1360: 1356: 1325: 1276: 1227: 1178: 1137: 1087: 1034: 977: 934: 885: 880: 845: 777: 726: 675: 588: 514: 288: 157: 45: 2854:
Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A (January 2017).
2542:"Resolving the topological enigma in Ca 2+ signaling by cyclic ADP-ribose and NAADP" 2419: 2193: 2150: 2004: 1876: 1833: 1784: 1545: 1461: 1418: 1372: 989: 946: 695:"Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons" 541:
The activity of SARM1 helps to explain the protective nature of the survival factor
3367: 3189: 3148: 3130: 3019: 2928: 2918: 2877: 2867: 2826: 2818: 2777: 2769: 2728: 2718: 2677: 2669: 2625: 2617: 2565: 2555: 2512: 2508: 2504: 2463: 2455: 2399: 2376: 2356: 2318: 2314: 2310: 2269: 2228: 2220: 2173: 2130: 2093: 2089: 2085: 2058: 2036: 2028: 1984: 1934: 1924: 1905:"A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4" 1856: 1811: 1764: 1727: 1686: 1678: 1648: 1628: 1593: 1523: 1484: 1441: 1398: 1352: 1315: 1311: 1307: 1266: 1258: 1217: 1213: 1209: 1168: 1129: 1077: 1069: 1024: 1016: 969: 924: 916: 875: 865: 811: 767: 759: 716: 706: 665: 657: 233: 197: 82: 3233: 2995: 2773: 2673: 711: 182: 133: 94: 2541: 2436:"dSarm/Sarm1 is required for activation of an injury-induced axon death pathway" 3265: 3051: 2822: 2656:
Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (March 2017).
1909:
Proceedings of the National Academy of Sciences of the United States of America
1432:
Ludwin SK (31 May 1990). "Oligodendrocyte survival in Wallerian degeneration".
850:
Proceedings of the National Academy of Sciences of the United States of America
2984: 2560: 846:"An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse" 763: 3538: 299:. However, only complement has shown to help in myelin debris phagocytosis. 229: 121: 2621: 2459: 1988: 1929: 1488: 870: 323:
formation. This further hinders chances for regeneration and reinnervation.
287:, which label debris for removal. The 3 major groups found in serum include 3491: 3311: 2942: 2923: 2891: 2840: 2791: 2742: 2691: 2639: 2579: 2526: 2477: 2361:
10.1002/(SICI)1096-9861(19960729)371:3<469::AID-CNE9>3.0.CO;2-0
2332: 2283: 2274: 2257: 2242: 2185: 2107: 2050: 1996: 1868: 1682: 1605: 1528: 1511: 1410: 1329: 1231: 1141: 1091: 981: 938: 905:"Nerve injury, axonal degeneration and neural regeneration: basic insights" 816: 799: 781: 730: 679: 583: 263: 193: 2598:"SARM1 activation triggers axon degeneration locally via NAD⁺ destruction" 2411: 2368: 2224: 2209:"A local mechanism mediates NAD-dependent protection of axon degeneration" 2142: 1948: 1825: 1776: 1741: 1700: 1632: 1537: 1496: 1453: 1364: 1280: 1182: 1073: 1038: 1003:
Eddleman CS, Ballinger ML, Smyers ME, Fishman HM, Bittner GD (June 1998).
889: 192:
occurs after axolemma degradation. Early changes include accumulation of
3472: 3070: 2493:"Sarm1-mediated axon degeneration requires both SAM and TIR interactions" 1640: 563: 411: 331: 246: 205: 129: 70: 2967: 2872: 2723: 2491:
Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J (August 2013).
1903:
Lyon MF, Ogunkolade BW, Brown MC, Atherton DJ, Perry VH (October 1993).
746:"NMNAT: It's an NAD + Synthase… It's a Chaperone… It's a Neuroprotector" 3457: 3382: 2134: 1768: 1445: 1386: 1117: 1058:"Axon degeneration: molecular mechanisms of a self-destruction pathway" 1053: 465:
mutation leads to increased NMNAT1 activity, which leads to increased
440: 320: 296: 292: 117: 2705:
Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J (October 2016).
2207:
Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z (August 2005).
1245:
Dailey AT, Vellino AM, Benthem L, Silver J, Kliot M (September 1998).
825: 270:
Schwann cells have been observed to recruit macrophages by release of
3179: 2596:
Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (April 2015).
327: 312: 275: 209: 189: 50: 2658:"+ Cleavage Activity that Promotes Pathological Axonal Degeneration" 2041: 1198:"Microanatomy of axon/glial signaling during Wallerian degeneration" 1120:(1 July 2007). "Why is Wallerian degeneration in the CNS so slow?". 959: 1157:"Multiple forms of Ca-activated protease from rat brain and muscle" 973: 284: 271: 178: 2758:"S, Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy" 2032: 362: 3065: 213: 170: 843: 3108: 3092: 2979: 1661: 1196:
Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA (March 2005).
542: 432: 225: 113: 98: 78: 3280: 2296: 1714:
Lindholm D, Heumann R, Hengerer B, Thoenen H (November 1988).
1713: 1002: 104:
Wallerian degeneration occurs after axonal injury in both the
77:
distal to the injury (which in most cases is farther from the
3087: 2071: 498: 436: 188:
Granular disintegration of the axonal cytoskeleton and inner
2490: 1385: 2163: 1902: 1662:
Heumann R, Korsching S, Bandtlow C, Thoenen H (June 1987).
