Knowledge

Topological vector space

Source đź“ť

504: 36310: 35595: 29897: 29890: 29874: 29867: 29858: 29851: 29837: 29830: 29823: 29816: 29809: 29802: 29795: 29788: 29781: 29774: 29767: 29760: 29753: 29746: 29701: 29577: 29530: 29523: 29516: 29509: 29502: 29495: 29488: 29481: 29439: 29424: 29417: 29402: 29389: 29382: 29375: 29368: 29249: 29242: 29221: 29203: 29196: 29189: 29182: 29083: 29076: 29055: 28985: 28924: 28917: 28896: 28826: 28765: 28758: 28667: 28639: 28604: 28597: 28576: 28441: 28434: 28413: 28352: 28273: 28266: 28225: 28174: 28132: 27937: 27904: 27897: 27888: 27881: 27874: 27867: 27860: 27853: 27832: 27809: 27802: 27666: 27181: 27174: 27116: 27109: 27102: 27095: 27088: 27081: 27074: 27067: 27025: 26937: 26928: 26778: 26743: 26729: 26694: 26599: 26564: 26557: 26515: 26249: 26242: 26221: 26212: 26205: 26198: 26191: 26184: 26177: 26170: 26163: 26156: 26149: 26142: 26135: 26114: 26107: 26093: 26035: 26028: 26007: 25998: 25991: 25984: 25977: 25970: 25963: 25956: 25949: 25942: 25935: 25928: 25921: 25734: 25713: 25704: 25697: 25662: 25655: 25641: 35115: 29920: 29911: 29904: 29883: 29844: 29710: 29690: 29675: 29668: 29661: 29638: 29631: 29624: 29617: 29610: 29603: 29586: 29566: 29551: 29544: 29537: 29474: 29467: 29460: 29453: 29446: 29361: 29354: 29347: 29340: 29333: 29326: 29319: 29312: 29305: 29298: 29291: 29284: 29277: 29270: 29235: 29228: 29214: 29175: 29168: 29153: 29146: 29139: 29132: 29125: 29118: 29111: 29104: 29069: 29062: 29034: 29027: 29020: 29013: 29006: 28999: 28992: 28978: 28971: 28964: 28957: 28950: 28943: 28910: 28903: 28875: 28868: 28861: 28854: 28847: 28840: 28833: 28819: 28812: 28805: 28798: 28791: 28784: 28751: 28744: 28737: 28716: 28709: 28702: 28695: 28688: 28681: 28674: 28660: 28653: 28646: 28632: 28625: 28590: 28583: 28569: 28550: 28543: 28536: 28527: 28520: 28513: 28506: 28499: 28492: 28485: 28478: 28471: 28464: 28427: 28420: 28406: 28393: 28382: 28375: 28368: 28361: 28345: 28338: 28331: 28324: 28317: 28310: 28303: 28296: 28259: 28252: 28245: 28238: 28218: 28211: 28204: 28197: 28190: 28181: 28167: 28160: 28153: 28146: 28139: 28125: 28118: 28095: 28088: 28077: 28058: 28051: 28044: 28037: 28030: 28023: 28016: 28009: 28002: 27995: 27988: 27981: 27974: 27967: 27960: 27930: 27919: 27846: 27839: 27823: 27816: 27777: 27770: 27763: 27756: 27743: 27736: 27729: 27722: 27715: 27708: 27701: 27694: 27687: 27680: 27673: 27659: 27652: 27645: 27638: 27631: 27624: 27607: 27600: 27593: 27586: 27579: 27572: 27565: 27556: 27549: 27540: 27533: 27526: 27519: 27512: 27505: 27498: 27491: 27484: 27477: 27470: 27463: 27456: 27449: 27442: 27435: 27428: 27413: 27406: 27399: 27392: 27385: 27378: 27371: 27364: 27357: 27350: 27343: 27336: 27329: 27322: 27315: 27308: 27301: 27294: 27287: 27280: 27273: 27266: 27259: 27252: 27245: 27238: 27231: 27224: 27209: 27202: 27195: 27188: 27167: 27158: 27151: 27144: 27137: 27130: 27123: 27060: 27053: 27046: 27039: 27032: 26974: 26959: 26952: 26921: 26914: 26907: 26900: 26893: 26886: 26879: 26872: 26833: 26822: 26811: 26792: 26785: 26771: 26764: 26757: 26750: 26736: 26722: 26715: 26708: 26701: 26654: 26643: 26632: 26613: 26606: 26592: 26585: 26578: 26571: 26550: 26543: 26536: 26529: 26522: 26451: 26442: 26435: 26424: 26415: 26404: 26397: 26390: 26383: 26376: 26369: 26362: 26355: 26348: 26341: 26334: 26327: 26320: 26313: 26306: 26299: 26292: 26235: 26228: 26128: 26121: 26100: 26086: 26079: 26021: 26014: 25914: 25907: 25900: 25893: 25886: 25879: 25872: 25865: 25801: 25794: 25787: 25780: 25773: 25766: 25759: 25750: 25741: 25727: 25720: 25690: 25683: 25676: 25669: 25648: 25634: 25627: 16625: 22076: 3546: 24405: 14130:-dimensional topological vector space, up to isomorphism. It follows from this that any finite-dimensional subspace of a TVS is closed. A characterization of finite dimensionality is that a Hausdorff TVS is locally compact if and only if it is finite-dimensional (therefore isomorphic to some Euclidean space). 23058: 15631: 16474: 25342:" and column "Absorbing" is colored green. But since the arbitrary intersection of absorbing sets need not be absorbing, the cell in row "Arbitrary intersections (of at least 1 set)" and column "Absorbing" is colored red. If a cell is not colored then that information has yet to be filled in. 16754: 25313:(indicated by the column name, "convex" for instance) is preserved under the set operator (indicated by the row's name, "closure" for instance). If in every TVS, a property is preserved under the indicated set operator then that cell will be colored green; otherwise, it will be colored red. 32889: 3836: 24155: 21862: 3350: 5695: 24248: 21725: 31920: 31769: 20856:
Every relatively compact set is totally bounded and the closure of a totally bounded set is totally bounded. The image of a totally bounded set under a uniformly continuous map (such as a continuous linear map for instance) is totally bounded. If
22935: 18037: 22556: 17330: 15476: 5295: 23324: 16630: 4934: 32962: 17748: 18492: 13272:
Depending on the application additional constraints are usually enforced on the topological structure of the space. In fact, several principal results in functional analysis fail to hold in general for topological vector spaces: the
5193: 31568: 25160: 21132:
The closure of a vector subspace of a TVS is a vector subspace. Every finite dimensional vector subspace of a Hausdorff TVS is closed. The sum of a closed vector subspace and a finite-dimensional vector subspace is closed. If
14248:. This may not be the only natural topology on the dual space; for instance, the dual of a normed space has a natural norm defined on it. However, it is very important in applications because of its compactness properties (see 3665: 24071: 32016: 31284: 21789: 19487: 18404: 33327: 21416: 18954: 31164: 22429: 13520:: these are complete locally convex spaces where the topology comes from a translation-invariant metric, or equivalently: from a countable family of seminorms. Many interesting spaces of functions fall into this class -- 17604: 33546: 18632: 18556: 5091: 11495: 19384: 6952: 32765: 22169: 21632: 21546: 22278: 16199: 24587: 5009: 24528: 4648: 4585: 16620:{\displaystyle \operatorname {Int} _{X}S~=~\operatorname {Int} _{X}\left(\operatorname {cl} _{X}S\right)~{\text{ and }}~\operatorname {cl} _{X}S~=~\operatorname {cl} _{X}\left(\operatorname {Int} _{X}S\right)} 22855: 25028: 32595: 22801: 15293: 3185: 2323: 22751: 23180: 23135: 20695: 24066: 13667: 2228:
In general, the set of all balanced and absorbing subsets of a vector space does not satisfy the conditions of this theorem and does not form a neighborhood basis at the origin for any vector topology.
20445: 16827: 5454: 507:
A family of neighborhoods of the origin with the above two properties determines uniquely a topological vector space. The system of neighborhoods of any other point in the vector space is obtained by
20215: 15848: 8707: 10233: 18228: 22649: 20851: 20072: 19895: 13368:
it can be shown that a space is locally convex if and only if its topology can be defined by a family of seminorms. Local convexity is the minimum requirement for "geometrical" arguments like the
11127: 30927: 30576: 24838: 20641: 4790: 32634: 32246: 30626: 21479: 18762: 18092: 16892: 11402: 8633:). But if the TVS is not Hausdorff then there exist compact subsets that are not closed. However, the closure of a compact subset of a non-Hausdorff TVS is again compact (so compact subsets are 32727:
has the trivial topology, so does each of its subsets, which makes them all compact. It is known that a subset of any uniform space is compact if and only if it is complete and totally bounded.
32175: 9923: 5989: 5569: 5529: 629: 251: 33112: 20266: 19584: 5628: 902: 669: 342: 21125:
The closure of any convex (respectively, any balanced, any absorbing) subset of any TVS has this same property. In particular, the closure of any convex, balanced, and absorbing subset is a
17412: 14309: 31097: 30691: 30531: 23560: 19778: 17926: 17921: 17023: 16964: 12048: 9838: 9711: 3283: 2674: 22481: 20312: 19292: 18853: 17451: 16134: 14809: 9797: 856: 33021: 32725: 20548: 20371: 20138: 19655: 19198: 19099: 19056: 19013: 5489: 23884: 11940: 6190: 1111: 1063: 32372: 31836: 31801: 31320: 21637: 14577: 22071:{\displaystyle \operatorname {cl} _{X}(R)+\operatorname {cl} _{X}(S)~\subseteq ~\operatorname {cl} _{X}(R+S)~{\text{ and }}~\operatorname {cl} _{X}\left~=~\operatorname {cl} _{X}(R+S)} 16925: 13556: 11905: 31626: 23185: 21822: 20792: 19813: 14887: 14541: 11808: 9574: 31841: 31423: 30449: 14951: 14658: 14242: 12249: 11613: 11272: 9125: 3541:{\displaystyle \mathbb {S} (u):=\left\{n_{\bullet }=\left(n_{1},\ldots ,n_{k}\right)~:~k\geq 1,n_{i}\geq 0{\text{ for all }}i,{\text{ and }}u\in U_{n_{1}}+\cdots +U_{n_{k}}\right\}.} 34979: 32340: 14633: 389: 32447: 31946: 17140: 14605: 12586: 4027: 31685: 23934: 17081: 14690: 13789: 7421: 6067: 4830: 3923: 1332: 18259: 15787: 2110: 2080: 2016: 1362: 24472: 17196: 16389: 12166: 9283: 30862: 30810: 30754: 16276: 15953: 12539: 10608: 9178: 24188: 20489: 14085: 14056: 12701: 10637: 10550: 10497: 8820: 8476: 6615: 1785: 1610: 295: 24400:{\displaystyle a(R+S)=aR+aS,~{\text{ and }}~\operatorname {co} (R+S)=\operatorname {co} R+\operatorname {co} S,~{\text{ and }}~\operatorname {co} (aS)=a\operatorname {co} S.} 23637: 21116: 11689: 3660: 2993: 2145: 1397: 32547: 24437: 24223: 23966: 23090: 22890: 22584: 22453: 21857: 16449: 16243: 16014: 12437: 7859: 7527: 7453: 5617: 4489: 4214: 2172: 2050: 1978: 1907: 1851: 1566: 1295: 33568: 30974: 30887: 22353: 22220: 19424: 18582: 18308: 17253: 16066: 14209: 12828: 12650: 12395: 12274: 12221: 12107: 11572: 11218: 10159: 9869: 7744: 7328: 6882: 6296: 6094: 5720: 2571: 2510: 175: 33138: 32502: 32207: 32055: 31476: 31015: 30949: 23998: 23841: 23602: 21572: 21329: 19681: 19513: 19320: 17879: 17632: 15134: 15022: 14377: 13916: 13458: 11658: 11517: 11434: 11244: 11058: 11036: 10996: 10954: 10751: 10416: 10370: 10348: 10326: 10304: 9733: 8915:
and every Hausdorff TVS has a Hausdorff completion. Every TVS (even those that are Hausdorff and/or complete) has infinitely many non-isomorphic non-Hausdorff completions.
8443: 8410: 6824: 6120: 6011: 5941: 5832: 5790: 5591: 5403: 5365: 5320: 4747: 4718: 4413: 3114: 2871: 2806: 2598: 2408: 2373: 956: 928: 819: 570: 411: 147: 31204: 23725: 13886: 12925: 12318: 11777: 6737: 6652: 6550: 3345: 1720: 31050: 24899: 23765: 15988: 11324: 8879:
Every Cauchy sequence is bounded, although Cauchy nets and Cauchy filters may not be bounded. A topological vector space where every Cauchy sequence converges is called
7364: 7288: 5871: 4140: 3218: 17831: 17258: 10719: 10448: 9625: 9531: 9410: 9376: 8550: 8349: 8219: 8106: 6152: 5768: 5203: 4270: 1672: 1636: 1530: 32087: 15920: 15447: 14337: 14017: 13828:: Banach spaces naturally isomorphic to their double dual (see below), which ensures that some geometrical arguments can be carried out. An important example which is 13426: 12864: 10905: 10811: 10105: 9759:
is a real vector space (where addition and scalar multiplication are defined pointwise, as usual) that can be identified with (and indeed, is often defined to be) the
8875: 3955: 3309: 3029: 1025: 31681: 31652: 26479: 26286: 25829: 25621: 25340: 25054: 24928: 24744: 21237: 19428: 16095: 14835: 14180: 13349: 11153: 10843: 10259: 8846: 7229: 7174: 6682: 4299: 4062: 3592: 33394: 33171: 32760: 25252: 25186: 24715: 21354: 19159: 18885: 15319: 9977: 8387:
if its topology can be induced by a norm. A topological vector space is normable if and only if it is Hausdorff and has a convex bounded neighborhood of the origin.
8293: 7200: 6978: 6853: 6792: 6708: 6576: 6445: 3627: 2770: 1746: 33359: 31352: 30342: 26677: 26503: 26062: 25853: 22357: 18788: 18685: 17775: 15718: 13979: 13952: 13858: 13754: 13397: 13321: 12368: 10004: 8574: 8136: 7559: 5892: 4346: 4167: 4089: 2537: 2457: 1481: 1457: 34703: 24867: 24685: 15738: 13716: 13144: 10134: 6766: 6208:
with respect to the operation of addition, and in a topological vector space the inverse operation is always continuous (since it is the same as multiplication by
4863: 33399: 32894: 27014: 26866: 22102: 19967: 16301:
This shows, in particular, that it will often suffice to consider nets indexed by a neighborhood basis of the origin rather than nets on arbitrary directed sets.
15160: 15088: 7004: 6472: 6396: 6324: 3981: 32677: 30714: 30394:, which means that it is a real or complex vector space together with a translation-invariant metric for which addition and scalar multiplication are continuous. 25397: 25375: 24635: 24612: 24025: 22692: 22476: 22301: 21300: 21061: 20010: 19704: 19130: 18880: 18811: 18708: 18409: 17657: 17514: 16299: 16037: 15761: 15365: 14971: 14739: 14484: 14400: 14108: 13812: 13088: 12887: 12771: 12507: 12341: 11871: 11712: 10871: 10668: 10070: 9464: 9433: 9201: 9075: 8754: 8597: 8499: 8316: 8186: 8058: 7995: 7946: 7617: 6495: 6229: 6038: 5343: 4853: 4512: 2894: 2697: 2431: 2346: 2223: 1954: 1504: 1161: 1134: 716: 434: 33158: 33061: 33041: 32982: 32654: 32467: 32266: 31496: 30830: 30774: 30646: 30473: 30362: 30316: 30287: 30101: 29943: 29740: 25573: 25417: 25311: 25226: 25206: 24243: 23788: 23681: 23657: 23510: 23482: 23462: 23439: 23415: 23391: 23053:{\displaystyle \operatorname {cl} _{X}(\operatorname {co} (R+S))~=~\operatorname {cl} _{X}(\operatorname {co} R)+\operatorname {cl} _{X}(\operatorname {co} S).} 22930: 22910: 22669: 22604: 22321: 22191: 21592: 21436: 21349: 21277: 21257: 21211: 21191: 21171: 21151: 21081: 21038: 21018: 20998: 20978: 20955: 20935: 20915: 20895: 20875: 20755: 20735: 20596: 20572: 20509: 20391: 20332: 20158: 20099: 19987: 19939: 19919: 19836: 19727: 19612: 19533: 19250: 19222: 18974: 18659: 18283: 18156: 18136: 18112: 17853: 17795: 17652: 17491: 17471: 17370: 17350: 17218: 17043: 16984: 16847: 16784: 16469: 16409: 16354: 16322: 16219: 15888: 15868: 15695: 15675: 15655: 15471: 15414: 15387: 15342: 15183: 15108: 15062: 15042: 14710: 14508: 14461: 14441: 14270: 14128: 13254: 13234: 13214: 13191: 13164: 13115: 13061: 13025: 13001: 12965: 12945: 12793: 12748: 12728: 12484: 12457: 12186: 12127: 12068: 12000: 11980: 11960: 11848: 11828: 11732: 11537: 11344: 11292: 11193: 11173: 10974: 10925: 10771: 10687: 10570: 10521: 10468: 10394: 10047: 10027: 9951: 9757: 9675: 9594: 9504: 9484: 9323: 9303: 9234: 9145: 9052: 9026: 9002: 8979: 8959: 8939: 8774: 8731: 8270: 8250: 8156: 8035: 8015: 7972: 7923: 7903: 7879: 7827: 7807: 7787: 7767: 7715: 7695: 7669: 7649: 7590: 7487: 7249: 7145: 7116: 7096: 7068: 7048: 7028: 6416: 6368: 6348: 6264: 5961: 5919: 5810: 5101: 4688: 4668: 4433: 4386: 4366: 4319: 4234: 3858: 3072: 3051: 2944: 2917: 2844: 2478: 2257: 2200: 1931: 1883: 1827: 1421: 754: 541: 31501: 8617:, etc., which are always assumed to be with respect to this uniformity (unless indicated other). This implies that every Hausdorff topological vector space is 13927:; even though these spaces may be infinite-dimensional, most geometrical reasoning familiar from finite dimensions can be carried out in them. These include 8889: 35081: 25059: 22225: 15626:{\displaystyle \operatorname {Int} _{X}K~\subseteq ~\{x\in X:p(x)<1\}~\subseteq ~K~\subseteq ~\{x\in X:p(x)\leq 1\}~\subseteq ~\operatorname {cl} _{X}K} 10181:; indeed, every neighborhood of the origin in the product topology contains lines (that is, 1-dimensional vector subspaces, which are subsets of the form 9325:
always contains a TVS topology. Any vector space (including those that are infinite dimensional) endowed with the trivial topology is a compact (and thus
783:. The topological and linear algebraic structures can be tied together even more closely with additional assumptions, the most common of which are listed 456:
There are topological vector spaces whose topology is not induced by a norm, but are still of interest in analysis. Examples of such spaces are spaces of
35631: 14973:
The intersection of any family of convex sets is convex and the convex hull of a subset is equal to the intersection of all convex sets that contain it.
12947:
consist of the trivial topology, the Hausdorff Euclidean topology, and then the infinitely many remaining non-trivial non-Euclidean vector topologies on
13097:
A linear operator between two topological vector spaces which is continuous at one point is continuous on the whole domain. Moreover, a linear operator
35484: 31951: 31209: 21732: 18313: 16749:{\displaystyle \operatorname {Int} _{X}(R)+\operatorname {Int} _{X}(S)~\subseteq ~R+\operatorname {Int} _{X}S\subseteq \operatorname {Int} _{X}(R+S).} 35039: 21302:
The sum of a compact set and a closed set is closed. However, the sum of two closed subsets may fail to be closed (see this footnote for examples).
15188: 5724:
Defining vector topologies using collections of strings is particularly useful for defining classes of TVSs that are not necessarily locally convex.
35073: 31102: 10998:
and since it plays an important role in the definition of topological vector spaces, this dichotomy plays an important role in the definition of an
7769:
is bounded if and only if every countable subset of it is bounded. A set is bounded if and only if each of its subsequences is a bounded set. Also,
17519: 35320: 18587: 18497: 34480:. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. 32884:{\displaystyle s+\operatorname {cl} _{X}\{0\}=\operatorname {cl} _{X}(s+\{0\})=\operatorname {cl} _{X}\{s\}\subseteq \operatorname {cl} _{X}S.} 9305:
and it is the coarsest TVS topology possible. An important consequence of this is that the intersection of any collection of TVS topologies on
5019: 36141: 11439: 35147: 19325: 6887: 3831:{\displaystyle f(x):=\inf _{}\left\{2^{-n_{1}}+\cdots 2^{-n_{k}}~:~n_{\bullet }=\left(n_{1},\ldots ,n_{k}\right)\in \mathbb {S} (x)\right\}.} 22107: 21597: 21484: 14348: 4518: 24150:{\displaystyle \operatorname {bal} (\operatorname {co} S)~\subseteq ~\operatorname {cobal} S~=~\operatorname {co} (\operatorname {bal} S),} 20797: 16139: 480:. An infinite-dimensional Montel space is never normable. The existence of a norm for a given topological vector space is characterized by 24533: 24477: 18042: 13684: 4944: 4590: 4527: 8896:
but in general, it is almost never uniformly continuous. Because of this, every topological vector space can be completed and is thus a
35758: 35733: 35310: 35119: 22812: 13278: 24932: 32552: 30177: â€“ topological group for which the underlying topology is locally compact and Hausdorff, so that the Haar measure can be defined 22758: 14339:
A topological vector space has a non-trivial continuous dual space if and only if it has a proper convex neighborhood of the origin.
3124: 2262: 17: 22708: 13697:: these are locally convex spaces with the property that every bounded map from the nuclear space to an arbitrary Banach space is a 35715: 35437: 35292: 23140: 23095: 20646: 8371:
if and only if it has a countable neighborhood basis at the origin, or equivalent, if and only if its topology is generated by an
36183: 35685: 35624: 35268: 30192: 24030: 13353: 9631: 9339: 1250: 87: 20396: 16793: 13561: 5408: 35928: 35752: 30063: 25535: 25281:
The convex hull of a balanced (resp. open) set is balanced (respectively, open). However, the convex hull of a closed set need
19106: 13508: 7673: 20163: 15792: 10853:
in this case) is Hausdorff. The trivial topology on a vector space is Hausdorff if and only if the vector space has dimension
8651: 35089: 35055: 35021: 34991: 34934: 34882: 34848: 34821: 34781: 34677: 34647: 34620: 34590: 34556: 34485: 34455: 34428: 33961: 10184: 481: 18161: 36334: 34548: 22609: 20018: 19841: 11063: 30895: 30536: 25274:
of two compact (respectively, bounded, balanced, convex) sets has that same property. But the sum of two closed sets need
24748: 20601: 19386:
and this set is compact. Thus the closure of a compact subset of a TVS is compact (said differently, all compact sets are
5690:{\textstyle \operatorname {Knots} \mathbb {S} :=\bigcup _{U_{\bullet }\in \mathbb {S} }\operatorname {Knots} U_{\bullet }} 4752: 36193: 35690: 35660: 32600: 32212: 30581: 21441: 18713: 16852: 16356:
is a neighborhood of the origin. This is no longer guaranteed if the set is not convex (a counter-example exists even in
11349: 10174: 9638: 9333: 8352: 6193: 1254: 32092: 9875: 5966: 5534: 5494: 587: 209: 36344: 36313: 35964: 35617: 35160: 34912: 34520: 30484:
In general topology, the closure of a compact subset of a non-Hausdorff space may fail to be compact (for example, the
23366:
if and only if its closure is a neighborhood of the origin. A vector subspace of a TVS that is closed but not open is
461: 33066: 20220: 19538: 861: 634: 307: 36101: 35249: 35140: 34964: 34743: 20714: 20575: 17375: 14087:
with the topology induced by the standard inner product. As pointed out in the preceding section, for a given finite
10162: 9330: 8912: 8904: 8606: 8516: 8509: 3081:
Summative sequences of sets have the particularly nice property that they define non-negative continuous real-valued
1258: 79: 31063: 30651: 30491: 19738: 17884: 16989: 16930: 12005: 9806: 9680: 3223: 2614: 36006: 35519: 34707: 30198: 23515: 21720:{\displaystyle \left(\operatorname {cl} A\right)\left(\operatorname {cl} _{X}S\right)=\operatorname {cl} _{X}(AS).} 20275: 19255: 18816: 17417: 16100: 14748: 14211:
A topology on the dual can be defined to be the coarsest topology such that the dual pairing each point evaluation
9765: 8630: 824: 34735: 32987: 32691: 20514: 20337: 20104: 19621: 19164: 19065: 19022: 18979: 8918:
A compact subset of a TVS (not necessarily Hausdorff) is complete. A complete subset of a Hausdorff TVS is closed.
5459: 90:. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include 35164: 34929:. Grundlehren der mathematischen Wissenschaften. Vol. 237. New York: Springer Science & Business Media. 23846: 11910: 6157: 1072: 1030: 32345: 31915:{\displaystyle x={\tfrac {1}{s}}y\in \operatorname {cl} \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C} 31806: 31774: 31289: 14546: 14275: 3085:
functions. These functions can then be used to prove many of the basic properties of topological vector spaces.
36036: 24688: 16897: 14244:
is continuous. This turns the dual into a locally convex topological vector space. This topology is called the
13523: 11876: 672: 195: 113:
acting on topological vector spaces, and the topology is often defined so as to capture a particular notion of
33865: 31573: 22755:
The closed balanced hull of a set is equal to the closure of the balanced hull of that set; that is, equal to
21794: 20764: 19785: 14840: 14513: 11782: 9536: 36168: 35770: 35747: 35315: 34769: 34582: 33875: 31764:{\displaystyle \operatorname {cl} _{X}\left({\tfrac {1}{s}}C\right)={\tfrac {1}{s}}\operatorname {cl} _{X}C.} 31357: 30183: 14892: 14637: 12226: 11577: 11249: 8069: 30406: 14609: 9082: 347: 36219: 35598: 35371: 35305: 35133: 34900: 32271: 31925: 22701:
In a locally convex space, convex hulls of bounded sets are bounded. This is not true for TVSs in general.
17086: 14581: 13466: 12547: 8229: 32377: 23889: 22705:
The closed convex hull of a set is equal to the closure of the convex hull of that set; that is, equal to
17048: 14669: 13759: 7376: 6043: 4795: 3986: 3863: 1304: 36339: 36040: 35335: 33870: 30049: 25521: 18233: 15766: 2085: 2055: 1991: 1337: 24442: 17145: 16359: 14214: 12132: 9256: 7623:
then it also has a neighborhood basis consisting of closed convex balanced neighborhoods of the origin.
1674:
is additive. This statement remains true if the word "neighborhood" is replaced by "open neighborhood."
114: 62:
with the property that the vector space operations (vector addition and scalar multiplication) are also
36276: 35813: 35728: 35723: 35665: 35580: 35534: 35458: 35340: 34983: 30835: 30779: 30727: 30250: 18032:{\displaystyle [x,y):=\{tx+(1-t)y:0<t\leq 1\}\subseteq \operatorname {Int} _{X}{\text{ if }}x\neq y} 16248: 15925: 14249: 13476: 12750:
that are induced by linear functionals with distinct kernels will induce distinct vector topologies on
12512: 10581: 9150: 796: 473: 24164: 22551:{\displaystyle \operatorname {cl} _{X}U~\supseteq ~\bigcap \{U:S\subseteq U,U{\text{ is open in }}X\}} 20450: 14061: 14032: 12655: 10613: 10526: 10473: 8779: 8452: 6581: 1751: 1571: 256: 36072: 35882: 35575: 35391: 34907:. Addison-Wesley series in mathematics. Vol. 1. Reading, MA: Addison-Wesley Publishing Company. 34547:. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: 30485: 30381:
In fact, this is true for topological group, since the proof does not use the scalar multiplications.
30203: 23607: 21086: 11663: 6327: 3632: 2949: 2115: 1367: 32507: 25293:
The following table, the color of each cell indicates whether or not a given property of subsets of
24410: 24196: 23939: 23063: 22863: 22561: 22434: 21830: 16422: 16224: 15995: 12404: 7832: 7500: 7426: 5600: 4438: 4172: 2153: 2031: 1959: 1888: 1832: 1539: 1276: 35845: 35840: 35833: 35828: 35427: 35325: 33553: 30954: 30867: 22329: 22196: 19400: 18561: 18288: 17223: 16042: 14189: 12798: 12730:
and seminorms with distinct kernels induce distinct topologies so that in particular, seminorms on
12591: 12380: 12254: 12191: 12077: 11542: 11198: 10644: 10139: 9849: 7720: 7304: 6858: 6272: 6074: 5700: 2546: 2485: 1678:
All of the above conditions are consequently a necessity for a topology to form a vector topology.
983: 905: 155: 33117: 32472: 32180: 32021: 31428: 30998: 30932: 23977: 23793: 23581: 21551: 21308: 19660: 19492: 19299: 17858: 17611: 17325:{\displaystyle t\operatorname {Int} C+(1-t)\operatorname {cl} C~\subseteq ~\operatorname {Int} C.} 16986:
to also be convex (in addition to being balanced and having non-empty interior).; The conclusion
15113: 15001: 14356: 13891: 13431: 11618: 11500: 11407: 11223: 11041: 11019: 10979: 10937: 10724: 10399: 10353: 10331: 10309: 10287: 9716: 8426: 8393: 6797: 6103: 5994: 5924: 5815: 5773: 5574: 5386: 5348: 5303: 5290:{\displaystyle \ U_{\bullet }\cap V_{\bullet }:=\left(U_{i}\cap V_{i}\right)_{i\in \mathbb {N} }.} 4725: 4696: 4391: 3097: 2849: 2784: 2576: 2386: 2351: 939: 911: 802: 553: 394: 130: 36106: 36087: 35763: 35743: 35524: 35300: 34808: 31177: 23686: 23319:{\displaystyle \operatorname {cl} _{X}(\operatorname {co} (R\cup S))~=~\operatorname {co} \left.} 14991: 13864: 13676: 13480: 13369: 12892: 12278: 11737: 10278: 7007: 6713: 6624: 6519: 3314: 1689: 1639: 31020: 24872: 23729: 19132:
In fact, a vector subspace of a TVS is bounded if and only if it is contained in the closure of
15958: 11539:
will be translation invariant and invariant under non-zero scalar multiplication, and for every
11297: 7333: 7254: 5841: 4098: 3190: 36349: 36295: 36285: 36269: 35969: 35918: 35818: 35803: 35555: 35499: 35463: 34866: 17800: 10692: 10421: 9603: 9509: 9388: 9349: 8645: 8523: 8360: 8322: 8192: 8079: 6125: 5741: 4239: 1645: 1615: 1509: 508: 436:
is (jointly) continuous. This follows from the triangle inequality and homogeneity of the norm.
106: 32060: 25208:) rather than not just a subset or else these equalities are no longer guaranteed; similarly, 15893: 15419: 13986: 13402: 13035:
a TVS topology because despite making addition and negation continuous (which makes it into a
12837: 10878: 10784: 10074: 8851: 3928: 3288: 2998: 998: 36264: 35951: 35933: 35898: 35738: 35262: 31657: 31631: 30241: 30174: 30169: 26458: 26265: 25808: 25600: 25319: 25033: 24904: 24720: 23359: 22806: 21216: 20758: 20710: 20269: 19730: 16763: 16071: 15393: 14814: 14414: 14183: 14154: 14144: 13494: 13328: 11132: 10816: 10270: 10238: 9843: 8881: 8825: 8601:
Every TVS is assumed to be endowed with this canonical uniformity, which makes all TVSs into
7465: 7459: 7205: 7150: 6661: 4929:{\displaystyle \ \operatorname {Knots} U_{\bullet }:=\left\{U_{i}:i\in \mathbb {N} \right\}.} 4275: 4032: 3553: 3075: 2923: 2738: 1197: 935: 121: 35258: 33364: 32957:{\displaystyle S\subseteq S+\operatorname {cl} _{X}\{0\}\subseteq \operatorname {cl} _{X}S,} 32739: 25316:
So for instance, since the union of two absorbing sets is again absorbing, the cell in row "
25231: 25165: 24694: 19135: 17743:{\textstyle \operatorname {Int} _{X}N\subseteq B_{1}N=\bigcup _{0<|a|<1}aN\subseteq N} 15298: 13284:
Below are some common topological vector spaces, roughly in order of increasing "niceness."
11038:) is straightforward so only an outline with the important observations is given. As usual, 11016:
The proof of this dichotomy (i.e. that a vector topology is either trivial or isomorphic to
9956: 8275: 7179: 6957: 6832: 6771: 6687: 6555: 6421: 3597: 2745: 1725: 36280: 36224: 36203: 35538: 35009: 34495: 33332: 31325: 30321: 28613: 28457: 26682: 26662: 26508: 26488: 26067: 26047: 25858: 25838: 23971: 20075: 19201: 18767: 18664: 18487:{\displaystyle x\in \operatorname {Int} N{\text{ and }}r:=\sup\{r>0:[0,r)x\subseteq N\}} 17753: 16759: 15703: 15450: 15322: 14140: 13957: 13930: 13836: 13732: 13375: 13365: 13299: 13274: 12346: 9982: 8559: 8115: 7532: 5877: 4324: 4145: 4067: 2515: 2435: 1466: 1430: 457: 35125: 24843: 24661: 15723: 13120: 10110: 7596:. The origin even has a neighborhood basis consisting of closed balanced neighborhoods of 6742: 5188:{\displaystyle \ U_{\bullet }+V_{\bullet }:=\left(U_{i}+V_{i}\right)_{i\in \mathbb {N} }.} 8: 36163: 36158: 36116: 35695: 35504: 35442: 35156: 34959:. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc. 34773: 31563:{\displaystyle s~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\tfrac {r}{r-1}}<0} 30154: 27946: 27795: 26993: 26845: 23394: 22081: 20551: 19944: 15139: 15067: 14314: 13726: 11003: 10006: 9032: 8610: 6983: 6449: 6373: 6301: 5594: 3960: 1460: 298: 191: 75: 63: 51: 32659: 30696: 30488:
on an infinite set). This result shows that this does not happen in non-Hausdorff TVSs.
25379: 25357: 24617: 24594: 24007: 22809:
hull of a set is equal to the closure of the disked hull of that set; that is, equal to
22674: 22458: 22283: 21282: 21126: 21043: 19992: 19686: 19112: 18862: 18793: 18690: 17496: 16281: 16019: 15743: 15347: 14956: 14721: 14466: 14382: 14160: 14090: 13794: 13070: 12869: 12753: 12489: 12323: 11853: 11694: 10856: 10650: 10052: 9446: 9415: 9183: 9057: 8736: 8579: 8481: 8298: 8168: 8040: 7977: 7928: 7599: 6477: 6211: 6020: 5325: 4835: 4494: 2876: 2679: 2413: 2328: 2205: 1936: 1486: 1143: 1116: 698: 416: 86:(although this article does not). One of the most widely studied categories of TVSs are 36148: 36091: 36025: 36010: 35877: 35867: 35529: 35396: 34871: 34813: 34574: 33143: 33046: 33026: 32967: 32639: 32452: 32251: 31481: 30815: 30759: 30631: 30458: 30347: 30301: 30272: 30227: 30086: 30039: 29928: 29725: 27788: 27617: 25558: 25511: 25402: 25296: 25211: 25191: 24228: 23773: 23666: 23642: 23495: 23467: 23447: 23424: 23400: 23376: 22915: 22895: 22654: 22589: 22306: 22176: 21577: 21421: 21334: 21262: 21242: 21196: 21176: 21156: 21136: 21066: 21023: 21003: 20983: 20963: 20940: 20920: 20900: 20880: 20860: 20740: 20720: 20581: 20557: 20494: 20376: 20317: 20143: 20084: 19972: 19924: 19904: 19821: 19712: 19597: 19518: 19387: 19235: 19207: 18959: 18644: 18268: 18141: 18121: 18097: 17838: 17780: 17637: 17476: 17456: 17355: 17335: 17203: 17028: 16969: 16832: 16769: 16454: 16394: 16339: 16307: 16204: 15873: 15853: 15680: 15660: 15640: 15456: 15399: 15372: 15327: 15168: 15093: 15047: 15027: 14742: 14714: 14695: 14493: 14446: 14426: 14255: 14113: 13729:. Most of functional analysis is formulated for Banach spaces. This class includes the 13712: 13472: 13239: 13219: 13199: 13176: 13149: 13100: 13046: 13010: 12986: 12950: 12930: 12778: 12733: 12713: 12469: 12442: 12171: 12112: 12053: 11985: 11965: 11945: 11833: 11813: 11717: 11522: 11329: 11277: 11178: 11158: 10959: 10928: 10910: 10756: 10672: 10555: 10506: 10500: 10453: 10379: 10373: 10032: 10012: 9936: 9742: 9736: 9660: 9579: 9489: 9469: 9308: 9288: 9219: 9130: 9037: 9011: 9005: 8987: 8964: 8944: 8924: 8759: 8716: 8634: 8614: 8446: 8255: 8235: 8162: 8141: 8020: 8000: 7957: 7908: 7888: 7864: 7812: 7792: 7772: 7752: 7700: 7680: 7654: 7634: 7575: 7472: 7234: 7130: 7101: 7081: 7053: 7033: 7013: 6401: 6353: 6333: 6249: 6236: 6014: 5946: 5904: 5835: 5795: 4673: 4653: 4418: 4371: 4351: 4304: 4219: 3843: 3057: 3036: 2929: 2902: 2829: 2463: 2242: 2185: 1916: 1868: 1812: 1792: 1406: 1196:
topological homomorphism. Equivalently, a TVS-embedding is a linear map that is also a
739: 526: 34922: 34473: 25155:{\displaystyle s\{x\in X:P(x)\}=\left\{x\in X:P\left({\tfrac {1}{s}}x\right)\right\}.} 19200:
also carries the trivial topology and so is itself a compact, and thus also complete,
8885:; in general, it may not be complete (in the sense that all Cauchy filters converge). 6504:
One of the most used properties of vector topologies is that every vector topology is
297:
is (jointly) continuous with respect to this topology. This follows directly from the
35860: 35786: 35509: 35095: 35085: 35061: 35051: 35027: 35017: 34997: 34987: 34960: 34940: 34930: 34908: 34888: 34878: 34854: 34844: 34827: 34817: 34803: 34787: 34777: 34749: 34739: 34683: 34673: 34653: 34643: 34626: 34616: 34596: 34586: 34562: 34552: 34542: 34526: 34516: 34499: 34481: 34461: 34451: 34434: 34424: 30221: 30212: 30078: 25550: 19391: 19016: 15185:(not necessarily Hausdorff or locally convex) are exactly those that are of the form 14995: 14148: 13815: 13194: 13040: 13036: 13004: 9930: 9760: 9650: 8893: 8641: 6350:
is closed. This permits the following construction: given a topological vector space
6267: 6232: 1910: 1137: 721: 581: 548: 488: 59: 6658:
Scalar multiplication by a non-zero scalar is a TVS-isomorphism. This means that if
36253: 35823: 35808: 35609: 35514: 35432: 35401: 35381: 35366: 35361: 35356: 34727: 34585:. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. 30232: 30073: 25545: 19059: 16766:
is not empty if and only if this interior contains the origin. More generally, if
13708: 13698: 13486: 13257: 13028: 10846: 10640: 9800: 9654: 9336: 9246: 8222: 1533: 676: 36136: 35675: 35193: 34877:. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. 13680: 13517: 10273:, a Hausdorff topological vector space is finite-dimensional if and only if it is 503: 36228: 36076: 35376: 35330: 35278: 35273: 35244: 34665: 34491: 34420: 32011:{\displaystyle c_{0}\in \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C,} 31060:
This is because every non-empty balanced set must contain the origin and because
30111: 30068: 30022: 25583: 25540: 25494: 25264: 23567: 23338: 16329: 16325: 14987: 14026: 13825: 13490: 13462: 10574: 10274: 10166: 9343: 9326: 8900: 8626: 8618: 8420: 8416: 8108:
is a topological vector space then the following four conditions are equivalent:
7951: 2732: 780: 768: 764: 492: 83: 35203: 31279:{\displaystyle w_{0}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~rx+(1-r)y} 21784:{\displaystyle S\subseteq X{\text{ and }}S+S\subseteq 2\operatorname {cl} _{X}S} 19482:{\displaystyle S+\operatorname {cl} _{X}\{0\}\subseteq \operatorname {cl} _{X}S} 18399:{\displaystyle \operatorname {Int} N=[0,1)\operatorname {Int} N=(-1,1)N=B_{1}N,} 13719:. In normed spaces a linear operator is continuous if and only if it is bounded. 36259: 36208: 35923: 35565: 35417: 35218: 34799: 34761: 34608: 33322:{\displaystyle z+\{x\in X:P(x)\}=\{z+x:x\in X,P(x)\}=\{z+x:x\in X,P((z+x)-z)\}} 30139: 30116: 30044: 25588: 25516: 21411:{\displaystyle a\operatorname {cl} _{X}S\subseteq \operatorname {cl} _{X}(aS),} 18949:{\displaystyle \operatorname {cl} _{X}\{0\}=\bigcap _{N\in {\mathcal {N}}(0)}N} 13292: 13281:, and the fact that the dual space of the space separates points in the space. 12707: 12704: 10170: 8413: 8372: 8368: 7620: 5812:
that is directed downward and such that the set of all knots of all strings in
1686:
Since every vector topology is translation invariant (which means that for all
1262: 1243: 990: 577: 465: 202:
and the metric induces a topology. This is a topological vector space because:
125: 35099: 31159:{\displaystyle \operatorname {Int} _{X}S=\{0\}\cup \operatorname {Int} _{X}S.} 22424:{\displaystyle \operatorname {cl} _{X}S~=~\bigcap _{N\in {\mathcal {N}}}(S+N)} 20794:
is totally bounded, if and only if its image under the canonical quotient map
13493:, where the dual space is endowed with the topology of uniform convergence on 11346:
contains an "unbounded sequence", by which it is meant a sequence of the form
36328: 36243: 36153: 36096: 36056: 35984: 35959: 35903: 35855: 35791: 35570: 35494: 35223: 35208: 35198: 35065: 35031: 34944: 34738:. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. 34687: 34630: 34600: 34530: 34515:. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. 34503: 34438: 30890: 30148: 30010: 29967: 29952: 28282: 28111: 28104: 27953: 25482: 25439: 25424: 25271: 24158: 24001: 23489: 23367: 23363: 21548:
In particular, every non-zero scalar multiple of a closed set is closed. If
19105:(even if its dimension is non-zero or even infinite) and consequently also a 19102: 18262: 17599:{\displaystyle \{tx+(1-t)y:0<t<1\}\subseteq \operatorname {int} _{X}C.} 16333: 15390: 14245: 13981: 13924: 13920: 13694: 13688: 13295:
topological vector spaces with a translation-invariant metric. These include
12371: 10999: 8622: 8602: 8553: 7565: 7493: 7123: 6618: 6205: 4092: 2920: 2726: 2708: 2023: 1862: 1788: 1239: 1193: 469: 445: 99: 95: 71: 34858: 34831: 34791: 34753: 34657: 34566: 33541:{\displaystyle \{y:y-z\in X,P(y-z)\}=\{y:y\in X,P(y-z)\}=\{y\in X:P(y-z)\}.} 23341:) set has that same property. The convex hull of a finite union of compact 6474:
is then a Hausdorff topological vector space that can be studied instead of
36290: 36238: 36198: 36188: 36066: 35913: 35908: 35705: 35655: 35560: 35213: 35183: 34538: 34465: 30160: 30133: 29957: 25429: 20013: 18115: 16787: 14410: 13722: 13704: 13500: 8629:(for Hausdorff TVSs, a set being totally bounded is equivalent to it being 8378:. A TVS is metrizable if and only if it is Hausdorff and pseudometrizable. 7593: 7569: 7293: 6240: 6196:
if and only if its topology can be induced by a single topological string.
