Knowledge

Trans-lunar injection

Source đź“ť

314: 270: 146: 114: 220: 20: 1746: 942: 420:, at which point the spacecraft was traveling at approximately 10.4 km/s (34150 ft/s) relative to the Earth. The Apollo 8 TLI was spectacularly observed from the Hawaiian Islands in the pre-dawn sky south of Waikiki, photographed and reported in the papers the next day. In 1969, the Apollo 10 pre-dawn TLI was visible from 136:
missions, since the spacecraft will return to Earth "for free" after the initial TLI burn. The Apollos 8, 10 and 11 began on a free return trajectory, while the later missions used a functionally similar hybrid trajectory, in which a midway course correction is required to reach the Moon.
94:
near to the radius of the Moon's orbit. The TLI burn is sized and timed to precisely target the Moon as it revolves around the Earth. The burn is timed so that the spacecraft nears apogee as the Moon approaches. Finally, the spacecraft enters the Moon's
466:
became the first commercial satellite to reach the Moon's sphere of influence when, after a launch failure, it swung by the Moon twice as a low delta-v way to reach its desired geostationary orbit. It passed within 6200 km of the Moon's surface.
190:
from many bodies. Gravitation from Earth and Moon dominate the spacecraft's acceleration, and since the spacecraft's own mass is negligible in comparison, the spacecraft's trajectory may be better approximated as a
361:
on January 2, 1959 which was designed to impact the Moon. The burn however didn't go exactly as planned and the spacecraft missed the Moon by more than three times its radius and was sent into a heliocentric orbit.
478:(GTO), it used solar powered ion engines for propulsion. As a result of its extremely low delta-v TLI maneuver, the spacecraft took over 13 months to reach a lunar orbit and 17 months to reach its desired orbit. 203:
More detailed simulation involves modeling the Moon's true orbital motion; gravitation from other astronomical bodies; the non-uniformity of the Earth's and Moon's
366:
performed the same maneuver more accurately on September 12, 1959 and crashed into the Moon two days later. The Soviets repeated this success with 22 more
830: 459:
spacecraft, designed to showcase lightweight technologies, used a 3 week long TLI with two intermediate Earth flybys before entering a lunar orbit.
428:. It was described as resembling car headlights coming over a hill in fog, with the spacecraft appearing as a bright comet with a greenish tinge. 929: 950: 526: 170:. The spacecraft is assumed to accelerate only under classical 2 body dynamics, being dominated by the Earth until it reaches the Moon's 90:. As the spacecraft begins coasting on the lunar transfer arc, its trajectory approximates an elliptical orbit about the Earth with an 857:"The TLI firing was begun at PST while the craft was over Hawaii and it was reported there that the burn was visible from the ground." 711: 1623: 211:; and so on. Propagating spacecraft motion in such a model is numerically intensive, but necessary for true mission accuracy. 889: 1683: 174:. Motion in a patched-conic system is deterministic and simple to calculate, lending itself for rough mission design and " 171: 166:, which may be approximated in various ways. The simplest way to explore lunar transfer trajectories is by the method of 96: 474:
technology demonstrator satellite became the first European satellite to orbit the Moon. After being launched into a
313: 1785: 1678: 1558: 977: 872: 385:, on April 23, 1962. Another 27 US missions to the Moon were launched from 1962 to 1973, including five successful 175: 485:
spacecraft in a lunar orbit. It used multiple burns to slowly raise its apogee to reach the vicinity of the Moon.
1643: 1397: 1775: 1716: 1355: 1346: 1083: 809: 512:
satellites used a low delta-v route to the Moon, passing by the Sun-Earth L1 point, and taking over 3 months.
269: 192: 580: 1663: 1133: 877: 593: 475: 443: 324: 1608: 838: 740: 561: 502: 195:. This model is a closer approximation but lacks an analytic solution, requiring numerical calculation. 1780: 1588: 1415: 1726: 1711: 1236: 416:
lasted approximately 350 seconds, providing 3.05 to 3.25 km/s (10,000 to 10,600 ft/s) of
608: 381:, on January 26, 1962, which failed to reach the Moon. This was followed by the first US success, 1790: 1721: 1029: 455: 63:
from sources outside the Earth-Moon system, a fast Hohmann transfer is typically more practical.