356: 149: 74: 2704: 2595: 2120: 1294:
Murinson BB, Archer DR, Li Y, Griffin JW (February 2005).
1244: 2255: 804:
Philosophical Transactions of the Royal Society of London
69:
is an active process of degeneration that results when a
2853: 525:. SARM1 activation locally triggers a rapid collapse of 2755: 2655: 1293: 253:(MAPK). Although MAPK activity is observed, the injury 2345: 1195: 2651: 2649: 2432: 2017: 3049: 2957: 2756:
Gilley J, Ribchester RR, Coleman MP (October 2017).
2389: 1966: 1345:
Journal of Neuropathology and Experimental Neurology
3468:
Spinal cord injury without radiographic abnormality
1474: 1154: 124:, serve to clear the debris from the degeneration. 2646: 1892:https://doi.org/10.1111/j.1460-9568.1990.tb00433.x 569:Connective tissue in the peripheral nervous system 2804: 1051: 433:nicotinamide mononucleotide adenylyltransferase 1 3536: 743: 513:SARM1 catalyzes the synthesis and hydrolysis of 2206: 1962: 1960: 1958: 1111: 1109: 1107: 1105: 1103: 1101: 450: 363:Schwann cells and endoneural fibroblasts in PNS 1846: 1797: 643: 406: 3296: 3035: 2591: 2589: 2200: 1561:Neuroscience: Fundamentals for Rehabilitation 1509: 839: 837: 835: 751:Current Opinion in Genetics & Development 692: 2533: 2249: 2011: 1955: 1840: 1577: 1379: 1287: 1189: 1115: 1098: 181:, and eventually the formation of bead-like 2339: 1791: 1748: 1707: 1655: 1618: 1583: 1558: 1503: 1468: 1425: 1342: 1336: 1238: 1148: 953: 902: 737: 686: 646:"Wallerian degeneration, wld(s), and nmnat" 637: 377:glial cell line-derived neurotrophic factor 3303: 3289: 3042: 3028: 2586: 1754: 1612: 1155:Zimmerman UP, Schlaepfer WW (March 1984). 832: 55: 3012:at the U.S. National Library of Medicine 2932: 2922: 2904: 2881: 2871: 2830: 2781: 2732: 2722: 2681: 2629: 2569: 2559: 2516: 2467: 2322: 2273: 2232: 2097: 2040: 1938: 1928: 1815: 1731: 1690: 1527: 1319: 1270: 1221: 1172: 1081: 1028: 928: 879: 869: 815: 771: 744:Brazill JM, Li C, Zhu Y, Zhai RG (2017). 720: 710: 669: 169:Although most injury responses include a 16:Biological process of axonal degeneration 2539: 633:University of California, San Francisco 3537: 1598:10.1146/annurev.neuro.27.070203.144340 1431: 1134:10.1146/annurev.neuro.30.051606.094354 797: 644:Coleman MP, Freeman MR (1 June 2010). 164: 144:Wallerian degeneration is named after 73:is cut or crushed and the part of the 3284: 3023: 1510:George R, Griffin JW (October 1994). 793: 791: 693:Gilley J, Coleman MP (January 2010). 439:(UBE4B). A linker region encoding 18 2392:The European Journal of Neuroscience 2349:The Journal of Comparative Neurology 2166:The European Journal of Neuroscience 1849:The European Journal of Neuroscience 1798:Araki T, Milbrandt J (August 1996). 1720:The Journal of Biological Chemistry 1161:The Journal of Biological Chemistry 662:10.1146/annurev-neuro-060909-153248 306: 240: 220: 13: 2404:10.1111/j.1460-9568.1994.tb00285.x 1861:10.1111/j.1460-9568.1992.tb00126.x 1263:10.1523/JNEUROSCI.18-17-06713.1998 1021:10.1523/JNEUROSCI.18-11-04029.1998 921:10.1111/j.1750-3639.1999.tb00229.x 788: 599:Primary and secondary brain injury 120:. The macrophages, accompanied by 14: 3556: 2953: 2905:Henninger N, et al. (2016). 903:Stoll G, Müller HW (April 1999). 629:Trauma and Wallerian Degeneration 373:brain-derived neurotrophic factor 3403:Chronic traumatic encephalopathy 3083:Lateralization of brain function 2178:10.1111/j.1460-9568.2006.05103.x 1357:10.1097/00005072-199507000-00002 336:major histocompatibility complex 251:mitogen-activated protein kinase 30: 3438:Anterior spinal artery syndrome 3310: 3154:Somatosensory evoked potentials 2898: 2847: 2798: 2749: 2698: 2547:Journal of Biological Chemistry 2484: 2426: 2383: 2290: 2157: 2114: 2065: 1896: 1883: 1552: 1045: 349: 2509:10.1523/JNEUROSCI.1197-13.2013 2315:10.1523/JNEUROSCI.1189-10.2010 