2702: 2019: 1858: 1186: 1066: 733: 544: 477: 441: 199: 91: 55: 35001: 34892: 18627:{\displaystyle rx\in \operatorname {cl} N\setminus \operatorname {Int} N.} 18551:{\displaystyle r>1{\text{ and }}[0,r)x\subseteq \operatorname {Int} N,} 14311:
is never continuous, no matter which vector space topology one chooses on
36248: 36233: 36126: 36020: 36015: 36000: 35979: 35943: 35850: 35670: 35489: 35479: 35386: 35188: 30056: 30029: 29258: 29097: 28450: 28289: 25528: 25501: 23418: 14664: 14487: 14020: 13512: 13063:(where a subset is open if and only if its complement is finite) is also 9597: 6826:
which is consequently a linear homeomorphism and thus a TVS-isomorphism.
5086:{\displaystyle \ sU_{\bullet }:=\left(sU_{i}\right)_{i\in \mathbb {N} }.} 3082: 1981: 573: 150: 31: 13711:: locally convex spaces where the topology can be described by a single 13039:
under addition), it fails to make scalar multiplication continuous. The
13003:
is a non-trivial vector space (that is, of non-zero dimension) then the
11490:{\displaystyle \left(a_{i}\right)_{i=1}^{\infty }\subseteq \mathbb {K} } 1681: 36061: 35974: 35938: 35798: 35680: 35422: 35254: 34952: 34040: 34038: 33932: 33930: 33928: 33824: 33822: 33820: 33818: 33816: 30215: â€“ Algebraic structure with addition, multiplication, and division 30106: 29962: 25578: 25434: 24649: 19615: 19379:{\displaystyle \operatorname {cl} _{X}S=S+\operatorname {cl} _{X}\{0\}} 16927:
will be balanced if and only if it contains the origin. For this (i.e.
14403: 13504: 13361: 13357: 13261: 13170: 10639:
is endowed with the usual Euclidean topology (which is the same as the
7369: 6947:{\displaystyle \operatorname {cl} _{X}(x+S)=x+\operatorname {cl} _{X}S} 1236: 993: 110: 33750: 33748: 33746: 33744: 33742: 33740: 33694: 33692: 33690: 33688: 33686: 33684: 33682: 33680: 33678: 33676: 30224: â€“ Group that is a topological space with continuous group action 22558:
and it is possible for this containment to be proper (for example, if
22164:{\displaystyle \operatorname {cl} _{X}(R)+\operatorname {cl} _{X}(S).} 21627:{\displaystyle \operatorname {cl} S{\text{ nor }}\operatorname {cl} A} 21541:{\displaystyle \operatorname {cl} _{X}(aS)=a\operatorname {cl} _{X}S.} 8888:
The vector space operation of addition is uniformly continuous and an
36213: 36030: 34299: 34297: 34197: 34195: 34193: 34191: 34189: 34187: 33674: 33672: 33670: 33668: 33666: 33664: 33662: 33660: 33658: 33656: 26838:
Arbitrary intersections (of at least 1 set)
26689:
Arbitrary intersections (of at least 1 set)
23563: 23485: 22273:{\displaystyle \bigcap _{r>1}rS\subseteq \operatorname {cl} _{X}S} 18636: 16194:{\displaystyle s_{\bullet }=\left(s_{N}\right)_{N\in {\mathcal {N}}}} 8897: 8159: 2873:
is a string and each of its knots is a neighborhood of the origin in
1854: 124:
field of a topological vector space will be assumed to be either the
34338: 34270: 34079: 34035: 33925: 33813: 24582:{\displaystyle R\cap \operatorname {co} (S\cup \{x\})=\varnothing .} 19252:; for instance, this will be true of any non-empty proper subset of 12466:
Some of these topologies are now described: Every linear functional
7592:
so every topological vector space has a local base of absorbing and
5004:{\textstyle \ \ker U_{\bullet }:=\bigcap _{i\in \mathbb {N} }U_{i}.} 36178: 36173: 36131: 36111: 36081: 35872: 35047: 34369: 34367: 34365: 34135: 34133: 33984: 33982: 33834: 33737: 30365: 24523:{\displaystyle S\cap \operatorname {co} (R\cup \{x\})=\varnothing } 24161:
of a convex set need not be convex (counter-examples exist even in
13833: 13819: 13672: 13296: 12542: 10178: 9926: 8383: 7882: 4643:{\displaystyle V_{\bullet }=\left(V_{i}\right)_{i\in \mathbb {N} }} 4580:{\displaystyle U_{\bullet }=\left(U_{i}\right)_{i\in \mathbb {N} }} 1027:
between topological vector spaces (TVSs) such that the induced map
931: 757: 34417:
Topological Vector Spaces: The Theory Without Convexity Conditions
34294: 34184: 33653: 30195: â€“ A vector space with a topology defined by convex open sets 30186: â€“ relatively new C*-algebraic approach toward quantum groups 23659:
is convex then equality holds. For an example where equality does
36121: 34230: 34228: 34226: 34224: 34222: 33023:
is a vector space, it is readily verified that the complement in
30142: â€“ algebraic structure that is complete relative to a metric 24614:
there exist two disjoint non-empty convex subsets whose union is
22850:{\displaystyle \operatorname {cl} _{X}(\operatorname {cobal} S).} 13288: 34714:. Singapore-New Jersey-Hong Kong: Universitätsbibliothek: 35–133 34419:. Lecture Notes in Mathematics. Vol. 639. Berlin New York: 34362: 34207: 34130: 34023: 34011: 33979: 33889: 33760: 33715: 33713: 33711: 33709: 33707: 25023:{\displaystyle z+\{x\in X:\|x\|<1\}=\{x\in X:\|x-z\|<1\}.} 19062:, which in particular implies that the topological vector space 9653:
of a family of topological vector spaces, when endowed with the
35114: 34326: 33548: 32590:{\displaystyle h\left(\operatorname {int} C\right)\subseteq C.} 22796:{\displaystyle \operatorname {cl} _{X}(\operatorname {bal} S).} 20709:
A subset of a TVS is compact if and only if it is complete and
15288:{\displaystyle z+\{x\in X:p(x)<1\}~=~\{x\in X:p(x-z)<1\}} 12375: 9657:, is a topological vector space. Consider for instance the set 3180:{\displaystyle U_{\bullet }=\left(U_{i}\right)_{i=0}^{\infty }} 2318:{\displaystyle U_{\bullet }=\left(U_{i}\right)_{i=1}^{\infty }} 580:
numbers with their standard topologies) that is endowed with a
34245: 34243: 34219: 34162: 34160: 33901: 33846: 26258:
Arbitrary unions (of at least 1 set)
26074:
Arbitrary unions (of at least 1 set)
23337:
to be compact. The balanced hull of a compact (respectively,
23333:
In a general TVS, the closed convex hull of a compact set may
22746:{\displaystyle \operatorname {cl} _{X}(\operatorname {co} S).} 12775:
However, while there are infinitely many vector topologies on
12074:
contain any "unbounded sequence". This implies that for every
10773:
does not have a unique vector topology, it does have a unique
8419:
topological field, for example the real or complex numbers. A
8359:
By the Birkhoff–Kakutani theorem, it follows that there is an
33704: 33612: 23175:{\displaystyle \operatorname {cl} _{X}(\operatorname {co} S)} 23130:{\displaystyle \operatorname {cl} _{X}(\operatorname {co} R)} 14272:
is a non-normable locally convex space, then the pairing map
34316: 34314: 34312: 33624: 31425:
if necessary, we may assume without loss of generality that
25188:
of these sets must range over a vector space (that is, over
22323:
is a convex neighborhood of the origin then equality holds.
20717:, a closed and totally bounded subset is compact. A subset 20690:{\displaystyle X\cong H\times \operatorname {cl} _{X}\{0\}.} 9840:
becomes a topological vector space whose topology is called
2202:(rather than a neighborhood basis) for a vector topology on 799:
of topological vector spaces over a given topological field
35155: 34260: 34258: 34240: 34157: 34067: 33913: 33725: 33643: 33641: 33639: 24061:{\displaystyle \operatorname {co} (\operatorname {bal} S).} 22280:
where the left hand side is independent of the topology on
18956:
so that in particular, every neighborhood of the origin in
13662:{\textstyle \|f\|_{k,\ell }=\sup _{x\in }|f^{(\ell )}(x)|.} 13399:
spaces are locally convex (in fact, Banach spaces) for all
7881:
is locally convex, the boundedness can be characterized by
779:
if it is Hausdorff; importantly, "separated" does not mean
34145: 34001: 33999: 33997: 33791: 33789: 33787: 32730: 20440:{\displaystyle H\times \operatorname {cl} _{X}\{0\}\to X,} 16822:{\displaystyle \operatorname {Int} _{X}S\neq \varnothing } 7789:
is bounded if and only if for every balanced neighborhood
6370:(that is probably not Hausdorff), form the quotient space 5449:{\displaystyle U_{\bullet },V_{\bullet }\in \mathbb {S} ,} 34309: 23092:
each have a closed convex hull that is compact (that is,
14349:
Locally convex topological vector space § Properties
4415:
forms a basis of balanced neighborhoods of the origin in
34350: 34255: 33636: 33583: 25257: 20210:{\displaystyle \{0\}=H\cap \operatorname {cl} _{X}\{0\}} 19224:
is not Hausdorff then there exist subsets that are both
15843:{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i\in I}} 8702:{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i\in I}} 8605:. This allows one to talk about related notions such as 8381:
More strongly: a topological vector space is said to be
4517:
A proof of the above theorem is given in the article on
34812:. Pure and applied mathematics. Vol. 1. New York: 33994: 33942: 33784: 30269:
The topological properties of course also require that
30217:
Pages displaying short descriptions of redirect targets
30165:
Pages displaying short descriptions of redirect targets
19390:), which is not guaranteed for arbitrary non-Hausdorff 11907:
at the origin guarantees the existence of an open ball
10643:). This Hausdorff vector topology is also the (unique) 10228:{\displaystyle \mathbb {R} f:=\{rf:r\in \mathbb {R} \}} 6330:
is a Hausdorff topological vector space if and only if
6231:). Hence, every topological vector space is an abelian 3187:
be a collection of subsets of a vector space such that
1791:), to define a vector topology it suffices to define a 675:(where the domains of these functions are endowed with 34282: 34120: 34118: 34103: 34091: 34057: 34055: 34053: 33772: 32380: 32274: 31974: 31881: 31852: 31731: 31708: 31584: 31535: 31520: 31235: 30533:
is compact because it is the image of the compact set
30409: 25125: 23518: 23488:, which happens if and only if there does not exist a 18223:{\displaystyle B_{1}:=\{a\in \mathbb {K} :|a|<1\},} 17660: 13564: 9211: 9085: 5770:
is a topological vector space then there exists a set
5631: 4947: 3989: 3074:
has countable dimension then every string contains an
34172: 33602: 33600: 33598: 33556: 33402: 33367: 33335: 33174: 33146: 33120: 33069: 33049: 33029: 32990: 32970: 32897: 32768: 32742: 32694: 32662: 32642: 32603: 32555: 32510: 32475: 32455: 32348: 32254: 32215: 32183: 32095: 32063: 32024: 31954: 31928: 31844: 31809: 31777: 31688: 31660: 31634: 31576: 31504: 31484: 31431: 31360: 31328: 31292: 31212: 31180: 31105: 31066: 31023: 31001: 30957: 30935: 30898: 30870: 30838: 30818: 30782: 30762: 30730: 30699: 30654: 30634: 30584: 30539: 30494: 30461: 30350: 30324: 30304: 30275: 30089: 29931: 29728: 26996: 26848: 26665: 26491: 26461: 26268: 26050: 25841: 25811: 25603: 25561: 25405: 25382: 25360: 25322: 25299: 25285:
be closed. And the convex hull of a bounded set need
25234: 25214: 25194: 25168: 25062: 25036: 24935: 24907: 24875: 24846: 24751: 24723: 24697: 24664: 24620: 24597: 24536: 24480: 24445: 24413: 24251: 24231: 24199: 24167: 24074: 24033: 24010: 23980: 23942: 23892: 23849: 23796: 23776: 23732: 23689: 23669: 23645: 23610: 23584: 23498: 23470: 23450: 23427: 23403: 23379: 23188: 23143: 23098: 23066: 22938: 22918: 22898: 22866: 22815: 22761: 22711: 22677: 22657: 22644:{\displaystyle \operatorname {cl} _{X}U\subseteq U+U} 22612: 22592: 22564: 22484: 22461: 22437: 22360: 22332: 22309: 22286: 22228: 22199: 22179: 22110: 22084: 21865: 21833: 21797: 21735: 21640: 21600: 21580: 21554: 21487: 21444: 21424: 21357: 21337: 21311: 21285: 21265: 21245: 21219: 21199: 21179: 21159: 21139: 21089: 21069: 21046: 21026: 21006: 20986: 20966: 20943: 20923: 20903: 20883: 20863: 20846:{\displaystyle X\to X/\operatorname {cl} _{X}(\{0\})} 20800: 20767: 20743: 20723: 20649: 20604: 20584: 20560: 20517: 20497: 20453: 20399: 20379: 20340: 20320: 20278: 20223: 20166: 20146: 20107: 20087: 20067:{\displaystyle q:X\to X/\operatorname {cl} _{X}\{0\}} 20021: 19995: 19975: 19947: 19927: 19907: 19890:{\displaystyle X\to X/\operatorname {cl} _{X}(\{0\})} 19844: 19824: 19788: 19741: 19715: 19689: 19663: 19624: 19600: 19541: 19521: 19495: 19431: 19403: 19328: 19302: 19258: 19238: 19210: 19167: 19138: 19115: 19068: 19025: 18982: 18962: 18888: 18865: 18819: 18796: 18770: 18716: 18693: 18667: 18647: 18590: 18564: 18500: 18412: 18316: 18291: 18271: 18236: 18164: 18144: 18124: 18100: 18045: 17929: 17887: 17861: 17841: 17803: 17783: 17756: 17640: 17614: 17522: 17499: 17479: 17459: 17420: 17378: 17358: 17338: 17261: 17226: 17206: 17148: 17089: 17051: 17031: 16992: 16972: 16933: 16900: 16855: 16835: 16796: 16772: 16633: 16477: 16457: 16425: 16397: 16362: 16342: 16310: 16284: 16251: 16227: 16207: 16142: 16103: 16074: 16045: 16022: 15998: 15961: 15928: 15896: 15876: 15856: 15795: 15769: 15746: 15726: 15706: 15683: 15663: 15643: 15479: 15459: 15422: 15402: 15375: 15350: 15330: 15301: 15191: 15171: 15142: 15116: 15096: 15070: 15050: 15030: 15004: 14959: 14895: 14843: 14817: 14751: 14724: 14698: 14672: 14640: 14612: 14584: 14549: 14516: 14496: 14469: 14449: 14429: 14385: 14359: 14317: 14278: 14258: 14217: 14192: 14163: 14116: 14093: 14064: 14035: 13989: 13960: 13933: 13894: 13867: 13839: 13797: 13762: 13735: 13526: 13434: 13405: 13378: 13331: 13302: 13242: 13222: 13202: 13179: 13152: 13123: 13103: 13073: 13049: 13013: 12989: 12953: 12933: 12895: 12872: 12840: 12801: 12781: 12756: 12736: 12716: 12658: 12594: 12550: 12515: 12492: 12472: 12445: 12407: 12383: 12349: 12326: 12281: 12257: 12229: 12194: 12174: 12135: 12115: 12080: 12056: 12008: 11988: 11968: 11948: 11913: 11879: 11856: 11836: 11816: 11785: 11740: 11720: 11697: 11666: 11621: 11580: 11545: 11525: 11503: 11442: 11410: 11352: 11332: 11300: 11280: 11252: 11226: 11201: 11181: 11161: 11135: 11122:{\displaystyle B_{r}:=\{a\in \mathbb {K} :|a|<r\}} 11066: 11060:
is assumed have the (normed) Euclidean topology. Let
11044: 11022: 10982: 10962: 10940: 10913: 10881: 10859: 10819: 10787: 10759: 10727: 10695: 10675: 10653: 10616: 10584: 10558: 10529: 10509: 10476: 10456: 10424: 10402: 10382: 10356: 10334: 10312: 10290: 10241: 10187: 10142: 10113: 10077: 10055: 10035: 10015: 9985: 9959: 9939: 9878: 9852: 9809: 9768: 9745: 9719: 9683: 9663: 9606: 9582: 9539: 9512: 9492: 9472: 9449: 9418: 9391: 9352: 9311: 9291: 9259: 9222: 9186: 9153: 9133: 9060: 9040: 9014: 8990: 8967: 8947: 8927: 8854: 8828: 8782: 8762: 8739: 8719: 8654: 8582: 8562: 8526: 8503: 8484: 8455: 8429: 8396: 8325: 8301: 8278: 8258: 8238: 8195: 8171: 8144: 8118: 8082: 8043: 8023: 8003: 7980: 7960: 7931: 7911: 7891: 7867: 7835: 7815: 7795: 7775: 7755: 7749:
The definition of boundedness can be weakened a bit;
7723: 7703: 7683: 7657: 7637: 7602: 7578: 7535: 7503: 7475: 7429: 7379: 7336: 7307: 7257: 7237: 7208: 7182: 7153: 7133: 7104: 7084: 7056: 7036: 7016: 6986: 6960: 6890: 6861: 6835: 6800: 6774: 6745: 6716: 6690: 6664: 6627: 6584: 6558: 6522: 6480: 6452: 6424: 6404: 6376: 6356: 6336: 6304: 6275: 6252: 6214: 6160: 6128: 6106: 6077: 6046: 6023: 5997: 5969: 5949: 5927: 5907: 5880: 5844: 5818: 5798: 5776: 5744: 5703: 5603: 5577: 5537: 5497: 5462: 5411: 5389: 5351: 5328: 5306: 5206: 5104: 5022: 4866: 4838: 4798: 4755: 4728: 4699: 4676: 4656: 4593: 4530: 4497: 4441: 4421: 4394: 4374: 4354: 4327: 4307: 4278: 4242: 4222: 4175: 4148: 4101: 4070: 4035: 3963: 3931: 3866: 3846: 3668: 3635: 3600: 3556: 3353: 3317: 3291: 3226: 3193: 3127: 3100: 3060: 3039: 3001: 2952: 2932: 2905: 2879: 2852: 2832: 2787: 2748: 2682: 2617: 2579: 2549: 2518: 2488: 2466: 2438: 2416: 2389: 2354: 2331: 2265: 2245: 2208: 2188: 2156: 2118: 2088: 2058: 2034: 1994: 1962: 1939: 1919: 1891: 1871: 1835: 1815: 1754: 1728: 1692: 1682:
Defining topologies using neighborhoods of the origin
1648: 1618: 1574: 1542: 1512: 1489: 1469: 1433: 1409: 1370: 1340: 1307: 1279: 1146: 1119: 1075: 1033: 1001: 942: 914: 864: 827: 805: 742: 720:
Every topological vector space is also a commutative
701: 637: 590: 556: 529: 419: 397: 350: 310: 259: 212: 158: 133: 35639: 35014:
Topological Vector Spaces, Distributions and Kernels
34708:"An Introduction to Locally Convex Inductive Limits" 34415:
Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978).
34391: 30922:{\displaystyle \mathbb {Z} +{\sqrt {2}}\mathbb {Z} } 30628:
Recall also that the sum of a compact set (that is,
30571:{\displaystyle S\times \operatorname {cl} _{X}\{0\}} 30246:
Pages displaying wikidata descriptions as a fallback
30237:
Pages displaying wikidata descriptions as a fallback
30208:
Pages displaying wikidata descriptions as a fallback
30188:
Pages displaying wikidata descriptions as a fallback
30179:
Pages displaying wikidata descriptions as a fallback
30144:
Pages displaying wikidata descriptions as a fallback
24833:{\displaystyle z+\{x\in X:P(x)\}=\{x\in X:P(x-z)\}.} 20636:{\displaystyle C\times \operatorname {cl} _{X}\{0\}} 13146:
is bounded (as defined below) for some neighborhood
7905:
is bounded if and only if every continuous seminorm
4785:{\displaystyle \ U_{\bullet }\subseteq V_{\bullet }} 2234: 34115: 34050: 32984:is closed then equality holds. Using the fact that 32629:{\displaystyle h\left(\operatorname {int} C\right)} 32241:{\displaystyle h\left(\operatorname {int} C\right)} 30621:{\displaystyle \cdot \,+\,\cdot \;:X\times X\to X.} 30163: â€“ Vector space on which a distance is defined 23574:
Important algebraic facts and common misconceptions
21474:{\displaystyle a\neq 0,{\text{ or }}S=\varnothing } 18757:{\displaystyle \{0\}=\operatorname {cl} _{X}\{0\}.} 18087:{\displaystyle [x,x)=\varnothing {\text{ if }}x=y.} 16887:{\displaystyle \{0\}\cup \operatorname {Int} _{X}S} 11397:{\displaystyle \left(a_{i}x\right)_{i=1}^{\infty }} 6654:
then it is not linear and so not a TVS-isomorphism.
35485:Spectral theory of ordinary differential equations 34973: 34870: 34379: 33801: 33595: 33562: 33540: 33388: 33353: 33321: 33152: 33132: 33106: 33055: 33035: 33015: 32976: 32956: 32883: 32754: 32719: 32671: 32648: 32628: 32589: 32541: 32496: 32461: 32441: 32366: 32334: 32260: 32240: 32201: 32170:{\displaystyle x\mapsto rx+(1-r)sc_{0}=rx-rc_{0},} 32169: 32081: 32049: 32010: 31940: 31914: 31830: 31795: 31763: 31675: 31646: 31620: 31562: 31490: 31470: 31417: 31346: 31314: 31278: 31198: 31158: 31091: 31044: 31009: 30968: 30943: 30921: 30881: 30856: 30824: 30804: 30768: 30748: 30708: 30685: 30640: 30620: 30570: 30525: 30467: 30443: 30356: 30336: 30310: 30281: 30095: 29937: 29734: 27008: 26860: 26671: 26497: 26473: 26280: 26056: 25847: 25823: 25615: 25567: 25411: 25391: 25369: 25334: 25305: 25246: 25220: 25200: 25180: 25154: 25048: 25022: 24922: 24893: 24861: 24832: 24738: 24709: 24679: 24629: 24606: 24581: 24522: 24466: 24431: 24399: 24237: 24217: 24182: 24149: 24060: 24019: 23992: 23960: 23928: 23878: 23835: 23782: 23759: 23719: 23675: 23651: 23631: 23596: 23554: 23504: 23476: 23456: 23433: 23409: 23385: 23318: 23174: 23129: 23084: 23052: 22924: 22904: 22884: 22849: 22795: 22745: 22686: 22663: 22643: 22598: 22578: 22550: 22470: 22447: 22423: 22347: 22315: 22295: 22272: 22214: 22185: 22163: 22096: 22070: 21851: 21816: 21783: 21719: 21626: 21586: 21566: 21540: 21473: 21430: 21410: 21343: 21323: 21294: 21271: 21251: 21231: 21205: 21185: 21165: 21145: 21110: 21075: 21055: 21032: 21012: 20992: 20972: 20949: 20929: 20909: 20889: 20869: 20845: 20786: 20749: 20729: 20689: 20635: 20590: 20566: 20542: 20503: 20483: 20439: 20385: 20365: 20326: 20306: 20260: 20209: 20152: 20132: 20093: 20066: 20004: 19981: 19961: 19933: 19913: 19889: 19830: 19807: 19772: 19721: 19698: 19675: 19649: 19606: 19578: 19527: 19507: 19481: 19418: 19378: 19314: 19286: 19244: 19216: 19192: 19153: 19124: 19093: 19050: 19007: 18968: 18948: 18874: 18847: 18805: 18782: 18756: 18702: 18679: 18653: 18637:Non-Hausdorff spaces and the closure of the origin 18626: 18576: 18550: 18486: 18398: 18302: 18277: 18253: 18222: 18150: 18130: 18106: 18086: 18031: 17915: 17873: 17847: 17825: 17789: 17769: 17742: 17646: 17626: 17598: 17508: 17485: 17465: 17445: 17406: 17364: 17344: 17324: 17247: 17212: 17190: 17134: 17075: 17037: 17017: 16978: 16958: 16919: 16886: 16841: 16821: 16778: 16748: 16619: 16463: 16443: 16403: 16383: 16348: 16316: 16293: 16270: 16237: 16213: 16193: 16128: 16089: 16060: 16031: 16008: 15982: 15947: 15914: 15882: 15862: 15842: 15781: 15755: 15732: 15712: 15689: 15669: 15649: 15625: 15465: 15441: 15408: 15381: 15359: 15336: 15313: 15287: 15177: 15154: 15128: 15102: 15082: 15056: 15036: 15016: 14965: 14945: 14881: 14829: 14803: 14733: 14704: 14684: 14652: 14627: 14599: 14571: 14535: 14502: 14478: 14455: 14435: 14394: 14371: 14331: 14303: 14264: 14236: 14203: 14174: 14122: 14102: 14079: 14050: 14011: 13973: 13946: 13910: 13880: 13852: 13806: 13783: 13748: 13661: 13550: 13452: 13420: 13391: 13343: 13315: 13248: 13228: 13208: 13185: 13158: 13138: 13109: 13082: 13055: 13019: 12995: 12959: 12939: 12919: 12881: 12858: 12822: 12787: 12765: 12742: 12722: 12695: 12644: 12580: 12533: 12501: 12478: 12451: 12431: 12389: 12362: 12335: 12312: 12268: 12243: 12215: 12180: 12160: 12121: 12101: 12062: 12042: 11994: 11974: 11954: 11934: 11899: 11865: 11842: 11822: 11802: 11771: 11726: 11706: 11683: 11652: 11607: 11566: 11531: 11511: 11489: 11428: 11396: 11338: 11318: 11286: 11266: 11238: 11212: 11187: 11167: 11147: 11121: 11052: 11030: 10990: 10968: 10948: 10919: 10899: 10865: 10837: 10805: 10765: 10745: 10713: 10681: 10662: 10631: 10602: 10578:vector topology, which makes it TVS-isomorphic to 10564: 10544: 10515: 10491: 10462: 10442: 10410: 10388: 10364: 10342: 10320: 10298: 10253: 10227: 10153: 10128: 10099: 10064: 10041: 10021: 9998: 9971: 9945: 9918:{\displaystyle \left(f_{n}\right)_{n=1}^{\infty }} 9917: 9863: 9832: 9791: 9751: 9727: 9705: 9669: 9619: 9588: 9568: 9525: 9498: 9478: 9458: 9427: 9404: 9370: 9317: 9297: 9277: 9228: 9195: 9172: 9139: 9119: 9069: 9046: 9020: 8996: 8973: 8953: 8933: 8869: 8840: 8814: 8768: 8748: 8725: 8701: 8591: 8568: 8544: 8493: 8470: 8437: 8404: 8343: 8310: 8287: 8264: 8244: 8213: 8180: 8150: 8130: 8100: 8052: 8029: 8009: 7989: 7966: 7940: 7917: 7897: 7873: 7853: 7821: 7801: 7781: 7761: 7738: 7709: 7689: 7663: 7643: 7611: 7584: 7553: 7521: 7481: 7447: 7415: 7358: 7322: 7282: 7243: 7223: 7194: 7168: 7139: 7110: 7090: 7062: 7042: 7022: 7010:(resp. open neighborhood, closed neighborhood) of 6998: 6972: 6946: 6876: 6847: 6818: 6786: 6760: 6731: 6702: 6676: 6646: 6609: 6570: 6544: 6499: 6489: 6466: 6439: 6410: 6390: 6362: 6342: 6318: 6290: 6258: 6223: 6184: 6146: 6114: 6088: 6061: 6032: 6005: 5984:{\displaystyle \operatorname {Knots} \mathbb {S} } 5983: 5955: 5935: 5913: 5886: 5865: 5826: 5804: 5784: 5762: 5714: 5689: 5611: 5585: 5564:{\displaystyle W_{\bullet }\subseteq V_{\bullet }} 5563: 5524:{\displaystyle W_{\bullet }\subseteq U_{\bullet }} 5523: 5483: 5448: 5397: 5359: 5337: 5314: 5289: 5187: 5085: 5003: 4928: 4847: 4824: 4784: 4741: 4712: 4682: 4662: 4642: 4579: 4506: 4483: 4427: 4407: 4380: 4360: 4340: 4313: 4293: 4264: 4228: 4208: 4161: 4134: 4083: 4056: 4021: 3975: 3949: 3917: 3852: 3830: 3654: 3621: 3586: 3540: 3339: 3303: 3277: 3212: 3179: 3108: 3066: 3045: 3023: 2987: 2938: 2911: 2888: 2865: 2838: 2800: 2764: 2691: 2668: 2592: 2565: 2531: 2504: 2472: 2451: 2425: 2402: 2367: 2340: 2317: 2251: 2217: 2194: 2166: 2139: 2104: 2074: 2044: 2010: 1972: 1948: 1925: 1901: 1877: 1845: 1821: 1779: 1740: 1714: 1666: 1630: 1604: 1560: 1524: 1498: 1475: 1451: 1415: 1391: 1356: 1326: 1289: 1249:Many properties of TVSs that are studied, such as 1155: 1128: 1105: 1057: 1019: 950: 922: 896: 850: 813: 748: 710: 663: 624:{\displaystyle \cdot \,+\,\cdot \;:X\times X\to X} 623: 564: 535: 428: 405: 383: 336: 289: 246:{\displaystyle \cdot \,+\,\cdot \;:X\times X\to X} 245: 169: 141: 34510: 34373: 34344: 34332: 34303: 34276: 34213: 34201: 34139: 34085: 34044: 33988: 33962:"A quick application of the closed graph theorem" 33936: 33828: 33754: 33698: 30235: â€“ ring where ring operations are continuous 13489:: a locally convex space satisfying a variant of 11002:and has consequences that reverberate throughout 8941:is a complete subset of a TVS then any subset of 4650:are two collections of subsets of a vector space 50:) is one of the basic structures investigated in 36326: 34974:Robertson, Alex P.; Robertson, Wendy J. (1980). 33107:{\displaystyle S+\operatorname {cl} _{X}\{0\}=S} 30206: â€“ topological group whose group is abelian 23441:has no balanced absorbing nowhere dense subset. 20261:{\displaystyle X=H+\operatorname {cl} _{X}\{0\}} 19579:{\displaystyle S+\operatorname {cl} _{X}\{0\}=S} 18439: 14417:, closed convex, closed balanced, closed disked' 13591: 10277:, which happens if and only if it has a compact 3685: 897:{\displaystyle \mathrm {TVect} _{\mathbb {K} }.} 664:{\displaystyle \cdot :\mathbb {K} \times X\to X} 337:{\displaystyle \cdot :\mathbb {K} \times X\to X} 82:. Some authors also require that the space is a 34798: 34414: 33766: 33719: 17407:{\displaystyle y\in \operatorname {int} _{X}C,} 17372:(not necessarily Hausdorff or locally convex), 14182:of all continuous linear functionals, that is, 12320:contains an open neighborhood of the origin in 9576:into another TVS is necessarily continuous. If 9466:that is finer than every other TVS-topology on 6122:is the set of all topological strings in a TVS 2178:a filter base then it will form a neighborhood 491:is a topological vector space over each of its 34672:. Mineola, New York: Dover Publications, Inc. 34511:Narici, Lawrence; Beckenstein, Edward (2011). 31092:{\displaystyle 0\in \operatorname {Int} _{X}S} 31017:denotes the set of all topological strings in 30686:{\displaystyle S+\operatorname {cl} _{X}\{0\}} 30526:{\displaystyle S+\operatorname {cl} _{X}\{0\}} 25263:The balanced hull of a compact (respectively, 24157:where the inclusion might be strict since the 23555:{\textstyle X=\bigcup _{n\in \mathbb {N} }nD.} 22892:and the closed convex hull of one of the sets 19773:{\displaystyle S+\operatorname {cl} _{X}\{0\}} 19204:(see footnote for a proof). In particular, if 18230:then by considering intersections of the form 17916:{\displaystyle y\in \operatorname {cl} _{X}S,} 17634:is any balanced neighborhood of the origin in 17018:{\displaystyle 0\in \operatorname {Int} _{X}S} 16959:{\displaystyle 0\in \operatorname {Int} _{X}S} 14976: 12043:{\displaystyle B_{r}\cdot S\subseteq W\neq X,} 9872:The reason for this name is the following: if 9833:{\displaystyle X:=\mathbb {R} ^{\mathbb {R} }} 9706:{\displaystyle f:\mathbb {R} \to \mathbb {R} } 3278:{\displaystyle U_{i+1}+U_{i+1}\subseteq U_{i}} 2669:{\displaystyle U_{i+1}+U_{i+1}\subseteq U_{i}} 1403:Characterization of continuity of addition at 736:), but not this page, require the topology on 35625: 35141: 34573: 34249: 34234: 34166: 34073: 33919: 33907: 33618: 32656:that contains the origin and is contained in 20307:{\displaystyle \operatorname {cl} _{X}\{0\}.} 19287:{\displaystyle \operatorname {cl} _{X}\{0\}.} 18848:{\displaystyle \operatorname {cl} _{X}\{0\},} 17446:{\displaystyle x\in \operatorname {cl} _{X}C} 16129:{\displaystyle x\in \operatorname {cl} _{X}S} 15677:was continuous (which happens if and only if 14804:{\displaystyle t_{1}s_{1}+\cdots +t_{n}s_{n}} 13236:has either dense or closed kernel. Moreover, 11873:then the continuity of scalar multiplication 11519:(in the usual sense). Any vector topology on 9792:{\displaystyle \mathbb {R} ^{\mathbb {R} },,} 9285:is always a TVS topology on any vector space 851:{\displaystyle \mathrm {TVS} _{\mathbb {K} }} 105:Many topological vector spaces are spaces of 34865: 34841:Functional Analysis: Theory and Applications 33630: 33532: 33499: 33493: 33454: 33448: 33403: 33316: 33259: 33253: 33214: 33208: 33181: 33095: 33089: 33016:{\displaystyle \operatorname {cl} _{X}\{0\}} 33010: 33004: 32929: 32923: 32856: 32850: 32828: 32822: 32794: 32788: 32720:{\displaystyle \operatorname {cl} _{X}\{0\}} 32714: 32708: 31131: 31125: 30680: 30674: 30565: 30559: 30520: 30514: 30331: 30325: 30136: â€“ Normed vector space that is complete 25093: 25066: 25014: 25005: 24993: 24978: 24972: 24963: 24957: 24942: 24882: 24876: 24824: 24791: 24785: 24758: 24564: 24558: 24508: 24502: 23754: 23739: 23711: 23696: 22545: 22513: 22455:is any neighborhood basis at the origin for 20837: 20831: 20681: 20675: 20630: 20624: 20543:{\displaystyle \operatorname {cl} _{X}\{0\}} 20537: 20531: 20425: 20419: 20366:{\displaystyle \operatorname {cl} _{X}\{0\}} 20360: 20354: 20298: 20292: 20255: 20249: 20204: 20198: 20173: 20167: 20133:{\displaystyle \operatorname {cl} _{X}\{0\}} 20127: 20121: 20061: 20055: 19881: 19875: 19767: 19761: 19650:{\displaystyle \operatorname {cl} _{X}\{0\}} 19644: 19638: 19567: 19561: 19457: 19451: 19373: 19367: 19278: 19272: 19193:{\displaystyle \operatorname {cl} _{X}\{0\}} 19187: 19181: 19145: 19139: 19094:{\displaystyle \operatorname {cl} _{X}\{0\}} 19088: 19082: 19051:{\displaystyle \operatorname {cl} _{X}\{0\}} 19045: 19039: 19008:{\displaystyle \operatorname {cl} _{X}\{0\}} 19002: 18996: 18908: 18902: 18839: 18833: 18777: 18771: 18748: 18742: 18723: 18717: 18674: 18668: 18481: 18442: 18214: 18178: 17996: 17948: 17571: 17523: 17182: 17149: 17129: 17096: 17083:the interior of the closed and balanced set 16894:will necessarily be balanced; consequently, 16862: 16856: 15595: 15562: 15538: 15505: 15282: 15243: 15231: 15198: 13669:A locally convex F-space is a FrĂ©chet space. 