Knowledge

Velocimetry

Source 📝

17: 94: 186:
tomographic x-ray velocimetry generates a model solution, compares the cross-correlations of the model to the cross-correlation from the 2D image sequence, and iterates the model solution until the difference between the model cross-correlations and the image sequence cross-correlations are minimised. This technique is being used as a non invasive method to quantify functional performance of the lungs. It is being used in a clinical setting, and is being utilised in clinical trails conducted by institutions including
78:). Lagrangian methods assign a velocity to a volume of fluid at a given time, whereas Eulerian methods assign a velocity to a volume of the measurement domain at a given time. A classic example of the distinction is particle tracking velocimetry, where the idea is to find the velocity of individual flow tracer particles (Lagrangian) and particle image velocimetry, where the objective is to find the average velocity within a sub-region of the field of view (Eulerian). 141: 210:
Services include Basic Principles, Applications, Discussion forums, Links to Links. A concentrated effort is taken to put together all the present and possible applications of PIV, StereoPIV, MicroPIV, NanoPIV, High speed PIV, PTV, LDV, PDPA, PLIF, ILIDS, PSP. Velocimetry portal aims to become as the reference point for all queries related to Laser Flow Diagnostic Techniques.
181:
Velocimetry has also been applied to medical images in order to obtain regional measurements of blood flow and tissue motion. Initially, standard PIV (single plane illumination) was adapted to work with x-ray images (full volume illumination), enabling the measurement of opaque flows such as blood
209:
is an online center for Laser Flow Diagnostic Techniques (PIV, StereoPIV, MicroPIV, NanoPIV, High speed PIV, PTV, LDV, PDPA, PLIF, ILIDS, PSP etc.). This portal is being developed so as to provide as much information as possible about the Laser Flow Diagnostic Techniques in a consolidated manner.
160:
In water and oil there are a variety of inexpensive industrial beads that can be used, such as silver-coated hollow glass spheres manufactured to be conductive powders (tens of micrometres diameter range) or other beads used as reflectors and texturing agents in paints and coatings. The particles
132:
Spatial reconstruction of fluid streamtubes using long exposure imaging of tracer can be applied for streamlines imaging velocimetry, high resolution frame rate free velocimetry of stationary flows. Temporal integration of velocimetric information can be used to totalize fluid flow. For measuring
148:
The fluid generally limits the particle selection according to its specific gravity; the particles should ideally be of the same density as the fluid. This is especially important in flows with a high acceleration (for example, high-speed flow through a 90-degree pipe elbow). Heavier fluids like
128:
Today the basic ideas established by Leonardo are the same; the flow must be seeded with particles that can be observed by the method of choice. The seeding particles depend on many factors including the fluid, the sensing method, the size of the measurement domain, and sometimes the expected
185:
Velocimetry was also expanded to 3D regional measurements blood flow and tissue motion with a new technique – computed tomographic x-ray velocimetry – which uses information contained within the PIV cross-correlation to extract 3D measurements from 2D image sequences. Specifically, computed
90:, who would float grass seeds on a flow and sketch the resulting trajectories of the seeds that he observed (a Lagrangian measurement). Eventually da Vinci's flow visualizations were used in his cardio vascular studies, attempting to learn more about blood flow throughout the human body. 152:
Still, even large-field measurement techniques like PIV have been performed successfully in air. Particles used for seeding can be both liquid droplets or solid particles. Solid particles being preferred when high particle concentrations are necessary. For point measurements like
169:
PIV has been used in research for controlling aircraft noise. This noise is created by the high speed mixing of hot jet exhaust with the ambient temperature of the environment. PIV has been used to model this behavior.
116:
who used photographic techniques to introduce the concept of the smoke box. This model allowed both for the directions of the flow to be tracked but also the speed, as streamlines closer together indicated faster flow.
758:
Kaponis, Apostolos; Harada, Takashi; Makrydimas, George; Kiyama, Tomoiki; Arata, Kazuya; Adonakis, George; Tsapanos, Vasilis; Iwabe, Tomio; Stefos, Theodoros; Decavalas, George; Harada, Tasuku (2011).