2262:Cell Death and Differentiation 2090:10.1523/JNEUROSCI.3814-08.2009 1312:10.1523/JNEUROSCI.1372-04.2005 1214:10.1523/JNEUROSCI.3766-04.2005 996: 896: 622: 414:belonging to the strain C57BL/ 1: 1817:10.1016/S0896-6273(00)80166-X 1733:10.1016/S0021-9258(18)37599-9 1586:Annual Review of Neuroscience 1174:10.1016/S0021-9258(17)43282-0 1122:Annual Review of Neuroscience 650:Annual Review of Neuroscience 615: 87:amyotrophic lateral sclerosis 2774:10.1016/j.celrep.2017.09.027 2674:10.1016/j.neuron.2017.02.022 1403:10.1016/0960-9822(93)90039-Q 712:10.1371/journal.pbio.1000300 7: 3341:Intraventricular hemorrhage 3336:Intraparenchymal hemorrhage 2497:The Journal of Neuroscience 2303:The Journal of Neuroscience 2213:The Journal of Cell Biology 2078:The Journal of Neuroscience 1671:The Journal of Cell Biology 1300:The Journal of Neuroscience 1251:The Journal of Neuroscience 1202:The Journal of Neuroscience 1062:The Journal of Cell Biology 1009:The Journal of Neuroscience 798:Waller A (1 January 1850). 609:Spinal cord injury research 556: 536:Toll/Interleukin-1 receptor 451:Effects of the Wld mutation 407:Wallerian degeneration slow 381:ciliary neurotrophic factor 260:Schmidt-Lanterman incisures 152:in 1850, by severing their 101:is a key initiating event. 10: 3561: 2823:10.1016/j.cell.2014.11.053 1563:(3rd ed.). Saunders. 496: 389:insulin-like growth factor 385:leukemia inhibitory factor 139: 136:and not by Schwann cells. 3514:Injury of accessory nerve 3482: 3428: 3318: 3258: 3215: 3167: 3149:Auditory evoked potential 3129: 3122: 3101: 3058: 2961: 2561:10.1074/jbc.REV119.009635 764:10.1016/j.gde.2017.03.014 437:ubiquitination factor e4b 148:. Waller experimented on 106:peripheral nervous system 44: 38: 29: 24: 3388:Post-concussion syndrome 3014:Medical Subject Headings 2540:Lee HC, Zhao YJ (2019). 2123:Journal of Neurocytology 1757:Journal of Neurocytology 549:, as mice which contain 492: 393:fibroblast growth factor 200:at the site of injury. 3497:Peripheral nerve injury 3463:Posterior cord syndrome 3420:Penetrating head injury 3361:Subarachnoid hemorrhage 3328:Intracranial hemorrhage 3159:Visual evoked potential 2622:10.1126/science.1258366 2460:10.1126/science.1223899 1989:10.1126/science.1098014 1930:10.1073/pnas.90.20.9717 1489:10.1089/neu.1995.12.209 871:10.1073/pnas.95.17.9985 604:Seddon's classification 594:Peripheral nerve injury 507:Drosophila melanogaster 3519:Brachial plexus injury 3509:Wallerian degeneration 3443:Brown-Séquard syndrome 3393:Second-impact syndrome 3320:Traumatic brain injury 3243:Long-term potentiation 3195:Postsynaptic potential 3139:Bereitschaftspotential 3010:Wallerian+Degeneration 2275:10.1038/sj.cdd.4401944 1683:10.1083/jcb.104.6.1623 1559:Lundy-Ekman L (2007). 1529:10.1006/exnr.1994.1164 1516:Experimental Neurology 1477:Journal of Neurotrauma 817:10.1098/rstl.1850.0021 547:traumatic brain injury 146:Augustus Volney Waller 110:central nervous system 67:Wallerian degeneration 3453:Central cord syndrome 3448:Cauda equina syndrome 3410:Diffuse axonal injury 3078:Intracranial pressure 2225:10.1083/jcb.200504028 1633:10.1002/ar.1091870303 1621:The Anatomical Record 1434:Acta Neuropathologica 1074:10.1083/jcb.201108111 1052:Wang JT, Medress ZA, 574:Diffuse axonal injury 202:Endoplasmic reticulum 3398:Dementia pugilistica 3248:Long-term depression 3223:Axoplasmic transport 2924:10.1093/brain/aww001 116:and infiltration by 85:is impaired such as 3415:Abusive head trauma 3378:Cerebral laceration 3238:Synaptic plasticity 3230:/Nerve regeneration 2873:10.7554/eLife.22540 2724:10.7554/eLife.19749 2668:(6): 1334–1343.e5. 2614:2015Sci...348..453G 2554:(52): 19831–19843. 