13572: 13565: 13479:to any locally convex space are exactly the 11116: 11080: 10832: 10826: 10689:has a unique vector topology if and only if 10499:(explicitly, this means that there exists a 10264: 10222: 10199: 9272: 9260: 8125: 8119: 6431: 6425: 5484:{\displaystyle W_{\bullet }\in \mathbb {S} } 4491:is a metric defining the vector topology on 34905:Topological Vector Spaces and Distributions 34670:Modern Methods in Topological Vector Spaces 30244: â€“ semigroup with continuous operation 29717:Image under a continuous linear surjection 29598:Image under a continuous linear surjection 25228:must belong to this vector space (that is, 23879:{\displaystyle s>0{\text{ and }}t>0,} 12188:does not carry the trivial topology and if 11935:{\displaystyle B_{r}\subseteq \mathbb {K} } 10976:-dimensional topological vector space over 6185:{\displaystyle \tau _{\mathbb {S} }=\tau .} 5873:Such a collection of strings is said to be 1269:A necessary condition for a vector topology 1106:{\displaystyle \operatorname {Im} u:=u(X),} 1058:{\displaystyle u:X\to \operatorname {Im} u} 771:. A topological vector space is said to be 448:are examples of topological vector spaces. 35632: 35618: 35148: 35134: 35080:. Compact Textbooks in Mathematics. Cham: 35046:. Vol. 67. Amsterdam New York, N.Y.: 32367:{\displaystyle c\in \operatorname {int} C} 31831:{\displaystyle y\in \operatorname {cl} C,} 31796:{\displaystyle x\in \operatorname {int} C} 31315:{\displaystyle \operatorname {int} _{X}C.} 30596: 30475:if the sequence of partial sums converges. 22606:is the rational numbers). It follows that 21193:is a closed neighborhood of the origin in 20699: 14994:and any connected open subset of a TVS is 14572:{\displaystyle \operatorname {Int} _{X}S,} 14304:{\displaystyle X'\times X\to \mathbb {K} } 11850:of the origin that is not equal to all of 11660:is a continuous linear bijection. Because 10931:and the (non-Hausdorff) trivial topology. 6040:In this case, this topology is denoted by 5697:be the set of all knots of all strings in 2174:satisfies the above two conditions but is 602: 224: 34772:. Vol. 96 (2nd ed.). New York: 34702: 34607: 33731: 31003: 30959: 30937: 30915: 30900: 30872: 30841: 30733: 30592: 30588: 30157: â€“ Concept in condensed mathematics 24644:Every TVS topology can be generated by a 24170: 23537: 22572: 18293: 18244: 18188: 17060: 16920:{\displaystyle \operatorname {Int} _{X}S} 16411:is not of the second category in itself. 16371: 16016:be a neighborhood basis of the origin in 14982:Properties of neighborhoods and open sets 14297: 14230: 14194: 14067: 14038: 13888:but is strictly contained in the dual of 13551:{\displaystyle C^{\infty }(\mathbb {R} )} 13541: 12574: 12518: 12259: 12237: 11928: 11900:{\displaystyle \mathbb {K} \times X\to X} 11881: 11793: 11674: 11595: 11505: 11483: 11260: 11203: 11090: 11046: 11024: 10984: 10942: 10619: 10587: 10532: 10479: 10404: 10358: 10336: 10314: 10292: 10218: 10189: 10144: 9854: 9824: 9818: 9777: 9771: 9721: 9699: 9691: 8458: 8431: 8398: 6167: 6108: 6079: 6053: 5999: 5977: 5929: 5820: 5778: 5705: 5665: 5639: 5608: 5604: 5579: 5477: 5439: 5391: 5353: 5308: 5278: 5176: 5074: 4982: 4914: 4634: 4571: 4321:is a topological vector space and if all 3807: 3355: 3102: 1984:that satisfies the following conditions: 944: 916: 885: 842: 807: 645: 598: 594: 558: 399: 318: 220: 216: 160: 135: 70:and every topological vector space has a 35438:Group algebra of a locally compact group 35038: 34726: 34664: 34613:Handbook of Analysis and Its Foundations 34320: 34288: 34109: 34097: 33858: 33778: 33647: 31621:{\displaystyle y={\tfrac {r}{r-1}}x=sx.} 30151: â€“ Type of topological vector space 29429:Pre-image under a continuous linear map 29265:Pre-image under a continuous linear map 24691:(a true or false statement dependent on 21817:{\displaystyle \operatorname {cl} _{X}S} 20787:{\displaystyle \operatorname {cl} _{X}S} 19808:{\displaystyle \operatorname {cl} _{X}S} 19618:whose vertical side is the vector space 17855:belongs to the interior of a convex set 15657:had any topological properties nor that 14882:{\displaystyle s_{1},\ldots ,s_{n}\in S} 14536:{\displaystyle \operatorname {cl} _{X}S} 13354:Locally convex topological vector spaces 12973: 11803:{\displaystyle F\subseteq \mathbb {K} .} 10552:). This finite-dimensional vector space 9569:{\displaystyle \left(X,\tau _{f}\right)} 8445:is locally compact if and only if it is 6199: 5963:that is directed downward, then the set 5322:is a collection sequences of subsets of 1265:, are invariant under TVS isomorphisms. 502: 88:locally convex topological vector spaces 34899: 34838: 34732:Topological Vector Spaces: Chapters 1–5 34445: 34356: 34264: 34151: 31418:{\displaystyle C-w_{0},x-w_{0},y-w_{0}} 30444:{\textstyle \sum _{i=1}^{\infty }x_{i}} 30193:Locally convex topological vector space 24439:are convex non-empty disjoint sets and 14946:{\displaystyle t_{1},\ldots ,t_{n}\in } 14653:{\displaystyle \operatorname {cobal} S} 14490:, balanced hull, disked hull) of a set 13558:is a FrĂ©chet space under the seminorms 12244:{\displaystyle B\subseteq \mathbb {K} } 11608:{\displaystyle M_{x}:\mathbb {K} \to X} 11267:{\displaystyle B\subseteq \mathbb {K} } 9120:{\textstyle \sum _{i=1}^{\infty }x_{i}} 7564:Every neighborhood of the origin is an 6266:be a topological vector space. Given a 6017:at the origin for a vector topology on 1297:of subsets of a vector space is called 908:are the topological vector spaces over 14: 36327: 35771:Uniform boundedness (Banach–Steinhaus) 35008: 34760: 34640:An introduction to Functional Analysis 34637: 34397: 34178: 33948: 33114:must also satisfy this equality (when 32335:{\textstyle h(c_{0})=rc_{0}-rc_{0}=0.} 25346:Properties preserved by set operators 21594:is a set of scalars such that neither 20078:onto the (necessarily) Hausdorff TVS. 14628:{\displaystyle \operatorname {bal} S,} 12967:are all TVS-isomorphic to one another. 8713:if and only if for every neighborhood 2808:is summative, absorbing, and balanced. 1829:is a real or complex vector space. If 384:{\displaystyle (s,x)\mapsto s\cdot x,} 27:Vector space with a notion of nearness 35613: 35129: 35078:A Course on Topological Vector Spaces 35072: 35016:. Mineola, N.Y.: Dover Publications. 34921: 34537: 34472: 34385: 34124: 34061: 34029: 34017: 34005: 33895: 33852: 33840: 33807: 33795: 33606: 33589: 32442:{\textstyle h(c)=rc+(1-r)sc_{0}\in C} 31941:{\displaystyle \operatorname {int} C} 31498:is a neighborhood of the origin. Let 25258:Properties preserved by set operators 17135:{\displaystyle S:=\{(x,y):xy\geq 0\}} 14600:{\displaystyle \operatorname {co} S,} 14486:The closure (respectively, interior, 14153:Every topological vector space has a 12581:{\displaystyle |f|:X\to \mathbb {R} } 12168:From this, it can be deduced that if 10927:has two vector topologies: the usual 10845:has exactly one vector topology: the 10049:if and only if for every real number 9644: 8984:A Cauchy sequence in a Hausdorff TVS 4348:are neighborhoods of the origin then 4022:{\textstyle \bigcap _{i\geq 0}U_{i};} 3116:-valued function induced by a string) 967:topological vector space homomorphism 34951: 34712:Functional Analysis and Applications 34549:McGraw-Hill Science/Engineering/Math 30318:is Hausdorff if and only if the set 29593:Image under a continuous linear map 29434:Image under a continuous linear map 26681: decreasing nonempty  26507: decreasing nonempty  26066: increasing nonempty  25857: increasing nonempty  23929:{\displaystyle tC+(1-t)C\subseteq C} 17076:{\displaystyle X:=\mathbb {R} ^{2},} 17045:is not also convex; for example, in 14685:{\displaystyle \operatorname {co} S} 14463:that has this property and contains 13784:{\displaystyle 1\leq p\leq \infty ,} 12509:which is vector space isomorphic to 8552:is the unique translation-invariant 7416:{\displaystyle tE+(1-t)E\subseteq E} 6062:{\displaystyle \tau _{\mathbb {S} }} 4825:{\displaystyle U_{i}\subseteq V_{i}} 4519:metrizable topological vector spaces 4368:is continuous, where if in addition 3918:{\displaystyle f(x+y)\leq f(x)+f(y)} 1795:(or subbasis) for it at the origin. 1327:{\displaystyle N\in {\mathcal {N}},} 1207:topological vector space isomorphism 763:; it then follows that the space is 451: 34982:. Vol. 53. Cambridge England: 29917: 29908: 29901: 29880: 29841: 29707: 29687: 29672: 29665: 29658: 29635: 29628: 29621: 29614: 29607: 29600: 29583: 29563: 29548: 29541: 29534: 29471: 29464: 29457: 29450: 29443: 29358: 29351: 29344: 29337: 29330: 29323: 29316: 29309: 29302: 29295: 29288: 29281: 29274: 29267: 29232: 29225: 29211: 29172: 29165: 29150: 29143: 29136: 29129: 29122: 29115: 29108: 29101: 29066: 29059: 29031: 29024: 29017: 29010: 29003: 28996: 28989: 28975: 28968: 28961: 28954: 28947: 28940: 28907: 28900: 28872: 28865: 28858: 28851: 28844: 28837: 28830: 28816: 28809: 28802: 28795: 28788: 28781: 28748: 28741: 28734: 28713: 28706: 28699: 28692: 28685: 28678: 28671: 28657: 28650: 28643: 28629: 28622: 28587: 28580: 28566: 28547: 28540: 28533: 28524: 28517: 28510: 28503: 28496: 28489: 28482: 28475: 28468: 28461: 28424: 28417: 28403: 28390: 28379: 28372: 28365: 28358: 28342: 28335: 28328: 28321: 28314: 28307: 28300: 28293: 28256: 28249: 28242: 28235: 28215: 28208: 28201: 28194: 28187: 28178: 28164: 28157: 28150: 28143: 28136: 28122: 28115: 28092: 28085: 28074: 28055: 28048: 28041: 28034: 28027: 28020: 28013: 28006: 27999: 27992: 27985: 27978: 27971: 27964: 27957: 27927: 27916: 27843: 27836: 27820: 27813: 27774: 27767: 27760: 27753: 27740: 27733: 27726: 27719: 27712: 27705: 27698: 27691: 27684: 27677: 27670: 27656: 27649: 27642: 27635: 27628: 27621: 27604: 27597: 27590: 27583: 27576: 27569: 27562: 27553: 27546: 27537: 27530: 27523: 27516: 27509: 27502: 27495: 27488: 27481: 27474: 27467: 27460: 27453: 27446: 27439: 27432: 27425: 27410: 27403: 27396: 27389: 27382: 27375: 27368: 27361: 27354: 27347: 27340: 27333: 27326: 27319: 27312: 27305: 27298: 27291: 27284: 27277: 27270: 27263: 27256: 27249: 27242: 27235: 27228: 27221: 27206: 27199: 27192: 27185: 27164: 27155: 27148: 27141: 27134: 27127: 27120: 27057: 27050: 27043: 27036: 27029: 26971: 26956: 26949: 26918: 26911: 26904: 26897: 26890: 26883: 26876: 26869: 26830: 26819: 26808: 26789: 26782: 26768: 26761: 26754: 26747: 26733: 26719: 26712: 26705: 26698: 26651: 26640: 26629: 26610: 26603: 26589: 26582: 26575: 26568: 26547: 26540: 26533: 26526: 26519: 26448: 26439: 26432: 26421: 26412: 26401: 26394: 26387: 26380: 26373: 26366: 26359: 26352: 26345: 26338: 26331: 26324: 26317: 26310: 26303: 26296: 26289: 26232: 26225: 26125: 26118: 26097: 26083: 26076: 26018: 26011: 25911: 25904: 25897: 25890: 25883: 25876: 25869: 25862: 25798: 25791: 25784: 25777: 25770: 25763: 25756: 25747: 25738: 25724: 25717: 25687: 25680: 25673: 25666: 25645: 25631: 25624: 25267:, open) set has that same property. 24000:is equal to the convex hull of the 23348: 20101:that is an algebraic complement of 18254:{\displaystyle N\cap \mathbb {R} x} 17453:then the open line segment joining 15782:{\displaystyle \tau \subseteq \nu } 14186:from the space into the base field 13475:: a locally convex space where the 12109:there exists some positive integer 9236:be a real or complex vector space. 9212:Finest and coarsest vector topology 9031:If a Cauchy filter in a TVS has an 8640:With respect to this uniformity, a 8353:metrizable topological vector space 7050:if and only if the same is true of 2105:{\displaystyle U\in {\mathcal {B}}} 2075:{\displaystyle B\in {\mathcal {B}}} 2011:{\displaystyle B\in {\mathcal {B}}} 1804:(Neighborhood filter of the origin) 1357:{\displaystyle U\in {\mathcal {N}}} 1231:isomorphism in the category of TVSs 476:on them. These are all examples of 462:infinitely differentiable functions 24: 34696: 30578:under the continuous addition map 30426: 29894: 29887: 29871: 29864: 29855: 29848: 29834: 29827: 29820: 29813: 29806: 29799: 29792: 29785: 29778: 29771: 29764: 29757: 29750: 29743: 29698: 29574: 29527: 29520: 29513: 29506: 29499: 29492: 29485: 29478: 29436: 29421: 29414: 29399: 29386: 29379: 29372: 29365: 29246: 29239: 29218: 29200: 29193: 29186: 29179: 29080: 29073: 29052: 28982: 28921: 28914: 28893: 28823: 28762: 28755: 28664: 28636: 28601: 28594: 28573: 28438: 28431: 28410: 28349: 28270: 28263: 28222: 28171: 28129: 27934: 27901: 27894: 27885: 27878: 27871: 27864: 27857: 27850: 27829: 27806: 27799: 27663: 27178: 27171: 27113: 27106: 27099: 27092: 27085: 27078: 27071: 27064: 27022: 26934: 26925: 26775: 26740: 26726: 26691: 26596: 26561: 26554: 26512: 26246: 26239: 26218: 26209: 26202: 26195: 26188: 26181: 26174: 26167: 26160: 26153: 26146: 26139: 26132: 26111: 26104: 26090: 26032: 26025: 26004: 25995: 25988: 25981: 25974: 25967: 25960: 25953: 25946: 25939: 25932: 25925: 25918: 25731: 25710: 25701: 25694: 25659: 25652: 25638: 24467:{\displaystyle x\not \in R\cup S,} 23345:sets is again compact and convex. 22440: 22399: 18927: 18571: 17191:{\displaystyle \{(x,y):xy>0\}.} 16384:{\displaystyle X=\mathbb {R} ^{2}} 16230: 16184: 16136:if and only if there exists a net 16001: 15697:is a neighborhood of the origin). 14237:{\displaystyle X'\to \mathbb {K} } 13900: 13873: 13775: 13532: 13465:: locally convex spaces where the 12161:{\displaystyle S\subseteq B_{n}x.} 11474: 11389: 9910: 9278:{\displaystyle \{X,\varnothing \}} 9102: 8625:if and only if it is complete and 8504:Completeness and uniform structure 5571:(said differently, if and only if 3172: 2310: 2159: 2097: 2067: 2037: 2003: 1965: 1956:That is, the assumptions are that 1894: 1838: 1349: 1316: 1282: 1169:topological vector space embedding 879: 876: 873: 870: 867: 836: 833: 830: 482:Kolmogorov's normability criterion 413:is the underlying scalar field of 177:unless clearly stated otherwise. 54:. A topological vector space is a 25: 36361: 35107: 35042:(1982). Nachbin, Leopoldo (ed.). 34615:. San Diego, CA: Academic Press. 33124: 32177:which is a homeomorphism because 30857:{\displaystyle \mathbb {R} ^{2}.} 30805:{\displaystyle y={\frac {1}{x}},} 30749:{\displaystyle \mathbb {R} ^{2},} 24573: 24517: 23393:is a TVS that does not carry the 21468: 21063:then there exists a neighborhood 20715:complete topological vector space 19838:under the canonical quotient map 18609: 18064: 16816: 16271:{\displaystyle s_{\bullet }\to x} 15948:{\displaystyle x_{\bullet }\to 0} 15165:The open convex subsets of a TVS 15162:is a neighborhood of the origin. 13256:is continuous if and only if its 12534:{\displaystyle \mathbb {K} ^{n},} 10603:{\displaystyle \mathbb {K} ^{n},} 9269: 9173:{\displaystyle x_{\bullet }\to 0} 8905:complete topological vector space 8510:Complete topological vector space 4690:is a scalar, then by definition: 2742:, etc.) if this is true of every 2235:Defining topologies using strings 1612:) is continuous at the origin of 36309: 36308: 35594: 35593: 35520:Topological quantum field theory 35113: 34843:. New York: Dover Publications. 30648:) and a closed set is closed so 30199:Ordered topological vector space 29918: 29909: 29902: 29895: 29888: 29881: 29872: 29865: 29856: 29849: 29842: 29835: 29828: 29821: 29814: 29807: 29800: 29793: 29786: 29779: 29772: 29765: 29758: 29751: 29744: 29708: 29699: 29688: 29673: 29666: 29659: 29636: 29629: 29622: 29615: 29608: 29601: 29584: 29575: 29564: 29549: 29542: 29535: 29528: 29521: 29514: 29507: 29500: 29493: 29486: 29479: 29472: 29465: 29458: 29451: 29444: 29437: 29422: 29415: 29400: 29387: 29380: 29373: 29366: 29359: 29352: 29345: 29338: 29331: 29324: 29317: 29310: 29303: 29296: 29289: 29282: 29275: 29268: 29247: 29240: 29233: 29226: 29219: 29212: 29201: 29194: 29187: 29180: 29173: 29166: 29151: 29144: 29137: 29130: 29123: 29116: 29109: 29102: 29081: 29074: 29067: 29060: 29053: 29032: 29025: 29018: 29011: 29004: 28997: 28990: 28983: 28976: 28969: 28962: 28955: 28948: 28941: 28922: 28915: 28908: 28901: 28894: 28873: 28866: 28859: 28852: 28845: 28838: 28831: 28824: 28817: 28810: 28803: 28796: 28789: 28782: 28763: 28756: 28749: 28742: 28735: 28714: 28707: 28700: 28693: 28686: 28679: 28672: 28665: 28658: 28651: 28644: 28637: 28630: 28623: 28602: 28595: 28588: 28581: 28574: 28567: 28548: 28541: 28534: 28525: 28518: 28511: 28504: 28497: 28490: 28483: 28476: 28469: 28462: 28439: 28432: 28425: 28418: 28411: 28404: 28391: 28380: 28373: 28366: 28359: 28350: 28343: 28336: 28329: 28322: 28315: 28308: 28301: 28294: 28271: 28264: 28257: 28250: 28243: 28236: 28223: 28216: 28209: 28202: 28195: 28188: 28179: 28172: 28165: 28158: 28151: 28144: 28137: 28130: 28123: 28116: 28093: 28086: 28075: 28056: 28049: 28042: 28035: 28028: 28021: 28014: 28007: 28000: 27993: 27986: 27979: 27972: 27965: 27958: 27935: 27928: 27917: 27902: 27895: 27886: 27879: 27872: 27865: 27858: 27851: 27844: 27837: 27830: 27821: 27814: 27807: 27800: 27775: 27768: 27761: 27754: 27741: 27734: 27727: 27720: 27713: 27706: 27699: 27692: 27685: 27678: 27671: 27664: 27657: 27650: 27643: 27636: 27629: 27622: 27605: 27598: 27591: 27584: 27577: 27570: 27563: 27554: 27547: 27538: 27531: 27524: 27517: 27510: 27503: 27496: 27489: 27482: 27475: 27468: 27461: 27454: 27447: 27440: 27433: 27426: 27411: 27404: 27397: 27390: 27383: 27376: 27369: 27362: 27355: 27348: 27341: 27334: 27327: 27320: 27313: 27306: 27299: 27292: 27285: 27278: 27271: 27264: 27257: 27250: 27243: 27236: 27229: 27222: 27207: 27200: 27193: 27186: 27179: 27172: 27165: 27156: 27149: 27142: 27135: 27128: 27121: 27114: 27107: 27100: 27093: 27086: 27079: 27072: 27065: 27058: 27051: 27044: 27037: 27030: 27023: 26972: 26957: 26950: 26935: 26926: 26919: 26912: 26905: 26898: 26891: 26884: 26877: 26870: 26831: 26820: 26809: 26790: 26783: 26776: 26769: 26762: 26755: 26748: 26741: 26734: 26727: 26720: 26713: 26706: 26699: 26692: 26652: 26641: 26630: 26611: 26604: 26597: 26590: 26583: 26576: 26569: 26562: 26555: 26548: 26541: 26534: 26527: 26520: 26513: 26449: 26440: 26433: 26422: 26413: 26402: 26395: 26388: 26381: 26374: 26367: 26360: 26353: 26346: 26339: 26332: 26325: 26318: 26311: 26304: 26297: 26290: 26247: 26240: 26233: 26226: 26219: 26210: 26203: 26196: 26189: 26182: 26175: 26168: 26161: 26154: 26147: 26140: 26133: 26126: 26119: 26112: 26105: 26098: 26091: 26084: 26077: 26033: 26026: 26019: 26012: 26005: 25996: 25989: 25982: 25975: 25968: 25961: 25954: 25947: 25940: 25933: 25926: 25919: 25912: 25905: 25898: 25891: 25884: 25877: 25870: 25863: 25799: 25792: 25785: 25778: 25771: 25764: 25757: 25748: 25739: 25732: 25725: 25718: 25711: 25702: 25695: 25688: 25681: 25674: 25667: 25660: 25653: 25646: 25639: 25632: 25625: 24591:In any non-trivial vector space 24183:{\displaystyle \mathbb {R} ^{2}} 23886:or equivalently, if and only if 23464:is a Baire space if and only if 23354:Meager, nowhere dense, and Baire 20705:Compact and totally bounded sets 20484:{\displaystyle (h,n)\mapsto h+n} 18813:the same is true of its closure 18710:or equivalently, if and only if 17923:then the half-open line segment 14080:{\displaystyle \mathbb {C} ^{n}} 14051:{\displaystyle \mathbb {R} ^{n}} 13503:: a barrelled space where every 12979:Discrete and cofinite topologies 12696:{\displaystyle \ker f=\ker |f|.} 10632:{\displaystyle \mathbb {K} ^{n}} 10545:{\displaystyle \mathbb {K} ^{n}} 10492:{\displaystyle \mathbb {K} ^{n}} 10372:with its usual Hausdorff normed 9342:topological vector space. It is 8815:{\displaystyle x_{i}-x_{j}\in V} 8471:{\displaystyle \mathbb {K} ^{n}} 8062: 8037:if and only if it is bounded in 7073: 6610:{\displaystyle x\mapsto x_{0}+x} 5597:with respect to the containment 1780:{\displaystyle x\mapsto x_{0}+x} 1605:{\displaystyle (x,y)\mapsto x+y} 290:{\displaystyle (x,y)\mapsto x+y} 185: 36296:With the approximation property 35044:Topics in Locally Convex Spaces 34980:Cambridge Tracts in Mathematics 34766:A Course in Functional Analysis 34407: 33954: 33163: 32682: 31628:Since scalar multiplication by 31478:and so it remains to show that 31168: 31054: 30995:This condition is satisfied if 30989: 30929:is a countable dense subset of 30812:which is the complement of the 30718: 30478: 30397: 30384: 30375: 30292: 30263: 23632:{\displaystyle 2S\subseteq S+S} 21111:{\displaystyle K+N\subseteq U.} 17332:Explicitly, this means that if 11810:And if this vector topology on 11684:{\displaystyle X=\mathbb {K} x} 11195:-dimensional vector space over 8363:that is translation-invariant. 8295:which is the given topology on 6500:Invariance of vector topologies 5991:of all knots of all strings in 3655:{\displaystyle x\not \in U_{0}} 2988:{\displaystyle U_{i}:=2^{1-i}U} 2140:{\displaystyle U+U\subseteq B,} 1392:{\displaystyle U+U\subseteq N.} 1113:which is the range or image of 679:). Such a topology is called a 35759:Open mapping (Banach–Schauder) 33529: 33517: 33490: 33478: 33445: 33433: 33313: 33304: 33292: 33289: 33250: 33244: 33205: 33199: 32831: 32813: 32542:{\displaystyle sc_{0},c\in C,} 32417: 32405: 32390: 32384: 32291: 32278: 32123: 32111: 32099: 32073: 31664: 31453: 31441: 31270: 31258: 31036: 31024: 30609: 25090: 25084: 24856: 24850: 24821: 24809: 24782: 24776: 24674: 24668: 24567: 24549: 24511: 24493: 24432:{\displaystyle R,S\subseteq X} 24376: 24367: 24320: 24308: 24267: 24255: 24218:{\displaystyle R,S\subseteq X} 24141: 24129: 24093: 24081: 24052: 24040: 23961:{\displaystyle 0\leq t\leq 1.} 23914: 23902: 23809: 23797: 23305: 23293: 23274: 23262: 23226: 23223: 23211: 23202: 23169: 23157: 23124: 23112: 23085:{\displaystyle R,S\subseteq X} 23044: 23032: 23013: 23001: 22976: 22973: 22961: 22952: 22885:{\displaystyle R,S\subseteq X} 22841: 22829: 22787: 22775: 22737: 22725: 22579:{\displaystyle X=\mathbb {R} } 22448:{\displaystyle {\mathcal {N}}} 22418: 22406: 22155: 22149: 22130: 22124: 22065: 22053: 22023: 22017: 21998: 21992: 21947: 21935: 21910: 21904: 21885: 21879: 21852:{\displaystyle R,S\subseteq X} 21711: 21702: 21510: 21501: 21402: 21393: 20840: 20828: 20804: 20469: 20466: 20454: 20428: 20334:is an algebraic complement of 20031: 19921:is a vector subspace of a TVS 19884: 19872: 19848: 19706:the following are equivalent: 18938: 18932: 18527: 18515: 18469: 18457: 18371: 18356: 18341: 18329: 18204: 18196: 18058: 18046: 17972: 17960: 17942: 17930: 17813: 17805: 17716: 17708: 17547: 17535: 17289: 17277: 17164: 17152: 17111: 17099: 16966:) to be true, it suffices for 16740: 16728: 16678: 16672: 16653: 16647: 16444:{\displaystyle R,S\subseteq X} 16262: 16238:{\displaystyle {\mathcal {N}}} 16009:{\displaystyle {\mathcal {N}}} 15974: 15962: 15939: 15909: 15897: 15789:if and only if whenever a net 15586: 15580: 15529: 15523: 15273: 15261: 15222: 15216: 14940: 14928: 14293: 14226: 13816:functions of bounded variation 13652: 13648: 13642: 13637: 13631: 13622: 13616: 13601: 13545: 13537: 13216:on a topological vector space 13173:in a topological vector space 13133: 13127: 13092: 12927:then the vector topologies on 12686: 12678: 12638: 12634: 12628: 12621: 12614: 12608: 12604: 12596: 12570: 12560: 12552: 12432:{\displaystyle \dim X=n\geq 2} 12298: 12292: 11891: 11766: 11760: 11638: 11632: 11599: 11106: 11098: 10470:is vector space isomorphic to 10123: 10117: 10094: 10088: 9803:. With this product topology, 9695: 9486:(that is, any TVS-topology on 9164: 8539: 8527: 8423:topological vector space over 8338: 8326: 8208: 8196: 8095: 8083: 7974:is a vector subspace of a TVS 7854:{\displaystyle E\subseteq tV.} 7651:of a topological vector space 7522:{\displaystyle -E\subseteq E,} 7448:{\displaystyle 0\leq t\leq 1.} 7401: 7389: 7346: 7338: 7267: 7259: 6916: 6904: 6804: 6778: 6720: 6694: 6588: 6562: 6141: 6129: 5943:is a collection of strings in 5857: 5845: 5757: 5745: 5612:{\displaystyle \,\subseteq \,} 4484:{\displaystyle d(x,y):=f(x-y)} 4478: 4466: 4457: 4445: 4252: 4244: 4209:{\displaystyle f(sx)\leq f(x)} 4203: 4197: 4188: 4179: 4129: 4123: 4114: 4105: 4045: 4039: 3912: 3906: 3897: 3891: 3882: 3870: 3817: 3811: 3678: 3672: 3610: 3604: 3581: 3569: 3566: 3365: 3359: 2995:forms a string beginning with 2167:{\displaystyle {\mathcal {B}}} 2045:{\displaystyle {\mathcal {B}}} 1973:{\displaystyle {\mathcal {B}}} 1902:{\displaystyle {\mathcal {B}}} 1846:{\displaystyle {\mathcal {B}}} 1758: 1732: 1661: 1649: 1590: 1587: 1575: 1561:{\displaystyle X\times X\to X} 1552: 1446: 1434: 1290:{\displaystyle {\mathcal {N}}} 1223:topological vector isomorphism 1097: 1091: 1043: 1011: 655: 615: 366: 363: 351: 328: 304:The scalar multiplication map 275: 272: 260: 237: 66:. Such a topology is called a 13: 1: 35316:Uniform boundedness principle 34770:Graduate Texts in Mathematics 34374:Narici & Beckenstein 2011 34345:Narici & Beckenstein 2011 34333:Narici & Beckenstein 2011 34304:Narici & Beckenstein 2011 34277:Narici & Beckenstein 2011 34214:Narici & Beckenstein 2011 34202:Narici & Beckenstein 2011 34140:Narici & Beckenstein 2011 34086:Narici & Beckenstein 2011 34045:Narici & Beckenstein 2011 33989:Narici & Beckenstein 2011 33937:Narici & Beckenstein 2011 33843:, p. 27-28 Theorem 1.37. 33829:Narici & Beckenstein 2011 33767:Adasch, Ernst & Keim 1978 33755:Narici & Beckenstein 2011 33720:Adasch, Ernst & Keim 1978 33699:Narici & Beckenstein 2011 33563:{\displaystyle \blacksquare } 30969:{\displaystyle \mathbb {R} .} 30882:{\displaystyle \mathbb {R} ,} 30184:Locally compact quantum group 22348:{\displaystyle S\subseteq X,} 22215:{\displaystyle S\subseteq X,} 20980:is a compact subset of a TVS 20511:is necessarily Hausdorff and 19419:{\displaystyle S\subseteq X,} 18577:{\displaystyle r\neq \infty } 18303:{\displaystyle \mathbb {R} x} 17248:{\displaystyle 0<t\leq 1,} 16471:has non-empty interior then 16061:{\displaystyle S\subseteq X,} 15321:and some positive continuous 14342: 14204:{\displaystyle \mathbb {K} .} 14134: 13193:is either dense or closed. A 12823:{\displaystyle \dim X\geq 2,} 12645:{\displaystyle |f|(x)=|f(x)|} 12390:{\displaystyle \blacksquare } 12269:{\displaystyle \mathbb {K} ,} 12216:{\displaystyle 0\neq x\in X,} 12102:{\displaystyle 0\neq x\in X,} 11567:{\displaystyle 0\neq x\in X,} 11497:is unbounded in normed space 11213:{\displaystyle \mathbb {K} .} 10154:{\displaystyle \mathbb {R} .} 9864:{\displaystyle \mathbb {R} .} 7739:{\displaystyle E\subseteq tV} 7323:{\displaystyle tE\subseteq E} 6877:{\displaystyle S\subseteq X,} 6291:{\displaystyle M\subseteq X,} 6089:{\displaystyle \mathbb {S} .} 5733:(Topology induced by strings) 5715:{\displaystyle \mathbb {S} .} 2946:then the sequence defined by 2566:{\displaystyle U_{\bullet }.} 2505:{\displaystyle U_{\bullet }.} 498: 460:on an open domain, spaces of 180: 170:{\displaystyle \mathbb {R} ,} 72:uniform topological structure 34927:Topological Vector Spaces II 34577:; Wolff, Manfred P. (1999). 33576: 33133:{\displaystyle X\setminus S} 32497:{\displaystyle 0<r<1,} 32202:{\displaystyle 0<r<1.} 32050:{\displaystyle sc_{0}\in C.} 31471:{\displaystyle rx+(1-r)y=0,} 31010:{\displaystyle \mathbb {S} } 30944:{\displaystyle \mathbb {R} } 29092:Closed convex balanced hull 28938:Closed convex balanced hull 23993:{\displaystyle S\subseteq X} 23836:{\displaystyle (s+t)C=sC+tC} 23597:{\displaystyle S\subseteq X} 21567:{\displaystyle S\subseteq X} 21324:{\displaystyle S\subseteq X} 20897:such that every sequence in 20491:is a TVS-isomorphism, where 20140:(that is, a vector subspace 19969:is Hausdorff if and only if 19676:{\displaystyle S\subseteq X} 19508:{\displaystyle S\subseteq X} 19315:{\displaystyle S\subseteq X} 18882:This vector space satisfies 18661:is Hausdorff if and only if 17874:{\displaystyle S\subseteq X} 17627:{\displaystyle N\subseteq X} 17352:is a convex subset of a TVS 16790:set with non-empty interior 15740:be two vector topologies on 15136:has non-empty interior then 15129:{\displaystyle S\subseteq X} 15017:{\displaystyle S\subseteq X} 14372:{\displaystyle S\subseteq X} 13911:{\displaystyle L^{\infty }.} 13453:{\displaystyle 0<p<1.} 12463:distinct vector topologies: 11653:{\displaystyle M_{x}(a):=ax} 11512:{\displaystyle \mathbb {K} } 11429:{\displaystyle 0\neq x\in X} 11239:{\displaystyle S\subseteq X} 11053:{\displaystyle \mathbb {K} } 11031:{\displaystyle \mathbb {K} } 10991:{\displaystyle \mathbb {K} } 10949:{\displaystyle \mathbb {K} } 10746:{\displaystyle \dim X\neq 0} 10411:{\displaystyle \mathbb {K} } 10365:{\displaystyle \mathbb {K} } 10343:{\displaystyle \mathbb {C} } 10321:{\displaystyle \mathbb {R} } 10299:{\displaystyle \mathbb {K} } 9728:{\displaystyle \mathbb {R} } 9385:There exists a TVS topology 9028:is not necessarily compact). 8438:{\displaystyle \mathbb {K} } 8405:{\displaystyle \mathbb {K} } 8230:translation-invariant metric 7809:of the origin, there exists 6819:{\displaystyle x\mapsto -x,} 6115:{\displaystyle \mathbb {S} } 6006:{\displaystyle \mathbb {S} } 5936:{\displaystyle \mathbb {S} } 5827:{\displaystyle \mathbb {S} } 5785:{\displaystyle \mathbb {S} } 5586:{\displaystyle \mathbb {S} } 5398:{\displaystyle \mathbb {S} } 5360:{\displaystyle \mathbb {S} } 5315:{\displaystyle \mathbb {S} } 4742:{\displaystyle U_{\bullet }} 4713:{\displaystyle V_{\bullet }} 4408:{\displaystyle U_{\bullet }} 3109:{\displaystyle \mathbb {R} } 3054:Moreover, if a vector space 2866:{\displaystyle U_{\bullet }} 2801:{\displaystyle U_{\bullet }} 2593:{\displaystyle U_{\bullet }} 2403:{\displaystyle U_{\bullet }} 2368:{\displaystyle U_{\bullet }} 2325:be a sequence of subsets of 1463:(as all vector spaces are), 960:from one object to another. 951:{\displaystyle \mathbb {K} } 923:{\displaystyle \mathbb {K} } 814:{\displaystyle \mathbb {K} } 565:{\displaystyle \mathbb {K} } 406:{\displaystyle \mathbb {K} } 142:{\displaystyle \mathbb {C} } 7: 36335:Topology of function spaces 35980:Radially convex/Star-shaped 35965:Pre-compact/Totally bounded 34839:Edwards, Robert E. (1995). 