Knowledge

Tree (descriptive set theory)

Source 📝

1066:. The empty sequence is the unique minimal element, and each element has a finite and well-ordered set of predecessors (the set of all of its prefixes). An order-theoretic tree may be represented by an isomorphic tree of sequences if and only if each of its elements has finite height (that is, a finite set of predecessors). 1867: 937:, and an outgoing edge from each nonempty sequence that connects it to the shorter sequence formed by removing its last element. This graph is a tree in the graph-theoretic sense. The root of the tree is the empty sequence. 1557: 871: 748: 404: 261: 1603: 897:
in which every vertex except for a special root vertex has exactly one outgoing edge, and in which the path formed by following these edges from any vertex eventually leads to the root vertex. If
1725: 1404: 190: 140: 333: 1178: 1119: 1342: 1661: 1024: 450: 1444: 1424: 1362: 1310: 1264: 1244: 1224: 1151: 1092: 1064: 1044: 998: 978: 935: 915: 788: 768: 671: 647: 594: 542: 522: 502: 482: 424: 301: 281: 160: 110: 73: 49: 1717: 1687: 1290: 1204: 568: 1449: 1605:(the subset for which the length of the first sequence is equal to or 1 more than the length of the second sequence). In this way we may identify 960:
set of predecessors. Every tree in descriptive set theory is also an order-theoretic tree, using a partial ordering in which two sequences
793: 16:
This article is about mathematical trees described by prefixes of finite sequences. For trees described by partially ordered sets, see
676: 338: 195: 1862:{\displaystyle p=\{{\vec {x}}\in X^{\omega }|(\exists {\vec {y}}\in Y^{\omega })\langle {\vec {x}},{\vec {y}}\rangle \in \}} 1562: 1559:). Elements in this subspace are identified in the natural way with a subset of the product of two spaces of sequences, 1923: 1916: 917:
is a tree in the descriptive set theory sense, then it corresponds to a graph with one vertex for each sequence in
1940: 1367: 1908: 1945: 165: 115: 76: 306: 1156: 1097: 1321: 24: 1887: 1608: 949: 1003: 1950: 1900: 8: 429: 614: 1429: 1409: 1347: 1295: 1249: 1229: 1209: 1136: 1077: 1049: 1029: 983: 963: 920: 900: 773: 753: 656: 632: 579: 527: 507: 487: 467: 409: 286: 266: 145: 95: 58: 34: 1696: 1666: 1269: 1183: 547: 1919: 1912: 1316: 945: 17: 1122: 953: 52: 1130: 894: 1552:{\displaystyle \langle x_{0},y_{1},x_{2},y_{3}\ldots ,x_{2m},y_{2m+1}\rangle } 1934: 957: 941: 886: 1344:
are considered. In this case, by convention, we consider only the subset
890: 602: 1883: 1879: 618: 621:
with an infinite number of sequences must necessarily be illfounded.
1246:
consist of the set of finite prefixes of the infinite sequences in
866:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{n-1},x\rangle \in T} 743:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{n-1}\rangle \in T} 79:
of a sequence in the collection also belongs to the collection.
92:
The collection of all finite sequences of elements of a set
399:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{m-1}\rangle } 256:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{n-1}\rangle } 1406:, containing only sequences whose even elements come from 873:. A tree that does not have any terminal nodes is called 1728: 1699: 1669: 1611: 1598:{\displaystyle X^{<\omega }\times Y^{<\omega }} 1565: 1452: 1432: 1412: 1370: 1350: 1324: 1298: 1272: 1252: 1232: 1212: 1186: 1159: 1139: 1100: 1080: 1052: 1032: 1006: 986: 966: 923: 903: 796: 776: 756: 679: 659: 635: 582: 550: 530: 510: 490: 470: 452:
shows that the empty sequence belongs to every tree.