2452:2012Sci...337..481O 2021:Nature Neuroscience 1981:2004Sci...305.1010A 1921:1993PNAS...90.9717L 862:1998PNAS...95.9985C 369:nerve growth factor 367:In healthy nerves, 340:blood–brain barrier 232:in the PNS, and by 165:Axonal degeneration 91:Alzheimer's disease 3430:Spinal cord injury 3373:Cerebral contusion 3185:Membrane potential 3050:Physiology of the 2135:10.1007/BF01195555 1769:10.1007/BF01098736 1446:10.1007/BF00308922 579:Digestion chambers 429:autosomal-dominant 3532: 3531: 3524:Traumatic neuroma 3484:Peripheral nerves 3356:Epidural hematoma 3351:Subdural hematoma 3278: 3277: 3274: 3273: 3228:Neuroregeneration 3175:Neurotransmission 3005: 3004: 2309:(40): 13291–304. 1570:978-1-4160-2578-8 589:Neuroregeneration 515:cyclic ADP-ribose 198:paranodal regions 64: 63: 19:Medical condition 3552: 3368:Brain herniation 3305: 3298: 3291: 3282: 3281: 3190:Action potential 3168:Other short term 3131:Evoked potential 3127: 3126: 3044: 3037: 3030: 3021: 3020: 2959: 2958: 2947: 2946: 2936: 2926: 2917:(4): 1094–1105. 2902: 2896: 2895: 2885: 2875: 2851: 2845: 2844: 2834: 2802: 2796: 2795: 2785: 2753: 2747: 2746: 2736: 2726: 2702: 2696: 2695: 2685: 2653: 2644: 2643: 2633: 2593: 2584: 2583: 2573: 2563: 2537: 2531: 2530: 2520: 2503:(33): 13569–80. 2488: 2482: 2481: 2471: 2430: 2424: 2423: 2387: 2381: 2380: 2343: 2337: 2336: 2326: 2294: 2288: 2287: 2277: 2253: 2247: 2246: 2236: 2204: 2198: 2197: 2161: 2155: 2154: 2118: 2112: 2111: 2101: 2069: 2063: 2062: 2044: 2027:(12): 1199–206. 2019:chimeric gene". 2015: 2009: 2008: 1975:(5686): 1010–3. 1964: 1953: 1952: 1942: 1932: 1900: 1894: 1887: 1881: 1880: 1844: 1838: 1837: 1819: 1795: 1789: 1788: 1752: 1746: 1745: 1735: 1726:(31): 16348–51. 1711: 1705: 1704: 1694: 1668: 1659: 1653: 1652: 1616: 1610: 1609: 1581: 1575: 1574: 1556: 1550: 1549: 1531: 1507: 1501: 1500: 1472: 1466: 1465: 1429: 1423: 1422: 1383: 1377: 1376: 1340: 1334: 1333: 1323: 1291: 1285: 1284: 1274: 1242: 1236: 1235: 1225: 1193: 1187: 1186: 1176: 1152: 1146: 1145: 1113: 1096: 1095: 1085: 1056:(January 2012). 1049: 1043: 1042: 1032: 1000: 994: 993: 957: 951: 950: 932: 900: 894: 893: 883: 873: 841: 830: 829: 819: 795: 786: 785: 775: 741: 735: 734: 724: 714: 690: 684: 683: 673: 641: 635: 626: 397:Bands of Bungner 307:Clearance in CNS 241:Clearance in PNS 234:oligodendrocytes 221:Myelin clearance 183:axonal spheroids 154:glossopharyngeal 134:oligodendrocytes 83:axonal transport 60: 59: 34: 22: 21: 3560: 3559: 3555: 3554: 3553: 3551: 3550: 3549: 3535: 3534: 3533: 3528: 3478: 3424: 3314: 3309: 3279: 3270: 3254: 3234:Neuroplasticity 3211: 3163: 3118: 3097: 3054: 3048: 3006: 3001: 3000: 2970: 2956: 2951: 2950: 2903: 2899: 2852: 2848: 2817:(1–2): 161–76. 2803: 2799: 2754: 2750: 2703: 2699: 2654: 2647: 2608:(6233): 453–7. 2594: 2587: 2538: 2534: 2489: 2485: 2446:(6093): 481–4. 2431: 2427: 2388: 2384: 2344: 2340: 2295: 2291: 2254: 2250: 2205: 2201: 2162: 2158: 2119: 2115: 2070: 2066: 2016: 2012: 1965: 1956: 1915:(20): 9717–20. 1901: 1897: 1888: 1884: 1845: 1841: 1796: 1792: 1753: 1749: 1712: 1708: 1666: 1660: 1656: 1617: 1613: 1582: 1578: 1571: 1557: 1553: 1508: 1504: 1473: 1469: 1430: 1426: 1391:Current Biology 1384: 1380: 1341: 1337: 1292: 1288: 1257:(17): 6713–22. 1243: 1239: 1208:(13): 3478–87. 1194: 1190: 1153: 1149: 1114: 1099: 1050: 1046: 1015:(11): 4029–41. 1001: 997: 962:Nature Medicine 958: 954: 909:Brain Pathology 901: 897: 856:(17): 9985–90. 842: 833: 796: 789: 742: 738: 705:(1): e1000300. 