34478:Topological Vector Spaces I 34450:. Stuttgart: B.G. Teubner. 33871:Encyclopedia of Mathematics 31948:is open, there exists some 31206:so it remains to show that 31199:{\displaystyle 0<r<1} 30127: 29919: 29910: 29903: 29882: 29843: 29709: 29689: 29674: 29667: 29660: 29637: 29630: 29623: 29616: 29609: 29602: 29585: 29565: 29550: 29543: 29536: 29473: 29466: 29459: 29452: 29445: 29360: 29353: 29346: 29339: 29332: 29325: 29318: 29311: 29304: 29297: 29290: 29283: 29276: 29269: 29234: 29227: 29213: 29174: 29167: 29152: 29145: 29138: 29131: 29124: 29117: 29110: 29103: 29068: 29061: 29033: 29026: 29019: 29012: 29005: 28998: 28991: 28977: 28970: 28963: 28956: 28949: 28942: 28909: 28902: 28874: 28867: 28860: 28853: 28846: 28839: 28832: 28818: 28811: 28804: 28797: 28790: 28783: 28750: 28743: 28736: 28715: 28708: 28701: 28694: 28687: 28680: 28673: 28659: 28652: 28645: 28631: 28624: 28589: 28582: 28568: 28549: 28542: 28535: 28526: 28519: 28512: 28505: 28498: 28491: 28484: 28477: 28470: 28463: 28426: 28419: 28405: 28392: 28381: 28374: 28367: 28360: 28344: 28337: 28330: 28323: 28316: 28309: 28302: 28295: 28258: 28251: 28244: 28237: 28217: 28210: 28203: 28196: 28189: 28180: 28166: 28159: 28152: 28145: 28138: 28124: 28117: 28094: 28087: 28076: 28057: 28050: 28043: 28036: 28029: 28022: 28015: 28008: 28001: 27994: 27987: 27980: 27973: 27966: 27959: 27929: 27918: 27845: 27838: 27822: 27815: 27776: 27769: 27762: 27755: 27742: 27735: 27728: 27721: 27714: 27707: 27700: 27693: 27686: 27679: 27672: 27658: 27651: 27644: 27637: 27630: 27623: 27606: 27599: 27592: 27585: 27578: 27571: 27564: 27555: 27548: 27539: 27532: 27525: 27518: 27511: 27504: 27497: 27490: 27483: 27476: 27469: 27462: 27455: 27448: 27441: 27434: 27427: 27412: 27405: 27398: 27391: 27384: 27377: 27370: 27363: 27356: 27349: 27342: 27335: 27328: 27321: 27314: 27307: 27300: 27293: 27286: 27279: 27272: 27265: 27258: 27251: 27244: 27237: 27230: 27223: 27208: 27201: 27194: 27187: 27166: 27157: 27150: 27143: 27136: 27129: 27122: 27059: 27052: 27045: 27038: 27031: 26973: 26958: 26951: 26920: 26913: 26906: 26899: 26892: 26885: 26878: 26871: 26832: 26821: 26810: 26791: 26784: 26770: 26763: 26756: 26749: 26735: 26721: 26714: 26707: 26700: 26653: 26642: 26631: 26612: 26605: 26591: 26584: 26577: 26570: 26549: 26542: 26535: 26528: 26521: 26450: 26441: 26434: 26423: 26414: 26403: 26396: 26389: 26382: 26375: 26368: 26361: 26354: 26347: 26340: 26333: 26326: 26319: 26312: 26305: 26298: 26291: 26234: 26227: 26127: 26120: 26099: 26085: 26078: 26020: 26013: 25913: 25906: 25899: 25892: 25885: 25878: 25871: 25864: 25800: 25793: 25786: 25779: 25772: 25765: 25758: 25749: 25740: 25726: 25719: 25689: 25682: 25675: 25668: 25647: 25633: 25626: 25353: 23720:{\displaystyle S=\{-x,x\};} 18641:A topological vector space 17493:belongs to the interior of 14977:Neighborhoods and open sets 14712:is equal to the set of all 13881:{\displaystyle L^{\infty }} 13477:continuous linear operators 12920:{\displaystyle n:=\dim X=2} 12313:{\displaystyle M_{x}(B)=Bx} 11772:{\displaystyle Fx=M_{x}(F)} 9506:is necessarily a subset of 9206: 8892:. Scalar multiplication is 7697:of the origin there exists 6732:{\displaystyle x\mapsto sx} 6647:{\displaystyle x_{0}\neq 0} 6545:{\displaystyle x_{0}\in X,} 5792:of neighborhood strings in 3340:{\displaystyle u\in U_{0},} 1715:{\displaystyle x_{0}\in X,} 732:Many authors (for example, 117:of sequences of functions. 10: 36366: 35666:Continuous linear operator 35459:Invariant subspace problem 34984:Cambridge University Press 34032:, p. 62-68 §3.8-3.14. 34020:, p. 27 Theorem 1.36. 33898:, p. 17 Theorem 1.22. 33866:"Topological vector space" 32248:is thus an open subset of 31654:is a linear homeomorphism 31045:{\displaystyle (X,\tau ).} 30251:Topological vector lattice 29896: 29889: 29873: 29866: 29857: 29850: 29836: 29829: 29822: 29815: 29808: 29801: 29794: 29787: 29780: 29773: 29766: 29759: 29752: 29745: 29700: 29576: 29529: 29522: 29515: 29508: 29501: 29494: 29487: 29480: 29438: 29423: 29416: 29401: 29388: 29381: 29374: 29367: 29248: 29241: 29220: 29202: 29195: 29188: 29181: 29082: 29075: 29054: 28984: 28923: 28916: 28895: 28825: 28764: 28757: 28666: 28638: 28603: 28596: 28575: 28440: 28433: 28412: 28351: 28272: 28265: 28224: 28173: 28131: 27936: 27903: 27896: 27887: 27880: 27873: 27866: 27859: 27852: 27831: 27808: 27801: 27665: 27180: 27173: 27115: 27108: 27101: 27094: 27087: 27080: 27073: 27066: 27024: 26936: 26927: 26777: 26742: 26728: 26693: 26598: 26563: 26556: 26514: 26248: 26241: 26220: 26211: 26204: 26197: 26190: 26183: 26176: 26169: 26162: 26155: 26148: 26141: 26134: 26113: 26106: 26092: 26034: 26027: 26006: 25997: 25990: 25983: 25976: 25969: 25962: 25955: 25948: 25941: 25934: 25927: 25920: 25733: 25712: 25703: 25696: 25661: 25654: 25640: 24894:{\displaystyle \|x\|<1} 23760:{\displaystyle S=\{x,2x\}} 18976:contains the vector space 17777:is the set of all scalars 15983:{\displaystyle (X,\tau ).} 15633:where importantly, it was 14443:is the smallest subset of 14346: 14138: 13364:. By a technique known as 12703:Every seminorm induces a ( 11319:{\displaystyle B\cdot S=X} 10849:, which in this case (and 10503:between the vector spaces 9799:which carries the natural 8556:that induces the topology 8507: 7677:if for every neighborhood 7359:{\displaystyle |t|\leq 1.} 7283:{\displaystyle |c|\leq r.} 6768:produces the negation map 6739:is a homeomorphism. Using 5866:{\displaystyle (X,\tau ).} 4135:{\displaystyle f(-x)=f(x)} 3213:{\displaystyle 0\in U_{i}} 2259:be a vector space and let 1638:if and only if the set of 784: 631:and scalar multiplication 584:such that vector addition 36345:Topological vector spaces 36304: 36049: 36011:Algebraic interior (core) 35993: 35891: 35779: 35753:Vector-valued Hahn–Banach 35714: 35648: 35641:Topological vector spaces 35589: 35548: 35472: 35451: 35410: 35349: 35291: 35237: 35179: 35172: 35120:Topological vector spaces 34976:Topological Vector Spaces 34873:Topological Vector Spaces 34579:Topological Vector Spaces 34513:Topological Vector Spaces 34250:Schaefer & Wolff 1999 34235:Schaefer & Wolff 1999 34167:Schaefer & Wolff 1999 34074:Schaefer & Wolff 1999 33920:Schaefer & Wolff 1999 33908:Schaefer & Wolff 1999 33619:Schaefer & Wolff 1999 30982: 30486:particular point topology 30204:Topological abelian group 27612:Positive scalar multiple 27423:Positive scalar multiple 25399:and any other subsets of 25350: 23790:is convex if and only if 20081:Every vector subspace of 18857:the closure of the origin 17826:{\displaystyle |a|<1.} 16332:) then any closed convex 11962:and an open neighborhood 10714:{\displaystyle \dim X=0.} 10443:{\displaystyle n:=\dim X} 10265:Finite-dimensional spaces 9620:{\displaystyle \tau _{f}} 9533:). Every linear map from 9526:{\displaystyle \tau _{f}} 9405:{\displaystyle \tau _{f}} 9371:{\displaystyle \dim X=0.} 9008:(that is, its closure in 8545:{\displaystyle (X,\tau )} 8449:, that is, isomorphic to 8344:{\displaystyle (X,\tau )} 8225:(as a topological space). 8214:{\displaystyle (X,\tau )} 8101:{\displaystyle (X,\tau )} 8070:Birkhoff–Kakutani theorem 6147:{\displaystyle (X,\tau )} 5921:is a vector space and if 5763:{\displaystyle (X,\tau )} 5405:is not empty and for all 4265:{\displaystyle |s|\leq 1} 2348:Each set in the sequence 1933:for a vector topology on 1667:{\displaystyle (X,\tau )} 1631:{\displaystyle X\times X} 1525:{\displaystyle X\times X} 42:and commonly abbreviated 18:Topological vector spaces 35841:Topological homomorphism 35701:Topological vector space 35428:Spectrum of a C*-algebra 34736:ÉlĂ©ments de mathĂ©matique 34638:Swartz, Charles (1992). 33063:satisfying the equality 32082:{\displaystyle h:X\to X} 30256: 24027:that is, it is equal to 23566:locally convex TVS is a 22078:and so consequently, if 21153:is a vector subspace of 18855:which is referred to as 18790:is a vector subspace of 16324:is a TVS that is of the 15915:{\displaystyle (X,\nu )} 15442:{\displaystyle p:=p_{K}} 14510:is sometimes denoted by 14012:{\displaystyle W^{2,k},} 13481:bounded linear operators 13467:Banach–Steinhaus theorem 13421:{\displaystyle p\geq 1,} 13356:: here each point has a 13267: 12859:{\displaystyle 1+\dim X} 10900:{\displaystyle \dim X=1} 10806:{\displaystyle \dim X=0} 10100:{\displaystyle f_{n}(x)} 8870:{\displaystyle j\geq n.} 8756:there exists some index 8478:for some natural number 3950:{\displaystyle x,y\in X} 3860:is subadditive (meaning 3304:{\displaystyle i\geq 0.} 3024:{\displaystyle U_{1}=U.} 2739:absolutely convex/disked 1536:, then the addition map 1242:. Equivalently, it is a 1020:{\displaystyle u:X\to Y} 984:topological homomorphism 517:topological vector space 206:The vector addition map 40:linear topological space 36:topological vector space 35525:Noncommutative geometry 34867:Grothendieck, Alexander 34704:Bierstedt, Klaus-Dieter 34642:. New York: M. Dekker. 32268:that moreover contains 31676:{\displaystyle X\to X,} 31647:{\displaystyle s\neq 0} 30776:-axis and the graph of 26474:{\displaystyle R\cap S} 26281:{\displaystyle R\cap S} 25824:{\displaystyle R\cup S} 25616:{\displaystyle R\cup S} 25335:{\displaystyle R\cup S} 25049:{\displaystyle s\neq 0} 24923:{\displaystyle z\in X,} 24739:{\displaystyle z\in X,} 22651:for every neighborhood 21232:{\displaystyle U\cap N} 20917:has a cluster point in 20700:Closed and compact sets 16090:{\displaystyle x\in X.} 14830:{\displaystyle n\geq 1} 13826:Reflexive Banach spaces 13344:{\displaystyle p>0.} 12343:which then proves that 11779:for some unique subset 11148:{\displaystyle r>0.} 10838:{\displaystyle X=\{0\}} 10396:be a vector space over 10254:{\displaystyle f\neq 0} 8841:{\displaystyle i\geq n} 8621:. A subset of a TVS is 7489:is convex and balanced. 7224:{\displaystyle cx\in E} 7169:{\displaystyle x\in X,} 6677:{\displaystyle s\neq 0} 4294:{\displaystyle x\in X.} 4057:{\displaystyle f(0)=0.} 3587:{\displaystyle f:X\to } 2052:is additive: For every 1857:additive collection of 74:, allowing a notion of 35899:Absolutely convex/disk 35581:Tomita–Takesaki theory 35556:Approximation property 35500:Calculus of variations 34957:Differential manifolds 34446:Jarchow, Hans (1981). 33564: 33542: 33390: 33389:{\displaystyle z+X=X,} 33355: 33323: 33154: 33134: 33108: 33057: 33037: 33017: 32978: 32958: 32885: 32756: 32755:{\displaystyle s\in S} 32721: 32673: 32650: 32630: 32591: 32543: 32498: 32463: 32443: 32368: 32336: 32262: 32242: 32203: 32171: 32083: 32051: 32012: 31942: 31916: 31832: 31797: 31765: 31677: 31648: 31622: 31564: 31492: 31472: 31419: 31348: 31316: 31280: 31200: 31160: 31093: 31046: 31011: 30970: 30945: 30923: 30883: 30858: 30826: 30806: 30770: 30750: 30710: 30687: 30642: 30622: 30572: 30527: 30469: 30445: 30430: 30358: 30338: 30312: 30283: 30097: 29939: 29736: 27418:Non-0 scalar multiple 27219:Non-0 scalar multiple 27010: 26862: 26673: 26499: 26475: 26282: 26058: 25849: 25825: 25617: 25569: 25413: 25393: 25371: 25336: 25307: 25248: 25247:{\displaystyle z\in X} 25222: 25202: 25182: 25181:{\displaystyle x\in X} 25156: 25050: 25024: 24924: 24895: 24863: 24834: 24740: 24711: 24710:{\displaystyle x\in X} 24681: 24631: 24608: 24583: 24524: 24468: 24433: 24401: 24239: 24219: 24184: 24151: 24062: 24021: 23994: 23962: 23930: 23880: 23843:for all positive real 23837: 23784: 23761: 23721: 23677: 23653: 23633: 23598: 23556: 23506: 23478: 23458: 23435: 23411: 23387: 23320: 23176: 23131: 23086: 23054: 22926: 22906: 22886: 22851: 22797: 22747: 22688: 22665: 22645: 22600: 22580: 22552: 22539: is open in  22472: 22449: 22425: 22349: 22317: 22297: 22274: 22216: 22187: 22165: 22098: 22072: 21853: 21818: 21785: 21721: 21628: 21588: 21568: 21542: 21475: 21432: 21412: 21345: 21325: 21296: 21273: 21253: 21233: 21207: 21187: 21167: 21147: 21121:Closure and closed set 21112: 21077: 21057: 21034: 21014: 20994: 20974: 20951: 20931: 20911: 20891: 20871: 20847: 20788: 20751: 20731: 20691: 20637: 20592: 20568: 20544: 20505: 20485: 20441: 20393:then the addition map 20387: 20367: 20328: 20308: 20270:topological complement 20262: 20211: 20154: 20134: 20095: 20068: 20006: 19983: 19963: 19935: 19915: 19891: 19832: 19809: 19774: 19723: 19700: 19677: 19651: 19614:can be described as a 19608: 19580: 19529: 19509: 19483: 19420: 19380: 19316: 19288: 19246: 19218: 19194: 19155: 19154:{\displaystyle \{0\}.} 19126: 19095: 19052: 19009: 18970: 18950: 18876: 18849: 18807: 18784: 18758: 18704: 18687:is a closed subset of 18681: 18655: 18628: 18578: 18552: 18488: 18400: 18304: 18279: 18255: 18224: 18152: 18132: 18108: 18088: 18033: 17917: 17875: 17849: 17827: 17791: 17771: 17744: 17648: 17628: 17600: 17510: 17487: 17467: 17447: 17408: 17366: 17346: 17326: 17249: 17214: 17192: 17136: 17077: 17039: 17019: 16980: 16960: 16921: 16888: 16843: 16823: 16780: 16750: 16621: 16465: 16445: 16405: 16385: 16350: 16328:in itself (that is, a 16318: 16295: 16272: 16239: 16215: 16195: 16130: 16091: 16062: 16033: 16010: 15984: 15949: 15916: 15884: 15864: 15844: 15783: 15757: 15734: 15714: 15691: 15671: 15651: 15627: 15467: 15443: 15410: 15383: 15361: 15338: 15315: 15314:{\displaystyle z\in X} 15289: 15179: 15156: 15130: 15104: 15084: 15058: 15038: 15018: 14967: 14947: 14883: 14831: 14805: 14735: 14706: 14686: 14654: 14629: 14601: 14573: 14537: 14504: 14480: 14457: 14437: 14396: 14373: 14333: 14305: 14266: 14250:Banach–Alaoglu theorem 14238: 14205: 14184:continuous linear maps 14176: 14124: 14104: 14081: 14052: 14013: 13975: 13948: 13912: 13882: 13854: 13808: 13785: 13750: 13663: 13552: 13454: 13422: 13393: 13345: 13317: 13250: 13230: 13210: 13187: 13160: 13140: 13111: 13084: 13057: 13021: 12997: 12961: 12941: 12921: 12883: 12860: 12824: 12789: 12767: 12744: 12724: 12697: 12646: 12582: 12535: 12503: 12480: 12453: 12433: 12391: 12364: 12337: 12314: 12270: 12245: 12217: 12182: 12162: 12123: 12103: 12064: 12044: 11996: 11976: 11956: 11936: 11901: 11867: 11844: 11824: 11804: 11773: 11728: 11708: 11685: 11654: 11609: 11568: 11533: 11513: 11491: 11430: 11398: 11340: 11320: 11288: 11274:is a ball centered at 11268: 11240: 11214: 11189: 11169: 11149: 11123: 11054: 11032: 10992: 10970: 10950: 10921: 10901: 10867: 10839: 10807: 10767: 10747: 10715: 10683: 10664: 10633: 10604: 10566: 10546: 10517: 10493: 10464: 10444: 10412: 10390: 10366: 10344: 10322: 10300: 10255: 10229: 10155: 10130: 10101: 10066: 10043: 10023: 10000: 9973: 9972:{\displaystyle f\in X} 9947: 9929:(or more generally, a 9919: 9865: 9834: 9793: 9753: 9729: 9707: 9671: 9621: 9590: 9570: 9527: 9500: 9480: 9460: 9439:finest vector topology 9429: 9406: 9381:Finest vector topology 9372: 9319: 9299: 9279: 9230: 9197: 9174: 9141: 9121: 9106: 9071: 9048: 9022: 8998: 8975: 8955: 8935: 8871: 8842: 8816: 8770: 8750: 8727: 8703: 8593: 8570: 8546: 8495: 8472: 8439: 8406: 8345: 8312: 8289: 8288:{\displaystyle \tau ,} 8266: 8246: 8215: 8182: 8163:basis of neighborhoods 8152: 8132: 8102: 8054: 8031: 8011: 7991: 7968: 7942: 7919: 7899: 7875: 7855: 7823: 7803: 7783: 7763: 7740: 7711: 7691: 7665: 7645: 7613: 7586: 7555: 7523: 7483: 7449: 7417: 7360: 7324: 7284: 7245: 7225: 7196: 7195:{\displaystyle r>0} 7170: 7141: 7112: 7092: 7064: 7044: 7024: 7000: 6974: 6973:{\displaystyle 0\in S} 6948: 6878: 6849: 6848:{\displaystyle x\in X} 6820: 6788: 6787:{\displaystyle X\to X} 6762: 6733: 6704: 6703:{\displaystyle X\to X} 6678: 6648: 6611: 6572: 6571:{\displaystyle X\to X} 6546: 6491: 6468: 6441: 6440:{\displaystyle \{0\}.} 6412: 6392: 6364: 6344: 6320: 6292: 6260: 6239:but a TVS need not be 6225: 6186: 6148: 6116: 6090: 6071:topology generated by 6063: 6034: 6007: 5985: 5957: 5937: 5915: 5888: 5867: 5828: 5806: 5786: 5764: 5716: 5691: 5613: 5587: 5565: 5525: 5485: 5450: 5399: 5361: 5339: 5316: 5291: 5189: 5087: 5005: 4930: 4849: 4826: 4786: 4743: 4714: 4684: 4664: 4644: 4581: 4508: 4485: 4429: 4409: 4382: 4362: 4342: 4315: 4295: 4266: 4230: 4210: 4163: 4136: 4085: 4058: 4023: 3977: 3951: 3919: 3854: 3832: 3656: 3623: 3622:{\displaystyle f(x)=1} 3588: 3542: 3341: 3305: 3279: 3214: 3181: 3110: 3068: 3047: 3025: 2989: 2940: 2913: 2890: 2867: 2840: 2802: 2766: 2765:{\displaystyle U_{i}.} 2693: 2670: 2594: 2567: 2533: 2506: 2474: 2453: 2427: 2404: 2369: 2342: 2319: 2253: 2219: 2196: 2168: 2141: 2106: 2076: 2046: 2012: 1974: 1950: 1927: 1903: 1879: 1847: 1823: 1781: 1742: 1741:{\displaystyle X\to X} 1716: 1668: 1632: 1606: 1562: 1526: 1500: 1477: 1453: 1417: 1393: 1358: 1328: 1291: 1157: 1130: 1107: 1059: 1021: 952: 924: 898: 852: 815: 791:Category and morphisms 750: 712: 665: 625: 566: 537: 512: 430: 407: 385: 338: 291: 247: 171: 143: 35934:Complemented subspace 35748:hyperplane separation 35576:Banach–Mazur distance 35539:Generalized functions 34448:Locally convex spaces 33565: 33543: 33391: 33356: 33354:{\displaystyle y=z+x} 33324: 33155: 33135: 33109: 33058: 33038: 33018: 32979: 32959: 32886: 32757: 32722: 32674: 32651: 32636:is an open subset of 32631: 32592: 32544: 32499: 32464: 32444: 32369: 32337: 32263: 32243: 32204: 32172: 32084: 32052: 32013: 31943: 31917: 31833: 31798: 31766: 31678: 31649: 31623: 31565: 31493: 31473: 31420: 31349: 31347:{\displaystyle C,x,y} 31317: 31281: 31201: 31161: 31094: 31047: 31012: 30971: 30946: 30924: 30884: 30859: 30827: 30807: 30771: 30751: 30711: 30688: 30643: 30623: 30573: 30528: 30470: 30446: 30410: 30359: 30339: 30337:{\displaystyle \{0\}} 30313: 30284: 30242:Topological semigroup 30175:Locally compact group 30170:Locally compact field 30098: 29940: 29737: 28774:Closed balanced hull 28620:Closed balanced hull 27011: 26863: 26674: 26672:{\displaystyle \cap } 26500: 26498:{\displaystyle \cap } 26476: 26283: 26059: 26057:{\displaystyle \cup } 25850: 25848:{\displaystyle \cup } 25826: 25618: 25570: 25414: 25394: 25372: 25337: 25308: 25249: 25223: 25203: 25183: 25157: 25051: 25025: 24925: 24896: 24864: 24835: 24741: 24712: 24682: 24632: 24609: 24584: 24525: 24469: 24434: 24402: 24240: 24220: 24185: 24152: 24063: 24022: 23995: 23963: 23931: 23881: 23838: 23785: 23762: 23722: 23678: 23654: 23634: 23599: 23557: 23507: 23479: 23459: 23436: 23412: 23388: 23329:Hulls and compactness 23321: 23177: 23132: 23087: 23055: 22927: 22907: 22887: 22852: 22798: 22748: 22689: 22666: 22646: 22601: 22581: 22553: 22473: 22450: 22426: 22350: 22318: 22298: 22275: 22217: 22188: 22166: 22104:is closed then so is 22099: 22073: 21854: 21819: 21786: 21722: 21629: 21589: 21569: 21543: 21481:then equality holds: 21476: 21433: 21413: 21346: 21326: 21297: 21274: 21254: 21234: 21208: 21188: 21168: 21148: 21113: 21078: 21058: 21035: 21020:is an open subset of 21015: 20995: 20975: 20952: 20932: 20912: 20892: 20877:is a subset of a TVS 20872: 20848: 20789: 20752: 20732: 20692: 20638: 20593: 20569: 20545: 20506: 20486: 20442: 20388: 20368: 20329: 20309: 20263: 20212: 20155: 20135: 20096: 20069: 20007: 19984: 19964: 19936: 19916: 19892: 19833: 19810: 19775: 19724: 19701: 19678: 19652: 19609: 19581: 19530: 19515:is open or closed in 19510: 19489:and consequently, if 19484: 19421: 19381: 19317: 19289: 19247: 19219: 19195: 19156: 19127: 19096: 19053: 19010: 18971: 18951: 18877: 18850: 18808: 18785: 18783:{\displaystyle \{0\}} 18759: 18705: 18682: 18680:{\displaystyle \{0\}} 18656: 18629: 18579: 18553: 18489: 18401: 18305: 18280: 18256: 18225: 18153: 18133: 18109: 18089: 18034: 17918: 17876: 17850: 17828: 17792: 17772: 17770:{\displaystyle B_{1}} 17745: 17649: 17629: 17601: 17511: 17488: 17468: 17448: 17409: 17367: 17347: 17327: 17250: 17215: 17193: 17137: 17078: 17040: 17020: 16981: 16961: 16922: 16889: 16844: 16824: 16781: 16751: 16622: 16466: 16446: 16406: 16386: 16351: 16319: 16296: 16273: 16240: 16216: 16196: 16131: 16092: 16063: 16034: 16011: 15985: 15950: 15917: 15885: 15865: 15845: 15784: 15758: 15735: 15715: 15713:{\displaystyle \tau } 15692: 15672: 15652: 15628: 15468: 15444: 15411: 15384: 15362: 15339: 15316: 15290: 15180: 15157: 15131: 15105: 15085: 15059: 15044:is an open subset of 15039: 15019: 14968: 14948: 14884: 14832: 14806: 14736: 14707: 14687: 14655: 14630: 14602: 14574: 14538: 14505: 14481: 14458: 14438: 14397: 14374: 14334: 14306: 14267: 14252:). Caution: Whenever 14239: 14206: 14177: 14155:continuous dual space 14145:Continuous dual space 14125: 14105: 14082: 14053: 14014: 13976: 13974:{\displaystyle L^{2}} 13949: 13947:{\displaystyle L^{2}} 13913: 13883: 13855: 13853:{\displaystyle L^{1}} 13809: 13786: 13751: 13749:{\displaystyle L^{p}} 13664: 13553: 13491:reflexivity condition 13455: 13423: 13394: 13392:{\displaystyle L^{p}} 13366:Minkowski functionals 13346: 13318: 13316:{\displaystyle L^{p}} 13251: 13231: 13211: 13188: 13161: 13141: 13112: 13085: 13058: 13022: 12998: 12974:Non-vector topologies 12962: 12942: 12922: 12884: 12866:vector topologies on 12861: 12832:up to TVS-isomorphism 12825: 12790: 12768: 12745: 12725: 12710:) vector topology on 12698: 12647: 12583: 12536: 12504: 12481: 12454: 12434: 12392: 12365: 12363:{\displaystyle M_{x}} 12338: 12315: 12271: 12246: 12218: 12183: 12163: 12124: 12104: 12065: 12045: 11997: 11977: 11957: 11937: 11902: 11868: 11845: 11825: 11805: 11774: 11729: 11709: 11686: 11655: 11610: 11569: 11534: 11514: 11492: 11431: 11399: 11341: 11321: 11289: 11269: 11241: 11215: 11190: 11170: 11150: 11124: 11055: 11033: 10993: 10971: 10951: 10922: 10902: 10868: 10840: 10808: 10768: 10748: 10716: 10684: 10665: 10634: 10605: 10567: 10547: 10518: 10494: 10465: 10445: 10413: 10391: 10367: 10345: 10323: 10301: 10256: 10230: 10177:and consequently not 10156: 10131: 10102: 10067: 10044: 10024: 10001: 9999:{\displaystyle f_{n}} 9974: 9948: 9920: 9866: 9844:pointwise convergence 9835: 9794: 9754: 9730: 9708: 9672: 9622: 9591: 9571: 9528: 9501: 9481: 9461: 9430: 9407: 9373: 9320: 9300: 9280: 9231: 9198: 9175: 9142: 9122: 9086: 9072: 9054:then it converges to 9049: 9023: 8999: 8976: 8956: 8936: 8882:sequentially complete 8872: 8843: 8817: 8771: 8751: 8728: 8704: 8594: 8571: 8569:{\displaystyle \tau } 8547: 8496: 8473: 8440: 8407: 8346: 8313: 8290: 8267: 8247: 8216: 8183: 8153: 8133: 8131:{\displaystyle \{0\}} 8103: 8055: 8032: 8012: 7992: 7969: 7943: 7920: 7900: 7876: 7856: 7824: 7804: 7784: 7764: 7741: 7712: 7692: 7666: 7646: 7614: 7587: 7568:and contains an open 7556: 7554:{\displaystyle -E=E.} 7524: 7484: 7450: 7418: 7361: 7325: 7285: 7246: 7226: 7197: 7171: 7142: 7113: 7093: 7065: 7045: 7025: 7001: 6975: 6949: 6879: 6850: 6821: 6789: 6763: 6734: 6705: 6679: 6649: 6612: 6573: 6547: 6508:translation invariant 6492: 6469: 6442: 6413: 6393: 6365: 6345: 6321: 6293: 6261: 6226: 6204:A vector space is an 6200:Topological structure 6187: 6149: 6117: 6091: 6069:and it is called the 6064: 6035: 6008: 5986: 5958: 5938: 5916: 5889: 5887:{\displaystyle \tau } 5868: 5829: 5807: 5787: 5765: 5717: 5692: 5614: 5588: 5566: 5526: 5486: 5451: 5400: 5362: 5340: 5317: 5292: 5190: 5088: 5006: 4931: 4850: 4827: 4787: 4744: 4715: 4685: 4665: 4645: 4582: 4509: 4486: 4430: 4410: 4383: 4363: 4343: 4341:{\displaystyle U_{i}} 4316: 4296: 4267: 4231: 4211: 4164: 4162:{\displaystyle U_{i}} 4137: 4086: 4084:{\displaystyle U_{i}} 4059: 4024: 3978: 3952: 3920: 3855: 3833: 3657: 3624: 3589: 3543: 3342: 3306: 3280: 3215: 3182: 3111: 3069: 3048: 3026: 2990: 2941: 2914: 2891: 2868: 2841: 2803: 2767: 2694: 2671: 2595: 2568: 2534: 2532:{\displaystyle U_{1}} 2507: 2475: 2454: 2452:{\displaystyle U_{i}} 2428: 2405: 2370: 2343: 2320: 2254: 2220: 2197: 2169: 2142: 2107: 2077: 2047: 2013: 1975: 1951: 1928: 1904: 1880: 1848: 1824: 1782: 1743: 1717: 1669: 1633: 1607: 1563: 1527: 1501: 1478: 1476:{\displaystyle \tau } 1454: 1452:{\displaystyle (X,+)} 1418: 1394: 1359: 1329: 1292: 1198:topological embedding 1158: 1131: 1108: 1060: 1022: 953: 925: 899: 853: 816: 751: 713: 666: 626: 567: 538: 506: 458:holomorphic functions 431: 408: 386: 339: 292: 248: 198:: the norm induces a 196:topological structure 172: 144: 120:In this article, the 36184:Locally convex space 35734:Closed graph theorem 35686:Locally convex space 35321:Kakutani fixed-point 35306:Riesz representation 35122:at Wikimedia Commons 33554: 33400: 33365: 33333: 33172: 33144: 33118: 33067: 33047: 33027: 32988: 32968: 32895: 32766: 32740: 32692: 32660: 32640: 32601: 32553: 32508: 32473: 32453: 32378: 32346: 32272: 32252: 32213: 32181: 32093: 32061: 32022: 31952: 31926: 31842: 31807: 31775: 31686: 31658: 31632: 31574: 31502: 31482: 31429: 31358: 31326: 31290: 31210: 31178: 31103: 31064: 31021: 30999: 30955: 30933: 30896: 30868: 30836: 30816: 30780: 30760: 30728: 30697: 30652: 30632: 30582: 30537: 30492: 30459: 30407: 30348: 30344:is closed (that is, 30322: 30302: 30273: 30087: 29929: 29925:Non-empty subset of 29726: 29722:Non-empty subset of 28614:Convex balanced hull 28458:Convex balanced hull 26994: 26846: 26663: 26489: 26459: 26266: 26048: 25839: 25809: 25601: 25559: 25403: 25380: 25358: 25320: 25297: 25232: 25212: 25192: 25166: 25060: 25034: 24933: 24905: 24873: 24862:{\displaystyle P(x)} 24844: 24749: 24721: 24695: 24680:{\displaystyle P(x)} 24662: 24618: 24595: 24534: 24478: 24443: 24411: 24249: 24229: 24197: 24165: 24072: 24031: 24008: 23978: 23972:convex balanced hull 23940: 23890: 23847: 23794: 23774: 23730: 23687: 23683:be non-zero and set 23667: 23643: 23608: 23582: 23516: 23496: 23468: 23448: 23425: 23401: 23377: 23186: 23141: 23096: 23064: 22936: 22916: 22896: 22864: 22813: 22759: 22709: 22675: 22655: 22610: 22590: 22562: 22482: 22459: 22435: 22358: 22330: 22307: 22284: 22226: 22197: 22177: 22108: 22082: 21863: 21831: 21795: 21733: 21638: 21598: 21578: 21552: 21485: 21442: 21422: 21355: 21335: 21309: 21283: 21263: 21243: 21217: 21197: 21177: 21157: 21137: 21087: 21067: 21044: 21024: 21004: 20984: 20964: 20957:is totally bounded. 20941: 20921: 20901: 20881: 20861: 20853:is totally bounded. 20798: 20765: 20741: 20721: 20647: 20602: 20582: 20558: 20515: 20495: 20451: 20397: 20377: 20338: 20318: 20276: 20221: 20164: 20144: 20105: 20085: 20019: 19993: 19973: 19945: 19925: 19905: 19842: 19822: 19786: 19739: 19713: 19687: 19661: 19622: 19598: 19539: 19519: 19493: 19429: 19401: 19326: 19300: 19256: 19236: 19226:compact and complete 19208: 19165: 19136: 19113: 19066: 19023: 18980: 18960: 18886: 18863: 18817: 18794: 18768: 18714: 18691: 18665: 18645: 18588: 18562: 18498: 18410: 18406:and furthermore, if 18314: 18289: 18269: 18234: 18162: 18142: 18122: 18098: 18043: 17927: 17885: 17859: 17839: 17801: 17781: 17754: 17658: 17638: 17612: 17520: 17497: 17477: 17457: 17418: 17376: 17356: 17336: 17259: 17224: 17204: 17146: 17087: 17049: 17029: 16990: 16970: 16931: 16898: 16853: 16833: 16794: 16770: 16760:topological interior 16631: 16475: 16455: 16423: 16395: 16360: 16340: 16308: 16282: 16249: 16225: 16205: 16140: 16101: 16072: 16043: 16020: 15996: 15959: 15926: 15894: 15874: 15854: 15793: 15767: 15744: 15733:{\displaystyle \nu } 15724: 15704: 15681: 15661: 15641: 15477: 15457: 15451:Minkowski functional 15420: 15400: 15373: 15348: 15328: 15323:sublinear functional 15299: 15189: 15169: 15140: 15114: 15094: 15068: 15048: 15028: 15002: 14957: 14893: 14841: 14815: 14749: 14722: 14696: 14670: 14638: 14610: 14582: 14547: 14514: 14494: 14467: 14447: 14427: 14383: 14357: 14315: 14276: 14256: 14215: 14190: 14161: 14141:Algebraic dual space 14114: 14091: 14062: 14033: 13987: 13958: 13931: 13892: 13865: 13837: 13795: 13760: 13733: 13727:normed vector spaces 13562: 13524: 13495:totally bounded sets 13432: 13403: 13376: 13329: 13300: 13279:open mapping theorem 13275:closed graph theorem 13240: 13220: 13200: 13177: 13150: 13139:{\displaystyle f(X)} 13121: 13101: 13071: 13047: 13011: 12987: 12951: 12931: 12893: 12870: 12838: 12799: 12779: 12754: 12734: 12714: 12656: 12592: 12548: 12513: 12490: 12470: 12443: 12405: 12381: 12347: 12324: 12279: 12255: 12227: 12192: 12172: 12133: 12113: 12078: 12054: 12006: 11986: 11966: 11946: 11911: 11877: 11854: 11834: 11814: 11783: 11738: 11718: 11695: 11664: 11619: 11578: 11543: 11523: 11501: 11440: 11408: 11350: 11330: 11298: 11278: 11250: 11224: 11199: 11179: 11159: 11133: 11064: 11042: 11020: 10980: 10960: 10938: 10911: 10879: 10857: 10817: 10785: 10757: 10725: 10693: 10673: 10651: 10614: 10582: 10572:always has a unique 10556: 10527: 10507: 10474: 10454: 10422: 10418:of finite dimension 10400: 10380: 10354: 10332: 10310: 10288: 10239: 10185: 10140: 10129:{\displaystyle f(x)} 10111: 10075: 10053: 10033: 10013: 9983: 9957: 9937: 9876: 9850: 9807: 9766: 9743: 9717: 9681: 9661: 9604: 9580: 9537: 9510: 9490: 9470: 9447: 9416: 9389: 9350: 9309: 9289: 9257: 9220: 9184: 9151: 9131: 9083: 9058: 9038: 9012: 8988: 8965: 8945: 8925: 8852: 8826: 8780: 8760: 8737: 8717: 8652: 8580: 8560: 8524: 8517:canonical uniformity 8482: 8453: 8427: 8394: 8323: 8299: 8276: 8256: 8236: 8193: 8169: 8142: 8116: 8080: 8041: 8021: 8001: 7978: 7958: 7929: 7909: 7889: 7865: 7833: 7813: 7793: 7773: 7753: 7721: 7701: 7681: 7655: 7635: 7600: 7576: 7533: 7529:or equivalently, if 7501: 7473: 7427: 7377: 7334: 7305: 7255: 7235: 7206: 7180: 7176:there exists a real 7151: 7131: 7102: 7082: 7054: 7034: 7014: 6984: 6958: 6888: 6859: 6833: 6798: 6772: 6761:{\displaystyle s=-1} 6743: 6714: 6688: 6684:then the linear map 6662: 6625: 6582: 6556: 6520: 6478: 6450: 6422: 6402: 6374: 6354: 6334: 6302: 6273: 6250: 6212: 6158: 6126: 6104: 6075: 6044: 6021: 5995: 5967: 5947: 5925: 5905: 5878: 5842: 5816: 5796: 5774: 5742: 5701: 5629: 5601: 5575: 5535: 5495: 5460: 5409: 5387: 5349: 5326: 5304: 5204: 5102: 5020: 4945: 4864: 4836: 4796: 4753: 4726: 4697: 4674: 4654: 4591: 4528: 4495: 4439: 4419: 4392: 4372: 4352: 4325: 4305: 4276: 4240: 4220: 4173: 4146: 4099: 4068: 4033: 3987: 3961: 3929: 3864: 3844: 3666: 3633: 3598: 3554: 3351: 3315: 3289: 3224: 3191: 3125: 3098: 3058: 3037: 2999: 2950: 2930: 2903: 2877: 2850: 2830: 2785: 2746: 2680: 2615: 2577: 2547: 2516: 2486: 2464: 2436: 2414: 2410:and for every index 2387: 2352: 2329: 2263: 2243: 2206: 2186: 2154: 2116: 2086: 2056: 2032: 1992: 1960: 1937: 1917: 1889: 1869: 1833: 1813: 1752: 1726: 1690: 1646: 1616: 1572: 1540: 1532:is endowed with the 1510: 1487: 1467: 1431: 1407: 1368: 1338: 1305: 1277: 1144: 1117: 1073: 1031: 999: 940: 912: 862: 825: 821:is commonly denoted 803: 740: 728:Hausdorff assumption 699: 673:continuous functions 635: 588: 554: 527: 417: 395: 348: 308: 257: 210: 156: 131: 64:continuous functions 36164:Interpolation space 35696:Operator topologies 35505:Functional calculus 35464:Mahler's conjecture 35443:Von Neumann algebra 35157:Functional analysis 34575:Schaefer, Helmut H. 34544:Functional Analysis 34347:, pp. 108–109. 