432: 412: 341: 309: 289: 269: 198: 168: 148: 118: 98: 61: 37: 1689:for over the product space. We may then form the 880: 1861: 1711: 1681: 1655: 1597: 1551: 1438: 1418: 1398: 1356: 1336: 1304: 1284: 1258: 1238: 1218: 1198: 1172: 1145: 1113: 1086: 1058: 1038: 1018: 992: 972: 929: 909: 865: 782: 762: 742: 665: 641: 588: 562: 536: 516: 496: 476: 444: 418: 398: 327: 295: 275: 255: 184: 154: 142:. With this notation, a tree is a nonempty subset 134: 104: 67: 43: 1932: 653:if it is not a prefix of a longer sequence in 1856: 1841: 1811: 1744: 1546: 1453: 854: 797: 731: 680: 393: 342: 250: 199: 944:, a different notion of a tree is used: an 504:, each of whose finite prefixes belongs to 1399:{\displaystyle (X\times Y)^{<\omega }} 629:A finite sequence that belongs to a tree 1133:. In this topology, every closed subset 1899: 484:is an infinite sequence of elements of 1933: 599:A tree that has no branches is called 455: 1312:forms a closed set in this topology. 607:; a tree with at least one branch is 1074:The set of infinite sequences over 750:is terminal if there is no element 13: 1780: 524:. The set of all branches through 14: 1962: 624: 1905:Classical Descriptive Set Theory 881:Relation to other types of trees 185:{\displaystyle X^{<\omega }} 135:{\displaystyle X^{<\omega }} 1853: 1847: 1835: 1820: 1808: 1789: 1777: 1773: 1753: 1738: 1732: 1706: 1700: 1676: 1670: 1650: 1634: 1628: 1612: 1384: 1371: 1279: 1273: 1193: 1187: 557: 551: 335:, then the shortened sequence 82: 1: 1909:Graduate Texts in Mathematics 1893: 956:in which each element has a 328:{\displaystyle 0\leq m<n} 7: 1873: 1426:and odd elements come from 1173:{\displaystyle X^{\omega }} 1114:{\displaystyle X^{\omega }} 1069: 10: 1967: 426:. In particular, choosing 15: 1882:, a type of tree used in 1337:{\displaystyle X\times Y} 263:is a sequence of length 87: 1886:as part of a notion of 1656:{\displaystyle \times } 1266:. Conversely, the body 1941:Descriptive set theory 1863: 1713: 1683: 1657: 1599: 1553: 1440: 1420: 1400: 1364:of the product space, 1358: 1338: 1306: 1286: 1260: 1240: 1220: 1200: 1174: 1147: 1115: 1088: 1060: 1046:is a proper prefix of 1040: 1020: 1019:{\displaystyle T<U} 994: 974: 931: 911: 867: 784: 764: 744: 667: 643: 590: 564: 538: 518: 498: 478: 446: 420: 400: 329: 297: 277: 257: 186: 156: 136: 106: 69: 45: 25:descriptive set theory 1901:Kechris, Alexander S. 1864: 1714: 1684: 1658: 1600: 1554: 1441: 1421: 1401: 1359: 1339: 1307: 1287: 1261: 1241: 1221: 1206:for some pruned tree 1201: 1175: 1148: 1116: 1089: 1061: 1041: 1021: 995: 975: 950:partially ordered set 932: 912: 868: 785: 765: 745: 