401:
Reeder, Mark F.; Crafton, Jim W.; Estevadeordal, Jordi; DeLapp, Joseph; McNiel, Charles; Peltier, Don; Reynolds, Tina (2009-11-18). "Clean seeding for flow visualization and velocimetry measurements".
120:
More recently, high speed cameras and digital technology has revolutionized the field. allowing for the possibility of many more techniques and rendering of flow fields in three dimensions.
807:
Fouras, Andreas; Allison, Beth J.; Kitchen, Marcus J.; Dubsky, Stephen; Nguyen, Jayne; Hourigan, Kerry; Siu, Karen K. W.; Lewis, Rob A.; Wallace, Megan J.; Hooper, Stuart B. (2012-05-01).
101:
Methods similar to da Vinci's were carried out for close to four hundred years due to technological limitations. One other notable study comes from Felix Savart in 1833. Using a
149:
water and oil are thus very attractive to velocimetry, whereas air ads a challenge in most techniques that it is rarely possible to find particles of the same density as air.
108:
In the late 19th century a huge breakthrough was made in these technologies when it became possible to take photographs of flow patterns. One notable instance of this is
744: 182:
flow. This was then extended to investigate the regional 2D motion of lung tissue, and was found to be a sensitive indicator of regional lung disease.
555:
Truax, Bruce E.; Demarest, Frank C.; Sommargren, Gary E. (1983). "Laser Doppler velocimeter for velocity and length measurements of moving surfaces".
173:
Additionally, Doppler velocimetry enables noninvasive techniques of determining whether fetuses are the proper size at a given term of pregnancy.
195: 705:
JONES, GREGORY; GARTRELL, LUTHER; KAMEMOTO, DEREK (1990-01-08). "An investigation of the effects of seeding in laser velocimeter systems".
112:
using particles unresolvable by the naked eye to visualize streamlines. Another notable contribution occurred in the 20th century by
35:. This is a task often taken for granted, and involves far more complex processes than one might expect. It is often used to solve 16: 385: 191: 129:
accelerations in the flow. If the flow contains particles that can be measured naturally, seeding the flow is unnecessary.
75: 157:, particles in the nanometre diameter range, such as those in cigarette smoke, are sufficient to perform a measurement. 237: 736: 93: 935:"4DX Functional Lung Imaging in the Diagnosis of Chronic Lung Allograft Dysfunction After Lung Transplantation" 56: 52: 64: 20:
Dye in a fluid can help illuminate the fluids motion paths. This is the most simple example of Velocimetry.
261:
Gharib, M.; Kremers, D.; Koochesfahani, M.; Kemp, M. (2002). "Leonardo's vision of flow visualization".
447:
Miles and, Richard B.; Lempert, Walter R. (1997). "Quantitative Flow Visualization in Unseeded Flows".
48: 154: 134: 1031: 991: 955: 74:
In general, velocity measurements are made in the Lagrangian or Eulerian frames of reference (see
1056: 862:
Dubsky, S.; Jamison, R. A.; Irvine, S. C.; Siu, K. K. W.; Hourigan, K.; Fouras, A. (2010-01-11).
760:"The Importance of Venous Doppler Velocimetry for Evaluation of Intrauterine Growth Restriction" 113: 1018: 978: 942: 971:"Utility of a Novel Imaging Algorithm (4DX) for the Diagnosis of Constrictive Bronchiolitis" 1051: 875: 710: 687: 641: 590: 503: 456: 332: 270: 28: 632:
Adrian, Ronald J. (1991). "Particle-Imaging Techniques for Experimental Fluid Mechanics".
8: 678:; Belden, Jesse L. (2007). "Imaging across the interface of small-scale breaking waves". 879: 714: 691: 653: 645: 594: 581:
Melling, A (1997-12-01). "Tracer particles and seeding for particle image velocimetry".
507: 460: 336: 274: 844: 614: 532: 491: 426: 294: 863: 891: 848: 836: 828: 789: 781: 657: 618: 606: 602: 537: 519: 472: 430: 418: 381: 368:
Raffel, Markus; Willert, Christian E.; Wereley, Steve T.; Kompenhans, Jürgen (2007).