34279:, pp. 107–112. 34154:, pp. 101–104. 34047:, pp. 177–220. 33939:, pp. 115–154. 33831:, pp. 155–176. 33757:, pp. 371–423. 33734:, pp. 721–751. 33592:, p. 4-5 §1.3. 33140:is substituted for 30392:metric linear space 30155:Liquid vector space 28933:Closed convex hull 28779:Closed convex hull 27009:{\displaystyle R+S} 26861:{\displaystyle R+S} 25419:that is considered 25347: 24840:So for example, if 23395:indiscrete topology 22097:{\displaystyle R+S} 20643:is a completion of 20552:indiscrete topology 19962:{\displaystyle X/M} 19897:is totally bounded. 19815:is totally bounded. 19780:is totally bounded. 19657:). For any subset 18310:) it follows that: 15155:{\displaystyle S-S} 15083:{\displaystyle S+U} 14743:linear combinations 14715:convex combinations 14332:{\displaystyle X'.} 13370:Hahn–Banach theorem 12050:which implies that 11830:has a neighborhood 11478: 11393: 11004:functional analysis 10647:vector topology on 9914: 9596:has an uncountable 9252:indiscrete topology 9127:converges in a TVS 9004:is not necessarily 8613:, Cauchy nets, and 8611:uniform convergence 8074: —  7954:set is bounded. If 6999:{\displaystyle x+S} 6467:{\displaystyle X/M} 6391:{\displaystyle X/M} 6319:{\displaystyle X/M} 6298:the quotient space 6192:A Hausdorff TVS is 5736: —  3976:{\displaystyle f=0} 3467: for all  3176: 3119: —  3031:This is called the 2822:neighborhood string 2314: 1807: —  1425: —  301:obeyed by the norm. 299:triangle inequality 192:normed vector space 76:uniform convergence 52:functional analysis 36340:Topological spaces 36194:(Pseudo)Metrizable 36026:Minkowski addition 35878:Sublinear function 35530:Riemann hypothesis 35229:Topological vector 34814:Wiley-Interscience 34804:Schwartz, Jacob T. 34088:, p. 119-120. 33701:, pp. 67–113. 33560: 33538: 33386: 33361:and the fact that 33351: 33319: 33150: 33130: 33104: 33053: 33033: 33013: 32974: 32954: 32881: 32752: 32717: 32672:{\displaystyle C.} 32669: 32646: 32626: 32587: 32549:which proves that 32539: 32494: 32459: 32439: 32364: 32332: 32258: 32238: 32199: 32167: 32079: 32047: 32008: 31983: 31938: 31912: 31890: 31861: 31828: 31793: 31761: 31740: 31717: 31673: 31644: 31618: 31601: 31560: 31552: 31526: 31488: 31468: 31415: 31344: 31312: 31276: 31241: 31196: 31156: 31089: 31042: 31007: 30966: 30941: 30919: 30879: 30854: 30832:-axis, is open in 30822: 30802: 30766: 30746: 30709:{\displaystyle X.} 30706: 30683: 30638: 30618: 30568: 30523: 30465: 30441: 30354: 30334: 30308: 30279: 30228:Topological module 30093: 30040:Relatively compact 29935: 29732: 27006: 26858: 26669: 26495: 26471: 26278: 26054: 25845: 25821: 25613: 25565: 25512:Relatively compact 25409: 25392:{\displaystyle S,} 25389: 25370:{\displaystyle R,} 25367: 25345: 25332: 25303: 25244: 25218: 25198: 25178: 25152: 25134: 25046: 25020: 24920: 24891: 24859: 24830: 24736: 24707: 24677: 24630:{\displaystyle X.} 24627: 24607:{\displaystyle X,} 24604: 24579: 24520: 24464: 24429: 24397: 24235: 24215: 24180: 24147: 24058: 24020:{\displaystyle S;} 24017: 23990: 23958: 23926: 23876: 23833: 23780: 23757: 23717: 23673: 23649: 23629: 23594: 23552: 23542: 23502: 23474: 23454: 23431: 23407: 23383: 23316: 23182:are compact) then 23172: 23127: 23082: 23050: 22922: 22902: 22882: 22847: 22793: 22743: 22687:{\displaystyle X.} 22684: 22661: 22641: 22596: 22576: 22548: 22471:{\displaystyle X.} 22468: 22445: 22421: 22405: 22345: 22313: 22296:{\displaystyle X;} 22293: 22270: 22244: 22212: 22193:is a real TVS and 22183: 22161: 22094: 22068: 21849: 21814: 21781: 21717: 21634:contain zero then 21624: 21584: 21564: 21538: 21471: 21428: 21408: 21341: 21321: 21295:{\displaystyle X.} 21292: 21269: 21249: 21229: 21203: 21183: 21163: 21143: 21108: 21073: 21056:{\displaystyle K,} 21053: 21030: 21010: 20990: 20970: 20947: 20927: 20907: 20887: 20867: 20843: 20784: 20747: 20727: 20687: 20633: 20588: 20564: 20540: 20501: 20481: 20437: 20383: 20363: 20324: 20304: 20258: 20207: 20150: 20130: 20091: 20064: 20005:{\displaystyle X.} 20002: 19979: 19959: 19931: 19911: 19887: 19828: 19805: 19770: 19719: 19699:{\displaystyle X,} 19696: 19673: 19647: 19604: 19576: 19525: 19505: 19479: 19416: 19392:topological spaces 19388:relatively compact 19376: 19312: 19284: 19242: 19214: 19190: 19151: 19125:{\displaystyle X.} 19122: 19091: 19048: 19015:as a subset. The 19005: 18966: 18946: 18942: 18875:{\displaystyle X.} 18872: 18845: 18806:{\displaystyle X,} 18803: 18780: 18754: 18703:{\displaystyle X,} 18700: 18677: 18651: 18624: 18574: 18548: 18484: 18396: 18300: 18275: 18261:(which are convex 18251: 18220: 18148: 18128: 18104: 18084: 18029: 17913: 17871: 17845: 17823: 17787: 17767: 17740: 17727: 17644: 17624: 17596: 17509:{\displaystyle C;} 17506: 17483: 17463: 17443: 17404: 17362: 17342: 17322: 17245: 17210: 17188: 17132: 17073: 17035: 17025:could be false if 17015: 16976: 16956: 16917: 16884: 16839: 16819: 16776: 16746: 16617: 16461: 16441: 16401: 16381: 16346: 16314: 16294:{\displaystyle X.} 16291: 16268: 16235: 16211: 16191: 16126: 16087: 16058: 16032:{\displaystyle X,} 16029: 16006: 15980: 15945: 15912: 15880: 15860: 15840: 15779: 15756:{\displaystyle X.} 15753: 15730: 15710: 15687: 15667: 15647: 15623: 15463: 15439: 15406: 15379: 15360:{\displaystyle X.} 15357: 15334: 15311: 15285: 15175: 15152: 15126: 15100: 15090:is an open set in 15080: 15054: 15034: 15014: 14966:{\displaystyle 1.} 14963: 14943: 14879: 14827: 14801: 14734:{\displaystyle S,} 14731: 14702: 14682: 14650: 14625: 14597: 14569: 14533: 14500: 14479:{\displaystyle S.} 14476: 14453: 14433: 14395:{\displaystyle X,} 14392: 14369: 14329: 14301: 14262: 14234: 14201: 14175:{\displaystyle X'} 14172: 14120: 14110:there is only one 14103:{\displaystyle n,} 14100: 14077: 14048: 14009: 13971: 13944: 13908: 13878: 13850: 13807:{\displaystyle BV} 13804: 13781: 13746: 13691:of Hilbert spaces. 13659: 13620: 13548: 13473:Bornological space 13450: 13418: 13389: 13341: 13313: 13246: 13226: 13206: 13183: 13156: 13136: 13107: 13083:{\displaystyle X.} 13080: 13067:a TVS topology on 13053: 13017: 12993: 12957: 12937: 12917: 12882:{\displaystyle X.} 12879: 12856: 12820: 12785: 12766:{\displaystyle X.} 12763: 12740: 12720: 12693: 12642: 12578: 12531: 12502:{\displaystyle X,} 12499: 12476: 12449: 12429: 12387: 12360: 12336:{\displaystyle X,} 12333: 12310: 12266: 12241: 12223:then for any ball 12213: 12178: 12158: 12119: 12099: 12060: 12040: 11992: 11972: 11952: 11932: 11897: 11866:{\displaystyle X,} 11863: 11840: 11820: 11800: 11769: 11734:can be written as 11724: 11707:{\displaystyle x,} 11704: 11681: 11650: 11605: 11564: 11529: 11509: 11487: 11443: 11426: 11394: 11353: 11336: 11316: 11284: 11264: 11236: 11210: 11185: 11165: 11145: 11119: 11050: 11028: 11014: 10988: 10966: 10946: 10929:Euclidean topology 10917: 10897: 10866:{\displaystyle 0.} 10863: 10835: 10803: 10763: 10743: 10711: 10679: 10663:{\displaystyle X.} 10660: 10629: 10600: 10562: 10542: 10513: 10501:linear isomorphism 10489: 10460: 10440: 10408: 10386: 10374:Euclidean topology 10362: 10340: 10318: 10296: 10271:F. Riesz's theorem 10251: 10225: 10151: 10126: 10097: 10065:{\displaystyle x,} 10062: 10039: 10019: 9996: 9969: 9943: 9915: 9879: 9861: 9830: 9789: 9749: 9737:Euclidean topology 9735:carries its usual 9725: 9703: 9667: 9645:Cartesian products 9617: 9586: 9566: 9523: 9496: 9476: 9459:{\displaystyle X,} 9456: 9428:{\displaystyle X,} 9425: 9402: 9368: 9315: 9295: 9275: 9226: 9196:{\displaystyle X.} 9193: 9170: 9137: 9117: 9070:{\displaystyle x.} 9067: 9044: 9033:accumulation point 9018: 9006:relatively compact 8994: 8971: 8961:that is closed in 8951: 8931: 8867: 8838: 8812: 8766: 8749:{\displaystyle 0,} 8746: 8723: 8699: 8635:relatively compact 8615:uniform continuity 8592:{\displaystyle X.} 8589: 8566: 8542: 8494:{\displaystyle n.} 8491: 8468: 8447:finite-dimensional 8435: 8402: 8341: 8311:{\displaystyle X.} 8308: 8285: 8262: 8242: 8211: 8181:{\displaystyle X.} 8178: 8148: 8128: 8098: 8072: 8053:{\displaystyle X.} 8050: 8027: 8007: 7990:{\displaystyle X,} 7987: 7964: 7941:{\displaystyle E.} 7938: 7915: 7895: 7871: 7851: 7819: 7799: 7779: 7759: 7736: 7707: 7687: 7661: 7641: 7612:{\displaystyle 0;} 7609: 7582: 7551: 7519: 7479: 7445: 7413: 7356: 7320: 7280: 7241: 7221: 7192: 7166: 7137: 7108: 7098:of a vector space 7088: 7060: 7040: 7020: 6996: 6970: 6944: 6874: 6845: 6816: 6784: 6758: 6729: 6700: 6674: 6644: 6607: 6568: 6542: 6490:{\displaystyle X.} 6487: 6464: 6437: 6418:is the closure of 6408: 6388: 6360: 6340: 6316: 6288: 6256: 6237:completely regular 6224:{\displaystyle -1} 6221: 6182: 6144: 6112: 6086: 6059: 6033:{\displaystyle X.} 6030: 6015:neighborhood basis 6003: 5981: 5953: 5933: 5911: 5884: 5863: 5838:at the origin for 5836:neighborhood basis 5824: 5802: 5782: 5760: 5730: 5712: 5687: 5670: 5609: 5583: 5561: 5521: 5481: 5456:there exists some 5446: 5395: 5357: 5338:{\displaystyle X,} 5335: 5312: 5287: 5185: 5083: 5001: 4987: 4926: 4848:{\displaystyle i.} 4845: 4822: 4782: 4739: 4710: 4680: 4660: 4640: 4577: 4507:{\displaystyle X.} 4504: 4481: 4425: 4405: 4378: 4358: 4338: 4311: 4291: 4262: 4226: 4206: 4169:are balanced then 4159: 4132: 4081: 4054: 4029:so in particular, 4019: 4005: 3973: 3947: 3915: 3850: 3828: 3690: 3662:and otherwise let 3652: 3619: 3584: 3538: 3337: 3301: 3275: 3210: 3177: 3141: 3106: 3091: 3064: 3043: 3033:natural string of 3021: 2985: 2936: 2926:in a vector space 2909: 2889:{\displaystyle X.} 2886: 2863: 2836: 2814:Topological string 2798: 2762: 2692:{\displaystyle i.} 2689: 2666: 2590: 2563: 2529: 2502: 2470: 2449: 2426:{\displaystyle i,} 2423: 2400: 2365: 2341:{\displaystyle X.} 2338: 2315: 2279: 2249: 2218:{\displaystyle X.} 2215: 2192: 2164: 2137: 2102: 2072: 2042: 2008: 1970: 1949:{\displaystyle X.} 1946: 1923: 1899: 1875: 1843: 1819: 1801: 1793:neighborhood basis 1777: 1738: 1712: 1664: 1628: 1602: 1558: 1522: 1499:{\displaystyle X,} 1496: 1473: 1449: 1423: 1413: 1389: 1354: 1334:there exists some 1324: 1287: 1156:{\displaystyle Y.} 1153: 1129:{\displaystyle u,} 1126: 1103: 1055: 1017: 948: 920: 894: 848: 811: 746: 711:{\displaystyle X.} 708: 677:product topologies 661: 621: 562: 533: 513: 472:and the spaces of 429:{\displaystyle X,} 426: 403: 381: 334: 287: 243: 167: 139: 36322: 36321: 36041:Relative interior 35787:Bilinear operator 35671:Linear functional 35607: 35606: 35510:Integral operator 35287: 35286: 35118:Media related to 35091:978-3-030-32945-7 35057:978-0-08-087178-3 35050:Science Pub. Co. 35023:978-0-486-45352-1 34993:978-0-521-29882-7 34936:978-0-387-90400-9 34884:978-0-677-30020-7 34850:978-0-486-68143-6 34823:978-0-471-60848-6 34783:978-0-387-97245-9 34728:Bourbaki, Nicolas 34679:978-0-486-49353-4 34649:978-0-8247-8643-4 34622:978-0-12-622760-4 34592:978-1-4612-7155-0 34558:978-0-07-054236-5 34487:978-3-642-64988-2 34457:978-3-519-02224-4 34430:978-3-540-08662-8 34359:, pp. 30–32. 34323:, pp. 43–44. 34306:, pp. 19–45. 34267:, pp. 56–73. 34237:, pp. 12–35. 34204:, pp. 47–66. 34008:, p. 9 §1.8. 33951:, pp. 27–29. 33910:, pp. 12–19. 33798:, p. 6 §1.4. 33769:, pp. 10–15. 33650:, pp. 40–47. 33633:, pp. 34–36. 33631:Grothendieck 1973 33621:, pp. 74–78. 33396:this is equal to 33153:{\displaystyle S} 33056:{\displaystyle S} 33036:{\displaystyle X} 32977:{\displaystyle S} 32649:{\displaystyle X} 32462:{\displaystyle C} 32261:{\displaystyle X} 31982: 31889: 31860: 31739: 31716: 31600: 31551: 31533: 31528: 31524: 31510: 31491:{\displaystyle C} 31248: 31243: 31239: 31225: 30951:so not closed in 30912: 30825:{\displaystyle y} 30797: 30769:{\displaystyle y} 30641:{\displaystyle S} 30468:{\displaystyle X} 30357:{\displaystyle X} 30311:{\displaystyle X} 30282:{\displaystyle X} 30222:Topological group 30213:Topological field 30125: 30124: 30096:{\displaystyle X} 29938:{\displaystyle R} 29735:{\displaystyle R} 25568:{\displaystyle X} 25412:{\displaystyle X} 25306:{\displaystyle X} 25221:{\displaystyle z} 25201:{\displaystyle X} 25133: 25056:is a scalar then 24360: 24356: 24352: 24301: 24297: 24293: 24245:is a scalar then 24238:{\displaystyle a} 24122: 24116: 24104: 24098: 23862: 23783:{\displaystyle C} 23676:{\displaystyle x} 23652:{\displaystyle S} 23525: 23505:{\displaystyle D} 23477:{\displaystyle X} 23457:{\displaystyle X} 23434:{\displaystyle X} 23410:{\displaystyle X} 23386:{\displaystyle X} 23237: 23231: 22987: 22981: 22925:{\displaystyle R} 22905:{\displaystyle S} 22671:of the origin in 22664:{\displaystyle U} 22599:{\displaystyle S} 22540: 22509: 22503: 22386: 22385: 22379: 22316:{\displaystyle S} 22229: 22186:{\displaystyle X} 22039: 22033: 21960: 21956: 21952: 21921: 21915: 21748: 21613: 21587:{\displaystyle A} 21460: 21431:{\displaystyle X} 21351:is a scalar then 21344:{\displaystyle a} 21272:{\displaystyle M} 21252:{\displaystyle X} 21206:{\displaystyle X} 21186:{\displaystyle N} 21166:{\displaystyle X} 21146:{\displaystyle M} 21076:{\displaystyle N} 21033:{\displaystyle X} 21013:{\displaystyle U} 20993:{\displaystyle X} 20973:{\displaystyle K} 20950:{\displaystyle S} 20930:{\displaystyle S} 20910:{\displaystyle S} 20890:{\displaystyle X} 20870:{\displaystyle S} 20750:{\displaystyle X} 20730:{\displaystyle S} 20591:{\displaystyle H} 20567:{\displaystyle C} 20504:{\displaystyle H} 20386:{\displaystyle X} 20327:{\displaystyle H} 20314:Consequently, if 20153:{\displaystyle H} 20094:{\displaystyle X} 19982:{\displaystyle M} 19934:{\displaystyle X} 19914:{\displaystyle M} 19831:{\displaystyle S} 19722:{\displaystyle S} 19607:{\displaystyle S} 19528:{\displaystyle X} 19397:For every subset 19322:is compact, then 19245:{\displaystyle X} 19217:{\displaystyle X} 19017:subspace topology 18969:{\displaystyle X} 18914: 18654:{\displaystyle X} 18513: 18431: 18278:{\displaystyle 0} 18265:neighborhoods of 18151:{\displaystyle X} 18131:{\displaystyle 0} 18107:{\displaystyle N} 18070: 18018: 17848:{\displaystyle x} 17790:{\displaystyle a} 17696: 17647:{\displaystyle X} 17486:{\displaystyle y} 17466:{\displaystyle x} 17365:{\displaystyle X} 17345:{\displaystyle C} 17309: 17303: 17213:{\displaystyle C} 17038:{\displaystyle S} 16979:{\displaystyle S} 16842:{\displaystyle X} 16779:{\displaystyle S} 16689: 16683: 16577: 16571: 16552: 16548: 16544: 16502: 16496: 16464:{\displaystyle S} 16404:{\displaystyle X} 16349:{\displaystyle X} 16317:{\displaystyle X} 16214:{\displaystyle S} 15883:{\displaystyle 0} 15863:{\displaystyle X} 15690:{\displaystyle K} 15670:{\displaystyle p} 15650:{\displaystyle K} 15606: 15600: 15561: 15555: 15549: 15543: 15504: 15498: 15466:{\displaystyle K} 15409:{\displaystyle X} 15382:{\displaystyle K} 15337:{\displaystyle p} 15242: 15236: 15178:{\displaystyle X} 15103:{\displaystyle X} 15057:{\displaystyle X} 15037:{\displaystyle U} 14996:arcwise connected 14992:locally connected 14741:which are finite 14705:{\displaystyle S} 14503:{\displaystyle S} 14456:{\displaystyle X} 14436:{\displaystyle S} 14265:{\displaystyle X} 14149:Strong dual space 14123:{\displaystyle n} 13709:seminormed spaces 13590: 13249:{\displaystyle f} 13229:{\displaystyle X} 13209:{\displaystyle f} 13195:linear functional 13186:{\displaystyle X} 13159:{\displaystyle X} 13117:is continuous if 13110:{\displaystyle f} 13056:{\displaystyle X} 13041:cofinite topology 13037:topological group 13027:(which is always 13020:{\displaystyle X} 13005:discrete topology 12996:{\displaystyle X} 12960:{\displaystyle X} 12940:{\displaystyle X} 12889:For instance, if 12788:{\displaystyle X} 12743:{\displaystyle X} 12723:{\displaystyle X} 12479:{\displaystyle f} 12452:{\displaystyle X} 12181:{\displaystyle X} 12122:{\displaystyle n} 12063:{\displaystyle S} 11995:{\displaystyle X} 11982:of the origin in 11975:{\displaystyle S} 11955:{\displaystyle 0} 11843:{\displaystyle W} 11823:{\displaystyle X} 11727:{\displaystyle X} 11532:{\displaystyle X} 11339:{\displaystyle S} 11287:{\displaystyle 0} 11188:{\displaystyle 1} 11168:{\displaystyle X} 11012: 10969:{\displaystyle 1} 10920:{\displaystyle X} 10777:vector topology. 10766:{\displaystyle X} 10682:{\displaystyle X} 10565:{\displaystyle X} 10516:{\displaystyle X} 10463:{\displaystyle X} 10389:{\displaystyle X} 10042:{\displaystyle X} 10022:{\displaystyle f} 9946:{\displaystyle X} 9933:) of elements in 9761:Cartesian product 9752:{\displaystyle X} 9677:of all functions 9670:{\displaystyle X} 9651:Cartesian product 9589:{\displaystyle X} 9499:{\displaystyle X} 9479:{\displaystyle X} 9318:{\displaystyle X} 9298:{\displaystyle X} 9229:{\displaystyle X} 9140:{\displaystyle X} 9047:{\displaystyle x} 9021:{\displaystyle X} 8997:{\displaystyle X} 8974:{\displaystyle C} 8954:{\displaystyle C} 8934:{\displaystyle C} 8894:Cauchy continuous 8769:{\displaystyle n} 8726:{\displaystyle V} 8361:equivalent metric 8265:{\displaystyle X} 8245:{\displaystyle X} 8165:at the origin in 8151:{\displaystyle X} 8068: 8030:{\displaystyle M} 8010:{\displaystyle M} 7997:then a subset of 7967:{\displaystyle M} 7918:{\displaystyle p} 7898:{\displaystyle E} 7874:{\displaystyle X} 7822:{\displaystyle t} 7802:{\displaystyle V} 7782:{\displaystyle E} 7762:{\displaystyle E} 7710:{\displaystyle t} 7690:{\displaystyle V} 7664:{\displaystyle X} 7644:{\displaystyle E} 7585:{\displaystyle 0} 7482:{\displaystyle E} 7466:absolutely convex 7330:for every scalar 7244:{\displaystyle c} 7140:{\displaystyle X} 7111:{\displaystyle X} 7091:{\displaystyle E} 7063:{\displaystyle S} 7043:{\displaystyle X} 7023:{\displaystyle x} 6954:and moreover, if 6411:{\displaystyle M} 6363:{\displaystyle X} 6343:{\displaystyle M} 6328:quotient topology 6259:{\displaystyle X} 6233:topological group 5956:{\displaystyle X} 5914:{\displaystyle X} 5805:{\displaystyle X} 5728: 5646: 5381:directed downward 5209: 5107: 5025: 4970: 4950: 4869: 4758: 4683:{\displaystyle s} 4663:{\displaystyle X} 4428:{\displaystyle X} 4388:is Hausdorff and 4381:{\displaystyle X} 4361:{\displaystyle f} 4314:{\displaystyle X} 4229:{\displaystyle s} 3990: 3853:{\displaystyle f} 3750: 3744: 3684: 3479: 3468: 3436: 3430: 3089: 3076:absolutely convex 3067:{\displaystyle X} 3046:{\displaystyle U} 2939:{\displaystyle X} 2912:{\displaystyle U} 2839:{\displaystyle X} 2473:{\displaystyle i} 2252:{\displaystyle X} 2195:{\displaystyle 0} 1926:{\displaystyle 0} 1911:neighborhood base 1878:{\displaystyle X} 1822:{\displaystyle X} 1799: 1642:of the origin in 1483:is a topology on 1416:{\displaystyle 0} 1402: 1235:, is a bijective 1219:), also called a 1181:), also called a 1138:subspace topology 979:), also called a 749:{\displaystyle X} 722:topological group 549:topological field 536:{\displaystyle X} 489:topological field 452:Non-normed spaces 60:topological space 16:(Redirected from 36357: 36312: 36311: 36286:Uniformly smooth 35955: 35947: 35914:Balanced/Circled 35904:Absorbing/Radial 35634: 35627: 35620: 35611: 35610: 35597: 35596: 35515:Jones polynomial 35433:Operator algebra 35177: 35176: 35150: 35143: 35136: 35127: 35126: 35117: 35103: 35082:Birkhäuser Basel 35069: 35040:Valdivia, Manuel 35035: 35010:Trèves, François 35005: 34970: 34948: 34923:Köthe, Gottfried 34918: 34896: 34876: 34862: 34835: 34809:Linear Operators 34795: 34757: 34723: 34721: 34719: 34691: 34666:Wilansky, Albert 34661: 34634: 34604: 34570: 34534: 34507: 34474:Köthe, Gottfried 34469: 34442: 34401: 34395: 34389: 34383: 34377: 34371: 34360: 34354: 34348: 34342: 34336: 34330: 34324: 34318: 34307: 34301: 34292: 34286: 34280: 34274: 34268: 34262: 34253: 34247: 34238: 34232: 34217: 34211: 34205: 34199: 34182: 34176: 34170: 34164: 34155: 34149: 34143: 34137: 34128: 34122: 34113: 34107: 34101: 34095: 34089: 34083: 34077: 34071: 34065: 34059: 34048: 34042: 34033: 34027: 34021: 34015: 34009: 34003: 33992: 33986: 33977: 33976: 33974: 33973: 33958: 33952: 33946: 33940: 33934: 33923: 33917: 33911: 33905: 33899: 33893: 33887: 33886: 33885: 33883: 33862: 33856: 33855:, section 15.11. 33850: 33844: 33838: 33832: 33826: 33811: 33805: 33799: 33793: 33782: 33776: 33770: 33764: 33758: 33752: 33735: 33729: 33723: 33717: 33702: 33696: 33651: 33645: 33634: 33628: 33622: 33616: 33610: 33604: 33593: 33587: 33570: 33569: 33567: 33566: 33561: 33547: 33545: 33544: 33539: 33395: 33393: 33392: 33387: 33360: 33358: 33357: 33352: 33328: 33326: 33325: 33320: 33167: 33161: 33159: 33157: 33156: 33151: 33139: 33137: 33136: 33131: 33113: 33111: 33110: 33105: 33085: 33084: 33062: 33060: 33059: 33054: 33042: 33040: 33039: 33034: 33022: 33020: 33019: 33014: 33000: 32999: 32983: 32981: 32980: 32975: 32963: 32961: 32960: 32955: 32944: 32943: 32919: 32918: 32890: 32888: 32887: 32882: 32871: 32870: 32846: 32845: 32809: 32808: 32784: 32783: 32761: 32759: 32758: 32753: 32734: 32728: 32726: 32724: 32723: 32718: 32704: 32703: 32686: 32680: 32678: 32676: 32675: 32670: 32655: 32653: 32652: 32647: 32635: 32633: 32632: 32627: 32625: 32621: 32596: 32594: 32593: 32588: 32577: 32573: 32548: 32546: 32545: 32540: 32523: 32522: 32503: 32501: 32500: 32495: 32468: 32466: 32465: 32460: 32448: 32446: 32445: 32440: 32432: 32431: 32373: 32371: 32370: 32365: 32341: 32339: 32338: 32333: 32325: 32324: 32309: 32308: 32290: 32289: 32267: 32265: 32264: 32259: 32247: 32245: 32244: 32239: 32237: 32233: 32208: 32206: 32205: 32200: 32176: 32174: 32173: 32168: 32163: 32162: 32138: 32137: 32088: 32086: 32085: 32080: 32056: 32054: 32053: 32048: 32037: 32036: 32018:which satisfies 32017: 32015: 32014: 32009: 31992: 31988: 31984: 31975: 31964: 31963: 31947: 31945: 31944: 31939: 31921: 31919: 31918: 31913: 31899: 31895: 31891: 31882: 31862: 31853: 31838:it follows that 31837: 31835: 31834: 31829: 31802: 31800: 31799: 31794: 31770: 31768: 31767: 31762: 31751: 31750: 31741: 31732: 31726: 31722: 31718: 31709: 31698: 31697: 31682: 31680: 31679: 31674: 31653: 31651: 31650: 31645: 31627: 31625: 31624: 31619: 31602: 31599: 31585: 31569: 31567: 31566: 31561: 31553: 31550: 31536: 31531: 31530: 31529: 31527: 31525: 31522: 31518: 31513: 31508: 31497: 31495: 31494: 31489: 31477: 31475: 31474: 31469: 31424: 31422: 31421: 31416: 31414: 31413: 31395: 31394: 31376: 31375: 31353: 31351: 31350: 31345: 31321: 31319: 31318: 31313: 31302: 31301: 31285: 31283: 31282: 31277: 31246: 31245: 31244: 31242: 31240: 31237: 31233: 31228: 31223: 31222: 31221: 31205: 31203: 31202: 31197: 31172: 31166: 31165: 31163: 31162: 31157: 31146: 31145: 31115: 31114: 31098: 31096: 31095: 31090: 31082: 31081: 31058: 31052: 31051: 31049: 31048: 31043: 31016: 31014: 31013: 31008: 31006: 30993: 30976: 30975: 30973: 30972: 30967: 30962: 30950: 30948: 30947: 30942: 30940: 30928: 30926: 30925: 30920: 30918: 30913: 30908: 30903: 30888: 30886: 30885: 30880: 30875: 30863: 30861: 30860: 30855: 30850: 30849: 30844: 30831: 30829: 30828: 30823: 30811: 30809: 30808: 30803: 30798: 30790: 30775: 30773: 30772: 30767: 30755: 30753: 30752: 30747: 30742: 30741: 30736: 30722: 30716: 30715: 30713: 30712: 30707: 30692: 30690: 30689: 30684: 30670: 30669: 30647: 30645: 30644: 30639: 30627: 30625: 30624: 30619: 30577: 30575: 30574: 30569: 30555: 30554: 30532: 30530: 30529: 30524: 30510: 30509: 30482: 30476: 30474: 30472: 30471: 30466: 30450: 30448: 30447: 30442: 30440: 30439: 30429: 30424: 30401: 30395: 30388: 30382: 30379: 30373: 30363: 30361: 30360: 30355: 30343: 30341: 30340: 30335: 30317: 30315: 30314: 30309: 30296: 30290: 30288: 30286: 30285: 30280: 30267: 30247: 30238: 30233:Topological ring 30218: 30209: 30189: 30180: 30166: 30145: 30117:Pseudometrizable 30102: 30100: 30099: 30094: 30074:Infrabornivorous 29944: 29942: 29941: 29936: 29922: 29921: 29913: 29912: 29906: 29905: 29899: 29898: 29892: 29891: 29885: 29884: 29876: 29875: 29869: 29868: 29860: 29859: 29853: 29852: 29846: 29845: 29839: 29838: 29832: 29831: 29825: 29824: 29818: 29817: 29811: 29810: 29804: 29803: 29797: 29796: 29790: 29789: 29783: 29782: 29776: 29775: 29769: 29768: 29762: 29761: 29755: 29754: 29748: 29747: 29741: 29739: 29738: 29733: 29712: 29711: 29703: 29702: 29692: 29691: 29677: 29676: 29670: 29669: 29663: 29662: 29640: 29639: 29633: 29632: 29626: 29625: 29619: 29618: 29612: 29611: 29605: 29604: 29588: 29587: 29579: 29578: 29568: 29567: 29553: 29552: 29546: 29545: 29539: 29538: 29532: 29531: 29525: 29524: 29518: 29517: 29511: 29510: 29504: 29503: 29497: 29496: 29490: 29489: 29483: 29482: 29476: 29475: 29469: 29468: 29462: 29461: 29455: 29454: 29448: 29447: 29441: 29440: 29426: 29425: 29419: 29418: 29404: 29403: 29391: 29390: 29384: 29383: 29377: 29376: 29370: 29369: 29363: 29362: 29356: 29355: 29349: 29348: 29342: 29341: 29335: 29334: 29328: 29327: 29321: 29320: 29314: 29313: 29307: 29306: 29300: 29299: 29293: 29292: 29286: 29285: 29279: 29278: 29272: 29271: 29251: 29250: 29244: 29243: 29237: 29236: 29230: 29229: 29223: 29222: 29216: 29215: 29205: 29204: 29198: 29197: 29191: 29190: 29184: 29183: 29177: 29176: 29170: 29169: 29155: 29154: 29148: 29147: 29141: 29140: 29134: 29133: 29127: 29126: 29120: 29119: 29113: 29112: 29106: 29105: 29085: 29084: 29078: 29077: 29071: 29070: 29064: 29063: 29057: 29056: 29036: 29035: 29029: 29028: 29022: 29021: 29015: 29014: 29008: 29007: 29001: 29000: 28994: 28993: 28987: 28986: 28980: 28979: 28973: 28972: 28966: 28965: 28959: 28958: 28952: 28951: 28945: 28944: 28926: 28925: 28919: 28918: 28912: 28911: 28905: 28904: 28898: 28897: 28877: 28876: 28870: 28869: 28863: 28862: 28856: 28855: 28849: 28848: 28842: 28841: 28835: 28834: 28828: 28827: 28821: 28820: 28814: 28813: 28807: 28806: 28800: 28799: 28793: 28792: 28786: 28785: 28767: 28766: 28760: 28759: 28753: 28752: 28746: 28745: 28739: 28738: 28718: 28717: 28711: 28710: 28704: 28703: 28697: 28696: 28690: 28689: 28683: 28682: 28676: 28675: 28669: 28668: 28662: 28661: 28655: 28654: 28648: 28647: 28641: 28640: 28634: 28633: 28627: 28626: 28606: 28605: 28599: 28598: 28592: 28591: 28585: 28584: 28578: 28577: 28571: 28570: 28552: 28551: 28545: 28544: 28538: 28537: 28529: 28528: 28522: 28521: 28515: 28514: 28508: 28507: 28501: 28500: 28494: 28493: 28487: 28486: 28480: 28479: 28473: 28472: 28466: 28465: 28443: 28442: 28436: 28435: 28429: 28428: 28422: 28421: 28415: 28414: 28408: 28407: 28395: 28394: 28384: 28383: 28377: 28376: 28370: 28369: 28363: 28362: 28354: 28353: 28347: 28346: 28340: 28339: 28333: 28332: 28326: 28325: 28319: 28318: 28312: 28311: 28305: 28304: 28298: 28297: 28275: 28274: 28268: 28267: 28261: 28260: 28254: 28253: 28247: 28246: 28240: 28239: 28227: 28226: 28220: 28219: 28213: 28212: 28206: 28205: 28199: 28198: 28192: 28191: 28183: 28182: 28176: 28175: 28169: 28168: 28162: 28161: 28155: 28154: 28148: 28147: 28141: 28140: 28134: 28133: 28127: 28126: 28120: 28119: 28097: 28096: 28090: 28089: 28079: 28078: 28060: 28059: 28053: 28052: 28046: 28045: 28039: 28038: 28032: 28031: 28025: 28024: 28018: 28017: 28011: 28010: 28004: 28003: 27997: 27996: 27990: 27989: 27983: 27982: 27976: 27975: 27969: 27968: 27962: 27961: 27939: 27938: 27932: 27931: 27921: 27920: 27906: 27905: 27899: 27898: 27890: 27889: 27883: 27882: 27876: 27875: 27869: 27868: 27862: 27861: 27855: 27854: 27848: 27847: 27841: 27840: 27834: 27833: 27825: 27824: 27818: 27817: 27811: 27810: 27804: 27803: 27779: 27778: 27772: 27771: 27765: 27764: 27758: 27757: 27745: 27744: 27738: 27737: 27731: 27730: 27724: 27723: 27717: 27716: 27710: 27709: 27703: 27702: 27696: 27695: 27689: 27688: 27682: 27681: 27675: 27674: 27668: 27667: 27661: 27660: 27654: 27653: 27647: 27646: 27640: 27639: 27633: 27632: 27626: 27625: 27609: 27608: 27602: 27601: 27595: 27594: 27588: 27587: 27581: 27580: 27574: 27573: 27567: 27566: 27558: 27557: 27551: 27550: 27542: 27541: 27535: 27534: 27528: 27527: 27521: 27520: 27514: 27513: 27507: 27506: 27500: 27499: 27493: 27492: 27486: 27485: 27479: 27478: 27472: 27471: 27465: 27464: 27458: 27457: 27451: 27450: 27444: 27443: 27437: 27436: 27430: 27429: 27415: 27414: 27408: 27407: 27401: 27400: 27394: 27393: 27387: 27386: 27380: 27379: 27373: 27372: 27366: 27365: 27359: 27358: 27352: 27351: 27345: 27344: 27338: 27337: 27331: 27330: 27324: 27323: 27317: 27316: 27310: 27309: 27303: 27302: 27296: 27295: 27289: 27288: 27282: 27281: 27275: 27274: 27268: 27267: 27261: 27260: 27254: 27253: 27247: 27246: 27240: 27239: 27233: 27232: 