668: 644: 591: 565: 539: 519: 499: 479: 447: 421: 401: 330: 298: 278: 258: 187: 157: 137: 107: 70: 46: 1726: 1697: 1667: 1609: 1563: 1450: 1430: 1410: 1368: 1348: 1322: 1315:Frequently trees on 1296: 1270: 1250: 1230: 1210: 1184: 1157: 1137: 1098: 1078: 1050: 1030: 1004: 984: 964: 946:order-theoretic tree 921: 901: 794: 774: 754: 677: 657: 633: 580: 548: 528: 508: 488: 468: 430: 410: 339: 307: 287: 267: 196: 166: 146: 116: 96: 59: 35: 1121:) may be given the 456:Branches and bodies 445:{\displaystyle m=0} 51:is a collection of 1946:Trees (set theory) 1859: 1709: 1679: 1653: 1595: 1549: 1436: 1416: 1396: 1354: 1334: 1317:Cartesian products 1302: 1282: 1256: 1236: 1216: 1196: 1170: 1143: 1111: 1084: 1056: 1036: 1016: 990: 970: 927: 907: 863: 780: 760: 740: 663: 639: 586: 560: 534: 514: 494: 474: 442: 416: 396: 325: 293: 273: 253: 182: 152: 132: 102: 65: 41: 1838: 1823: 1792: 1756: 1439:{\displaystyle Y} 1419:{\displaystyle X} 1357:{\displaystyle T} 1305:{\displaystyle T} 1259:{\displaystyle C} 1239:{\displaystyle T} 1219:{\displaystyle T} 1146:{\displaystyle C} 1087:{\displaystyle X} 1059:{\displaystyle U} 1039:{\displaystyle T} 993:{\displaystyle U} 973:{\displaystyle T} 930:{\displaystyle T} 910:{\displaystyle T} 783:{\displaystyle X} 763:{\displaystyle x} 666:{\displaystyle T} 642:{\displaystyle T} 589:{\displaystyle T} 537:{\displaystyle T} 517:{\displaystyle T} 497:{\displaystyle X} 477:{\displaystyle T} 419:{\displaystyle T} 296:{\displaystyle T} 276:{\displaystyle n} 155:{\displaystyle T} 105:{\displaystyle X} 68:{\displaystyle X} 44:{\displaystyle X} 18:Tree (set theory) 1958: 1927: 1868: 1866: 1865: 1860: 1840: 1839: 1831: 1825: 1824: 1816: 1807: 1806: 1794: 1793: 1785: 1776: 1771: 1770: 1758: 1757: 1749: 1718: 1716: 1715: 1712:{\displaystyle } 1710: 1688: 1686: 1685: 1682:{\displaystyle } 1680: 1662: 1660: 1659: 1654: 1649: 1648: 1627: 1626: 1604: 1602: 1601: 1596: 1594: 1593: 1578: 1577: 1558: 1556: 1555: 1550: 1545: 1544: 1523: 1522: 1504: 1503: 1491: 1490: 1478: 1477: 1465: 1464: 1445: 1443: 1442: 1437: 1425: 1423: 1422: 1417: 1405: 1403: 1402: 1397: 1395: 1394: 1363: 1361: 1360: 1355: 1343: 1341: 1340: 1335: 1311: 1309: 1308: 1303: 1291: 1289: 1288: 1285:{\displaystyle } 1283: 1265: 1263: 1262: 1257: 1245: 1243: 1242: 1237: 1225: 1223: 1222: 1217: 1205: 1203: 1202: 1199:{\displaystyle } 1197: 1179: 1177: 1176: 1171: 1169: 1168: 1152: 1150: 1149: 1144: 1123:product topology 1120: 1118: 1117: 1112: 1110: 1109: 1093: 1091: 1090: 1085: 1065: 1063: 1062: 1057: 1045: 1043: 1042: 1037: 1025: 1023: 1022: 1017: 999: 997: 996: 991: 979: 977: 976: 971: 936: 934: 