350: 286: 243: 233: 87: 68: 883: 820: 771: 718: 675: 649: 598: 560: 527: 511: 468: 464: 410: 373: 340: 298: 278: 1007:"Ventilation Imbalances in Mild to Moderate Chronic Obstructive Pulmonary Disease" 1006: 970: 934: 187: 40: 909: 345: 320: 60: 36: 824: 776: 759: 414: 377: 282: 1045: 895: 832: 785: 661: 610: 523: 476: 422: 354: 290: 247: 161:
need not be spherical; in many cases titanium dioxide particles can be used.
808: 840: 793: 541: 564: 109: 102: 44: 709:. Reston, Virginia: American Institute of Aeronautics and Astronautics. 97:
Smoke used as a visualizer similarly to the technique Marey popularized.
809:"Altered Lung Motion is a Sensitive Indicator of Regional Lung Disease" 722: 887: 515: 1010: 140: 400: 227: 176: 43:
applications, as well as in the creation of new kinds of fluid
490:
Keinan, Eliezer; Ezra, Elishai; Nahmias, Yaakov (2013-08-05).
367: 260: 757: 206: 32: 492:"Frame rate free image velocimetry for microfluidic devices" 910:"XV Technology | A new modality for detecting lung disease" 806: 737:"Shedding light on the mysteries of high-speed hot jets" 554: 861: 704: 973:. Vanderbilt University Medical Center, 4D Medical. 144:Vector field created by a PIV analysis of vortexes 39:problems, study fluid networks, in industrial and 489: 1043: 446: 932: 86:Velocimetry can be traced back to the days of 674: 177:Basis for Four-Dimensional Pulmonary Imaging 105:instrument, he sketched water jet impacts. 775: 531: 344: 318: 1009:. Oregon Health and Science University, 968: 864:"Computed tomographic x-ray velocimetry" 228:Batchelor, G. K. (George Keith) (2002). 164: 139: 133:velocity and length on moving surfaces, 92: 15: 580: 557:Conference on Lasers and Electro-Optics 1044: 631: 321:"The use of images in fluid mechanics" 1004: 576: 574: 442: 440: 314: 312: 310: 308: 192:Vanderbilt University Medical Center 654:10.1146/annurev.fl.23.010191.001401 76:Lagrangian and Eulerian coordinates 13: 583:Measurement Science and Technology 319:Fermigier, Marc (September 2017). 14: 1068: 764:Journal of Ultrasound in Medicine 571: 437: 305: 230:An introduction to fluid dynamics 200: 47:. Methods of velocimetry include 969:Richmond, Bradley (2022-08-29). 813:Annals of Biomedical Engineering 747:from the original on 2006-10-05. 634:Annual Review of Fluid Mechanics 449:Annual Review of Fluid Mechanics 196:Oregon Health Science University 998: 962: 926: 902: 855: 800: 751: 729: 707:28th Aerospace Sciences Meeting 698: 668: 625: 933:Duke University (2022-07-27). 559:. Washington, D.C.: OSA: WN6. 548: 483: 469:10.1146/annurev.fluid.29.1.285 394: 361: 254: 232:. Cambridge University Press. 221: 63:, ultrasonic Doppler methods, 1: 214: 57:Molecular tagging velocimetry 53:particle tracking velocimetry 7: 29:measurement of the velocity 10: 1073: 1005:Khan, Akram (2021-06-30). 