27226: 27225: 27214:Scalar multiple 27211: 27210: 27204: 27203: 27197: 27196: 27190: 27189: 27183: 27182: 27176: 27175: 27169: 27168: 27160: 27159: 27153: 27152: 27146: 27145: 27139: 27138: 27132: 27131: 27125: 27124: 27118: 27117: 27111: 27110: 27104: 27103: 27097: 27096: 27090: 27089: 27083: 27082: 27076: 27075: 27069: 27068: 27062: 27061: 27055: 27054: 27048: 27047: 27041: 27040: 27034: 27033: 27027: 27026: 27020:Scalar multiple 27015: 27013: 27012: 27007: 26976: 26975: 26961: 26960: 26954: 26953: 26939: 26938: 26930: 26929: 26923: 26922: 26916: 26915: 26909: 26908: 26902: 26901: 26895: 26894: 26888: 26887: 26881: 26880: 26874: 26873: 26867: 26865: 26864: 26859: 26835: 26834: 26824: 26823: 26813: 26812: 26794: 26793: 26787: 26786: 26780: 26779: 26773: 26772: 26766: 26765: 26759: 26758: 26752: 26751: 26745: 26744: 26738: 26737: 26731: 26730: 26724: 26723: 26717: 26716: 26710: 26709: 26703: 26702: 26696: 26695: 26680: 26678: 26676: 26675: 26670: 26656: 26655: 26645: 26644: 26634: 26633: 26615: 26614: 26608: 26607: 26601: 26600: 26594: 26593: 26587: 26586: 26580: 26579: 26573: 26572: 26566: 26565: 26559: 26558: 26552: 26551: 26545: 26544: 26538: 26537: 26531: 26530: 26524: 26523: 26517: 26516: 26506: 26504: 26502: 26501: 26496: 26480: 26478: 26477: 26472: 26453: 26452: 26444: 26443: 26437: 26436: 26426: 26425: 26417: 26416: 26406: 26405: 26399: 26398: 26392: 26391: 26385: 26384: 26378: 26377: 26371: 26370: 26364: 26363: 26357: 26356: 26350: 26349: 26343: 26342: 26336: 26335: 26329: 26328: 26322: 26321: 26315: 26314: 26308: 26307: 26301: 26300: 26294: 26293: 26287: 26285: 26284: 26279: 26251: 26250: 26244: 26243: 26237: 26236: 26230: 26229: 26223: 26222: 26214: 26213: 26207: 26206: 26200: 26199: 26193: 26192: 26186: 26185: 26179: 26178: 26172: 26171: 26165: 26164: 26158: 26157: 26151: 26150: 26144: 26143: 26137: 26136: 26130: 26129: 26123: 26122: 26116: 26115: 26109: 26108: 26102: 26101: 26095: 26094: 26088: 26087: 26081: 26080: 26065: 26063: 26061: 26060: 26055: 26037: 26036: 26030: 26029: 26023: 26022: 26016: 26015: 26009: 26008: 26000: 25999: 25993: 25992: 25986: 25985: 25979: 25978: 25972: 25971: 25965: 25964: 25958: 25957: 25951: 25950: 25944: 25943: 25937: 25936: 25930: 25929: 25923: 25922: 25916: 25915: 25909: 25908: 25902: 25901: 25895: 25894: 25888: 25887: 25881: 25880: 25874: 25873: 25867: 25866: 25856: 25854: 25852: 25851: 25846: 25830: 25828: 25827: 25822: 25803: 25802: 25796: 25795: 25789: 25788: 25782: 25781: 25775: 25774: 25768: 25767: 25761: 25760: 25752: 25751: 25743: 25742: 25736: 25735: 25729: 25728: 25722: 25721: 25715: 25714: 25706: 25705: 25699: 25698: 25692: 25691: 25685: 25684: 25678: 25677: 25671: 25670: 25664: 25663: 25657: 25656: 25650: 25649: 25643: 25642: 25636: 25635: 25629: 25628: 25622: 25620: 25619: 25614: 25589:Pseudometrizable 25574: 25572: 25571: 25566: 25546:Infrabornivorous 25418: 25416: 25415: 25410: 25398: 25396: 25395: 25390: 25376: 25374: 25373: 25368: 25348: 25344: 25341: 25339: 25338: 25333: 25312: 25310: 25309: 25304: 25253: 25251: 25250: 25245: 25227: 25225: 25224: 25219: 25207: 25205: 25204: 25199: 25187: 25185: 25184: 25179: 25161: 25159: 25158: 25153: 25148: 25144: 25143: 25139: 25135: 25126: 25055: 25053: 25052: 25047: 25029: 25027: 25026: 25021: 24929: 24927: 24926: 24921: 24900: 24898: 24897: 24892: 24868: 24866: 24865: 24860: 24839: 24837: 24836: 24831: 24745: 24743: 24742: 24737: 24716: 24714: 24713: 24708: 24686: 24684: 24683: 24678: 24640:Other properties 24636: 24634: 24633: 24628: 24613: 24611: 24610: 24605: 24588: 24586: 24585: 24580: 24529: 24527: 24526: 24521: 24473: 24471: 24470: 24465: 24438: 24436: 24435: 24430: 24406: 24404: 24403: 24398: 24358: 24357: 24354: 24350: 24299: 24298: 24295: 24291: 24244: 24242: 24241: 24236: 24224: 24222: 24221: 24216: 24189: 24187: 24186: 24181: 24179: 24178: 24173: 24156: 24154: 24153: 24148: 24120: 24114: 24102: 24096: 24068:But in general, 24067: 24065: 24064: 24059: 24026: 24024: 24023: 24018: 23999: 23997: 23996: 23991: 23967: 23965: 23964: 23959: 23935: 23933: 23932: 23927: 23885: 23883: 23882: 23877: 23863: 23860: 23842: 23840: 23839: 23834: 23789: 23787: 23786: 23781: 23766: 23764: 23763: 23758: 23726: 23724: 23723: 23718: 23682: 23680: 23679: 23674: 23658: 23656: 23655: 23650: 23638: 23636: 23635: 23630: 23603: 23601: 23600: 23595: 23561: 23559: 23558: 23553: 23541: 23540: 23511: 23509: 23508: 23503: 23483: 23481: 23480: 23475: 23463: 23461: 23460: 23455: 23440: 23438: 23437: 23432: 23416: 23414: 23413: 23408: 23392: 23390: 23389: 23384: 23362:in a TVS is not 23349:Other properties 23325: 23323: 23322: 23317: 23312: 23308: 23289: 23288: 23258: 23257: 23235: 23229: 23198: 23197: 23181: 23179: 23178: 23173: 23153: 23152: 23136: 23134: 23133: 23128: 23108: 23107: 23091: 23089: 23088: 23083: 23059: 23057: 23056: 23051: 23028: 23027: 22997: 22996: 22985: 22979: 22948: 22947: 22932:is compact then 22931: 22929: 22928: 22923: 22911: 22909: 22908: 22903: 22891: 22889: 22888: 22883: 22856: 22854: 22853: 22848: 22825: 22824: 22802: 22800: 22799: 22794: 22771: 22770: 22752: 22750: 22749: 22744: 22721: 22720: 22693: 22691: 22690: 22685: 22670: 22668: 22667: 22662: 22650: 22648: 22647: 22642: 22622: 22621: 22605: 22603: 22602: 22597: 22585: 22583: 22582: 22577: 22575: 22557: 22555: 22554: 22549: 22541: 22538: 22507: 22501: 22494: 22493: 22477: 22475: 22474: 22469: 22454: 22452: 22451: 22446: 22444: 22443: 22430: 22428: 22427: 22422: 22404: 22403: 22402: 22383: 22377: 22370: 22369: 22354: 22352: 22351: 22346: 22322: 22320: 22319: 22314: 22302: 22300: 22299: 22294: 22279: 22277: 22276: 22271: 22263: 22262: 22243: 22221: 22219: 22218: 22213: 22192: 22190: 22189: 22184: 22170: 22168: 22167: 22162: 22145: 22144: 22120: 22119: 22103: 22101: 22100: 22095: 22077: 22075: 22074: 22069: 22049: 22048: 22037: 22031: 22030: 22026: 22013: 22012: 21988: 21987: 21970: 21969: 21958: 21957: 21954: 21950: 21931: 21930: 21919: 21913: 21900: 21899: 21875: 21874: 21858: 21856: 21855: 21850: 21823: 21821: 21820: 21815: 21807: 21806: 21790: 21788: 21787: 21782: 21774: 21773: 21749: 21746: 21726: 21724: 21723: 21718: 21698: 21697: 21685: 21681: 21674: 21673: 21659: 21655: 21633: 21631: 21630: 21625: 21614: 21611: 21593: 21591: 21590: 21585: 21573: 21571: 21570: 21565: 21547: 21545: 21544: 21539: 21528: 21527: 21497: 21496: 21480: 21478: 21477: 21472: 21461: 21458: 21437: 21435: 21434: 21429: 21417: 21415: 21414: 21409: 21389: 21388: 21370: 21369: 21350: 21348: 21347: 21342: 21330: 21328: 21327: 21322: 21301: 21299: 21298: 21293: 21278: 21276: 21275: 21270: 21258: 21256: 21255: 21250: 21238: 21236: 21235: 21230: 21212: 21210: 21209: 21204: 21192: 21190: 21189: 21184: 21172: 21170: 21169: 21164: 21152: 21150: 21149: 21144: 21117: 21115: 21114: 21109: 21082: 21080: 21079: 21074: 21062: 21060: 21059: 21054: 21039: 21037: 21036: 21031: 21019: 21017: 21016: 21011: 20999: 20997: 20996: 20991: 20979: 20977: 20976: 20971: 20956: 20954: 20953: 20948: 20936: 20934: 20933: 20928: 20916: 20914: 20913: 20908: 20896: 20894: 20893: 20888: 20876: 20874: 20873: 20868: 20852: 20850: 20849: 20844: 20824: 20823: 20814: 20793: 20791: 20790: 20785: 20777: 20776: 20756: 20754: 20753: 20748: 20736: 20734: 20733: 20728: 20696: 20694: 20693: 20688: 20671: 20670: 20642: 20640: 20639: 20634: 20620: 20619: 20597: 20595: 20594: 20589: 20573: 20571: 20570: 20565: 20549: 20547: 20546: 20541: 20527: 20526: 20510: 20508: 20507: 20502: 20490: 20488: 20487: 20482: 20446: 20444: 20443: 20438: 20415: 20414: 20392: 20390: 20389: 20384: 20372: 20370: 20369: 20364: 20350: 20349: 20333: 20331: 20330: 20325: 20313: 20311: 20310: 20305: 20288: 20287: 20267: 20265: 20264: 20259: 20245: 20244: 20216: 20214: 20213: 20208: 20194: 20193: 20159: 20157: 20156: 20151: 20139: 20137: 20136: 20131: 20117: 20116: 20100: 20098: 20097: 20092: 20073: 20071: 20070: 20065: 20051: 20050: 20041: 20011: 20009: 20008: 20003: 19988: 19986: 19985: 19980: 19968: 19966: 19965: 19960: 19955: 19940: 19938: 19937: 19932: 19920: 19918: 19917: 19912: 19896: 19894: 19893: 19888: 19868: 19867: 19858: 19837: 19835: 19834: 19829: 19814: 19812: 19811: 19806: 19798: 19797: 19779: 19777: 19776: 19771: 19757: 19756: 19728: 19726: 19725: 19720: 19705: 19703: 19702: 19697: 19682: 19680: 19679: 19674: 19656: 19654: 19653: 19648: 19634: 19633: 19613: 19611: 19610: 19605: 19585: 19583: 19582: 19577: 19557: 19556: 19534: 19532: 19531: 19526: 19514: 19512: 19511: 19506: 19488: 19486: 19485: 19480: 19472: 19471: 19447: 19446: 19425: 19423: 19422: 19417: 19385: 19383: 19382: 19377: 19363: 19362: 19338: 19337: 19321: 19319: 19318: 19313: 19293: 19291: 19290: 19285: 19268: 19267: 19251: 19249: 19248: 19243: 19223: 19221: 19220: 19215: 19199: 19197: 19196: 19191: 19177: 19176: 19161:Every subset of 19160: 19158: 19157: 19152: 19131: 19129: 19128: 19123: 19100: 19098: 19097: 19092: 19078: 19077: 19060:trivial topology 19057: 19055: 19054: 19049: 19035: 19034: 19014: 19012: 19011: 19006: 18992: 18991: 18975: 18973: 18972: 18967: 18955: 18953: 18952: 18947: 18941: 18931: 18930: 18898: 18897: 18881: 18879: 18878: 18873: 18854: 18852: 18851: 18846: 18829: 18828: 18812: 18810: 18809: 18804: 18789: 18787: 18786: 18781: 18763: 18761: 18760: 18755: 18738: 18737: 18709: 18707: 18706: 18701: 18686: 18684: 18683: 18678: 18660: 18658: 18657: 18652: 18633: 18631: 18630: 18625: 18583: 18581: 18580: 18575: 18557: 18555: 18554: 18549: 18514: 18511: 18493: 18491: 18490: 18485: 18432: 18429: 18405: 18403: 18402: 18397: 18389: 18388: 18309: 18307: 18306: 18301: 18296: 18285:in the real TVS 18284: 18282: 18281: 18276: 18260: 18258: 18257: 18252: 18247: 18229: 18227: 18226: 18221: 18207: 18199: 18191: 18174: 18173: 18157: 18155: 18154: 18149: 18137: 18135: 18134: 18129: 18118:neighborhood of 18113: 18111: 18110: 18105: 18093: 18091: 18090: 18085: 18071: 18068: 18038: 18036: 18035: 18030: 18019: 18016: 18011: 18010: 17922: 17920: 17919: 17914: 17903: 17902: 17880: 17878: 17877: 17872: 17854: 17852: 17851: 17846: 17832: 17830: 17829: 17824: 17816: 17808: 17796: 17794: 17793: 17788: 17776: 17774: 17773: 17768: 17766: 17765: 17749: 17747: 17746: 17741: 17726: 17719: 17711: 17689: 17688: 17670: 17669: 17653: 17651: 17650: 17645: 17633: 17631: 17630: 17625: 17605: 17603: 17602: 17597: 17586: 17585: 17515: 17513: 17512: 17507: 17492: 17490: 17489: 17484: 17472: 17470: 17469: 17464: 17452: 17450: 17449: 17444: 17436: 17435: 17413: 17411: 17410: 17405: 17394: 17393: 17371: 17369: 17368: 17363: 17351: 17349: 17348: 17343: 17331: 17329: 17328: 17323: 17307: 17301: 17254: 17252: 17251: 17246: 17219: 17217: 17216: 17211: 17197: 17195: 17194: 17189: 17141: 17139: 17138: 17133: 17082: 17080: 17079: 17074: 17069: 17068: 17063: 17044: 17042: 17041: 17036: 17024: 17022: 17021: 17016: 17008: 17007: 16985: 16983: 16982: 16977: 16965: 16963: 16962: 16957: 16949: 16948: 16926: 16924: 16923: 16918: 16910: 16909: 16893: 16891: 16890: 16885: 16877: 16876: 16848: 16846: 16845: 16840: 16828: 16826: 16825: 16820: 16806: 16805: 16785: 16783: 16782: 16777: 16755: 16753: 16752: 16747: 16724: 16723: 16705: 16704: 16687: 16681: 16668: 16667: 16643: 16642: 16626: 16624: 16623: 16618: 16616: 16612: 16605: 16604: 16587: 16586: 16575: 16569: 16562: 16561: 16550: 16549: 16546: 16542: 16541: 16537: 16530: 16529: 16512: 16511: 16500: 16494: 16487: 16486: 16470: 16468: 16467: 16462: 16450: 16448: 16447: 16442: 16410: 16408: 16407: 16402: 16390: 16388: 16387: 16382: 16380: 16379: 16374: 16355: 16353: 16352: 16347: 16323: 16321: 16320: 16315: 16300: 16298: 16297: 16292: 16277: 16275: 16274: 16269: 16261: 16260: 16244: 16242: 16241: 16236: 16234: 16233: 16220: 16218: 16217: 16212: 16200: 16198: 16197: 16192: 16190: 16189: 16188: 16187: 16174: 16170: 16169: 16152: 16151: 16135: 16133: 16132: 16127: 16119: 16118: 16096: 16094: 16093: 16088: 16067: 16065: 16064: 16059: 16038: 16036: 16035: 16030: 16015: 16013: 16012: 16007: 16005: 16004: 15989: 15987: 15986: 15981: 15954: 15952: 15951: 15946: 15938: 15937: 15921: 15919: 15918: 15913: 15889: 15887: 15886: 15881: 15869: 15867: 15866: 15861: 15849: 15847: 15846: 15841: 15839: 15838: 15827: 15823: 15822: 15805: 15804: 15788: 15786: 15785: 15780: 15762: 15760: 15759: 15754: 15739: 15737: 15736: 15731: 15719: 15717: 15716: 15711: 15696: 15694: 15693: 15688: 15676: 15674: 15673: 15668: 15656: 15654: 15653: 15648: 15632: 15630: 15629: 15624: 15616: 15615: 15604: 15598: 15559: 15553: 15547: 15541: 15502: 15496: 15489: 15488: 15472: 15470: 15469: 15464: 15448: 15446: 15445: 15440: 15438: 15437: 15415: 15413: 15412: 15407: 15388: 15386: 15385: 15380: 15366: 15364: 15363: 15358: 15343: 15341: 15340: 15335: 15320: 15318: 15317: 15312: 15294: 15292: 15291: 15286: 15240: 15234: 15184: 15182: 15181: 15176: 15161: 15159: 15158: 15153: 15135: 15133: 15132: 15127: 15109: 15107: 15106: 15101: 15089: 15087: 15086: 15081: 15063: 15061: 15060: 15055: 15043: 15041: 15040: 15035: 15023: 15021: 15020: 15015: 14972: 14970: 14969: 14964: 14952: 14950: 14949: 14944: 14924: 14923: 14905: 14904: 14888: 14886: 14885: 14880: 14872: 14871: 14853: 14852: 14836: 14834: 14833: 14828: 14810: 14808: 14807: 14802: 14800: 14799: 14790: 14789: 14771: 14770: 14761: 14760: 14740: 14738: 14737: 14732: 14711: 14709: 14708: 14703: 14691: 14689: 14688: 14683: 14659: 14657: 14656: 14651: 14634: 14632: 14631: 14626: 14606: 14604: 14603: 14598: 14578: 14576: 14575: 14570: 14559: 14558: 14542: 14540: 14539: 14534: 14526: 14525: 14509: 14507: 14506: 14501: 14485: 14483: 14482: 14477: 14462: 14460: 14459: 14454: 14442: 14440: 14439: 14434: 14401: 14399: 14398: 14393: 14378: 14376: 14375: 14370: 14338: 14336: 14335: 14330: 14325: 14310: 14308: 14307: 14302: 14300: 14286: 14271: 14269: 14268: 14263: 14243: 14241: 14240: 14235: 14233: 14225: 14210: 14208: 14207: 14202: 14197: 14181: 14179: 14178: 14173: 14171: 14129: 14127: 14126: 14121: 14109: 14107: 14106: 14101: 14086: 14084: 14083: 14078: 14076: 14075: 14070: 14057: 14055: 14054: 14049: 14047: 14046: 14041: 14027:Euclidean spaces 14018: 14016: 14015: 14010: 14005: 14004: 13980: 13978: 13977: 13972: 13970: 13969: 13953: 13951: 13950: 13945: 13943: 13942: 13923:: these have an 13917: 13915: 13914: 13909: 13904: 13903: 13887: 13885: 13884: 13879: 13877: 13876: 13861:, whose dual is 13859: 13857: 13856: 13851: 13849: 13848: 13813: 13811: 13810: 13805: 13790: 13788: 13787: 13782: 13755: 13753: 13752: 13747: 13745: 13744: 13699:nuclear operator 13668: 13666: 13665: 13660: 13655: 13641: 13640: 13625: 13619: 13586: 13585: 13557: 13555: 13554: 13549: 13544: 13536: 13535: 13487:Stereotype space 13463:Barrelled spaces 13459: 13457: 13456: 13451: 13427: 13425: 13424: 13419: 13398: 13396: 13395: 13390: 13388: 13387: 13350: 13348: 13347: 13342: 13322: 13320: 13319: 13314: 13312: 13311: 13255: 13253: 13252: 13247: 13235: 13233: 13232: 13227: 13215: 13213: 13212: 13207: 13192: 13190: 13189: 13184: 13165: 13163: 13162: 13157: 13145: 13143: 13142: 13137: 13116: 13114: 13113: 13108: 13089: 13087: 13086: 13081: 13062: 13060: 13059: 13054: 13026: 13024: 13023: 13018: 13002: 13000: 12999: 12994: 12966: 12964: 12963: 12958: 12946: 12944: 12943: 12938: 12926: 12924: 12923: 12918: 12888: 12886: 12885: 12880: 12865: 12863: 12862: 12857: 12829: 12827: 12826: 12821: 12794: 12792: 12791: 12786: 12772: 12770: 12769: 12764: 12749: 12747: 12746: 12741: 12729: 12727: 12726: 12721: 12705:pseudometrizable 12702: 12700: 12699: 12694: 12689: 12681: 12651: 12649: 12648: 12643: 12641: 12624: 12607: 12599: 12587: 12585: 12584: 12579: 12577: 12563: 12555: 12540: 12538: 12537: 12532: 12527: 12526: 12521: 12508: 12506: 12505: 12500: 12485: 12483: 12482: 12477: 12458: 12456: 12455: 12450: 12438: 12436: 12435: 12430: 12396: 12394: 12393: 12388: 12369: 12367: 12366: 12361: 12359: 12358: 12342: 12340: 12339: 12334: 12319: 12317: 12316: 12311: 12291: 12290: 12275: 12273: 12272: 12267: 12262: 12250: 12248: 12247: 12242: 12240: 12222: 12220: 12219: 12214: 12187: 12185: 12184: 12179: 12167: 12165: 12164: 12159: 12151: 12150: 12128: 12126: 12125: 12120: 12108: 12106: 12105: 12100: 12069: 12067: 12066: 12061: 12049: 12047: 12046: 12041: 12018: 12017: 12001: 11999: 11998: 11993: 11981: 11979: 11978: 11973: 11961: 11959: 11958: 11953: 11941: 11939: 11938: 11933: 11931: 11923: 11922: 11906: 11904: 11903: 11898: 11884: 11872: 11870: 11869: 11864: 11849: 11847: 11846: 11841: 11829: 11827: 11826: 11821: 11809: 11807: 11806: 11801: 11796: 11778: 11776: 11775: 11770: 11759: 11758: 11733: 11731: 11730: 11725: 11714:every subset of 11713: 11711: 11710: 11705: 11690: 11688: 11687: 11682: 11677: 11659: 11657: 11656: 11651: 11631: 11630: 11614: 11612: 11611: 11606: 11598: 11590: 11589: 11573: 11571: 11570: 11565: 11538: 11536: 11535: 11530: 11518: 11516: 11515: 11510: 11508: 11496: 11494: 11493: 11488: 11486: 11477: 11472: 11461: 11457: 11456: 11435: 11433: 11432: 11427: 11403: 11401: 11400: 11395: 11392: 11387: 11376: 11372: 11368: 11367: 11345: 11343: 11342: 11337: 11325: 11323: 11322: 11317: 11293: 11291: 11290: 11285: 11273: 11271: 11270: 11265: 11263: 11245: 11243: 11242: 11237: 11219: 11217: 11216: 11211: 11206: 11194: 11192: 11191: 11186: 11174: 11172: 11171: 11166: 11154: 11152: 11151: 11146: 11128: 11126: 11125: 11120: 11109: 11101: 11093: 11076: 11075: 11059: 11057: 11056: 11051: 11049: 11037: 11035: 11034: 11029: 11027: 10997: 10995: 10994: 10989: 10987: 10975: 10973: 10972: 10967: 10955: 10953: 10952: 10947: 10945: 10934:Since the field 10926: 10924: 10923: 10918: 10906: 10904: 10903: 10898: 10872: 10870: 10869: 10864: 10847:trivial topology 10844: 10842: 10841: 10836: 10812: 10810: 10809: 10804: 10772: 10770: 10769: 10764: 10752: 10750: 10749: 10744: 10720: 10718: 10717: 10712: 10688: 10686: 10685: 10680: 10669: 10667: 10666: 10661: 10641:product topology 10638: 10636: 10635: 10630: 10628: 10627: 10622: 10609: 10607: 10606: 10601: 10596: 10595: 10590: 10571: 10569: 10568: 10563: 10551: 10549: 10548: 10543: 10541: 10540: 10535: 10522: 10520: 10519: 10514: 10498: 10496: 10495: 10490: 10488: 10487: 10482: 10469: 10467: 10466: 10461: 10449: 10447: 10446: 10441: 10417: 10415: 10414: 10409: 10407: 10395: 10393: 10392: 10387: 10371: 10369: 10368: 10363: 10361: 10349: 10347: 10346: 10341: 10339: 10327: 10325: 10324: 10319: 10317: 10305: 10303: 10302: 10297: 10295: 10260: 10258: 10257: 10252: 10234: 10232: 10231: 10226: 10221: 10192: 10160: 10158: 10157: 10152: 10147: 10135: 10133: 10132: 10127: 10106: 10104: 10103: 10098: 10087: 10086: 10071: 10069: 10068: 10063: 10048: 10046: 10045: 10040: 10028: 10026: 10025: 10020: 10005: 10003: 10002: 9997: 9995: 9994: 9978: 9976: 9975: 9970: 9952: 9950: 9949: 9944: 9924: 9922: 9921: 9916: 9913: 9908: 9897: 9893: 9892: 9870: 9868: 9867: 9862: 9857: 9842:the topology of 9839: 9837: 9836: 9831: 9829: 9828: 9827: 9821: 9801:product topology 9798: 9796: 9795: 9790: 9782: 9781: 9780: 9774: 9758: 9756: 9755: 9750: 9734: 9732: 9731: 9726: 9724: 9712: 9710: 9709: 9704: 9702: 9694: 9676: 9674: 9673: 9668: 9655:product topology 9626: 9624: 9623: 9618: 9616: 9615: 9595: 9593: 9592: 9587: 9575: 9573: 9572: 9567: 9565: 9561: 9560: 9559: 9532: 9530: 9529: 9524: 9522: 9521: 9505: 9503: 9502: 9497: 9485: 9483: 9482: 9477: 9465: 9463: 9462: 9457: 9441: 9440: 9434: 9432: 9431: 9426: 9411: 9409: 9408: 9403: 9401: 9400: 9377: 9375: 9374: 9369: 9334:pseudometrizable 9324: 9322: 9321: 9316: 9304: 9302: 9301: 9296: 9284: 9282: 9281: 9276: 9247:trivial topology 9240:Trivial topology 9235: 9233: 9232: 9227: 9202: 9200: 9199: 9194: 9179: 9177: 9176: 9171: 9163: 9162: 9146: 9144: 9143: 9138: 9126: 9124: 9123: 9118: 9116: 9115: 9105: 9100: 9076: 9074: 9073: 9068: 9053: 9051: 9050: 9045: 9027: 9025: 9024: 9019: 9003: 9001: 9000: 8995: 8980: 8978: 8977: 8972: 8960: 8958: 8957: 8952: 8940: 8938: 8937: 8932: 8911:Every TVS has a 8876: 8874: 8873: 8868: 8847: 8845: 8844: 8839: 8821: 8819: 8818: 8813: 8805: 8804: 8792: 8791: 8775: 8773: 8772: 8767: 8755: 8753: 8752: 8747: 8732: 8730: 8729: 8724: 8708: 8706: 8705: 8700: 8698: 8697: 8686: 8682: 8681: 8664: 8663: 8598: 8596: 8595: 8590: 8575: 8573: 8572: 8567: 8551: 8549: 8548: 8543: 8500: 8498: 8497: 8492: 8477: 8475: 8474: 8469: 8467: 8466: 8461: 8444: 8442: 8441: 8436: 8434: 8411: 8409: 8408: 8403: 8401: 8369:pseudometrizable 8350: 8348: 8347: 8342: 8317: 8315: 8314: 8309: 8294: 8292: 8291: 8286: 8271: 8269: 8268: 8263: 8252:that induces on 8251: 8249: 8248: 8243: 8220: 8218: 8217: 8212: 8187: 8185: 8184: 8179: 8157: 8155: 8154: 8149: 8137: 8135: 8134: 8129: 8107: 8105: 8104: 8099: 8075: 8059: 8057: 8056: 8051: 8036: 8034: 8033: 8028: 8016: 8014: 8013: 8008: 7996: 7994: 7993: 7988: 7973: 7971: 7970: 7965: 7947: 7945: 7944: 7939: 7924: 7922: 7921: 7916: 7904: 7902: 7901: 7896: 7880: 7878: 7877: 7872: 7860: 7858: 7857: 7852: 7828: 7826: 7825: 7820: 7808: 7806: 7805: 7800: 7788: 7786: 7785: 7780: 7768: 7766: 7765: 7760: 7745: 7743: 7742: 7737: 7716: 7714: 7713: 7708: 7696: 7694: 7693: 7688: 7670: 7668: 7667: 7662: 7650: 7648: 7647: 7642: 7619:if the space is 7618: 7616: 7615: 7610: 7591: 7589: 7588: 7583: 7572:neighborhood of 7560: 7558: 7557: 7552: 7528: 7526: 7525: 7520: 7488: 7486: 7485: 7480: 7454: 7452: 7451: 7446: 7422: 7420: 7419: 7414: 7365: 7363: 7362: 7357: 7349: 7341: 7329: 7327: 7326: 7321: 7289: 7287: 7286: 7281: 7270: 7262: 7250: 7248: 7247: 7242: 7230: 7228: 7227: 7222: 7201: 7199: 7198: 7193: 7175: 7173: 7172: 7167: 7147:): if for every 7146: 7144: 7143: 7138: 7117: 7115: 7114: 7109: 7097: 7095: 7094: 7089: 7069: 7067: 7066: 7061: 7049: 7047: 7046: 7041: 7029: 7027: 7026: 7021: 7005: 7003: 7002: 6997: 6979: 6977: 6976: 6971: 6953: 6951: 6950: 6945: 6937: 6936: 6900: 6899: 6883: 6881: 6880: 6875: 6854: 6852: 6851: 6846: 6825: 6823: 6822: 6817: 6793: 6791: 6790: 6785: 6767: 6765: 6764: 6759: 6738: 6736: 6735: 6730: 6709: 6707: 6706: 6701: 6683: 6681: 6680: 6675: 6653: 6651: 6650: 6645: 6637: 6636: 6616: 6614: 6613: 6608: 6600: 6599: 6577: 6575: 6574: 6569: 6551: 6549: 6548: 6543: 6532: 6531: 6510: 6509: 6496: 6494: 6493: 6488: 6473: 6471: 6470: 6465: 6460: 6446: 6444: 6443: 6438: 6417: 6415: 6414: 6409: 6397: 6395: 6394: 6389: 6384: 6369: 6367: 6366: 6361: 6349: 6347: 6346: 6341: 6325: 6323: 6322: 6317: 6312: 6297: 6295: 6294: 6289: 6265: 6263: 6262: 6257: 6230: 6228: 6227: 6222: 6191: 6189: 6188: 6183: 6172: 6171: 6170: 6153: 6151: 6150: 6145: 6121: 6119: 6118: 6113: 6111: 6095: 6093: 6092: 6087: 6082: 6068: 6066: 6065: 6060: 6058: 6057: 6056: 6039: 6037: 6036: 6031: 6012: 6010: 6009: 6004: 6002: 5990: 5988: 5987: 5982: 5980: 5962: 5960: 5959: 5954: 5942: 5940: 5939: 5934: 5932: 5920: 5918: 5917: 5912: 5893: 5891: 5890: 5885: 5872: 5870: 5869: 5864: 5833: 5831: 5830: 5825: 5823: 5811: 5809: 5808: 5803: 5791: 5789: 5788: 5783: 5781: 5769: 5767: 5766: 5761: 5737: 5734: 5721: 5719: 5718: 5713: 5708: 5696: 5694: 5693: 5688: 5686: 5685: 5669: 5668: 5660: 5659: 5642: 5619:defined above). 5618: 5616: 5615: 5610: 5592: 5590: 5589: 5584: 5582: 5570: 5568: 5567: 5562: 5560: 5559: 5547: 5546: 5530: 5528: 5527: 5522: 5520: 5519: 5507: 5506: 5490: 5488: 5487: 5482: 5480: 5472: 5471: 5455: 5453: 5452: 5447: 5442: 5434: 5433: 5421: 5420: 5404: 5402: 5401: 5396: 5394: 5366: 5364: 5363: 5358: 5356: 5344: 5342: 5341: 5336: 5321: 5319: 5318: 5313: 5311: 5296: 5294: 5293: 5288: 5283: 5282: 5281: 5269: 5265: 5264: 5263: 5251: 5250: 5232: 5231: 5219: 5218: 5207: 5194: 5192: 5191: 5186: 5181: 5180: 5179: 5167: 5163: 5162: 5161: 5149: 5148: 5130: 5129: 5117: 5116: 5105: 5092: 5090: 5089: 5084: 5079: 5078: 5077: 5065: 5061: 5060: 5059: 5038: 5037: 5023: 5010: 5008: 5007: 5002: 4997: 4996: 4986: 4985: 4966: 4965: 4948: 4935: 4933: 4932: 4927: 4922: 4918: 4917: 4903: 4902: 4885: 4884: 4867: 4854: 4852: 4851: 4846: 4832:for every index 4831: 4829: 4828: 4823: 4821: 4820: 4808: 4807: 4791: 4789: 4788: 4783: 4781: 4780: 4768: 4767: 4756: 4748: 4746: 4745: 4740: 4738: 4737: 4719: 4717: 4716: 4711: 4709: 4708: 4689: 4687: 4686: 4681: 4669: 4667: 4666: 4661: 4649: 4647: 4646: 4641: 4639: 4638: 4637: 4625: 4621: 4620: 4603: 4602: 4586: 4584: 4583: 4578: 4576: 4575: 4574: 4562: 4558: 4557: 4540: 4539: 4513: 4511: 4510: 4505: 4490: 4488: 4487: 4482: 4434: 4432: 4431: 4426: 4414: 4412: 4411: 4406: 4404: 4403: 4387: 4385: 4384: 4379: 4367: 4365: 4364: 4359: 4347: 4345: 4344: 4339: 4337: 4336: 4320: 4318: 4317: 4312: 4300: 4298: 4297: 4292: 4271: 4269: 4268: 4263: 4255: 4247: 4235: 4233: 4232: 4227: 4216:for all scalars 4215: 4213: 4212: 4207: 4168: 4166: 4165: 4160: 4158: 4157: 4141: 4139: 4138: 4133: 4090: 4088: 4087: 4082: 4080: 4079: 4063: 4061: 4060: 4055: 4028: 4026: 4025: 4020: 4015: 4014: 4004: 3982: 3980: 3979: 3974: 3956: 3954: 3953: 3948: 3924: 3922: 3921: 3916: 3859: 3857: 3856: 3851: 3837: 3835: 3834: 3829: 3824: 3820: 3810: 3802: 3798: 3797: 3796: 3778: 3777: 3760: 3759: 3748: 3742: 3741: 3740: 3739: 3738: 3715: 3714: 3713: 3712: 3689: 3661: 3659: 3658: 3653: 3651: 3650: 3628: 3626: 3625: 3620: 3593: 3591: 3590: 3585: 3547: 3545: 3544: 3539: 3534: 3530: 3529: 3528: 3527: 3526: 3503: 3502: 3501: 3500: 3480: 3477: 3469: 3466: 3458: 3457: 3434: 3428: 3427: 3423: 3422: 3421: 3403: 3402: 3385: 3384: 3358: 3346: 3344: 3343: 3338: 3333: 3332: 3310: 3308: 3307: 3302: 3284: 3282: 3281: 3276: 3274: 3273: 3261: 3260: 3242: 3241: 3219: 3217: 3216: 3211: 3209: 3208: 3186: 3184: 3183: 3178: 3175: 3170: 3159: 3155: 3154: 3137: 3136: 3120: 3117: 3115: 3113: 3112: 3107: 3105: 3073: 3071: 3070: 3065: 3052: 3050: 3049: 3044: 3030: 3028: 3027: 3022: 3011: 3010: 2994: 2992: 2991: 2986: 2981: 2980: 2962: 2961: 2945: 2943: 2942: 2937: 2918: 2916: 2915: 2910: 2895: 2893: 2892: 2887: 2872: 2870: 2869: 2864: 2862: 2861: 2845: 2843: 2842: 2837: 2824: 2823: 2816: 2815: 2807: 2805: 2804: 2799: 2797: 2796: 2779: 2778: 2771: 2769: 2768: 2763: 2758: 2757: 2698: 2696: 2695: 2690: 2676:for every index 2675: 2673: 2672: 2667: 2665: 2664: 2652: 2651: 2633: 2632: 2609: 2608: 2599: 2597: 2596: 2591: 2589: 2588: 2572: 2570: 2569: 2564: 2559: 2558: 2538: 2536: 2535: 2530: 2528: 2527: 2511: 2509: 2508: 2503: 2498: 2497: 2479: 2477: 2476: 2471: 2458: 2456: 2455: 2450: 2448: 2447: 2432: 2430: 2429: 2424: 2409: 2407: 2406: 2401: 2399: 2398: 2381: 2380: 2374: 2372: 2371: 2366: 2364: 2363: 2347: 2345: 2344: 2339: 2324: 2322: 2321: 2316: 2313: 2308: 2297: 2293: 2292: 2275: 2274: 2258: 2256: 2255: 2250: 2224: 2222: 2221: 2216: 2201: 2199: 2198: 2193: 2173: 2171: 2170: 2165: 2163: 2162: 2146: 2144: 2143: 2138: 2111: 2109: 2108: 2103: 2101: 2100: 2081: 2079: 2078: 2073: 2071: 2070: 2051: 2049: 2048: 2043: 2041: 2040: 2017: 2015: 2014: 2009: 2007: 2006: 1979: 1977: 1976: 1971: 1969: 1968: 1955: 1953: 1952: 1947: 1932: 1930: 1929: 1924: 1908: 1906: 1905: 1900: 1898: 1897: 1884: 1882: 1881: 1876: 1852: 1850: 1849: 1844: 1842: 1841: 1828: 1826: 1825: 1820: 1808: 1805: 1786: 1784: 1783: 1778: 1770: 1769: 1747: 1745: 1744: 1739: 1721: 1719: 1718: 1713: 1702: 1701: 1673: 1671: 1670: 1665: 1637: 1635: 1634: 1629: 1611: 1609: 1608: 1603: 1567: 1565: 1564: 1559: 1534:product topology 1531: 1529: 1528: 1523: 1505: 1503: 1502: 1497: 1482: 1480: 1479: 1474: 1458: 1456: 1455: 1450: 1426: 1422: 1420: 1419: 1414: 1398: 1396: 1395: 1390: 1363: 1361: 1360: 1355: 1353: 1352: 1333: 1331: 1330: 1325: 1320: 1319: 1296: 1294: 1293: 1288: 1286: 1285: 1233: 1232: 1225: 1224: 1217: 1216: 1209: 1208: 1190: 1189: 1179: 1178: 1171: 1170: 1162: 1160: 1159: 1154: 1135: 1133: 1132: 1127: 1112: 1110: 1109: 1104: 1064: 1062: 1061: 1056: 1026: 1024: 1023: 1018: 987: 986: 977: 976: 975:TVS homomorphism 969: 968: 957: 955: 954: 949: 947: 929: 927: 926: 921: 919: 903: 901: 900: 895: 890: 889: 888: 882: 857: 855: 854: 849: 847: 846: 845: 839: 820: 818: 817: 812: 810: 777: 776: 755: 753: 752: 747: 724:under addition. 717: 715: 714: 709: 693: 692: 685: 684: 670: 668: 667: 662: 648: 630: 628: 627: 622: 572:(most often the 571: 569: 568: 563: 561: 542: 540: 539: 534: 468:, and spaces of 435: 433: 432: 427: 412: 410: 409: 404: 402: 390: 388: 387: 382: 343: 341: 340: 335: 321: 296: 294: 293: 288: 252: 250: 249: 244: 176: 174: 173: 168: 163: 148: 146: 145: 140: 138: 111:linear operators 21: 36365: 36364: 36360: 36359: 36358: 36356: 36355: 36354: 36325: 36324: 36323: 36318: 36300: 36062:B-complete/Ptak 36045: 35989: 35953: 35945: 35924:Bounding points 35887: 35829:Densely defined 35775: 35764:Bounded inverse 35710: 35644: 35638: 35608: 35603: 35585: 35549:Advanced topics 35544: 35468: 35447: 35406: 35372:Hilbert–Schmidt 35345: 35336:Gelfand–Naimark 35283: 35233: 35168: 35154: 35110: 35092: 35058: 35024: 34994: 34967: 34937: 34915: 34885: 34851: 34824: 34800:Dunford, Nelson 34784: 34774:Springer-Verlag 34762:Conway, John B. 34746: 34717: 34715: 34699: 34697:Further reading 34694: 34680: 34650: 34623: 34609:Schechter, Eric 34593: 34559: 34523: 34488: 34458: 34431: 34421:Springer-Verlag 34410: 34405: 34404: 34396: 34392: 34384: 34380: 34372: 34363: 34355: 34351: 34343: 34339: 34331: 34327: 34319: 34310: 34302: 34295: 34287: 34283: 34275: 34271: 34263: 34256: 34248: 34241: 34233: 34220: 34212: 34208: 34200: 34185: 34177: 34173: 34165: 34158: 34150: 34146: 34138: 34131: 34123: 34116: 34108: 34104: 34096: 34092: 34084: 34080: 34072: 34068: 34060: 34051: 34043: 34036: 34028: 34024: 34016: 34012: 34004: 33995: 33987: 33980: 33971: 33969: 33960: 33959: 33955: 33947: 33943: 33935: 33926: 33918: 33914: 33906: 33902: 33894: 33890: 33881: 33879: 33864: 33863: 33859: 33851: 33847: 33839: 33835: 33827: 33814: 33806: 33802: 33794: 33785: 33777: 33773: 33765: 33761: 33753: 33738: 33730: 33726: 33722:, pp. 5–9. 