881: 852: 644: 1770: 1583: 1185: 1105: 1093: 122: 108: 48: 1706: 1648: 1406: 1283: 1251: 1221: 1180: 1165: 1044: 923: 758: 536: 390: 150: 1731: 1553: 1337: 1226: 1195: 1123: 1098: 1073: 1034: 1015: 970: 776: 541: 492:
into a GTO and, like the Chinese spacecraft, increasing its apogee over a number of burns.
126: 719: 626: 129:
around behind the Moon and return to Earth without need for further propulsive maneuvers.
8: 1593: 1388: 1128: 531: 401: 204: 187: 60: 52: 1266: 1155: 1053: 436: 56: 145: 1633: 1531: 1461: 1216: 1170: 1088: 911: 885: 661: 133: 113: 946: 678: 1613: 1545: 1309: 1271: 1145: 1115: 1068: 694: 386: 87: 75: 36: 219: 1653: 1246: 1150: 1140: 1039: 963: 83: 82:
engine, increases the spacecraft's velocity, changing its orbit from a circular
1749: 1701: 1693: 1688: 1573: 1568: 1499: 1479: 1470: 1063: 1049: 1025: 1020: 995: 394: 367: 167: 163: 1764: 1603: 1598: 1517: 1160: 1078: 521: 489: 306: 67: 582:
Trajectories in the Earth-Moon Space with Symmetrical Free Return Properties
1668: 1578: 1452: 1435: 1293: 1190: 1058: 482: 371: 354: 912:"A Review of Technical Requirements for Lunar Structures – Present Status" 1673: 1508: 1278: 1258: 1175: 450:
TLI method with a 6-month transfer time (compared to 3 days for Apollo).
66:
A spacecraft performs TLI to begin a lunar transfer from a low circular
19: 1241: 955: 413: 208: 40: 23:
Lunar transfer, perspective view. TLI occurs at the red dot near Earth.
909: 1658: 1010: 497: 463: 439: 425: 421: 400:
For the Apollo lunar missions, TLI was performed by the restartable
162:
TLI targeting and lunar transfers are a specific application of the
409: 382: 378: 1563: 471: 447: 417: 363: 358: 79: 1368: 987: 509: 432: 405: 377:
The United States launched its first lunar impactor attempt,
262: 234: 117:
Sketch of a circumlunar free return trajectory (not to scale)
91: 71: 834: 816: 780: 715: 589: 565: 481:
China launched its first Moon mission in 2007, placing the
248: 44: 446:
in a lunar orbit. Following that, it explored a novel low
186:
More realistically, however, the spacecraft is subject to
121:
In some cases it is possible to design a TLI to target a
699:
Theory of Orbits, The Restricted Problem of Three Bodies
181: 132:
Such free return trajectories add a margin of safety to
59:
probe. For short duration missions without significant
505:, used this maneuver in 2019, but crashed on the Moon. 374:
missions travelling to the Moon between 1959 and 1976.
865: 863: 397:
missions, which landed the first humans on the Moon.