603:10.1088/0957-0233/8/12/005 370:Particle Image Velocimetry 346:10.1016/j.crme.2017.05.015 135:laser surface velocimeters 123: 81: 49:particle image velocimetry 825:10.1007/s10439-011-0493-0 777:10.7863/jum.2011.30.4.529 415:10.1007/s00348-009-0784-5 378:10.1007/978-3-540-72308-0 283:10.1007/s00348-002-0478-8 155:laser Doppler velocimetry 325:Comptes Rendus Mécanique 868:Applied Physics Letters 496:Applied Physics Letters 1026:Cite journal requires 986:Cite journal requires 950:Cite journal requires 145: 98: 21: 565:10.1364/cleo.1983.wn6 403:Experiments in Fluids 263:Experiments in Fluids 165:Relevant Applications 143: 96: 19: 676:Techet, Alexandra H. 880:2010ApPhL..96b3702D 715:1990aiaa.meetV....J 692:2007APS..DFD.GK001T 646:1991AnRFM..23..261A 595:1997MeScT...8.1406M 508:2013ApPhL.103f3507K 461:1997AnRFM..29..285M 337:2017CRMec.345..595F 275:2002ExFl...33..219G 114:Étienne-Jules Marey 723:10.2514/6.1990-502 207:Velocimetry portal 146: 99: 22: 888:10.1063/1.3285173 589:(12): 1406–1416. 516:10.1063/1.4818142 387:978-3-540-72307-3 88:Leonardo da Vinci 69:signal processing 67:sensors, and new 1064: 1036: 1035: 1029: 1024: 1022: 1014: 1002: 996: 995: 989: 984: 982: 974: 966: 960: 959: 953: 948: 946: 938: 930: 924: 923: 921: 920: 906: 900: 899: 859: 853: 852: 819:(5): 1160–1169. 804: 798: 797: 779: 755: 749: 748: 733: 727: 726: 702: 696: 695: 672: 666: 665: 629: 623: 622: 578: 569: 568: 552: 546: 545: 535: 487: 481: 480: 444: 435: 434: 398: 392: 391: 365: 359: 358: 348: 316: 303: 302: 258: 252: 251: 225: 1072: 1071: 1067: 1066: 1065: 1063: 1062: 1061: 1042: 1041: 1040: 1039: 1027: 1025: 1016: 1015: 1003: 999: 987: 985: 976: 975: 967: 963: 951: 949: 940: 939: 931: 927: 918: 916: 908: 907: 903: 860: 856: 805: 801: 756: 752: 735: 734: 730: 703: 699: 673: 669: 630: 626: 579: 572: 553: 549: 488: 484: 445: 438: 399: 395: 388: 366: 362: 317: 306: 259: 255: 240: 226: 222: 217: 203: 188:Duke University 179: 167: 126: 84: 71:methodologies. 41:process control 12: 11: 5: 1070: 1060: 1059: 1057:Fluid dynamics 1054: 1038: 1037: 1028:|journal= 997: 988:|journal= 961: 952:|journal= 925: 901: 854: 799: 770:(4): 529–545. 750: 728: 697: 667: 640:(1): 261–304. 624: 570: 547: 482: 455:(1): 285–326. 436: 409:(5): 889–900. 393: 386: 360: 331:(9): 595–604. 304: 269:(1): 219–223. 253: 238: 219: 218: 216: 213: 212: 211: 202: 201:External links 199: 178: 175: 166: 163: 125: 122: 83: 80: 61:interferometry 59:, laser-based 37:fluid dynamics 9: 6: 4: 3: 2: 1069: 1058: 1055: 1053: 1050: 1049: 1047: 1033: 1020: 1012: 1008: 1001: 993: 980: 972: 965: 957: 944: 937:. 4D Medical. 936: 929: 915: 911: 905: 897: 893: 889: 885: 881: 877: 874:(2): 023702. 873: 869: 865: 858: 850: 846: 842: 838: 834: 830: 826: 822: 818: 814: 810: 803: 795: 791: 787: 783: 778: 773: 769: 765: 761: 754: 746: 742: 738: 732: 724: 720: 716: 712: 708: 701: 693: 689: 685: 681: 677: 671: 663: 659: 655: 651: 647: 643: 639: 635: 628: 620: 616: 612: 608: 604: 600: 596: 592: 588: 584: 577: 575: 566: 562: 558: 551: 543: 539: 534: 529: 525: 521: 517: 513: 509: 505: 502:(6): 063507. 