33718: 33705: 33697: 33654: 33646: 33637: 33629: 33625: 33617: 33613: 33605: 33596: 33588: 33584: 33579: 33574: 33573: 33555: 33552: 33551: 33401: 33398: 33397: 33366: 33363: 33362: 33334: 33331: 33330: 33173: 33170: 33169: 33168: 33164: 33145: 33142: 33141: 33119: 33116: 33115: 33080: 33076: 33068: 33065: 33064: 33048: 33045: 33044: 33028: 33025: 33024: 32995: 32991: 32989: 32986: 32985: 32969: 32966: 32965: 32939: 32935: 32914: 32910: 32896: 32893: 32892: 32866: 32862: 32841: 32837: 32804: 32800: 32779: 32775: 32767: 32764: 32763: 32741: 32738: 32737: 32735: 32731: 32699: 32695: 32693: 32690: 32689: 32687: 32683: 32661: 32658: 32657: 32641: 32638: 32637: 32611: 32607: 32602: 32599: 32598: 32563: 32559: 32554: 32551: 32550: 32518: 32514: 32509: 32506: 32505: 32474: 32471: 32470: 32454: 32451: 32450: 32427: 32423: 32379: 32376: 32375: 32347: 32344: 32343: 32320: 32316: 32304: 32300: 32285: 32281: 32273: 32270: 32269: 32253: 32250: 32249: 32223: 32219: 32214: 32211: 32210: 32182: 32179: 32178: 32158: 32154: 32133: 32129: 32094: 32091: 32090: 32062: 32059: 32058: 32032: 32028: 32023: 32020: 32019: 31973: 31972: 31968: 31959: 31955: 31953: 31950: 31949: 31927: 31924: 31923: 31880: 31879: 31875: 31851: 31843: 31840: 31839: 31808: 31805: 31804: 31776: 31773: 31772: 31746: 31742: 31730: 31707: 31706: 31702: 31693: 31689: 31687: 31684: 31683: 31659: 31656: 31655: 31633: 31630: 31629: 31589: 31583: 31575: 31572: 31571: 31540: 31534: 31521: 31519: 31514: 31512: 31511: 31503: 31500: 31499: 31483: 31480: 31479: 31430: 31427: 31426: 31409: 31405: 31390: 31386: 31371: 31367: 31359: 31356: 31355: 31327: 31324: 31323: 31297: 31293: 31291: 31288: 31287: 31236: 31234: 31229: 31227: 31226: 31217: 31213: 31211: 31208: 31207: 31179: 31176: 31175: 31173: 31169: 31141: 31137: 31110: 31106: 31104: 31101: 31100: 31099:if and only if 31077: 31073: 31065: 31062: 31061: 31059: 31055: 31022: 31019: 31018: 31002: 31000: 30997: 30996: 30994: 30990: 30985: 30980: 30979: 30958: 30956: 30953: 30952: 30936: 30934: 30931: 30930: 30914: 30907: 30899: 30897: 30894: 30893: 30871: 30869: 30866: 30865: 30845: 30840: 30839: 30837: 30834: 30833: 30817: 30814: 30813: 30789: 30781: 30778: 30777: 30761: 30758: 30757: 30756:the sum of the 30737: 30732: 30731: 30729: 30726: 30725: 30723: 30719: 30698: 30695: 30694: 30665: 30661: 30653: 30650: 30649: 30633: 30630: 30629: 30583: 30580: 30579: 30550: 30546: 30538: 30535: 30534: 30505: 30501: 30493: 30490: 30489: 30483: 30479: 30460: 30457: 30456: 30435: 30431: 30425: 30414: 30408: 30405: 30404: 30402: 30398: 30389: 30385: 30380: 30376: 30369: 30349: 30346: 30345: 30323: 30320: 30319: 30303: 30300: 30299: 30298:In particular, 30297: 30293: 30274: 30271: 30270: 30268: 30264: 30259: 30245: 30236: 30216: 30207: 30187: 30178: 30164: 30143: 30130: 30088: 30085: 30084: 30080: 30058: 30051: 30035: 30024: 30018: 30016: 30006: 30004: 29999: 29994: 29986: 29978: 29973: 29930: 29927: 29926: 29727: 29724: 29723: 26995: 26992: 26991: 26847: 26844: 26843: 26664: 26661: 26660: 26659: 26490: 26487: 26486: 26485: 26460: 26457: 26456: 26267: 26264: 26263: 26049: 26046: 26045: 26044: 25840: 25837: 25836: 25835: 25810: 25807: 25806: 25602: 25599: 25598: 25560: 25557: 25556: 25552: 25530: 25523: 25507: 25496: 25490: 25488: 25478: 25476: 25471: 25466: 25458: 25450: 25445: 25404: 25401: 25400: 25381: 25378: 25377: 25359: 25356: 25355: 25321: 25318: 25317: 25298: 25295: 25294: 25272:(Minkowski) sum 25265:totally bounded 25260: 25233: 25230: 25229: 25213: 25210: 25209: 25193: 25190: 25189: 25167: 25164: 25163: 25124: 25123: 25119: 25103: 25099: 25061: 25058: 25057: 25035: 25032: 25031: 24934: 24931: 24930: 24906: 24903: 24902: 24901:" then for any 24874: 24871: 24870: 24845: 24842: 24841: 24750: 24747: 24746: 24722: 24719: 24718: 24717:) then for any 24696: 24693: 24692: 24663: 24660: 24659: 24619: 24616: 24615: 24596: 24593: 24592: 24535: 24532: 24531: 24479: 24476: 24475: 24444: 24441: 24440: 24412: 24409: 24408: 24355: and  24353: 24296: and  24294: 24250: 24247: 24246: 24230: 24227: 24226: 24198: 24195: 24194: 24174: 24169: 24168: 24166: 24163: 24162: 24073: 24070: 24069: 24032: 24029: 24028: 24009: 24006: 24005: 23979: 23976: 23975: 23941: 23938: 23937: 23891: 23888: 23887: 23861: and  23859: 23848: 23845: 23844: 23795: 23792: 23791: 23775: 23772: 23771: 23731: 23728: 23727: 23688: 23685: 23684: 23668: 23665: 23664: 23644: 23641: 23640: 23609: 23606: 23605: 23583: 23580: 23579: 23568:barrelled space 23536: 23529: 23517: 23514: 23513: 23497: 23494: 23493: 23469: 23466: 23465: 23449: 23446: 23445: 23426: 23423: 23422: 23421:if and only if 23402: 23399: 23398: 23378: 23375: 23374: 23351: 23339:totally bounded 23284: 23280: 23253: 23249: 23248: 23244: 23193: 23189: 23187: 23184: 23183: 23148: 23144: 23142: 23139: 23138: 23103: 23099: 23097: 23094: 23093: 23065: 23062: 23061: 23023: 23019: 22992: 22988: 22943: 22939: 22937: 22934: 22933: 22917: 22914: 22913: 22897: 22894: 22893: 22865: 22862: 22861: 22820: 22816: 22814: 22811: 22810: 22766: 22762: 22760: 22757: 22756: 22716: 22712: 22710: 22707: 22706: 22676: 22673: 22672: 22656: 22653: 22652: 22617: 22613: 22611: 22608: 22607: 22591: 22588: 22587: 22571: 22563: 22560: 22559: 22537: 22489: 22485: 22483: 22480: 22479: 22460: 22457: 22456: 22439: 22438: 22436: 22433: 22432: 22398: 22397: 22390: 22365: 22361: 22359: 22356: 22355: 22331: 22328: 22327: 22326:For any subset 22308: 22305: 22304: 22285: 22282: 22281: 22258: 22254: 22233: 22227: 22224: 22223: 22198: 22195: 22194: 22178: 22175: 22174: 22140: 22136: 22115: 22111: 22109: 22106: 22105: 22083: 22080: 22079: 22044: 22040: 22008: 22004: 21983: 21979: 21978: 21974: 21965: 21961: 21955: and  21953: 21926: 21922: 21895: 21891: 21870: 21866: 21864: 21861: 21860: 21832: 21829: 21828: 21802: 21798: 21796: 21793: 21792: 21769: 21765: 21747: and  21745: 21734: 21731: 21730: 21693: 21689: 21669: 21665: 21664: 21660: 21645: 21641: 21639: 21636: 21635: 21612: nor  21610: 21599: 21596: 21595: 21579: 21576: 21575: 21553: 21550: 21549: 21523: 21519: 21492: 21488: 21486: 21483: 21482: 21457: 21443: 21440: 21439: 21423: 21420: 21419: 21384: 21380: 21365: 21361: 21356: 21353: 21352: 21336: 21333: 21332: 21310: 21307: 21306: 21284: 21281: 21280: 21264: 21261: 21260: 21244: 21241: 21240: 21218: 21215: 21214: 21198: 21195: 21194: 21178: 21175: 21174: 21158: 21155: 21154: 21138: 21135: 21134: 21088: 21085: 21084: 21083:of 0 such that 21068: 21065: 21064: 21045: 21042: 21041: 21025: 21022: 21021: 21005: 21002: 21001: 20985: 20982: 20981: 20965: 20962: 20961: 20942: 20939: 20938: 20922: 20919: 20918: 20902: 20899: 20898: 20882: 20879: 20878: 20862: 20859: 20858: 20819: 20815: 20810: 20799: 20796: 20795: 20772: 20768: 20766: 20763: 20762: 20761:if and only if 20759:totally bounded 20742: 20739: 20738: 20722: 20719: 20718: 20711:totally bounded 20702: 20666: 20662: 20648: 20645: 20644: 20615: 20611: 20603: 20600: 20599: 20583: 20580: 20579: 20574:is a Hausdorff 20559: 20556: 20555: 20554:. Moreover, if 20522: 20518: 20516: 20513: 20512: 20496: 20493: 20492: 20452: 20449: 20448: 20410: 20406: 20398: 20395: 20394: 20378: 20375: 20374: 20345: 20341: 20339: 20336: 20335: 20319: 20316: 20315: 20283: 20279: 20277: 20274: 20273: 20240: 20236: 20222: 20219: 20218: 20189: 20185: 20165: 20162: 20161: 20160:that satisfies 20145: 20142: 20141: 20112: 20108: 20106: 20103: 20102: 20086: 20083: 20082: 20046: 20042: 20037: 20020: 20017: 20016: 19994: 19991: 19990: 19974: 19971: 19970: 19951: 19946: 19943: 19942: 19926: 19923: 19922: 19906: 19903: 19902: 19863: 19859: 19854: 19843: 19840: 19839: 19823: 19820: 19819: 19793: 19789: 19787: 19784: 19783: 19752: 19748: 19740: 19737: 19736: 19731:totally bounded 19714: 19711: 19710: 19688: 19685: 19684: 19662: 19659: 19658: 19629: 19625: 19623: 19620: 19619: 19599: 19596: 19595: 19594:closed subsets 19552: 19548: 19540: 19537: 19536: 19520: 19517: 19516: 19494: 19491: 19490: 19467: 19463: 19442: 19438: 19430: 19427: 19426: 19402: 19399: 19398: 19358: 19354: 19333: 19329: 19327: 19324: 19323: 19301: 19298: 19297: 19263: 19259: 19257: 19254: 19253: 19237: 19234: 19233: 19209: 19206: 19205: 19172: 19168: 19166: 19163: 19162: 19137: 19134: 19133: 19114: 19111: 19110: 19073: 19069: 19067: 19064: 19063: 19030: 19026: 19024: 19021: 19020: 18987: 18983: 18981: 18978: 18977: 18961: 18958: 18957: 18926: 18925: 18918: 18893: 18889: 18887: 18884: 18883: 18864: 18861: 18860: 18824: 18820: 18818: 18815: 18814: 18795: 18792: 18791: 18769: 18766: 18765: 18733: 18729: 18715: 18712: 18711: 18692: 18689: 18688: 18666: 18663: 18662: 18646: 18643: 18642: 18639: 18589: 18586: 18585: 18563: 18560: 18559: 18512: and  18510: 18499: 18496: 18495: 18430: and  18428: 18411: 18408: 18407: 18384: 18380: 18315: 18312: 18311: 18292: 18290: 18287: 18286: 18270: 18267: 18266: 18243: 18235: 18232: 18231: 18203: 18195: 18187: 18169: 18165: 18163: 18160: 18159: 18143: 18140: 18139: 18123: 18120: 18119: 18099: 18096: 18095: 18067: 18044: 18041: 18040: 18015: 18006: 18002: 17928: 17925: 17924: 17898: 17894: 17886: 17883: 17882: 17860: 17857: 17856: 17840: 17837: 17836: 17812: 17804: 17802: 17799: 17798: 17782: 17779: 17778: 17761: 17757: 17755: 17752: 17751: 17715: 17707: 17700: 17684: 17680: 17665: 17661: 17659: 17656: 17655: 17639: 17636: 17635: 17613: 17610: 17609: 17581: 17577: 17521: 17518: 17517: 17498: 17495: 17494: 17478: 17475: 17474: 17458: 17455: 17454: 17431: 17427: 17419: 17416: 17415: 17389: 17385: 17377: 17374: 17373: 17357: 17354: 17353: 17337: 17334: 17333: 17260: 17257: 17256: 17225: 17222: 17221: 17205: 17202: 17201: 17147: 17144: 17143: 17088: 17085: 17084: 17064: 17059: 17058: 17050: 17047: 17046: 17030: 17027: 17026: 17003: 16999: 16991: 16988: 16987: 16971: 16968: 16967: 16944: 16940: 16932: 16929: 16928: 16905: 16901: 16899: 16896: 16895: 16872: 16868: 16854: 16851: 16850: 16834: 16831: 16830: 16801: 16797: 16795: 16792: 16791: 16771: 16768: 16767: 16719: 16715: 16700: 16696: 16663: 16659: 16638: 16634: 16632: 16629: 16628: 16600: 16596: 16595: 16591: 16582: 16578: 16557: 16553: 16547: and  16545: 16525: 16521: 16520: 16516: 16507: 16503: 16482: 16478: 16476: 16473: 16472: 16456: 16453: 16452: 16424: 16421: 16420: 16396: 16393: 16392: 16375: 16370: 16369: 16361: 16358: 16357: 16341: 16338: 16337: 16330:nonmeager space 16326:second category 16309: 16306: 16305: 16283: 16280: 16279: 16256: 16252: 16250: 16247: 16246: 16229: 16228: 16226: 16223: 16222: 16206: 16203: 16202: 16183: 16182: 16175: 16165: 16161: 16157: 16156: 16147: 16143: 16141: 16138: 16137: 16114: 16110: 16102: 16099: 16098: 16073: 16070: 16069: 16044: 16041: 16040: 16021: 16018: 16017: 16000: 15999: 15997: 15994: 15993: 15960: 15957: 15956: 15933: 15929: 15927: 15924: 15923: 15895: 15892: 15891: 15875: 15872: 15871: 15855: 15852: 15851: 15828: 15818: 15814: 15810: 15809: 15800: 15796: 15794: 15791: 15790: 15768: 15765: 15764: 15745: 15742: 15741: 15725: 15722: 15721: 15705: 15702: 15701: 15682: 15679: 15678: 15662: 15659: 15658: 15642: 15639: 15638: 15611: 15607: 15484: 15480: 15478: 15475: 15474: 15458: 15455: 15454: 15433: 15429: 15421: 15418: 15417: 15401: 15398: 15397: 15374: 15371: 15370: 15349: 15346: 15345: 15329: 15326: 15325: 15300: 15297: 15296: 15190: 15187: 15186: 15170: 15167: 15166: 15141: 15138: 15137: 15115: 15112: 15111: 15095: 15092: 15091: 15069: 15066: 15065: 15049: 15046: 15045: 15029: 15026: 15025: 15003: 15000: 14999: 14979: 14958: 14955: 14954: 14919: 14915: 14900: 14896: 14894: 14891: 14890: 14867: 14863: 14848: 14844: 14842: 14839: 14838: 14837:is an integer, 14816: 14813: 14812: 14795: 14791: 14785: 14781: 14766: 14762: 14756: 14752: 14750: 14747: 14746: 14723: 14720: 14719: 14718:of elements in 14697: 14694: 14693: 14671: 14668: 14667: 14639: 14636: 14635: 14611: 14608: 14607: 14583: 14580: 14579: 14554: 14550: 14548: 14545: 14544: 14543:(respectively, 14521: 14517: 14515: 14512: 14511: 14495: 14492: 14491: 14468: 14465: 14464: 14448: 14445: 14444: 14428: 14425: 14424: 14384: 14381: 14380: 14358: 14355: 14354: 14351: 14345: 14318: 14316: 14313: 14312: 14296: 14279: 14277: 14274: 14273: 14257: 14254: 14253: 14246:weak-* topology 14229: 14218: 14216: 14213: 14212: 14193: 14191: 14188: 14187: 14164: 14162: 14159: 14158: 14157:—the set 14151: 14139:Main articles: 14137: 14115: 14112: 14111: 14092: 14089: 14088: 14071: 14066: 14065: 14063: 14060: 14059: 14042: 14037: 14036: 14034: 14031: 14030: 13994: 13990: 13988: 13985: 13984: 13965: 13961: 13959: 13956: 13955: 13938: 13934: 13932: 13929: 13928: 13899: 13895: 13893: 13890: 13889: 13872: 13868: 13866: 13863: 13862: 13844: 13840: 13838: 13835: 13834: 13796: 13793: 13792: 13761: 13758: 13757: 13740: 13736: 13734: 13731: 13730: 13651: 13630: 13626: 13621: 13594: 13575: 13571: 13563: 13560: 13559: 13540: 13531: 13527: 13525: 13522: 13521: 13433: 13430: 13429: 13404: 13401: 13400: 13383: 13379: 13377: 13374: 13373: 13330: 13327: 13326: 13307: 13303: 13301: 13298: 13297: 13270: 13241: 13238: 13237: 13221: 13218: 13217: 13201: 13198: 13197: 13178: 13175: 13174: 13166:of the origin. 13151: 13148: 13147: 13122: 13119: 13118: 13102: 13099: 13098: 13095: 13072: 13069: 13068: 13048: 13045: 13044: 13012: 13009: 13008: 12988: 12985: 12984: 12976: 12952: 12949: 12948: 12932: 12929: 12928: 12894: 12891: 12890: 12871: 12868: 12867: 12839: 12836: 12835: 12800: 12797: 12796: 12780: 12777: 12776: 12755: 12752: 12751: 12735: 12732: 12731: 12715: 12712: 12711: 12685: 12677: 12657: 12654: 12653: 12637: 12620: 12603: 12595: 12593: 12590: 12589: 12573: 12559: 12551: 12549: 12546: 12545: 12522: 12517: 12516: 12514: 12511: 12510: 12491: 12488: 12487: 12471: 12468: 12467: 12461:infinitely many 12444: 12441: 12440: 12406: 12403: 12402: 12398: 12382: 12379: 12378: 12354: 12350: 12348: 12345: 12344: 12325: 12322: 12321: 12286: 12282: 12280: 12277: 12276: 12258: 12256: 12253: 12252: 12251:center at 0 in 12236: 12228: 12225: 12224: 12193: 12190: 12189: 12173: 12170: 12169: 12146: 12142: 12134: 12131: 12130: 12114: 12111: 12110: 12079: 12076: 12075: 12055: 12052: 12051: 12013: 12009: 12007: 12004: 12003: 11987: 11984: 11983: 11967: 11964: 11963: 11947: 11944: 11943: 11927: 11918: 11914: 11912: 11909: 11908: 11880: 11878: 11875: 11874: 11855: 11852: 11851: 11835: 11832: 11831: 11815: 11812: 11811: 11792: 11784: 11781: 11780: 11754: 11750: 11739: 11736: 11735: 11719: 11716: 11715: 11696: 11693: 11692: 11673: 11665: 11662: 11661: 11626: 11622: 11620: 11617: 11616: 11594: 11585: 11581: 11579: 11576: 11575: 11544: 11541: 11540: 11524: 11521: 11520: 11504: 11502: 11499: 11498: 11482: 11473: 11462: 11452: 11448: 11444: 11441: 11438: 11437: 11409: 11406: 11405: 11388: 11377: 11363: 11359: 11358: 11354: 11351: 11348: 11347: 11331: 11328: 11327: 11299: 11296: 11295: 11279: 11276: 11275: 11259: 11251: 11248: 11247: 11225: 11222: 11221: 11202: 11200: 11197: 11196: 11180: 11177: 11176: 11160: 11157: 11156: 11134: 11131: 11130: 11105: 11097: 11089: 11071: 11067: 11065: 11062: 11061: 11045: 11043: 11040: 11039: 11023: 11021: 11018: 11017: 10983: 10981: 10978: 10977: 10961: 10958: 10957: 10941: 10939: 10936: 10935: 10912: 10909: 10908: 10880: 10877: 10876: 10858: 10855: 10854: 10818: 10815: 10814: 10786: 10783: 10782: 10758: 10755: 10754: 10726: 10723: 10722: 10694: 10691: 10690: 10674: 10671: 10670: 10652: 10649: 10648: 10623: 10618: 10617: 10615: 10612: 10611: 10591: 10586: 10585: 10583: 10580: 10579: 10557: 10554: 10553: 10536: 10531: 10530: 10528: 10525: 10524: 10508: 10505: 10504: 10483: 10478: 10477: 10475: 10472: 10471: 10455: 10452: 10451: 10423: 10420: 10419: 10403: 10401: 10398: 10397: 10381: 10378: 10377: 10357: 10355: 10352: 10351: 10335: 10333: 10330: 10329: 10313: 10311: 10308: 10307: 10291: 10289: 10286: 10285: 10281:of the origin. 10275:locally compact 10267: 10240: 10237: 10236: 10217: 10188: 10186: 10183: 10182: 10143: 10141: 10138: 10137: 10112: 10109: 10108: 10082: 10078: 10076: 10073: 10072: 10054: 10051: 10050: 10034: 10031: 10030: 10014: 10011: 10010: 9990: 9986: 9984: 9981: 9980: 9958: 9955: 9954: 9938: 9935: 9934: 9909: 9898: 9888: 9884: 9880: 9877: 9874: 9873: 9853: 9851: 9848: 9847: 9823: 9822: 9817: 9816: 9808: 9805: 9804: 9776: 9775: 9770: 9769: 9767: 9764: 9763: 9744: 9741: 9740: 9720: 9718: 9715: 9714: 9698: 9690: 9682: 9679: 9678: 9662: 9659: 9658: 9647: 9611: 9607: 9605: 9602: 9601: 9581: 9578: 9577: 9555: 9551: 9544: 9540: 9538: 9535: 9534: 9517: 9513: 9511: 9508: 9507: 9491: 9488: 9487: 9471: 9468: 9467: 9448: 9445: 9444: 9438: 9437: 9417: 9414: 9413: 9396: 9392: 9390: 9387: 9386: 9351: 9348: 9347: 9346:if and only if 9327:locally compact 9310: 9307: 9306: 9290: 9287: 9286: 9258: 9255: 9254: 9221: 9218: 9217: 9214: 9209: 9185: 9182: 9181: 9158: 9154: 9152: 9149: 9148: 9132: 9129: 9128: 9111: 9107: 9101: 9090: 9084: 9081: 9080: 9059: 9056: 9055: 9039: 9036: 9035: 9013: 9010: 9009: 8989: 8986: 8985: 8966: 8963: 8962: 8946: 8943: 8942: 8926: 8923: 8922: 8901:linear subspace 8853: 8850: 8849: 8827: 8824: 8823: 8800: 8796: 8787: 8783: 8781: 8778: 8777: 8761: 8758: 8757: 8738: 8735: 8734: 8718: 8715: 8714: 8687: 8677: 8673: 8669: 8668: 8659: 8655: 8653: 8650: 8649: 8627:totally bounded 8581: 8578: 8577: 8561: 8558: 8557: 8525: 8522: 8521: 8512: 8506: 8483: 8480: 8479: 8462: 8457: 8456: 8454: 8451: 8450: 8430: 8428: 8425: 8424: 8417:locally compact 8397: 8395: 8392: 8391: 8365: 8324: 8321: 8320: 8300: 8297: 8296: 8277: 8274: 8273: 8257: 8254: 8253: 8237: 8234: 8233: 8194: 8191: 8190: 8170: 8167: 8166: 8158:and there is a 8143: 8140: 8139: 8117: 8114: 8113: 8081: 8078: 8077: 8073: 8065: 8042: 8039: 8038: 8022: 8019: 8018: 8002: 7999: 7998: 7979: 7976: 7975: 7959: 7956: 7955: 7952:totally bounded 7930: 7927: 7926: 7910: 7907: 7906: 7890: 7887: 7886: 7866: 7863: 7862: 7861:Moreover, when 7834: 7831: 7830: 7814: 7811: 7810: 7794: 7791: 7790: 7774: 7771: 7770: 7754: 7751: 7750: 7722: 7719: 7718: 7702: 7699: 7698: 7682: 7679: 7678: 7656: 7653: 7652: 7636: 7633: 7632: 7627:Bounded subsets 7601: 7598: 7597: 7577: 7574: 7573: 7534: 7531: 7530: 7502: 7499: 7498: 7474: 7471: 7470: 7428: 7425: 7424: 7423:for every real 7378: 7375: 7374: 7345: 7337: 7335: 7332: 7331: 7306: 7303: 7302: 7266: 7258: 7256: 7253: 7252: 7236: 7233: 7232: 7231:for any scalar 7207: 7204: 7203: 7181: 7178: 7177: 7152: 7149: 7148: 7132: 7129: 7128: 7103: 7100: 7099: 7083: 7080: 7079: 7076: 7070:at the origin. 7055: 7052: 7051: 7035: 7032: 7031: 7015: 7012: 7011: 6985: 6982: 6981: 6959: 6956: 6955: 6932: 6928: 6895: 6891: 6889: 6886: 6885: 6860: 6857: 6856: 6855:and any subset 6834: 6831: 6830: 6799: 6796: 6795: 6773: 6770: 6769: 6744: 6741: 6740: 6715: 6712: 6711: 6689: 6686: 6685: 6663: 6660: 6659: 6632: 6628: 6626: 6623: 6622: 6595: 6591: 6583: 6580: 6579: 6557: 6554: 6553: 6527: 6523: 6521: 6518: 6517: 6507: 6506: 6502: 6479: 6476: 6475: 6456: 6451: 6448: 6447: 6423: 6420: 6419: 6403: 6400: 6399: 6380: 6375: 6372: 6371: 6355: 6352: 6351: 6335: 6332: 6331: 6326:with the usual 6308: 6303: 6300: 6299: 6274: 6271: 6270: 6251: 6248: 6247: 6235:. Every TVS is 6213: 6210: 6209: 6202: 6166: 6165: 6161: 6159: 6156: 6155: 6127: 6124: 6123: 6107: 6105: 6102: 6101: 6098: 6078: 6076: 6073: 6072: 6052: 6051: 6047: 6045: 6042: 6041: 6022: 6019: 6018: 5998: 5996: 5993: 5992: 5976: 5968: 5965: 5964: 5948: 5945: 5944: 5928: 5926: 5923: 5922: 5906: 5903: 5902: 5901:Conversely, if 5879: 5876: 5875: 5843: 5840: 5839: 5819: 5817: 5814: 5813: 5797: 5794: 5793: 5777: 5775: 5772: 5771: 5743: 5740: 5739: 5735: 5732: 5704: 5702: 5699: 5698: 5681: 5677: 5664: 5655: 5651: 5650: 5638: 5630: 5627: 5626: 5602: 5599: 5598: 5578: 5576: 5573: 5572: 5555: 5551: 5542: 5538: 5536: 5533: 5532: 5515: 5511: 5502: 5498: 5496: 5493: 5492: 5476: 5467: 5463: 5461: 5458: 5457: 5438: 5429: 5425: 5416: 5412: 5410: 5407: 5406: 5390: 5388: 5385: 5384: 5377:under inclusion 5352: 5350: 5347: 5346: 5327: 5324: 5323: 5307: 5305: 5302: 5301: 5277: 5270: 5259: 5255: 5246: 5242: 5241: 5237: 5236: 5227: 5223: 5214: 5210: 5205: 5202: 5201: 5175: 5168: 5157: 5153: 5144: 5140: 5139: 5135: 5134: 5125: 5121: 5112: 5108: 5103: 5100: 5099: 5073: 5066: 5055: 5051: 5047: 5043: 5042: 5033: 5029: 5021: 5018: 5017: 5014:Scalar multiple 4992: 4988: 4981: 4974: 4961: 4957: 4946: 4943: 4942: 4913: 4898: 4894: 4893: 4889: 4880: 4876: 4865: 4862: 4861: 4837: 4834: 4833: 4816: 4812: 4803: 4799: 4797: 4794: 4793: 4792:if and only if 4776: 4772: 4763: 4759: 4754: 4751: 4750: 4733: 4729: 4727: 4724: 4723: 4704: 4700: 4698: 4695: 4694: 4675: 4672: 4671: 4655: 4652: 4651: 4633: 4626: 4616: 4612: 4608: 4607: 4598: 4594: 4592: 4589: 4588: 4570: 4563: 4553: 4549: 4545: 4544: 4535: 4531: 4529: 4526: 4525: 4515: 4496: 4493: 4492: 4440: 4437: 4436: 4420: 4417: 4416: 4399: 4395: 4393: 4390: 4389: 4373: 4370: 4369: 4353: 4350: 4349: 4332: 4328: 4326: 4323: 4322: 4306: 4303: 4302: 4277: 4274: 4273: 4251: 4243: 4241: 4238: 4237: 4221: 4218: 4217: 4174: 4171: 4170: 4153: 4149: 4147: 4144: 4143: 4100: 4097: 4096: 4075: 4071: 4069: 4066: 4065: 4034: 4031: 4030: 4010: 4006: 3994: 3988: 3985: 3984: 3962: 3959: 3958: 3930: 3927: 3926: 3865: 3862: 3861: 3845: 3842: 3841: 3806: 3792: 3788: 3773: 3769: 3768: 3764: 3755: 3751: 3734: 3730: 3726: 3722: 3708: 3704: 3700: 3696: 3695: 3691: 3688: 3667: 3664: 3663: 3646: 3642: 3634: 3631: 3630: 3599: 3596: 3595: 3555: 3552: 3551: 3522: 3518: 3517: 3513: 3496: 3492: 3491: 3487: 3478: and  3476: 3465: 3453: 3449: 3417: 3413: 3398: 3394: 3393: 3389: 3380: 3376: 3375: 3371: 3354: 3352: 3349: 3348: 3328: 3324: 3316: 3313: 3312: 3290: 3287: 3286: 3269: 3265: 3250: 3246: 3231: 3227: 3225: 3222: 3221: 3204: 3200: 3192: 3189: 3188: 3171: 3160: 3150: 3146: 3142: 3132: 3128: 3126: 3123: 3122: 3118: 3101: 3099: 3096: 3095: 3093: 3059: 3056: 3055: 3038: 3035: 3034: 3006: 3002: 3000: 2997: 2996: 2970: 2966: 2957: 2953: 2951: 2948: 2947: 2931: 2928: 2927: 2904: 2901: 2900: 2878: 2875: 2874: 2857: 2853: 2851: 2848: 2847: 2831: 2828: 2827: 2821: 2820: 2813: 2812: 2792: 2788: 2786: 2783: 2782: 2776: 2775: 2753: 2749: 2747: 2744: 2743: 2681: 2678: 2677: 2660: 2656: 2641: 2637: 2622: 2618: 2616: 2613: 2612: 2606: 2605: 2584: 2580: 2578: 2575: 2574: 2554: 2550: 2548: 2545: 2544: 2523: 2519: 2517: 2514: 2513: 2493: 2489: 2487: 2484: 2483: 2465: 2462: 2461: 2443: 2439: 2437: 2434: 2433: 2415: 2412: 2411: 2394: 2390: 2388: 2385: 2384: 2378: 2377: 2359: 2355: 2353: 2350: 2349: 2330: 2327: 2326: 2309: 2298: 2288: 2284: 2280: 2270: 2266: 2264: 2261: 2260: 2244: 2241: 2240: 2237: 2226: 2207: 2204: 2203: 2187: 2184: 2183: 2158: 2157: 2155: 2152: 2151: 2117: 2114: 2113: 2096: 2095: 2087: 2084: 2083: 2082:there exists a 2066: 2065: 2057: 2054: 2053: 2036: 2035: 2033: 2030: 2029: 2002: 2001: 1993: 1990: 1989: 1964: 1963: 1961: 1958: 1957: 1938: 1935: 1934: 1918: 1915: 1914: 1893: 1892: 1890: 1887: 1886: 1870: 1867: 1866: 1837: 1836: 1834: 1831: 1830: 1814: 1811: 1810: 1806: 1803: 1765: 1761: 1753: 1750: 1749: 1727: 1724: 1723: 1697: 1693: 1691: 1688: 1687: 1684: 1676: 1647: 1644: 1643: 1617: 1614: 1613: 1573: 1570: 1569: 1541: 1538: 1537: 1511: 1508: 1507: 1488: 1485: 1484: 1468: 1465: 1464: 1432: 1429: 1428: 1424: 1408: 1405: 1404: 1369: 1366: 1365: 1348: 1347: 1339: 1336: 1335: 1315: 1314: 1306: 1303: 1302: 1281: 1280: 1278: 1275: 1274: 1251:local convexity 1230: 1229: 1222: 1221: 1215:TVS isomorphism 1214: 1213: 1206: 1205: 1184: 1183: 1176: 1175: 1168: 1167: 1145: 1142: 1141: 1118: 1115: 1114: 1074: 1071: 1070: 1032: 1029: 1028: 1000: 997: 996: 982: 981: 974: 973: 966: 965: 943: 941: 938: 937: 915: 913: 910: 909: 884: 883: 866: 865: 863: 860: 859: 841: 840: 829: 828: 826: 823: 822: 806: 804: 801: 800: 774: 773: 761: 741: 738: 737: 700: 697: 696: 690: 689: 683:vector topology 682: 681: 644: 636: 633: 632: 589: 586: 585: 557: 555: 552: 551: 528: 525: 524: 501: 466:Schwartz spaces 454: 418: 415: 414: 398: 396: 393: 392: 349: 346: 345: 317: 309: 306: 305: 258: 255: 254: 211: 208: 207: 188: 183: 159: 157: 154: 153: 134: 132: 129: 128: 126:complex numbers 84:Hausdorff space 68:vector topology 58:that is also a 38:(also called a 28: 23: 22: 15: 12: 11: 5: 36363: 36353: 36352: 36347: 36342: 36337: 36320: 36319: 36317: 36316: 36305: 36302: 36301: 36299: 36298: 36293: 36288: 36283: 36281:Ultrabarrelled 36273: 36267: 36262: 36256: 36251: 36246: 36241: 36236: 36231: 36222: 36216: 36211: 36209:Quasi-complete 36206: 36204:Quasibarrelled 36201: 36196: 36191: 36186: 36181: 36176: 36171: 36166: 36161: 36156: 36151: 36146: 36145: 36144: 36134: 36129: 36124: 36119: 36114: 36109: 36104: 36099: 36094: 36084: 36079: 36069: 36064: 36059: 36053: 36051: 36047: 36046: 36044: 36043: 36033: 36028: 36023: 36018: 36013: 36003: 35997: 35995: 35994:Set operations 35991: 35990: 35988: 35987: 35982: 35977: 35972: 35967: 35962: 35957: 35949: 35941: 35936: 35931: 35926: 35921: 35916: 35911: 35906: 35901: 35895: 35893: 35889: 35888: 35886: 35885: 35880: 35875: 35870: 35865: 35864: 35863: 35858: 35853: 35843: 35838: 35837: 35836: 35831: 35826: 35821: 35816: 35811: 35806: 35796: 35795: 35794: 35783: 35781: 35777: 35776: 35774: 35773: 35768: 35767: 35766: 35756: 35750: 35741: 35736: 35731: 35729:Banach–Alaoglu 35726: 35724:Anderson–Kadec 35720: 35718: 35712: 35711: 35709: 35708: 35703: 35698: 35693: 35688: 35683: 35678: 35673: 35668: 35663: 35658: 35652: 35650: 35649:Basic concepts 35646: 35645: 35637: 35636: 35629: 35622: 35614: 35605: 35604: 35602: 35601: 35590: 35587: 35586: 35584: 35583: 35578: 35573: 35568: 35566:Choquet theory 35563: 35558: 35552: 35550: 35546: 35545: 35543: 35542: 35532: 35527: 35522: 35517: 35512: 35507: 35502: 35497: 35492: 35487: 35482: 35476: 35474: 35470: 35469: 35467: 35466: 35461: 35455: 35453: 35449: 35448: 35446: 35445: 35440: 35435: 35430: 35425: 35420: 35418:Banach algebra 35414: 35412: 35408: 35407: 35405: 35404: 35399: 35394: 35389: 35384: 35379: 35374: 35369: 35364: 35359: 35353: 35351: 35347: 35346: 35344: 35343: 35341:Banach–Alaoglu 35338: 35333: 35328: 35323: 35318: 35313: 35308: 35303: 35297: 35295: 35289: 35288: 35285: 35284: 35282: 35281: 35276: 35271: 35269:Locally convex 35266: 35252: 35247: 35241: 35239: 35235: 35234: 35232: 35231: 35226: 35221: 35216: 35211: 35206: 35201: 35196: 35191: 35186: 35180: 35174: 35170: 35169: 35153: 35152: 35145: 35138: 35130: 35124: 35123: 35109: 35108:External links 35106: 35105: 35104: 35090: 35070: 35056: 35036: 35022: 35006: 34992: 34971: 34965: 34949: 34935: 34919: 34914:978-0201029857 34913: 34897: 34883: 34863: 34849: 34836: 34822: 34796: 34782: 34758: 34744: 34724: 34698: 34695: 34693: 34692: 34678: 34662: 34648: 34635: 34621: 34605: 34591: 34571: 34557: 34535: 34522:978-1584888666 34521: 34508: 34486: 34470: 34456: 34443: 34429: 34411: 34409: 34406: 34403: 34402: 34390: 34378: 34376:, p. 109. 34361: 34349: 34337: 34335:, pp. 80. 34325: 34308: 34293: 34281: 34269: 34254: 34239: 34218: 34216:, p. 156. 34206: 34183: 34181:, p. 102. 34171: 34156: 34144: 34142:, p. 108. 34129: 34114: 34102: 34090: 34078: 34066: 34049: 34034: 34022: 34010: 33993: 33991:, p. 111. 