691: 687: 642: 638: 627: 623: 618: 613: 559: 501: 495: 453: 427:mutation is an 409: 365: 352: 309: 243: 223: 167: 142: 95:Primary culture 54: 20: 17: 12: 11: 5: 3558: 3548: 3547: 3530: 3529: 3527: 3526: 3521: 3516: 3511: 3506: 3505: 3504: 3502:classification 3499: 3488: 3486: 3480: 3479: 3477: 3476: 3475:(Quadriplegia) 3470: 3465: 3460: 3455: 3450: 3445: 3440: 3434: 3432: 3426: 3425: 3423: 3422: 3417: 3412: 3407: 3406: 3405: 3400: 3395: 3390: 3380: 3375: 3370: 3365: 3364: 3363: 3358: 3353: 3345: 3344: 3343: 3338: 3330: 3324: 3322: 3316: 3315: 3308: 3307: 3300: 3293: 3285: 3276: 3275: 3272: 3271: 3269: 3268: 3266:Myelinogenesis 3262: 3260: 3256: 3255: 3253: 3252: 3251: 3250: 3245: 3231: 3225: 3219: 3217: 3213: 3212: 3210: 3209: 3208: 3207: 3202: 3192: 3187: 3182: 3177: 3171: 3169: 3165: 3164: 3162: 3161: 3156: 3151: 3146: 3141: 3135: 3133: 3124: 3120: 3119: 3117: 3116: 3111: 3105: 3103: 3099: 3098: 3096: 3095: 3090: 3085: 3080: 3075: 3074: 3073: 3062: 3060: 3056: 3055: 3052:nervous system 3047: 3046: 3039: 3032: 3024: 3018: 3017: 3003: 3002: 2999: 2998: 2987: 2971: 2966: 2965: 2963: 2962:Classification 2955: 2954:External links 2952: 2949: 2948: 2897: 2846: 2797: 2748: 2697: 2645: 2585: 2532: 2483: 2425: 2382: 2338: 2289: 2248: 2199: 2156: 2113: 2064: 2010: 1954: 1895: 1882: 1855:(10): 1000–2. 1839: 1790: 1763:(4): 497–512. 1747: 1706: 1677:(6): 1623–31. 1654: 1627:(3): 291–310. 1611: 1576: 1569: 1551: 1502: 1467: 1424: 1378: 1335: 1306:(5): 1179–87. 1286: 1237: 1188: 1147: 1097: 1044: 995: 974:10.1038/nm1229 952: 895: 831: 787: 736: 685: 636: 620: 619: 617: 614: 612: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 560: 558: 555: 497:Main article: 494: 491: 452: 449: 408: 405: 364: 361: 351: 348: 308: 305: 242: 239: 222: 219: 166: 163: 141: 138: 62: 61: 48: 42: 41: 36: 35: 27: 26: 18: 15: 9: 6: 4: 3: 2: 3557: 3546: 3543: 3542: 3540: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3503: 3500: 3498: 3495: 3494: 3493: 3490: 3489: 3487: 3485: 3481: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3435: 3433: 3431: 3427: 3421: 3418: 3416: 3413: 3411: 3408: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3386: 3385: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3362: 3359: 3357: 3354: 3352: 3349: 3348: 3346: 3342: 3339: 3337: 3334: 3333: 3331: 3329: 3326: 3325: 3323: 3321: 3317: 3313: 3306: 3301: 3299: 3294: 3292: 3287: 3286: 3283: 3267: 3264: 3263: 3261: 3257: 3249: 3246: 3244: 3241: 3240: 3239: 3235: 3232: 3229: 3226: 3224: 3221: 3220: 3218: 3214: 3206: 3203: 3201: 3198: 3197: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3172: 3170: 3166: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3136: 3134: 3132: 3128: 3125: 3121: 3115: 3112: 3110: 3107: 3106: 3104: 3102:Primarily PNS 3100: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3072: 3069: 3068: 3067: 3064: 3063: 3061: 3059:Primarily CNS 3057: 3053: 3045: 3040: 3038: 3033: 3031: 3026: 3025: 3022: 3015: 3011: 3008: 3007: 2997: 2993: 2992: 2988: 2986: 2982: 2981: 2977: 2973: 2972: 2969: 2964: 2960: 2944: 2940: 2935: 2930: 2925: 2920: 2916: 2912: 2908: 2901: 2893: 2889: 2884: 2879: 2874: 2869: 2865: 2861: 2857: 2850: 2842: 2838: 2833: 2828: 2824: 2820: 2816: 2812: 2808: 2801: 2793: 2789: 2784: 2779: 2775: 2771: 2767: 2763: 2759: 2752: 2744: 2740: 2735: 2730: 2725: 2720: 2716: 2712: 2708: 2707:"+ depletion" 2701: 2693: 2689: 2684: 2679: 2675: 2671: 2667: 2663: 2659: 2652: 2650: 2641: 2637: 2632: 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2599: 2592: 2590: 2581: 2577: 2572: 2567: 2562: 2557: 2553: 2549: 2548: 2543: 2536: 2528: 2524: 2519: 2514: 2510: 2506: 2502: 2498: 2494: 2487: 2479: 2475: 2470: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2429: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2386: 2378: 2374: 2370: 2366: 2362: 2358: 2355:(3): 469–84. 2354: 2350: 2342: 2334: 2330: 2325: 2320: 2316: 2312: 2308: 2304: 2300: 2293: 2285: 2281: 2276: 2271: 2268:(1): 116–27. 2267: 2263: 2259: 2252: 2244: 2240: 2235: 2230: 2226: 2222: 2219:(3): 349–55. 2218: 2214: 2210: 2203: 2195: 2191: 2187: 2183: 2179: 2175: 2172:(8): 2163–8. 2171: 2167: 2160: 2152: 2148: 2144: 2140: 2136: 2132: 2129:(5): 311–21. 2128: 2124: 2117: 2109: 2105: 2100: 2095: 2091: 2087: 2084:(3): 653–68. 