933: 928: 916: 914: 913: 908: 872: 870: 869: 864: 847: 846: 822: 821: 809: 808: 789: 787: 786: 781: 769: 767: 766: 761: 749: 747: 746: 741: 730: 729: 705: 704: 692: 691: 673:. Equivalently, 672: 670: 669: 664: 648: 646: 645: 640: 595: 593: 592: 587: 569: 567: 566: 563:{\displaystyle } 561: 543: 541: 540: 535: 523: 521: 520: 515: 503: 501: 500: 495: 483: 481: 480: 475: 451: 449: 448: 443: 425: 423: 422: 417: 406:also belongs to 405: 403: 402: 397: 392: 391: 367: 366: 354: 353: 334: 332: 331: 326: 302: 300: 299: 294: 282: 280: 279: 274: 262: 260: 259: 254: 249: 248: 224: 223: 211: 210: 191: 189: 188: 183: 181: 180: 161: 159: 158: 153: 141: 139: 138: 133: 131: 130: 111: 109: 108: 103: 75:such that every 74: 72: 71: 66: 53:finite sequences 50: 48: 47: 42: 1966: 1965: 1961: 1960: 1959: 1957: 1956: 1955: 1931: 1930: 1911:156. Springer. 1896: 1876: 1830: 1829: 1815: 1814: 1802: 1798: 1784: 1783: 1772: 1766: 1762: 1748: 1747: 1727: 1724: 1723: 1698: 1695: 1694: 1668: 1665: 1664: 1641: 1637: 1619: 1615: 1610: 1607: 1606: 1586: 1582: 1570: 1566: 1564: 1561: 1560: 1531: 1527: 1515: 1511: 1499: 1495: 1486: 1482: 1473: 1469: 1460: 1456: 1451: 1448: 1447: 1431: 1428: 1427: 1411: 1408: 1407: 1387: 1383: 1369: 1366: 1365: 1349: 1346: 1345: 1323: 1320: 1319: 1297: 1294: 1293: 1271: 1268: 1267: 1251: 1248: 1247: 1231: 1228: 1227: 1211: 1208: 1207: 1185: 1182: 1181: 1180:is of the form 1164: 1160: 1158: 1155: 1154: 1138: 1135: 1134: 1105: 1101: 1099: 1096: 1095: 1079: 1076: 1075: 1072: 1051: 1048: 1047: 1031: 1028: 1027: 1026:if and only if 1005: 1002: 1001: 1000:are ordered by 985: 982: 981: 965: 962: 961: 954:minimal element 922: 919: 918: 902: 899: 898: 883: 836: 832: 817: 813: 804: 800: 795: 792: 791: 790:such that that 775: 772: 771: 755: 752: 751: 719: 715: 700: 696: 687: 683: 678: 675: 674: 658: 655: 654: 634: 631: 630: 627: 581: 578: 577: 570:and called the 549: 546: 545: 529: 526: 525: 509: 506: 505: 489: 486: 485: 469: 466: 465: 464:through a tree 458: 431: 428: 427: 411: 408: 407: 381: 377: 362: 358: 349: 345: 340: 337: 336: 308: 305: 304: 288: 285: 284: 268: 265: 264: 238: 234: 219: 215: 206: 202: 197: 194: 193: 192:, such that if 173: 169: 167: 164: 163: 147: 144: 143: 123: 119: 117: 114: 113: 97: 94: 93: 90: 85: 60: 57: 56: 55:of elements of 36: 33: 32: 21: 12: 11: 5: 1964: 1954: 1953: 1948: 1943: 1929: 1928: 1895: 1892: 1891: 1890: 1875: 1872: 1871: 1870: 1858: 1855: 1852: 1849: 1846: 1843: 1837: 1834: 1828: 1822: 1819: 1813: 1810: 1805: 1801: 1797: 1791: 1788: 1782: 1779: 1775: 1769: 1765: 1761: 1755: 1752: 1746: 1743: 1740: 1737: 1734: 1731: 1708: 1705: 1702: 1678: 