869: 860: 853:"Independent Star News, Sunday, December 22, 1968" 47:. Typical lunar transfer trajectories approximate 910:Alexander M. Jablonski1a; Kelly A. Ogden (2006). 1762: 153:stack performing the trans-lunar injection burn 55:have also been used in some cases, as with the 804: 802: 800: 798: 796: 794: 792: 790: 588:. Technical Note D-1833. Huntsville, Alabama: 16:Propulsive maneuver used to arrive at the Moon 971: 951:National Aeronautics and Space Administration 527:Comparison of super heavy lift launch systems 353:The first space probe to attempt TLI was the 435:launched its first lunar mission, using the 928:: CS1 maint: numeric names: authors list ( 787: 685:, Paris, Gauthier-Villars et fils, 1892-99. 683:Les MĂ©thodes Nouvelles de MĂ©canique CĂ©leste 578: 1745: 978: 964: 442:to fly by the Moon and place the Hagoromo 606: 985: 701:, Yale University, Academic Press, 1967. 312: 268: 218: 144: 112: 18: 870:French, Francis; Colin Burgess (2007). 1763: 1624:Transposition, docking, and extraction 905: 903: 901: 741:"NASA - NSSDCA - Spacecraft - Details" 488:India followed in 2008, launching the 959: 607:Mansfield, Cheryl L. (May 18, 2017). 182:Restricted circular three body (RC3B) 99:, making a hyperbolic lunar swingby. 898: 198: 13: 949:from websites or documents of the 78:, usually performed by a chemical 14: 1802: 1684:Kepler's laws of planetary motion 157: 1744: 1679:Interplanetary Transport Network 1559:Collision avoidance (spacecraft) 945: This article incorporates 940: 916:Journal of Aerospace Engineering 1644:Astronomical coordinate systems 1398:Longitude of the ascending node 845: 823: 769: 751: 733: 579:Schwaninger, Arthur J. (1963). 1717:Retrograde and prograde motion 704: 688: 672: 654: 637: 619: 600: 572: 554: 393:surveillance probes, and nine 125:, so that the spacecraft will 102: 1: 759:"Soviet Missions to the Moon" 547: 412:rocket. This particular TLI 193:restricted three-body problem 1664:Equatorial coordinate system 878:University of Nebraska Press 594:Marshall Space Flight Center 476:geostationary transfer orbit 325:Lunar Reconnaissance Orbiter 7: 515: 503:Israel Aerospace Industries 317:Animation of LRO trajectory 149:Artist's concept of NASA's 140: 10: 1807: 1416:Longitude of the periapsis 273:Animation of Chandrayaan-2 214: 106: 39:, which is used to send a 1740: 1727:Specific angular momentum 1632: 1544: 1488: 1424: 1377: 1317: 1308: 1204: 1114: 1003: 994: 873:In the Shadow of the Moon 209:solar radiation pressure 1786:Exploration of the Moon 1722:Specific orbital energy 831:"Apollo By the Numbers" 1134:Geostationary transfer 947:public domain material 662:"Launch Windows Essay" 350: 310: 266: 154: 123:free return trajectory 118: 109:Free return trajectory 24: 1776:Spacecraft propulsion 1707:Orbital state vectors 1649:Characteristic energy 1619:Trans-lunar injection 1407:Argument of periapsis 1084:Prograde / Retrograde 1045:Hyperbolic trajectory 650:(Report). p. 93. 537:Trans-Earth injection 316: 272: 222: 148: 116: 29:trans-lunar injection 22: 1554:Bi-elliptic transfer 1074:Parabolic trajectory 542:Trans-Mars injection 223:Animation of GRAIL-A 188:gravitational forces 176:back of the envelope 53:low-energy transfers 1594:Low-energy transfer 855:. 22 December 1968. 