2083: 2079: 2075: 2068: 2060: 2056: 2052: 2048: 2043: 2038: 2034: 2033:10.1038/nn770 2030: 2026: 2022: 2014: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1963: 1961: 1959: 1950: 1946: 1941: 1936: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1899: 1893: 1886: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1843: 1835: 1831: 1827: 1823: 1818: 1813: 1810:(2): 353–61. 1809: 1805: 1801: 1794: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1751: 1743: 1739: 1734: 1729: 1725: 1721: 1717: 1710: 1702: 1698: 1693: 1688: 1684: 1680: 1676: 1672: 1665: 1658: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1615: 1607: 1603: 1599: 1595: 1592:(1): 341–68. 1591: 1587: 1580: 1572: 1566: 1562: 1555: 1547: 1543: 1539: 1535: 1530: 1525: 1522:(2): 225–36. 1521: 1517: 1513: 1506: 1498: 1494: 1490: 1486: 1483:(2): 209–22. 1482: 1478: 1471: 1463: 1459: 1455: 1451: 1447: 1443: 1440:(2): 184–91. 1439: 1435: 1428: 1420: 1416: 1412: 1408: 1404: 1400: 1397:(8): 489–97. 1396: 1392: 1388: 1382: 1374: 1370: 1366: 1362: 1358: 1354: 1351:(4): 487–96. 1350: 1346: 1339: 1331: 1327: 1322: 1317: 1313: 1309: 1305: 1301: 1297: 1290: 1282: 1278: 1273: 1268: 1264: 1260: 1256: 1252: 1248: 1241: 1233: 1229: 1224: 1219: 1215: 1211: 1207: 1203: 1199: 1192: 1184: 1180: 1175: 1170: 1167:(5): 3210–8. 1166: 1162: 1158: 1151: 1143: 1139: 1135: 1131: 1128:(1): 153–79. 1127: 1123: 1119: 1112: 1110: 1108: 1106: 1104: 1102: 1093: 1089: 1084: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1048: 1040: 1036: 1031: 1026: 1022: 1018: 1014: 1010: 1006: 999: 991: 987: 983: 979: 975: 971: 967: 963: 956: 948: 944: 940: 936: 931: 926: 922: 918: 915:(2): 313–25. 914: 910: 906: 899: 891: 887: 882: 877: 872: 867: 863: 859: 855: 851: 847: 840: 838: 836: 827: 823: 818: 813: 809: 805: 801: 794: 792: 783: 779: 774: 769: 765: 761: 757: 753: 752: 747: 740: 732: 728: 723: 718: 713: 708: 704: 700: 696: 689: 681: 677: 672: 667: 663: 659: 656:(1): 245–67. 655: 651: 647: 640: 634: 630: 625: 621: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 561: 554: 552: 548: 544: 539: 537: 532: 528: 524: 520: 517:(cADPR) from 516: 511: 509: 508: 500: 490: 487: 482: 476: 473: 468: 464: 459: 448: 444: 442: 438: 435:(NMNAT1) and 434: 430: 426: 422: 417: 413: 404: 401: 398: 394: 390: 386: 382: 378: 374: 370: 360: 358: 347: 343: 341: 337: 333: 329: 324: 322: 316: 314: 304: 300: 298: 294: 290: 286: 281: 277: 273: 268: 265: 261: 256: 252: 248: 238: 235: 231: 230:Schwann cells 227: 218: 215: 211: 207: 203: 199: 195: 191: 186: 184: 180: 176: 172: 162: 159: 155: 151: 147: 137: 135: 131: 125: 123: 122:Schwann cells 119: 115: 114:myelin sheath 111: 107: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 58: 52: 49: 47: 43: 37: 33: 28: 23: 3508: 3492:Nerve injury 3347:Extra-axial 3332:Intra-axial 2989: 2974: 2914: 2910: 2900: 2863: 2859: 2849: 2814: 2810: 2800: 2768:(1): 10–16. 2765: 2762:Cell Reports 2761: 2751: 2714: 2710: 2700: 2665: 2661: 2605: 2601: 2551: 2545: 2535: 2500: 2496: 2486: 2443: 2439: 2428: 2398:(3): 420–8. 2395: 2391: 2385: 2352: 2348: 2341: 2306: 2302: 2292: 2265: 2261: 2251: 2216: 2212: 2202: 2169: 2165: 2159: 2126: 2122: 2116: 2081: 2077: 2067: 2024: 2020: 2013: 1972: 1968: 1912: 1908: 1898: 1885: 1852: 1848: 1842: 1807: 1803: 1793: 1760: 1756: 1750: 1723: 1719: 1709: 1674: 1670: 1657: 1624: 1620: 1614: 1589: 1585: 1579: 1560: 1554: 1519: 1515: 1505: 1480: 1476: 1470: 1437: 1433: 1427: 1394: 1390: 1381: 1348: 1344: 1338: 1303: 1299: 1289: 1254: 1250: 1240: 1205: 1201: 1191: 1164: 1160: 1150: 1125: 1121: 1065: 1061: 1047: 1012: 1008: 998: 968:(5): 572–7. 