1675: 1672: 1652: 1647: 1644: 1640: 1636: 1633: 1630: 1625: 1622: 1618: 1614: 1592: 1589: 1585: 1581: 1576: 1573: 1569: 1548: 1543: 1540: 1537: 1534: 1530: 1526: 1521: 1518: 1514: 1510: 1507: 1502: 1498: 1494: 1489: 1485: 1481: 1476: 1472: 1468: 1463: 1459: 1455: 1435: 1415: 1393: 1390: 1386: 1382: 1379: 1376: 1373: 1353: 1333: 1330: 1327: 1301: 1292:of every tree 1281: 1278: 1275: 1255: 1235: 1226:. Namely, let 1215: 1195: 1192: 1189: 1167: 1163: 1142: 1131:discrete space 1108: 1104: 1083: 1071: 1068: 1055: 1035: 1015: 1012: 1009: 989: 969: 926: 906: 895:directed graph 882: 879: 862: 859: 856: 853: 850: 845: 842: 839: 835: 831: 828: 825: 820: 816: 812: 807: 803: 799: 779: 759: 739: 736: 733: 728: 725: 722: 718: 714: 711: 708: 703: 699: 695: 690: 686: 682: 662: 638: 626: 625:Terminal nodes 623: 617:, a tree on a 585: 559: 556: 553: 533: 513: 493: 473: 457: 454: 441: 438: 435: 415: 395: 390: 387: 384: 380: 376: 373: 370: 365: 361: 357: 352: 348: 344: 324: 321: 318: 315: 312: 292: 272: 252: 247: 244: 241: 237: 233: 230: 227: 222: 218: 214: 209: 205: 201: 179: 176: 172: 151: 129: 126: 122: 101: 89: 86: 84: 81: 64: 40: 9: 6: 4: 3: 2: 1963: 1952: 1949: 1947: 1944: 1942: 1939: 1938: 1936: 1925: 1924:3-540-94374-9 1921: 1918: 1917:0-387-94374-9 1914: 1910: 1906: 1902: 1898: 1897: 1889: 1885: 1881: 1878: 1877: 1850: 1844: 1832: 1826: 1817: 1803: 1799: 1795: 1786: 1767: 1763: 1759: 1750: 1741: 1735: 1729: 1722: 1721: 1720: 1703: 1692: 1673: 1645: 1642: 1638: 1631: 1623: 1620: 1616: 1590: 1587: 1583: 1579: 1574: 1571: 1567: 1541: 1538: 1535: 1532: 1528: 1524: 1519: 1516: 1512: 1508: 1505: 1500: 1496: 1492: 1487: 1483: 1479: 1474: 1470: 1466: 1461: 1457: 1433: 1413: 1391: 1388: 1380: 1377: 1374: 1351: 1331: 1328: 1325: 1318: 1313: 1299: 1276: 1253: 1233: 1213: 1190: 1165: 1161: 1140: 1132: 1128: 1124: 1106: 1102: 1081: 1067: 1053: 1033: 1013: 1010: 1007: 987: 967: 959: 955: 951: 947: 943: 938: 924: 904: 896: 892: 888: 878: 876: 860: 857: 851: 848: 843: 840: 837: 833: 829: 826: 823: 818: 814: 810: 805: 801: 777: 757: 737: 734: 726: 723: 720: 716: 712: 709: 706: 701: 697: 693: 688: 684: 660: 652: 651:terminal node 636: 622: 620: 616: 615:Kőnig's lemma 612: 611: 606: 605: 604: 597: 583: 575: 574: 554: 531: 511: 491: 471: 463: 453: 439: 436: 433: 413: 388: 385: 382: 378: 374: 371: 368: 363: 359: 355: 350: 346: 322: 319: 316: 313: 310: 290: 270: 245: 242: 239: 235: 231: 228: 225: 220: 216: 212: 207: 203: 177: 174: 170: 149: 127: 124: 120: 99: 80: 78: 62: 54: 38: 30: 26: 19: 1904: 1690: 1314: 1126: 1094:(denoted as 1073: 958:well-ordered 942:order theory 939: 887:graph theory 884: 874: 