763:nssdc.gsfc.nasa.gov 745:nssdc.gsfc.nasa.gov 532:Low energy transfer 408:third stage of the 389:soft landers, five 172:sphere of influence 97:sphere of influence 37:propulsive maneuver 1589:Inclination change 1237:Distant retrograde 418:change in velocity 351: 311: 267: 155: 119: 25: 1781:Orbital maneuvers 1758: 1757: 1732:Two-line elements 1540: 1539: 1462:Eccentric anomaly 1304: 1303: 1171:Orbit of the Moon 1030:Highly elliptical 891:978-0-8032-1128-5 508:In 2011 the NASA 134:human spaceflight 74:. The large TLI 49:Hohmann transfers 1798: 1748: 1747: 1689:Lagrangian point 1584:Hohmann transfer 1529: 1515: 1506: 1497: 1477: 1468: 1459: 1450: 1446: 1442: 1433: 1413: 1404: 1395: 1386: 1366: 1362: 1353: 1344: 1335: 1315: 1314: 1284:Heliosynchronous 1233:Lagrange points 1186:Transatmospheric 1001: 1000: 980: 973: 966: 957: 956: 944: 943: 934: 933: 927: 919: 907: 896: 895: 867: 858: 856: 849: 843: 842: 837:. Archived from 827: 821: 820: 814: 806: 785: 784: 773: 767: 766: 755: 749: 748: 737: 731: 730: 728: 727: 718:. Archived from 708: 702: 695:Victor Szebehely 692: 686: 676: 670: 669: 666:history.nasa.gov 658: 652: 651: 649: 645:Ways to the Moon 641: 635: 634: 631:history.nasa.gov 623: 617: 616: 604: 598: 597: 587: 576: 570: 569: 558: 495:The soft lander 349: 347: 338: 336: 327: 322: 309: 304: 295: 293: 284: 282: 276: 265: 260: 251: 246: 237: 232: 226: 199:Further accuracy 1806: 1805: 1801: 1800: 1799: 1797: 1796: 1795: 1761: 1760: 1759: 1754: 1736: 1654:Escape velocity 1635: 1628: 1609:Rocket equation 1536: 1528: 1522: 1513: 1504: 1495: 1484: 1475: 1466: 1457: 1448: 1444: 1440: 1431: 1420: 1411: 1402: 1393: 1384: 1373: 1364: 1360: 1356:Semi-minor axis 1351: 1347:Semi-major axis 1342: 1333: 1327: 1300: 1222:Areosynchronous 1206: 1200: 1181:Sun-synchronous 1166:Near-equatorial 1110: 990: 984: 941: 938: 937: 921: 920: 908: 899: 892: 868: 861: 851: 850: 846: 829: 828: 824: 812: 808: 807: 788: 775: 774: 770: 757: 756: 752: 739: 738: 734: 725: 723: 710: 709: 705: 693: 689: 677: 673: 660: 659: 655: 647: 643: 642: 638: 625: 624: 620: 605: 601: 585: 577: 573: 560: 559: 555: 550: 518: 370:missions and 5 345: 344: 334: 333: 320: 319: 318: 302: 301: 291: 290: 280: 279: 278: 274: 258: 257: 244: 243: 230: 229: 228: 224: 217: 201: 184: 160: 143: 111: 105: 88:eccentric orbit 84:low Earth orbit 17: 12: 11: 5: 1804: 1794: 1793: 1791:Apollo program 1788: 1783: 1778: 1773: 1756: 1755: 1753: 1752: 1750:List of orbits 1741: 1738: 1737: 1735: 1734: 1729: 1724: 1719: 1714: 1709: 1704: 1702:Orbit equation 1699: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1651: 1646: 1640: 1638: 1630: 1629: 1627: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1574:Gravity assist 1571: 1569:Delta-v budget 1566: 1561: 1556: 1550: 1548: 1542: 1541: 1538: 1537: 1535: 1534: 1526: 1520: 1511: 1502: 1500:Orbital period 1492: 1490: 1486: 1485: 1483: 1482: 1480:True longitude 1473: 1471:Mean longitude 1464: 1455: 1438: 1428: 1426: 1422: 1421: 1419: 1418: 1409: 1400: 1391: 1381: 1379: 1375: 1374: 1372: 1371: 1358: 1349: 1340: 1330: 1328: 1326: 1325: 1322: 1318: 1312: 1306: 1305: 1302: 1301: 1299: 1298: 1297: 1296: 1288: 1287: 1286: 1281: 1276: 1275: 1274: 1261: 1256: 1255: 1254: 1249: 1244: 1239: 1231: 1230: 1229: 1227:Areostationary 1224: 1219: 1210: 1208: 1202: 1201: 1199: 1198: 1196:Very low Earth 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1137: 1136: 1131: 1124:Geosynchronous 1120: 1118: 1112: 1111: 1109: 1108: 1106:Transfer orbit 1103: 1102: 1101: 1096: 1086: 1081: 1076: 1071: 1066: 1064:Lagrange point 1061: 1056: 1047: 1042: 1037: 1032: 1023: 1018: 1013: 1007: 1005: 998: 992: 991: 986:Gravitational 983: 982: 975: 968: 960: 936: 935: 897: 890: 859: 844: 841:on 2004-11-18. 