965: 961: 955: 912: 908: 898: 853: 849: 807: 803: 755: 749: 739: 702: 699:PLOS Biology 698: 688: 653: 649: 639: 624: 584:Nerve injury 550: 540: 512: 505: 502: 485: 480: 477: 471: 470:full length 462: 457: 454: 445: 424: 420: 415: 410: 402: 396: 366: 353: 350:Regeneration 344: 325: 317: 310: 301: 279: 269: 254: 244: 224: 206:microtubules 194:mitochondria 187: 168: 143: 126: 103: 66: 65: 25:Nerve injury 3545:Neurotrauma 3473:Tetraplegia 3312:Neurotrauma 3071:Wakefulness 1116:Vargas ME, 1068:(1): 7–18. 810:: 423–429. 758:: 156–162. 564:Axonotmesis 441:amino acids 332:hypertrophy 264:phagocytose 247:Neuregulins 158:hypoglossal 130:spinal cord 118:macrophages 71:nerve fiber 3458:Paraplegia 3383:Concussion 3205:Inhibitory 3200:Excitatory 616:References 531:TIR domain 523:ADP-ribose 321:glial scar 297:antibodies 293:pentraxins 289:complement 276:chemokines 190:organelles 108:(PNS) and 89:(ALS) and 3216:Long term 3180:Chronaxie 3114:Sensation 1387:Barres BA 1118:Barres BA 1054:Barres BA 328:microglia 313:apoptosis 272:cytokines 210:ubiquitin 51:Neurology 46:Specialty 3539:Category 2943:26912636 2892:28095293 2841:25594179 2792:28978465 2743:27735788 2692:28334607 2640:25908823 2580:31672920 2527:23946415 2478:22678360 2420:37501852 2333:20926655 2284:16645633 2243:16043516 2194:25359698 2186:17074042 2151:45871975 2108:19158292 2051:11770485 2042:1842/737 2005:32370137 1997:15310905 1877:24786532 1869:12106435 1834:12471778 1785:37385200 1606:15217336 1546:40089749 1462:36103242 1419:39909326 1411:15335686 1373:25055891 1330:15689554 1232:15800203 1142:17506644 1092:22232700 990:25287010 982:15821747 947:24140507 939:10219748 782:28445802 731:20126265 680:20345246 557:See also 285:opsonins 179:axolemma 175:proximal 3066:Arousal 2996:D014855 2934:5006226 2883:5241118 2832:4306654 2783:5640801 2734:5063586 2683:6284238 2631:4513950 2610:Bibcode 2602:Science 2571:6937575 2518:3742939 2469:5225956 2448:Bibcode 2440:Science 2412:8019679 2377:8797673 2369:8842900 2324:6634738 2234:2171458 2143:8315413 2099:6665162 2059:8316115 1977:Bibcode 1969:Science 1949:8415768 1917:Bibcode 1826:8780658 1777:4436692 1742:3263368 1701:3034917 1692:2114490 1649:2028827 1538:7957737 1497:7629867 1454:1697140 1365:7602323 1321:6725954 1281:9712643 1272:6792968 1223:6724908 1183:6321500 1083:3255986 1039:9592084 1030:6792792 930:8098499 890:9707587 858:Bibcode 773:5515290 722:2811159 671:5223592 280:sensing 255:sensing 214:calpain 196:in the 171:calcium 140:History 3109:Reflex 3093:Memory 3016:(MeSH) 2941:  2931:  2890:  2880:  2839:  2829:  2790:  2780:  2741:  2731:  2690:  2680:  2662:Neuron 2638:  2628:  2578:  2568:  2525:  2515:  2476:  2466:  2418:  2410:  2375:  2367:  2331:  2321:  2282:  2241:  2231:  2192:  2184:  2149:  2141:  2106:  2096:  2057:  2049:  2003:  1995:  1947:  1937:  1875:  1867:  1832:  1824:  1804:Neuron 1783:  1775:  1740:  1699:  1689:  1647:  1641:851236 1639:  1604:  1567:  1544:  1536:  1495:  1460:  1452:  1417:  1409:  1371:  1363:  1328:  1318:  1279:  1269:  1230:  1220:  1181:  1140:  1090:  1080:  1037:  1027:  988:  980:  945:  937:  927:  888:  878:  826:108444 824:  780:  770:  729:  719:  678:  668:  543:NMNAT2 391:, and 295:, and 278:after 226:Myelin 99:NMNAT2 79:neuron 53:  40:crush. 3259:Other 3088:Sleep 2985:G58.8 2911:Brain 2860:eLife 2711:eLife 2416:S2CID 2373:S2CID 2190:S2CID 2147:S2CID 2055:S2CID 2001:S2CID 1940:47641 1873:S2CID 1830:S2CID 1781:S2CID 1667:(PDF) 1645:S2CID 1542:S2CID 1458:S2CID 1415:S2CID 1369:S2CID 986:S2CID 943:S2CID 881:21448 822:JSTOR 551:Sarm1 499:SARM1 493:SARM1 357:newts 150:frogs 3144:P300 3123:Both 2991:MeSH 2939:PMID 2888:PMID 2837:PMID 2811:Cell 2788:PMID 2739:PMID 2688:PMID 2636:PMID 2576:PMID 2523:PMID 2474:PMID 2408:PMID 2365:PMID 2329:PMID 2280:PMID 2239:PMID 2182:PMID 2139:PMID 2104:PMID 2047:PMID 1993:PMID 1945:PMID 1865:PMID 1822:PMID 1773:PMID 1738:PMID 1697:PMID 1637:PMID 1602:PMID 1565:ISBN 1534:PMID 1493:PMID 1450:PMID 1407:PMID 1361:PMID 1326:PMID 1277:PMID 1228:PMID 1179:PMID 