501: 497: 493: 486: 478: 474: 470: 466: 462: 458: 454: 450: 443: 441: 432: 428: 424: 420: 416: 412: 408: 404: 397: 389: 383: 379: 375: 371: 364: 356: 352: 347: 342: 338: 334: 330: 326: 322: 315: 313: 311: 309: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 257: 249: 245: 241: 239:0-521-66396-2 235: 231: 224: 220: 208: 205: 204: 198: 197: 193: 189: 183: 174: 171: 162: 158: 156: 150: 142: 138: 136: 130: 121: 118: 115: 111: 106: 104: 95: 91: 89: 79: 77: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 18: 1019:cite journal 1000: 979:cite journal 964: 943:cite journal 928: 917:. Retrieved 913: 904: 871: 867: 857: 816: 812: 802: 767: 763: 753: 740: 731: 706: 700: 683: 679: 670: 637: 633: 627: 586: 582: 556: 550: 499: 495: 485: 452: 448: 406: 402: 396: 369: 363: 328: 324: 266: 262: 256: 229: 223: 184: 180: 172: 168: 159: 151: 147: 131: 127: 119: 107: 103:stroboscopic 100: 85: 73: 45:flow sensors 24: 23: 1052:Measurement 110:Ludwig Mach 25:Velocimetry 1046:Categories 919:2022-09-15 686:: GK.001. 215:References 137:are used. 1011:4DMedical 914:4DMedical 896:0003-6951 849:254193228 833:1573-9686 786:1550-9613 662:0066-4189 619:250844330 611:0957-0233 524:0003-6951 477:0066-4189 431:120422467 423:0723-4864 355:1631-0721 291:0723-4864 248:800027809 841:22189492 794:21460154 745:Archived 743:. 2019. 542:24023394 876:Bibcode 711:Bibcode 688:Bibcode 642:Bibcode 591:Bibcode 533:3751964 504:Bibcode 457:Bibcode 333:Bibcode 299:9577969 271:Bibcode 124:Methods 82:History 65:Doppler 27:is the 894:  847:  839:  831:  792:  784:  660:  617:  609:  540:  530:  522:  475:  429:  421:  384:  353:  297:  289:  246:  236:  33:fluids 845:S2CID 615:S2CID 427:S2CID 295:S2CID 1032:help 992:help 956:help 892:ISSN 837:PMID 829:ISSN 790:PMID 782:ISSN 741:Nasa 658:ISSN 607:ISSN 538:PMID 520:ISSN 473:ISSN 419:ISSN 382:ISBN 351:ISSN 287:ISSN 244:OCLC 234:ISBN 194:and 51:and 884:doi 821:doi 772:doi 719:doi 680:APS 650:doi 599:doi 561:doi 528:PMC 512:doi 500:103 465:doi 411:doi 374:doi 341:doi 329:345 279:doi 55:, 31:of 1048:: 1023:: 1021:}} 1017:{{ 983:: 981:}} 977:{{ 947:: 945:}} 941:{{ 912:. 890:. 882:. 872:96 870:. 866:. 843:. 835:. 827:. 817:40 815:. 811:. 788:. 780:. 768:30 766:. 762:. 739:. 717:. 684:60 682:. 656:. 648:. 638:23 636:. 613:. 605:. 597:. 585:. 573:^ 536:. 526:. 518:. 510:. 498:. 494:. 471:. 463:. 453:29 451:. 439:^ 425:. 417:. 407:48 405:. 380:. 372:. 349:. 339:. 327:. 323:. 307:^ 293:. 285:. 277:. 267:33 265:. 242:. 190:, 1034:) 1030:( 1013:. 994:) 990:( 958:) 954:( 922:. 898:. 886:: 878:: 851:. 823:: 796:. 774:: 725:. 721:: 713:: 694:. 690:: 664:. 652:: 644:: 621:. 601:: 593:: 587:8 567:. 563:: 544:. 514:: 506:: 479:. 467:: 459:: 433:. 413:: 390:. 376:: 357:. 343:: 335:: 301:. 281:: 273:: 250:.

Index


measurement of the velocity
fluids
fluid dynamics
process control
flow sensors
particle image velocimetry
particle tracking velocimetry
Molecular tagging velocimetry
interferometry
Doppler
signal processing
Lagrangian and Eulerian coordinates
Leonardo da Vinci

stroboscopic
Ludwig Mach
Étienne-Jules Marey
laser surface velocimeters

laser Doppler velocimetry
Duke University
Vanderbilt University Medical Center
Oregon Health Science University
Velocimetry portal
ISBN
0-521-66396-2
OCLC
800027809
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.