822: 810:"Beyond Earth" 786: 768: 750: 732: 703: 687: 679:Henri PoincarĂ© 671: 653: 636: 618: 599: 571: 552: 551: 549: 546: 545: 544: 539: 534: 529: 524: 517: 514: 444:microsatellite 404:engine in the 216: 213: 200: 197: 183: 180: 168:patched conics 164:n body problem 159: 158:Patched conics 156: 142: 139: 107:Main article: 104: 101: 15: 9: 6: 4: 3: 2: 1803: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1771:Astrodynamics 1769: 1768: 1766: 1751: 1743: 1742: 1739: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1697:-body problem 1696: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1641: 1639: 1637: 1631: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1599:Oberth effect 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1551: 1549: 1547: 1543: 1533: 1525: 1521: 1519: 1518:Orbital speed 1512: 1510: 1503: 1501: 1494: 1493: 1491: 1487: 1481: 1474: 1472: 1465: 1463: 1456: 1454: 1439: 1437: 1430: 1429: 1427: 1423: 1417: 1410: 1408: 1401: 1399: 1392: 1390: 1383: 1382: 1380: 1376: 1370: 1359: 1357: 1350: 1348: 1341: 1339: 1332: 1331: 1329: 1323: 1320: 1319: 1316: 1313: 1311: 1307: 1295: 1292: 1291: 1289: 1285: 1282: 1280: 1277: 1273: 1272:Earth's orbit 1270: 1269: 1268: 1265: 1264: 1262: 1260: 1257: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1232: 1228: 1225: 1223: 1220: 1218: 1215: 1214: 1212: 1211: 1209: 1203: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1135: 1132: 1130: 1129:Geostationary 1127: 1126: 1125: 1122: 1121: 1119: 1117: 1113: 1107: 1104: 1100: 1097: 1095: 1092: 1091: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1008: 1006: 1002: 999: 997: 993: 989: 981: 976: 974: 969: 967: 962: 961: 958: 954: 952: 948: 931: 925: 917: 913: 906: 904: 902: 893: 887: 883: 879: 875: 874: 866: 864: 854: 848: 840: 836: 832: 826: 818: 811: 805: 803: 801: 799: 797: 795: 793: 791: 782: 778: 772: 764: 760: 754: 746: 742: 736: 722:on 2020-09-05 721: 717: 713: 707: 700: 696: 691: 684: 680: 675: 667: 663: 657: 646: 640: 632: 628: 622: 614: 610: 603: 595: 591: 584: 583: 575: 567: 563: 557: 553: 543: 540: 538: 535: 533: 530: 528: 525: 523: 522:Astrodynamics 520: 519: 513: 511: 506: 504: 500: 499: 493: 491: 490:Chandrayaan-1 486: 484: 479: 477: 473: 470:The 2003 ESA 468: 465: 460: 458: 457: 451: 449: 445: 441: 438: 434: 429: 427: 423: 419: 415: 411: 407: 403: 398: 396: 392: 391:Lunar Orbiter 388: 384: 380: 375: 373: 369: 365: 360: 356: 342: 331: 326: 315: 308: 307:Chandrayaan-2 299: 288: 271: 264: 255: 250: 241: 236: 221: 212: 210: 206: 196: 194: 189: 179: 177: 173: 169: 165: 152: 151:Constellation 147: 138: 135: 130: 128: 124: 115: 110: 100: 98: 93: 89: 85: 81: 77: 73: 69: 68:parking orbit 64: 62: 61:perturbations 58: 54: 50: 46: 42: 38: 34: 30: 21: 1712:Perturbation 1694: 1669:Ground track 1618: 1579:Gravity turn 1530:   1523: 1516:   1507:   1498:   1478:   1469:   1460:   1453:True anomaly 1451:   