650: 649:is called a 628: 609: 608: 601: 600: 598: 576:of the tree 572: 571: 461: 459: 91: 28: 22: 1951:Determinacy 1125:, treating 891:rooted tree 603:wellfounded 544:is denoted 112:is denoted 83:Definitions 1935:Categories 1894:References 1884:set theory 1880:Laver tree 1691:projection 619:finite set 610:illfounded 1845:∈ 1842:⟩ 1836:→ 1821:→ 1812:⟨ 1804:ω 1796:∈ 1790:→ 1781:∃ 1768:ω 1760:∈ 1754:→ 1646:ω 1632:× 1624:ω 1591:ω 1580:× 1575:ω 1547:⟩ 1506:… 1454:⟨ 1392:ω 1378:× 1329:× 1166:ω 1107:ω 952:with one 858:∈ 855:⟩ 841:− 827:… 798:⟨ 735:∈ 732:⟩ 724:− 710:… 681:⟨ 394:⟩ 386:− 372:… 343:⟨ 314:≤ 303:, and if 251:⟩ 243:− 229:… 200:⟨ 178:ω 128:ω 31:on a set 1903:(1995). 1874:See also 1070:Topology 1888:forcing 1446:(e.g., 1922:  1915:  875:pruned 613:. By 462:branch 77:prefix 1663:with 1129:as a 948:is a 893:is a 88:Trees 1920:ISBN 1913:ISBN 1643:< 1621:< 1588:< 1572:< 1389:< 1011:< 980:and 889:, a 573:body 320:< 175:< 125:< 29:tree 27:, a 1693:of 1153:of 940:In 885:In 770:of 283:in 162:of 23:In 1937:: 1907:. 1719:, 877:. 596:. 460:A 1926:. 1869:. 1857:} 1854:] 1851:T 1848:[ 1833:y 1827:, 1818:x 1809:) 1800:Y 1787:y 1778:( 1774:| 1764:X 1751:x 1745:{ 1742:= 1739:] 1736:T 1733:[ 1730:p 1707:] 1704:T 1701:[ 1677:] 1674:T 1671:[ 1651:] 1639:Y 1635:[ 1629:] 1617:X 1613:[ 1584:Y 1568:X 1542:1 1539:+ 1536:m 1533:2 1529:y 1525:, 1520:m 1517:2 1513:x 1509:, 1501:3 1497:y 1493:, 1488:2 1484:x 1480:, 1475:1 1471:y 1467:, 1462:0 1458:x 1434:Y 1414:X 1385:) 1381:Y 1375:X 1372:( 1352:T 1332:Y 1326:X 1300:T 1280:] 1277:T 1274:[ 1254:C 1234:T 1214:T 1194:] 1191:T 1188:[ 1162:X 1141:C 1127:X 1103:X 1082:X 1054:U 1034:T 1014:U 1008:T 988:U 968:T 925:T 905:T 861:T 852:x 849:, 844:1 838:n 834:x 830:, 824:, 819:1 815:x 811:, 806:0 802:x 778:X 758:x 738:T 727:1 721:n 717:x 713:, 707:, 702:1 698:x 694:, 689:0 685:x 661:T 637:T 584:T 558:] 555:T 552:[ 532:T 512:T 492:X 472:T 440:0 437:= 434:m 414:T 389:1 383:m 379:x 375:, 369:, 364:1 360:x 356:, 351:0 347:x 323:n 317:m 311:0 291:T 271:n 246:1 240:n 236:x 232:, 226:, 221:1 217:x 213:, 208:0 204:x 171:X 150:T 121:X 100:X 63:X 39:X 20:.

Index

Tree (set theory)
descriptive set theory
finite sequences
prefix
wellfounded
Kőnig's lemma
finite set
graph theory
rooted tree
directed graph
order theory
order-theoretic tree
partially ordered set
minimal element
well-ordered
product topology
discrete space
Cartesian products
Laver tree
set theory
forcing
Kechris, Alexander S.
Graduate Texts in Mathematics
ISBN
0-387-94374-9
ISBN
3-540-94374-9
Categories
Descriptive set theory
Trees (set theory)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.