1138:PMID 1088:PMID 1035:PMID 978:PMID 935:PMID 886:PMID 778:PMID 727:PMID 676:PMID 412:Mice 274:and 212:and 156:and 75:axon 2976:ICD 2929:PMC 2919:doi 2915:139 2878:PMC 2868:doi 2827:PMC 2819:doi 2815:160 2778:PMC 2770:doi 2729:PMC 2719:doi 2678:PMC 2670:doi 2626:PMC 2618:doi 2606:348 2566:PMC 2556:doi 2552:294 2513:PMC 2505:doi 2464:PMC 2456:doi 2444:337 2400:doi 2357:doi 2353:371 2319:PMC 2311:doi 2270:doi 2229:PMC 2221:doi 2217:170 2174:doi 2131:doi 2094:PMC 2086:doi 2037:hdl 2029:doi 1985:doi 1973:305 1935:PMC 1925:doi 1857:doi 1812:doi 1765:doi 1728:doi 1724:263 1687:PMC 1679:doi 1675:104 1629:doi 1625:187 1594:doi 1524:doi 1520:129 1485:doi 1442:doi 1399:doi 1353:doi 1316:PMC 1308:doi 1267:PMC 1259:doi 1218:PMC 1210:doi 1169:doi 1165:259 1130:doi 1078:PMC 1070:doi 1066:196 1025:PMC 1017:doi 970:doi 925:PMC 917:doi 876:PMC 866:doi 812:doi 808:140 768:PMC 760:doi 717:PMC 707:doi 666:PMC 658:doi 527:NAD 521:to 519:NAD 486:Wld 481:Wld 472:Wld 467:NAD 463:Wld 458:Wld 425:Wld 421:Wld 416:Wld 3541:: 2994:: 2983:: 2980:10 2937:. 2927:. 2913:. 2909:. 2886:. 2876:. 2866:. 2862:. 2858:. 2835:. 2825:. 2813:. 2809:. 2786:. 2776:. 2766:21 2764:. 2760:. 2737:. 2727:. 2717:. 2713:. 2709:. 2686:. 2676:. 2666:93 2664:. 2660:. 2648:^ 2634:. 2624:. 2616:. 2604:. 2600:. 2588:^ 2574:. 2564:. 2550:. 2544:. 2521:. 2511:. 2501:33 2499:. 2495:. 2472:. 2462:. 2454:. 2442:. 2438:. 2414:. 2406:. 2394:. 2371:. 2363:. 2351:. 2327:. 2317:. 2307:30 2305:. 2301:. 2278:. 2266:14 2264:. 2260:. 2237:. 2227:. 2215:. 2211:. 2188:. 2180:. 2170:24 2168:. 2145:. 2137:. 2127:22 2125:. 2102:. 2092:. 2082:29 2080:. 2076:. 2053:. 2045:. 2035:. 2023:. 1999:. 1991:. 1983:. 1971:. 1957:^ 1943:. 1933:. 1923:. 1913:90 1911:. 1907:. 1871:. 1863:. 1851:. 1828:. 1820:. 1808:17 1806:. 1802:. 1779:. 1771:. 1759:. 1736:. 1722:. 1718:. 1695:. 1685:. 1673:. 1669:. 1643:. 1635:. 1623:. 1600:. 1590:27 1588:. 1540:. 1532:. 1518:. 1514:. 1491:. 1481:12 1479:. 1456:. 1448:. 1438:80 1436:. 1413:. 1405:. 1393:. 1367:. 1359:. 1349:54 1347:. 1324:. 1314:. 1304:25 1302:. 1298:. 1275:. 1265:. 1255:18 1253:. 1249:. 1226:. 1216:. 1206:25 1204:. 1200:. 1177:. 1163:. 1159:. 1136:. 1126:30 1124:. 1100:^ 1086:. 1076:. 1064:. 1060:. 1033:. 1023:. 1013:18 1011:. 1007:. 984:. 976:. 966:11 964:. 941:. 933:. 923:. 911:. 907:. 884:. 874:. 864:. 854:95 852:. 848:. 834:^ 820:. 806:. 802:. 790:^ 776:. 766:. 756:44 754:. 748:. 725:. 715:. 701:. 697:. 674:. 664:. 654:33 652:. 648:. 631:, 387:, 383:, 379:, 375:, 315:. 291:, 93:. 3304:e 3297:t 3290:v 3236:/ 3043:e 3036:t 3029:v 2978:- 2968:D 2945:. 2921:: 2894:. 2870:: 2864:6 2843:. 2821:: 2794:. 2772:: 2745:. 2721:: 2715:5 2694:. 2672:: 2642:. 2620:: 2612:: 2582:. 2558:: 2529:. 2507:: 2480:. 2458:: 2450:: 2422:. 2402:: 2396:6 2379:. 2359:: 2335:. 2313:: 2286:. 2272:: 2245:. 2223:: 2196:. 2176:: 2153:. 2133:: 2110:. 2088:: 2061:. 2039:: 2031:: 2025:4 2007:. 1987:: 1979:: 1951:. 1927:: 1919:: 1879:. 1859:: 1853:4 1836:. 1814:: 1787:. 1767:: 1761:3 1744:. 1730:: 1703:. 1681:: 1651:. 1631:: 1608:. 1596:: 1573:. 1548:. 1526:: 1499:. 1487:: 1464:. 1444:: 1421:. 1401:: 1395:3 1375:. 1355:: 1332:. 1310:: 1283:. 1261:: 1234:. 1212:: 1185:. 1171:: 1144:. 1132:: 1094:. 1072:: 1041:. 1019:: 992:. 972:: 949:. 919:: 913:9 892:. 868:: 860:: 828:. 814:: 784:. 762:: 733:. 709:: 703:8 682:. 660::

Index


Specialty
Neurology
Edit this on Wikidata
nerve fiber
axon
neuron
axonal transport
amyotrophic lateral sclerosis
Alzheimer's disease
Primary culture
NMNAT2
peripheral nervous system
central nervous system
myelin sheath
macrophages
Schwann cells
spinal cord
oligodendrocytes
Augustus Volney Waller
frogs
glossopharyngeal
hypoglossal
calcium
proximal
axolemma
axonal spheroids
organelles
mitochondria
paranodal regions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.