1436:Mean anomaly 1434:   1414:   1405:   1396:   1387:   1367:   1354:   1345:   1338:Eccentricity 1336:   1294:Lunar cycler 1267:Heliocentric 1207:other points 1156:Medium Earth 1054:Non-inclined 939: 924:cite journal 915: 871: 847: 839:the original 825: 771: 762: 753: 744: 735: 724:. Retrieved 720:the original 706: 698: 690: 682: 674: 665: 656: 639: 630: 621: 612: 602: 581: 574: 556: 507: 496: 494: 487: 480: 469: 461: 454: 453:The 1994 US 452: 430: 399: 376: 355:Soviet Union 352: 340: 329: 297: 286: 253: 239: 207:; including 202: 185: 161: 131: 120: 86:to a highly 65: 32: 28: 26: 1674:Hill sphere 1509:Mean motion 1389:Inclination 1378:Orientation 1279:Mars cycler 1217:Areocentric 1089:Synchronous 627:"APOLLO 12" 609:"Apollo 10" 337: Earth 283: Earth 178:" studies. 103:Free return 51:, although 1765:Categories 1614:Rendezvous 1310:Parameters 1146:High Earth 1116:Geocentric 1069:Osculating 1026:Elliptical 880:. p.  777:"Ranger 4" 726:2019-06-10 548:References 456:Clementine 348: Moon 294: Moon 277:trajectory 227:trajectory 41:spacecraft 1659:Ephemeris 1636:mechanics 1546:Maneuvers 1489:Variation 1252:Libration 1247:Lissajous 1151:Low Earth 1141:Graveyard 1040:Horseshoe 712:"Luna 01" 501:from the 498:Beresheet 483:Chang'e 1 464:Asiasat-3 440:satellite 426:Australia 422:Cloncurry 1425:Position 1050:Inclined 1021:Circular 516:See also 462:In 1997 431:In 1990 410:Saturn V 387:Surveyor 383:Ranger 4 379:Ranger 3 141:Modeling 1634:Orbital 1604:Phasing 1564:Delta-v 1369:Apsides 1363:,  1161:Molniya 1079:Parking 1016:Capture 1004:General 562:"Hiten" 472:SMART-1 448:delta-v 235:GRAIL-A 215:History 205:gravity 70:around 43:to the 35:) is a 1290:Other 1191:Tundra 1059:Kepler 1035:Escape 988:orbits 888:  395:Apollo 364:Luna 2 359:Luna 1 346:  341:· 339:  335:  330:· 328:  323:  321:  305:  303:  298:· 296:  292:  287:· 285:  281:  275:'s 261:  259:  254:· 252:  247:  245:  240:· 238:  233:  231:  225:'s 92:apogee 80:rocket 1532:Epoch 1321:Shape 1259:Lunar 1213:Mars 1205:About 1176:Polar 996:Types 813:(PDF) 648:(PDF) 586:(PDF) 510:GRAIL 437:Hiten 433:Japan 406:S-IVB 343: 332: 300: 289: 263:Earth 256: 242: 72:Earth 57:Hiten 1324:Size 1263:Sun 1242:Halo 1094:semi 930:link 886:ISBN 835:NASA 817:NASA 781:NASA 716:NASA 613:NASA 590:NASA 566:NASA 414:burn 372:Zond 368:Luna 249:Moon 127:loop 76:burn 45:Moon 1099:sub 1011:Box 882:372 402:J-2 357:'s 33:TLI 1767:: 1447:, 1443:, 1052:/ 1028:/ 953:. 926:}} 922:{{ 914:. 900:^ 884:. 876:. 862:^ 833:. 815:. 789:^ 779:. 761:. 743:. 714:. 697:, 681:, 664:. 629:. 611:. 592:/ 564:. 424:, 27:A 1695:n 1527:0 1524:t 1514:v 1505:n 1496:T 1476:l 1467:L 1458:E 1449:f 1445:θ 1441:ν 1432:M 1412:Ď– 1403:ω 1394:Ω 1385:i 1365:q 1361:Q 1352:b 1343:a 1334:e 979:e 972:t 965:v 932:) 918:. 894:. 819:. 783:. 765:. 747:. 729:. 668:. 633:. 615:. 596:. 568:. 31:(

Index


propulsive maneuver
spacecraft
Moon
Hohmann transfers
low-energy transfers
Hiten
perturbations
parking orbit
Earth
burn
rocket
low Earth orbit
eccentric orbit
apogee
sphere of influence
Free return trajectory

free return trajectory
loop
human spaceflight

Constellation
n body problem
patched conics
sphere of influence
back of the envelope
gravitational forces
restricted three-body problem
gravity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