Knowledge

Toshikazu Kawasaki

Source đź“ť

57: 52:
who is known for his geometrically innovative models. He is particularly famous for his series of fourfold symmetry "roses", all based on a twisting maneuver that allows the petals to seem to curl out from the center of the flower. Kawasaki also teaches mathematics at Sasebo Technical Junior
72:
and then collapsing it to find a finished form, usually a geometric shape such as a cube. He also discovered and proved that with any given flat point in an origami model, the sum of alternating angles is always equal to 180 degrees, a result now known as
155: 65: 112: 68:, which allows the folder to end up with each side of the paper displayed in equal amounts. It consists of building a mirror-symmetrical 148: 141: 390: 411: 311: 522: 452: 249: 218: 397: 164: 49: 568: 447: 563: 482: 418: 188: 324: 558: 208: 193: 74: 553: 368: 198: 178: 8: 335: 316: 320: 295: 404: 275: 108: 94: 517: 477: 442: 373: 345: 330: 213: 86: 457: 285: 270: 42: 36: 244: 527: 502: 492: 472: 467: 350: 183: 133: 69: 487: 547: 280: 128: 532: 462: 234: 512: 203: 507: 340: 265: 425: 56: 239: 45: 290: 64:Kawasaki was the first to develop the technique of 129:Instructions for folding Toshikazu Kawasaki's Rose 545: 163: 30: 24: 149: 156: 142: 55: 546: 137: 391:Geometric Exercises in Paper Folding 412:A History of Folding in Mathematics 13: 14: 580: 122: 312:Alexandrov's uniqueness theorem 91:, American Math Society, (2015) 80: 1: 250:Regular paperfolding sequence 398:Geometric Folding Algorithms 165:Mathematics of paper folding 103: 35:, born November 26, 1955 in 7: 117:Origami for the Connoisseur 31: 10: 585: 448:Margherita Piazzola Beloch 96:The Greatest Dream Origami 435: 382: 361: 304: 258: 227: 219:Yoshizawa–Randlett system 171: 25: 419:Origami Polyhedra Design 209:Napkin folding problem 119:. Japan Publications. 61: 99:, Asahi Press, (2009) 59: 369:Fold-and-cut theorem 325:Steffen's polyhedron 189:Huzita–Hatori axioms 179:Big-little-big lemma 16:Japanese paperfolder 317:Flexible polyhedron 569:People from Kurume 498:Toshikazu Kawasaki 321:Bricard octahedron 296:Yoshimura buckling 194:Kawasaki's theorem 75:Kawasaki's theorem 62: 32:Kawasaki Toshikazu 20:Toshikazu Kawasaki 541: 540: 405:Geometric Origami 276:Paper bag problem 199:Maekawa's theorem 109:Kunihiko Kasahara 60:Kawasaki new rose 576: 478:David A. Huffman 443:Roger C. Alperin 346:Source unfolding 214:Pureland origami 158: 151: 144: 135: 134: 66:iso-area folding 50:origami theorist 40: 34: 28: 27: 584: 583: 579: 578: 577: 575: 574: 573: 564:Origami artists 544: 543: 542: 537: 523:Joseph O'Rourke 458:Robert Connelly 431: 378: 357: 300: 286:Schwarz lantern 271:Modular origami 254: 223: 167: 162: 125: 113:Toshie Takahama 106: 83: 37:Kurume, Fukuoka 22: 17: 12: 11: 5: 582: 572: 571: 566: 561: 556: 539: 538: 536: 535: 530: 528:Tomohiro Tachi 525: 520: 515: 510: 505: 503:Robert J. Lang 500: 495: 493:Humiaki Huzita 490: 485: 480: 475: 473:Rona Gurkewitz 470: 468:Martin Demaine 465: 460: 455: 450: 445: 439: 437: 433: 432: 430: 429: 422: 415: 408: 401: 394: 386: 384: 380: 379: 377: 376: 371: 365: 363: 359: 358: 356: 355: 354: 353: 351:Star unfolding 348: 343: 338: 328: 314: 308: 306: 302: 301: 299: 298: 293: 288: 283: 278: 273: 268: 262: 260: 256: 255: 253: 252: 247: 242: 237: 231: 229: 225: 224: 222: 221: 216: 211: 206: 201: 196: 191: 186: 184:Crease pattern 181: 175: 173: 169: 168: 161: 160: 153: 146: 138: 132: 131: 124: 123:External links 121: 105: 102: 101: 100: 92: 82: 79: 70:crease pattern 15: 9: 6: 4: 3: 2: 581: 570: 567: 565: 562: 560: 559:Living people 557: 555: 552: 551: 549: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 440: 438: 434: 428: 427: 423: 421: 420: 416: 414: 413: 409: 407: 406: 402: 400: 399: 395: 393: 392: 388: 387: 385: 381: 375: 374:Lill's method 372: 370: 367: 366: 364: 362:Miscellaneous 360: 352: 349: 347: 344: 342: 339: 337: 334: 333: 332: 329: 326: 322: 318: 315: 313: 310: 309: 307: 303: 297: 294: 292: 289: 287: 284: 282: 281:Rigid origami 279: 277: 274: 272: 269: 267: 264: 263: 261: 259:3d structures 257: 251: 248: 246: 243: 241: 238: 236: 233: 232: 230: 228:Strip folding 226: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 176: 174: 170: 166: 159: 154: 152: 147: 145: 140: 139: 136: 130: 127: 126: 120: 118: 114: 110: 98: 97: 93: 90: 89: 85: 84: 78: 76: 71: 67: 58: 54: 51: 47: 44: 38: 33: 21: 533:Eve Torrence 497: 463:Erik Demaine 424: 417: 410: 403: 396: 389: 383:Publications 245:Möbius strip 235:Dragon curve 172:Flat folding 116: 107: 95: 87: 81:Publications 63: 19: 18: 554:1955 births 518:Kōryō Miura 513:Jun Maekawa 488:Kôdi Husimi 204:Map folding 46:paperfolder 548:Categories 508:Anna Lubiw 341:Common net 266:Miura fold 426:Origamics 305:Polyhedra 104:Resources 88:Origami^6 53:College. 483:Tom Hull 453:Yan Chen 336:Blooming 240:Flexagon 43:Japanese 436:People 291:Sonobe 41:is a 111:and 48:and 26:川崎敏和 331:Net 550:: 323:, 115:, 77:. 29:, 327:) 319:( 157:e 150:t 143:v 39:) 23:(

Index

Kurume, Fukuoka
Japanese
paperfolder
origami theorist

iso-area folding
crease pattern
Kawasaki's theorem
Origami^6
The Greatest Dream Origami
Kunihiko Kasahara
Toshie Takahama
Instructions for folding Toshikazu Kawasaki's Rose
v
t
e
Mathematics of paper folding
Big-little-big lemma
Crease pattern
Huzita–Hatori axioms
Kawasaki's theorem
Maekawa's theorem
Map folding
Napkin folding problem
Pureland origami
Yoshizawa–Randlett system
Dragon curve
Flexagon
Möbius strip
Regular paperfolding sequence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