33978: 33953: 33941: 33924: 33912: 33900: 33888: 33857: 33845: 33833: 33812: 33800: 33783: 33771: 33759: 33736: 33732:Schechter 1996 33724: 33703: 33652: 33635: 33623: 33611: 33594: 33581: 33580: 33578: 33575: 33572: 33571: 33559: 33537: 33534: 33531: 33528: 33525: 33522: 33519: 33516: 33513: 33510: 33507: 33504: 33501: 33498: 33495: 33492: 33489: 33486: 33483: 33480: 33477: 33474: 33471: 33468: 33465: 33462: 33459: 33456: 33453: 33450: 33447: 33444: 33441: 33438: 33435: 33432: 33429: 33426: 33423: 33420: 33417: 33414: 33411: 33408: 33405: 33385: 33382: 33379: 33376: 33373: 33370: 33350: 33347: 33344: 33341: 33338: 33318: 33315: 33312: 33309: 33306: 33303: 33300: 33297: 33294: 33291: 33288: 33285: 33282: 33279: 33276: 33273: 33270: 33267: 33264: 33261: 33258: 33255: 33252: 33249: 33246: 33243: 33240: 33237: 33234: 33231: 33228: 33225: 33222: 33219: 33216: 33213: 33210: 33207: 33204: 33201: 33198: 33195: 33192: 33189: 33186: 33183: 33180: 33177: 33162: 33149: 33129: 33126: 33123: 33103: 33100: 33097: 33094: 33091: 33088: 33083: 33079: 33075: 33072: 33052: 33032: 33012: 33009: 33006: 33003: 32998: 32994: 32973: 32953: 32950: 32947: 32942: 32938: 32934: 32931: 32928: 32925: 32922: 32917: 32913: 32909: 32906: 32903: 32900: 32880: 32877: 32874: 32869: 32865: 32861: 32858: 32855: 32852: 32849: 32844: 32840: 32836: 32833: 32830: 32827: 32824: 32821: 32818: 32815: 32812: 32807: 32803: 32799: 32796: 32793: 32790: 32787: 32782: 32778: 32774: 32771: 32751: 32748: 32745: 32729: 32716: 32713: 32710: 32707: 32702: 32698: 32681: 32668: 32665: 32645: 32624: 32620: 32617: 32614: 32610: 32606: 32586: 32583: 32580: 32576: 32572: 32569: 32566: 32562: 32558: 32538: 32535: 32532: 32529: 32526: 32521: 32517: 32513: 32493: 32490: 32487: 32484: 32481: 32478: 32458: 32438: 32435: 32430: 32426: 32422: 32419: 32416: 32413: 32410: 32407: 32404: 32401: 32398: 32395: 32392: 32389: 32386: 32383: 32363: 32360: 32357: 32354: 32351: 32331: 32328: 32323: 32319: 32315: 32312: 32307: 32303: 32299: 32296: 32293: 32288: 32284: 32280: 32277: 32257: 32236: 32232: 32229: 32226: 32222: 32218: 32198: 32195: 32192: 32189: 32186: 32166: 32161: 32157: 32153: 32150: 32147: 32144: 32141: 32136: 32132: 32128: 32125: 32122: 32119: 32116: 32113: 32110: 32107: 32104: 32101: 32098: 32078: 32075: 32072: 32069: 32066: 32046: 32043: 32040: 32035: 32031: 32027: 32007: 32004: 32001: 31998: 31995: 31991: 31987: 31981: 31978: 31971: 31967: 31962: 31958: 31937: 31934: 31931: 31922:where because 31911: 31908: 31905: 31902: 31898: 31894: 31888: 31885: 31878: 31874: 31871: 31868: 31865: 31859: 31856: 31850: 31847: 31827: 31824: 31821: 31818: 31815: 31812: 31792: 31789: 31786: 31783: 31780: 31760: 31757: 31754: 31749: 31745: 31738: 31735: 31729: 31725: 31721: 31715: 31712: 31705: 31701: 31696: 31692: 31672: 31669: 31666: 31663: 31643: 31640: 31637: 31617: 31614: 31611: 31608: 31605: 31598: 31595: 31592: 31588: 31582: 31579: 31559: 31556: 31549: 31546: 31543: 31539: 31517: 31507: 31487: 31467: 31464: 31461: 31458: 31455: 31452: 31449: 31446: 31443: 31440: 31437: 31434: 31412: 31408: 31404: 31401: 31398: 31393: 31389: 31385: 31382: 31379: 31374: 31370: 31366: 31363: 31343: 31340: 31337: 31334: 31331: 31311: 31308: 31305: 31300: 31296: 31275: 31272: 31269: 31266: 31263: 31260: 31257: 31254: 31251: 31232: 31220: 31216: 31195: 31192: 31189: 31186: 31183: 31167: 31155: 31152: 31149: 31144: 31140: 31136: 31133: 31130: 31127: 31124: 31121: 31118: 31113: 31109: 31088: 31085: 31080: 31076: 31072: 31069: 31053: 31041: 31038: 31035: 31032: 31029: 31026: 31005: 30987: 30986: 30984: 30981: 30978: 30977: 30965: 30961: 30939: 30917: 30911: 30906: 30902: 30878: 30874: 30853: 30848: 30843: 30821: 30801: 30796: 30793: 30788: 30785: 30765: 30745: 30740: 30735: 30717: 30705: 30702: 30682: 30679: 30676: 30673: 30668: 30664: 30660: 30657: 30637: 30617: 30614: 30611: 30608: 30605: 30602: 30599: 30595: 30591: 30587: 30567: 30564: 30561: 30558: 30553: 30549: 30545: 30542: 30522: 30519: 30516: 30513: 30508: 30504: 30500: 30497: 30477: 30464: 30438: 30434: 30428: 30423: 30420: 30417: 30413: 30396: 30390:Also called a 30383: 30374: 30367: 30353: 30333: 30330: 30327: 30307: 30291: 30278: 30261: 30260: 30258: 30255: 30254: 30253: 30248: 30239: 30230: 30225: 30219: 30210: 30201: 30196: 30190: 30181: 30172: 30167: 30158: 30152: 30146: 30140:Complete field 30137: 30129: 30126: 30123: 30122: 30119: 30114: 30109: 30104: 30092: 30076: 30071: 30066: 30061: 30054: 30047: 30042: 30037: 30032: 30027: 30020: 30013: 30008: 30001: 29996: 29991: 29988: 29983: 29980: 29975: 29970: 29965: 29960: 29955: 29950: 29946: 29945: 29934: 29923: 29916: 29914: 29907: 29900: 29893: 29886: 29879: 29877: 29870: 29863: 29861: 29854: 29847: 29840: 29833: 29826: 29819: 29812: 29805: 29798: 29791: 29784: 29777: 29770: 29763: 29756: 29749: 29742: 29731: 29719: 29718: 29715: 29713: 29706: 29704: 29697: 29695: 29693: 29686: 29684: 29682: 29680: 29678: 29671: 29664: 29657: 29655: 29653: 29651: 29649: 29647: 29645: 29643: 29641: 29634: 29627: 29620: 29613: 29606: 29599: 29595: 29594: 29591: 29589: 29582: 29580: 29573: 29571: 29569: 29562: 29560: 29558: 29556: 29554: 29547: 29540: 29533: 29526: 29519: 29512: 29505: 29498: 29491: 29484: 29477: 29470: 29463: 29456: 29449: 29442: 29435: 29431: 29430: 29427: 29420: 29413: 29411: 29409: 29407: 29405: 29398: 29396: 29394: 29392: 29385: 29378: 29371: 29364: 29357: 29350: 29343: 29336: 29329: 29322: 29315: 29308: 29301: 29294: 29287: 29280: 29273: 29266: 29262: 29261: 29256: 29254: 29252: 29245: 29238: 29231: 29224: 29217: 29210: 29208: 29206: 29199: 29192: 29185: 29178: 29171: 29164: 29162: 29160: 29158: 29156: 29149: 29142: 29135: 29128: 29121: 29114: 29107: 29100: 29094: 29093: 29090: 29088: 29086: 29079: 29072: 29065: 29058: 29051: 29049: 29047: 29045: 29043: 29041: 29039: 29037: 29030: 29023: 29016: 29009: 29002: 28995: 28988: 28981: 28974: 28967: 28960: 28953: 28946: 28939: 28935: 28934: 28931: 28929: 28927: 28920: 28913: 28906: 28899: 28892: 28890: 28888: 28886: 28884: 28882: 28880: 28878: 28871: 28864: 28857: 28850: 28843: 28836: 28829: 28822: 28815: 28808: 28801: 28794: 28787: 28780: 28776: 28775: 28772: 28770: 28768: 28761: 28754: 28747: 28740: 28733: 28731: 28729: 28727: 28725: 28723: 28721: 28719: 28712: 28705: 28698: 28691: 28684: 28677: 28670: 28663: 28656: 28649: 28642: 28635: 28628: 28621: 28617: 28616: 28611: 28609: 28607: 28600: 28593: 28586: 28579: 28572: 28565: 28563: 28561: 28559: 28557: 28555: 28553: 28546: 28539: 28532: 28530: 28523: 28516: 28509: 28502: 28495: 28488: 28481: 28474: 28467: 28460: 28454: 28453: 28448: 28446: 28444: 28437: 28430: 28423: 28416: 28409: 28402: 28400: 28398: 28396: 28389: 28387: 28385: 28378: 28371: 28364: 28357: 28355: 28348: 28341: 28334: 28327: 28320: 28313: 28306: 28299: 28292: 28286: 28285: 28280: 28278: 28276: 28269: 28262: 28255: 28248: 28241: 28234: 28232: 28230: 28228: 28221: 28214: 28207: 28200: 28193: 28186: 28184: 28177: 28170: 28163: 28156: 28149: 28142: 28135: 28128: 28121: 28114: 28108: 28107: 28102: 28100: 28098: 28091: 28084: 28082: 28080: 28073: 28071: 28069: 28067: 28065: 28063: 28061: 28054: 28047: 28040: 28033: 28026: 28019: 28012: 28005: 27998: 27991: 27984: 27977: 27970: 27963: 27956: 27950: 27949: 27944: 27942: 27940: 27933: 27926: 27924: 27922: 27915: 27913: 27911: 27909: 27907: 27900: 27893: 27891: 27884: 27877: 27870: 27863: 27856: 27849: 27842: 27835: 27828: 27826: 27819: 27812: 27805: 27798: 27792: 27791: 27786: 27784: 27782: 27780: 27773: 27766: 27759: 27752: 27750: 27748: 27746: 27739: 27732: 27725: 27718: 27711: 27704: 27697: 27690: 27683: 27676: 27669: 27662: 27655: 27648: 27641: 27634: 27627: 27620: 27614: 27613: 27610: 27603: 27596: 27589: 27582: 27575: 27568: 27561: 27559: 27552: 27545: 27543: 27536: 27529: 27522: 27515: 27508: 27501: 27494: 27487: 27480: 27473: 27466: 27459: 27452: 27445: 27438: 27431: 27424: 27420: 27419: 27416: 27409: 27402: 27395: 27388: 27381: 27374: 27367: 27360: 27353: 27346: 27339: 27332: 27325: 27318: 27311: 27304: 27297: 27290: 27283: 27276: 27269: 27262: 27255: 27248: 27241: 27234: 27227: 27220: 27216: 27215: 27212: 27205: 27198: 27191: 27184: 27177: 27170: 27163: 27161: 27154: 27147: 27140: 27133: 27126: 27119: 27112: 27105: 27098: 27091: 27084: 27077: 27070: 27063: 27056: 27049: 27042: 27035: 27028: 27021: 27017: 27016: 27005: 27002: 26999: 26989: 26987: 26985: 26983: 26981: 26979: 26977: 26970: 26968: 26966: 26964: 26962: 26955: 26948: 26946: 26944: 26942: 26940: 26933: 26931: 26924: 26917: 26910: 26903: 26896: 26889: 26882: 26875: 26868: 26857: 26854: 26851: 26840: 26839: 26836: 26829: 26827: 26825: 26818: 26816: 26814: 26807: 26805: 26803: 26801: 26799: 26797: 26795: 26788: 26781: 26774: 26767: 26760: 26753: 26746: 26739: 26732: 26725: 26718: 26711: 26704: 26697: 26690: 26686: 26685: 26668: 26657: 26650: 26648: 26646: 26639: 26637: 26635: 26628: 26626: 26624: 26622: 26620: 26618: 26616: 26609: 26602: 26595: 26588: 26581: 26574: 26567: 26560: 26553: 26546: 26539: 26532: 26525: 26518: 26511: 26494: 26482: 26481: 26470: 26467: 26464: 26454: 26447: 26445: 26438: 26431: 26429: 26427: 26420: 26418: 26411: 26409: 26407: 26400: 26393: 26386: 26379: 26372: 26365: 26358: 26351: 26344: 26337: 26330: 26323: 26316: 26309: 26302: 26295: 26288: 26277: 26274: 26271: 26260: 26259: 26256: 26254: 26252: 26245: 26238: 26231: 26224: 26217: 26215: 26208: 26201: 26194: 26187: 26180: 26173: 26166: 26159: 26152: 26145: 26138: 26131: 26124: 26117: 26110: 26103: 26096: 26089: 26082: 26075: 26071: 26070: 26053: 26042: 26040: 26038: 26031: 26024: 26017: 26010: 26003: 26001: 25994: 25987: 25980: 25973: 25966: 25959: 25952: 25945: 25938: 25931: 25924: 25917: 25910: 25903: 25896: 25889: 25882: 25875: 25868: 25861: 25844: 25832: 25831: 25820: 25817: 25814: 25804: 25797: 25790: 25783: 25776: 25769: 25762: 25755: 25753: 25746: 25744: 25737: 25730: 25723: 25716: 25709: 25707: 25700: 25693: 25686: 25679: 25672: 25665: 25658: 25651: 25644: 25637: 25630: 25623: 25612: 25609: 25606: 25595: 25594: 25591: 25586: 25581: 25576: 25564: 25548: 25543: 25538: 25533: 25526: 25519: 25514: 25509: 25504: 25499: 25492: 25485: 25480: 25473: 25468: 25463: 25460: 25455: 25452: 25447: 25442: 25437: 25432: 25427: 25421: 25420: 25408: 25388: 25385: 25366: 25363: 25352: 25331: 25328: 25325: 25302: 25291: 25290: 25288: 25284: 25279: 25277: 25268: 25259: 25256: 25243: 25240: 25237: 25217: 25197: 25177: 25174: 25171: 25151: 25147: 25142: 25138: 25132: 25129: 25122: 25118: 25115: 25112: 25109: 25106: 25102: 25098: 25095: 25092: 25089: 25086: 25083: 25080: 25077: 25074: 25071: 25068: 25065: 25045: 25042: 25039: 25030:Similarly, if 25019: 25016: 25013: 25010: 25007: 25004: 25001: 24998: 24995: 24992: 24989: 24986: 24983: 24980: 24977: 24974: 24971: 24968: 24965: 24962: 24959: 24956: 24953: 24950: 24947: 24944: 24941: 24938: 24919: 24916: 24913: 24910: 24890: 24887: 24884: 24881: 24878: 24858: 24855: 24852: 24849: 24829: 24826: 24823: 24820: 24817: 24814: 24811: 24808: 24805: 24802: 24799: 24796: 24793: 24790: 24787: 24784: 24781: 24778: 24775: 24772: 24769: 24766: 24763: 24760: 24757: 24754: 24735: 24732: 24729: 24726: 24706: 24703: 24700: 24687:is some unary 24676: 24673: 24670: 24667: 24647: 24626: 24623: 24603: 24600: 24578: 24575: 24572: 24569: 24566: 24563: 24560: 24557: 24554: 24551: 24548: 24545: 24542: 24539: 24519: 24516: 24513: 24510: 24507: 24504: 24501: 24498: 24495: 24492: 24489: 24486: 24483: 24463: 24460: 24457: 24454: 24451: 24448: 24428: 24425: 24422: 24419: 24416: 24396: 24393: 24390: 24387: 24384: 24381: 24378: 24375: 24372: 24369: 24366: 24363: 24349: 24346: 24343: 24340: 24337: 24334: 24331: 24328: 24325: 24322: 24319: 24316: 24313: 24310: 24307: 24304: 24290: 24287: 24284: 24281: 24278: 24275: 24272: 24269: 24266: 24263: 24260: 24257: 24254: 24234: 24214: 24211: 24208: 24205: 24202: 24177: 24172: 24146: 24143: 24140: 24137: 24134: 24131: 24128: 24125: 24119: 24113: 24110: 24107: 24101: 24095: 24092: 24089: 24086: 24083: 24080: 24077: 24057: 24054: 24051: 24048: 24045: 24042: 24039: 24036: 24016: 24013: 23989: 23986: 23983: 23957: 23954: 23951: 23948: 23945: 23925: 23922: 23919: 23916: 23913: 23910: 23907: 23904: 23901: 23898: 23895: 23875: 23872: 23869: 23866: 23858: 23855: 23852: 23832: 23829: 23826: 23823: 23820: 23817: 23814: 23811: 23808: 23805: 23802: 23799: 23779: 23756: 23753: 23750: 23747: 23744: 23741: 23738: 23735: 23716: 23713: 23710: 23707: 23704: 23701: 23698: 23695: 23692: 23672: 23662: 23648: 23628: 23625: 23622: 23619: 23616: 23613: 23593: 23590: 23587: 23551: 23548: 23545: 23539: 23535: 23532: 23528: 23524: 23521: 23501: 23473: 23453: 23430: 23406: 23382: 23350: 23347: 23344: 23336: 23315: 23311: 23307: 23304: 23301: 23298: 23295: 23292: 23287: 23283: 23279: 23276: 23273: 23270: 23267: 23264: 23261: 23256: 23252: 23247: 23243: 23240: 23234: 23228: 23225: 23222: 23219: 23216: 23213: 23210: 23207: 23204: 23201: 23196: 23192: 23171: 23168: 23165: 23162: 23159: 23156: 23151: 23147: 23126: 23123: 23120: 23117: 23114: 23111: 23106: 23102: 23081: 23078: 23075: 23072: 23069: 23049: 23046: 23043: 23040: 23037: 23034: 23031: 23026: 23022: 23018: 23015: 23012: 23009: 23006: 23003: 23000: 22995: 22991: 22984: 22978: 22975: 22972: 22969: 22966: 22963: 22960: 22957: 22954: 22951: 22946: 22942: 22921: 22901: 22881: 22878: 22875: 22872: 22869: 22858: 22857: 22846: 22843: 22840: 22837: 22834: 22831: 22828: 22823: 22819: 22803: 22792: 22789: 22786: 22783: 22780: 22777: 22774: 22769: 22765: 22753: 22742: 22739: 22736: 22733: 22730: 22727: 22724: 22719: 22715: 22683: 22680: 22660: 22640: 22637: 22634: 22631: 22628: 22625: 22620: 22616: 22595: 22574: 22570: 22567: 22547: 22544: 22536: 22533: 22530: 22527: 22524: 22521: 22518: 22515: 22512: 22506: 22500: 22497: 22492: 22488: 22467: 22464: 22442: 22420: 22417: 22414: 22411: 22408: 22401: 22396: 22393: 22389: 22382: 22376: 22373: 22368: 22364: 22344: 22341: 22338: 22335: 22312: 22292: 22289: 22269: 22266: 22261: 22257: 22253: 22250: 22247: 22242: 22239: 22236: 22232: 22211: 22208: 22205: 22202: 22182: 22160: 22157: 22154: 22151: 22148: 22143: 22139: 22135: 22132: 22129: 22126: 22123: 22118: 22114: 22093: 22090: 22087: 22067: 22064: 22061: 22058: 22055: 22052: 22047: 22043: 22036: 22029: 22025: 22022: 22019: 22016: 22011: 22007: 22003: 22000: 21997: 21994: 21991: 21986: 21982: 21977: 21973: 21968: 21964: 21949: 21946: 21943: 21940: 21937: 21934: 21929: 21925: 21918: 21912: 21909: 21906: 21903: 21898: 21894: 21890: 21887: 21884: 21881: 21878: 21873: 21869: 21848: 21845: 21842: 21839: 21836: 21813: 21810: 21805: 21801: 21780: 21777: 21772: 21768: 21764: 21761: 21758: 21755: 21752: 21744: 21741: 21738: 21716: 21713: 21710: 21707: 21704: 21701: 21696: 21692: 21688: 21684: 21680: 21677: 21672: 21668: 21663: 21658: 21654: 21651: 21648: 21644: 21623: 21620: 21617: 21609: 21606: 21603: 21583: 21563: 21560: 21557: 21537: 21534: 21531: 21526: 21522: 21518: 21515: 21512: 21509: 21506: 21503: 21500: 21495: 21491: 21470: 21467: 21464: 21459: or  21456: 21453: 21450: 21447: 21438:is Hausdorff, 21427: 21407: 21404: 21401: 21398: 21395: 21392: 21387: 21383: 21379: 21376: 21373: 21368: 21364: 21360: 21340: 21320: 21317: 21314: 21291: 21288: 21268: 21248: 21228: 21225: 21222: 21202: 21182: 21162: 21142: 21107: 21104: 21101: 21098: 21095: 21092: 21072: 21052: 21049: 21029: 21009: 20989: 20969: 20946: 20926: 20906: 20886: 20866: 20842: 20839: 20836: 20833: 20830: 20827: 20822: 20818: 20813: 20809: 20806: 20803: 20783: 20780: 20775: 20771: 20746: 20726: 20701: 20698: 20686: 20683: 20680: 20677: 20674: 20669: 20665: 20661: 20658: 20655: 20652: 20632: 20629: 20626: 20623: 20618: 20614: 20610: 20607: 20587: 20563: 20539: 20536: 20533: 20530: 20525: 20521: 20500: 20480: 20477: 20474: 20471: 20468: 20465: 20462: 20459: 20456: 20436: 20433: 20430: 20427: 20424: 20421: 20418: 20413: 20409: 20405: 20402: 20382: 20362: 20359: 20356: 20353: 20348: 20344: 20323: 20303: 20300: 20297: 20294: 20291: 20286: 20282: 20257: 20254: 20251: 20248: 20243: 20239: 20235: 20232: 20229: 20226: 20206: 20203: 20200: 20197: 20192: 20188: 20184: 20181: 20178: 20175: 20172: 20169: 20149: 20129: 20126: 20123: 20120: 20115: 20111: 20090: 20063: 20060: 20057: 20054: 20049: 20045: 20040: 20036: 20033: 20030: 20027: 20024: 20012:Moreover, the 20001: 19998: 19978: 19958: 19954: 19950: 19930: 19910: 19899: 19898: 19886: 19883: 19880: 19877: 19874: 19871: 19866: 19862: 19857: 19853: 19850: 19847: 19827: 19816: 19804: 19801: 19796: 19792: 19781: 19769: 19766: 19763: 19760: 19755: 19751: 19747: 19744: 19734: 19718: 19695: 19692: 19672: 19669: 19666: 19646: 19643: 19640: 19637: 19632: 19628: 19603: 19593: 19589: 19586:(so that this 19575: 19572: 19569: 19566: 19563: 19560: 19555: 19551: 19547: 19544: 19524: 19504: 19501: 19498: 19478: 19475: 19470: 19466: 19462: 19459: 19456: 19453: 19450: 19445: 19441: 19437: 19434: 19415: 19412: 19409: 19406: 19375: 19372: 19369: 19366: 19361: 19357: 19353: 19350: 19347: 19344: 19341: 19336: 19332: 19311: 19308: 19305: 19283: 19280: 19277: 19274: 19271: 19266: 19262: 19241: 19231: 19227: 19213: 19189: 19186: 19183: 19180: 19175: 19171: 19150: 19147: 19144: 19141: 19121: 19118: 19107:bounded subset 19090: 19087: 19084: 19081: 19076: 19072: 19058:is always the 19047: 19044: 19041: 19038: 19033: 19029: 19004: 19001: 18998: 18995: 18990: 18986: 18965: 18945: 18940: 18937: 18934: 18929: 18924: 18921: 18917: 18913: 18910: 18907: 18904: 18901: 18896: 18892: 18871: 18868: 18858: 18844: 18841: 18838: 18835: 18832: 18827: 18823: 18802: 18799: 18779: 18776: 18773: 18753: 18750: 18747: 18744: 18741: 18736: 18732: 18728: 18725: 18722: 18719: 18699: 18696: 18676: 18673: 18670: 18650: 18638: 18635: 18623: 18620: 18617: 18614: 18611: 18608: 18605: 18602: 18599: 18596: 18593: 18573: 18570: 18567: 18547: 18544: 18541: 18538: 18535: 18532: 18529: 18526: 18523: 18520: 18517: 18509: 18506: 18503: 18483: 18480: 18477: 18474: 18471: 18468: 18465: 18462: 18459: 18456: 18453: 18450: 18447: 18444: 18441: 18438: 18435: 18427: 18424: 18421: 18418: 18415: 18395: 18392: 18387: 18383: 18379: 18376: 18373: 18370: 18367: 18364: 18361: 18358: 18355: 18352: 18349: 18346: 18343: 18340: 18337: 18334: 18331: 18328: 18325: 18322: 18319: 18299: 18295: 18274: 18250: 18246: 18242: 18239: 18219: 18216: 18213: 18210: 18206: 18202: 18198: 18194: 18190: 18186: 18183: 18180: 18177: 18172: 18168: 18147: 18127: 18103: 18083: 18080: 18077: 18074: 18069: if  18066: 18063: 18060: 18057: 18054: 18051: 18048: 18028: 18025: 18022: 18017: if  18014: 18009: 18005: 18001: 17998: 17995: 17992: 17989: 17986: 17983: 17980: 17977: 17974: 17971: 17968: 17965: 17962: 17959: 17956: 17953: 17950: 17947: 17944: 17941: 17938: 17935: 17932: 17912: 17909: 17906: 17901: 17897: 17893: 17890: 17870: 17867: 17864: 17844: 17822: 17819: 17815: 17811: 17807: 17786: 17764: 17760: 17739: 17736: 17733: 17730: 17725: 17722: 17718: 17714: 17710: 17706: 17703: 17699: 17695: 17692: 17687: 17683: 17679: 17676: 17673: 17668: 17664: 17643: 17623: 17620: 17617: 17595: 17592: 17589: 17584: 17580: 17576: 17573: 17570: 17567: 17564: 17561: 17558: 17555: 17552: 17549: 17546: 17543: 17540: 17537: 17534: 17531: 17528: 17525: 17505: 17502: 17482: 17462: 17442: 17439: 17434: 17430: 17426: 17423: 17403: 17400: 17397: 17392: 17388: 17384: 17381: 17361: 17341: 17321: 17318: 17315: 17312: 17306: 17300: 17297: 17294: 17291: 17288: 17285: 17282: 17279: 17276: 17273: 17270: 17267: 17264: 17244: 17241: 17238: 17235: 17232: 17229: 17220:is convex and 17209: 17187: 17184: 17181: 17178: 17175: 17172: 17169: 17166: 17163: 17160: 17157: 17154: 17151: 17131: 17128: 17125: 17122: 17119: 17116: 17113: 17110: 17107: 17104: 17101: 17098: 17095: 17092: 17072: 17067: 17062: 17057: 17054: 17034: 17014: 17011: 17006: 17002: 16998: 16995: 16975: 16955: 16952: 16947: 16943: 16939: 16936: 16916: 16913: 16908: 16904: 16883: 16880: 16875: 16871: 16867: 16864: 16861: 16858: 16838: 16818: 16815: 16812: 16809: 16804: 16800: 16775: 16745: 16742: 16739: 16736: 16733: 16730: 16727: 16722: 16718: 16714: 16711: 16708: 16703: 16699: 16695: 16692: 16686: 16680: 16677: 16674: 16671: 16666: 16662: 16658: 16655: 16652: 16649: 16646: 16641: 16637: 16615: 16611: 16608: 16603: 16599: 16594: 16590: 16585: 16581: 16574: 16568: 16565: 16560: 16556: 16540: 16536: 16533: 16528: 16524: 16519: 16515: 16510: 16506: 16499: 16493: 16490: 16485: 16481: 16460: 16440: 16437: 16434: 16431: 16428: 16400: 16378: 16373: 16368: 16365: 16345: 16313: 16290: 16287: 16267: 16264: 16259: 16255: 16232: 16210: 16186: 16181: 16178: 16173: 16168: 16164: 16160: 16155: 16150: 16146: 16125: 16122: 16117: 16113: 16109: 16106: 16086: 16083: 16080: 16077: 16057: 16054: 16051: 16048: 16028: 16025: 16003: 15979: 15976: 15973: 15970: 15967: 15964: 15944: 15941: 15936: 15932: 15911: 15908: 15905: 15902: 15899: 15879: 15859: 15837: 15834: 15831: 15826: 15821: 15817: 15813: 15808: 15803: 15799: 15778: 15775: 15772: 15752: 15749: 15729: 15709: 15686: 15666: 15646: 15636: 15622: 15619: 15614: 15610: 15603: 15597: 15594: 15591: 15588: 15585: 15582: 15579: 15576: 15573: 15570: 15567: 15564: 15558: 15552: 15546: 15540: 15537: 15534: 15531: 15528: 15525: 15522: 15519: 15516: 15513: 15510: 15507: 15501: 15495: 15492: 15487: 15483: 15462: 15436: 15432: 15428: 15425: 15405: 15378: 15356: 15353: 15333: 15310: 15307: 15304: 15284: 15281: 15278: 15275: 15272: 15269: 15266: 15263: 15260: 15257: 15254: 15251: 15248: 15245: 15239: 15233: 15230: 15227: 15224: 15221: 15218: 15215: 15212: 15209: 15206: 15203: 15200: 15197: 15194: 15174: 15151: 15148: 15145: 15125: 15122: 15119: 15099: 15079: 15076: 15073: 15053: 15033: 15013: 15010: 15007: 14978: 14975: 14962: 14942: 14939: 14936: 14933: 14930: 14927: 14922: 14918: 14914: 14911: 14908: 14903: 14899: 14878: 14875: 14870: 14866: 14862: 14859: 14856: 14851: 14847: 14826: 14823: 14820: 14798: 14794: 14788: 14784: 14780: 14777: 14774: 14769: 14765: 14759: 14755: 14730: 14727: 14717: 14701: 14681: 14678: 14675: 14649: 14646: 14643: 14624: 14621: 14618: 14615: 14596: 14593: 14590: 14587: 14568: 14565: 14562: 14557: 14553: 14532: 14529: 14524: 14520: 14499: 14475: 14472: 14452: 14432: 14391: 14388: 14368: 14365: 14362: 14344: 14341: 14328: 14324: 14321: 14299: 14295: 14292: 14289: 14285: 14282: 14261: 14232: 14228: 14224: 14221: 14200: 14196: 14170: 14167: 14136: 14133: 14132: 14131: 14119: 14099: 14096: 14074: 14069: 14045: 14040: 14024: 14008: 14003: 14000: 13997: 13993: 13982:Sobolev spaces 13968: 13964: 13941: 13937: 13921:Hilbert spaces 13918: 13907: 13902: 13898: 13875: 13871: 13847: 13843: 13831: 13823: 13820:certain spaces 13803: 13800: 13780: 13777: 13774: 13771: 13768: 13765: 13743: 13739: 13720: 13702: 13695:Nuclear spaces 13692: 13689:inverse limits 13681:FrĂ©chet spaces 13670: 13658: 13654: 13650: 13647: 13644: 13639: 13636: 13633: 13629: 13624: 13618: 13615: 13612: 13609: 13606: 13603: 13600: 13597: 13593: 13589: 13584: 13581: 13578: 13574: 13570: 13567: 13547: 13543: 13539: 13534: 13530: 13518:FrĂ©chet spaces 13515: 13498: 13484: 13470: 13460: 13449: 13446: 13443: 13440: 13437: 13417: 13414: 13411: 13408: 13386: 13382: 13360:consisting of 13351: 13340: 13337: 13334: 13310: 13306: 13269: 13266: 13245: 13225: 13205: 13182: 13155: 13135: 13132: 13129: 13126: 13106: 13094: 13091: 13079: 13076: 13066: 13052: 13034: 13016: 12992: 12975: 12972: 12971: 12970: 12969: 12968: 12956: 12936: 12916: 12913: 12910: 12907: 12904: 12901: 12898: 12878: 12875: 12855: 12852: 12849: 12846: 12843: 12833: 12819: 12816: 12813: 12810: 12807: 12804: 12784: 12773: 12762: 12759: 12739: 12719: 12708:locally convex 12692: 12688: 12684: 12680: 12676: 12673: 12670: 12667: 12664: 12661: 12640: 12636: 12633: 12630: 12627: 12623: 12619: 12616: 12613: 12610: 12606: 12602: 12598: 12576: 12572: 12569: 12566: 12562: 12558: 12554: 12530: 12525: 12520: 12498: 12495: 12475: 12462: 12448: 12428: 12425: 12422: 12419: 12416: 12413: 12410: 12386: 12357: 12353: 12332: 12329: 12309: 12306: 12303: 12300: 12297: 12294: 12289: 12285: 12265: 12261: 12239: 12235: 12232: 12212: 12209: 12206: 12203: 12200: 12197: 12177: 12157: 12154: 12149: 12145: 12141: 12138: 12118: 12098: 12095: 12092: 12089: 12086: 12083: 12073: 12059: 12039: 12036: 12033: 12030: 12027: 12024: 12021: 12016: 12012: 11991: 11971: 11951: 11930: 11926: 11921: 11917: 11896: 11893: 11890: 11887: 11883: 11862: 11859: 11839: 11819: 11799: 11795: 11791: 11788: 11768: 11765: 11762: 11757: 11753: 11749: 11746: 11743: 11723: 11703: 11700: 11680: 11676: 11672: 11669: 11649: 11646: 11643: 11640: 11637: 11634: 11629: 11625: 11604: 11601: 11597: 11593: 11588: 11584: 11563: 11560: 11557: 11554: 11551: 11548: 11528: 11507: 11485: 11481: 11476: 11471: 11468: 11465: 11460: 11455: 11451: 11447: 11425: 11422: 11419: 11416: 11413: 11391: 11386: 11383: 11380: 11375: 11371: 11366: 11362: 11357: 11335: 11315: 11312: 11309: 11306: 11303: 11283: 11262: 11258: 11255: 11235: 11232: 11229: 11209: 11205: 11184: 11164: 11144: 11141: 11138: 11118: 11115: 11112: 11108: 11104: 11100: 11096: 11092: 11088: 11085: 11082: 11079: 11074: 11070: 11048: 11026: 11011: 11010: 11009: 11008: 11007: 10986: 10965: 10944: 10916: 10896: 10893: 10890: 10887: 10884: 10873: 10862: 10852: 10834: 10831: 10828: 10825: 10822: 10802: 10799: 10796: 10793: 10790: 10776: 10762: 10753:then although 10742: 10739: 10736: 10733: 10730: 10710: 10707: 10704: 10701: 10698: 10678: 10659: 10656: 10626: 10621: 10599: 10594: 10589: 10577: 10561: 10539: 10534: 10512: 10486: 10481: 10459: 10439: 10436: 10433: 10430: 10427: 10406: 10385: 10360: 10338: 10316: 10294: 10266: 10263: 10250: 10247: 10244: 10224: 10220: 10216: 10213: 10210: 10207: 10204: 10201: 10198: 10195: 10191: 10171:locally convex 10150: 10146: 10125: 10122: 10119: 10116: 10096: 10093: 10090: 10085: 10081: 10061: 10058: 10038: 10018: 9993: 9989: 9968: 9965: 9962: 9942: 9912: 9907: 9904: 9901: 9896: 9891: 9887: 9883: 9871: 9860: 9856: 9826: 9820: 9815: 9812: 9788: 9785: 9779: 9773: 9748: 9723: 9701: 9697: 9693: 9689: 9686: 9666: 9646: 9643: 9637: 9632:locally convex 9630: 9614: 9610: 9585: 9564: 9558: 9554: 9550: 9547: 9543: 9520: 9516: 9495: 9475: 9455: 9452: 9424: 9421: 9399: 9395: 9367: 9364: 9361: 9358: 9355: 9340:locally convex 9314: 9294: 9274: 9271: 9268: 9265: 9262: 9225: 9213: 9210: 9208: 9205: 9204: 9203: 9192: 9189: 9169: 9166: 9161: 9157: 9136: 9114: 9110: 9104: 9099: 9096: 9093: 9089: 9077: 9066: 9063: 9043: 9029: 9017: 8993: 8982: 8970: 8950: 8930: 8919: 8916: 8866: 8863: 8860: 8857: 8837: 8834: 8831: 8811: 8808: 8803: 8799: 8795: 8790: 8786: 8765: 8745: 8742: 8722: 8696: 8693: 8690: 8685: 8680: 8676: 8672: 8667: 8662: 8658: 8603:uniform spaces 8588: 8585: 8565: 8541: 8538: 8535: 8532: 8529: 8508:Main article: 8505: 8502: 8490: 8487: 8465: 8460: 8433: 8400: 8357: 8356: 8340: 8337: 8334: 8331: 8328: 8318: 8307: 8304: 8284: 8281: 8261: 8241: 8226: 8210: 8207: 8204: 8201: 8198: 8188: 8177: 8174: 8147: 8127: 8124: 8121: 8097: 8094: 8091: 8088: 8085: 8066: 8064: 8061: 8049: 8046: 8026: 8017:is bounded in 8006: 7986: 7983: 7963: 7937: 7934: 7925:is bounded on 7914: 7894: 7870: 7850: 7847: 7844: 7841: 7838: 7818: 7798: 7778: 7758: 7735: 7732: 7729: 7726: 7706: 7686: 7660: 7640: 7621:locally convex 7608: 7605: 7581: 7562: 7561: 7550: 7547: 7544: 7541: 7538: 7518: 7515: 7512: 7509: 7506: 7490: 7478: 7455: 7444: 7441: 7438: 7435: 7432: 7412: 7409: 7406: 7403: 7400: 7397: 7394: 7391: 7388: 7385: 7382: 7366: 7355: 7352: 7348: 7344: 7340: 7319: 7316: 7313: 7310: 7290: 7279: 7276: 7273: 7269: 7265: 7261: 7240: 7220: 7217: 7214: 7211: 7191: 7188: 7185: 7165: 7162: 7159: 7156: 7136: 7118:is said to be 7107: 7087: 7075: 7072: 7059: 7039: 7019: 6995: 6992: 6989: 6969: 6966: 6963: 6943: 6940: 6935: 6931: 6927: 6924: 6921: 6918: 6915: 6912: 6909: 6906: 6903: 6898: 6894: 6873: 6870: 6867: 6864: 6844: 6841: 6838: 6815: 6812: 6809: 6806: 6803: 6783: 6780: 6777: 6757: 6754: 6751: 6748: 6728: 6725: 6722: 6719: 6699: 6696: 6693: 6673: 6670: 6667: 6656: 6655: 6643: 6640: 6635: 6631: 6606: 6603: 6598: 6594: 6590: 6587: 6567: 6564: 6561: 6541: 6538: 6535: 6530: 6526: 6511: 6501: 6498: 6486: 6483: 6463: 6459: 6455: 6436: 6433: 6430: 6427: 6407: 6387: 6383: 6379: 6359: 6339: 6315: 6311: 6307: 6287: 6284: 6281: 6278: 6255: 6220: 6217: 6201: 6198: 6181: 6178: 6175: 6169: 6164: 6143: 6140: 6137: 6134: 6131: 6110: 6085: 6081: 6055: 6050: 6029: 6026: 6001: 5979: 5975: 5972: 5952: 5931: 5910: 5897: 5883: 5862: 5859: 5856: 5853: 5850: 5847: 5822: 5801: 5780: 5759: 5756: 5753: 5750: 5747: 5726: 5711: 5707: 5684: 5680: 5676: 5673: 5667: 5663: 5658: 5654: 5649: 5645: 5641: 5637: 5634: 5607: 5581: 5558: 5554: 5550: 5545: 5541: 5518: 5514: 5510: 5505: 5501: 5479: 5475: 5470: 5466: 5445: 5441: 5437: 5432: 5428: 5424: 5419: 5415: 5393: 5367:is said to be 5355: 5334: 5331: 5310: 5298: 5297: 5286: 5280: 5276: 5273: 5268: 5262: 5258: 5254: 5249: 5245: 5240: 5235: 5230: 5226: 5222: 5217: 5213: 5195: 5184: 5178: 5174: 5171: 5166: 5160: 5156: 5152: 5147: 5143: 5138: 5133: 5128: 5124: 5120: 5115: 5111: 5093: 5082: 5076: 5072: 5069: 5064: 5058: 5054: 5050: 5046: 5041: 5036: 5032: 5028: 5011: 5000: 4995: 4991: 4984: 4980: 4977: 4973: 4969: 4964: 4960: 4956: 4953: 4936: 4925: 4921: 4916: 4912: 4909: 4906: 4901: 4897: 4892: 4888: 4883: 4879: 4875: 4872: 4855: 4844: 4841: 4819: 4815: 4811: 4806: 4802: 4779: 4775: 4771: 4766: 4762: 4736: 4732: 4707: 4703: 4679: 4659: 4636: 4632: 4629: 4624: 4619: 4615: 4611: 4606: 4601: 4597: 4573: 4569: 4566: 4561: 4556: 4552: 4548: 4543: 4538: 4534: 4503: 4500: 4480: 4477: 4474: 4471: 4468: 4465: 4462: 4459: 4456: 4453: 4450: 4447: 4444: 4424: 4402: 4398: 4377: 4357: 4335: 4331: 4310: 4290: 4287: 4284: 4281: 4261: 4258: 4254: 4250: 4246: 4225: 4205: 4202: 4199: 4196: 4193: 4190: 4187: 4184: 4181: 4178: 4156: 4152: 4131: 4128: 4125: 4122: 4119: 4116: 4113: 4110: 4107: 4104: 4093:symmetric sets 4078: 4074: 4053: 4050: 4047: 4044: 4041: 4038: 4018: 4013: 4009: 4003: 4000: 3997: 3993: 3972: 3969: 3966: 3946: 3943: 3940: 3937: 3934: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3890: 3887: 3884: 3881: 3878: 3875: 3872: 3869: 3849: 3827: 3823: 3819: 3816: 3813: 3809: 3805: 3801: 3795: 3791: 3787: 3784: 3781: 3776: 3772: 3767: 3763: 3758: 3754: 3747: 3737: 3733: 3729: 3725: 3721: 3718: 3711: 3707: 3703: 3699: 3694: 3687: 3683: 3680: 3677: 3674: 3671: 3649: 3645: 3641: 3638: 3618: 3615: 3612: 3609: 3606: 3603: 3583: 3580: 3577: 3574: 3571: 3568: 3565: 3562: 3559: 3537: 3533: 3525: 3521: 3516: 3512: 3509: 3506: 3499: 3495: 3490: 3486: 3483: 3475: 3472: 3464: 3461: 3456: 3452: 3448: 3445: 3442: 3439: 3433: 3426: 3420: 3416: 3412: 3409: 3406: 3401: 3397: 3392: 3388: 3383: 3379: 3374: 3370: 3367: 3364: 3361: 3357: 3336: 3331: 3327: 3323: 3320: 3300: 3297: 3294: 3272: 3268: 3264: 3259: 3256: 3253: 3249: 3245: 3240: 3237: 3234: 3230: 3207: 3203: 3199: 3196: 3174: 3169: 3166: 3163: 3158: 3153: 3149: 3145: 3140: 3135: 3131: 3104: 3087: 3063: 3042: 3020: 3017: 3014: 3009: 3005: 2984: 2979: 2976: 2973: 2969: 2965: 2960: 2956: 2935: 2908: 2897: 2896: 2885: 2882: 2860: 2856: 2835: 2809: 2795: 2791: 2772: 2761: 2756: 2752: 2699: 2688: 2685: 2663: 2659: 2655: 2650: 2647: 2644: 2640: 2636: 2631: 2628: 2625: 2621: 2587: 2583: 2562: 2557: 2553: 2539:is called the 2526: 2522: 2501: 2496: 2492: 2469: 2459:is called the 2446: 2442: 2422: 2419: 2397: 2393: 2362: 2358: 2337: 2334: 2312: 2307: 2304: 2301: 2296: 2291: 2287: 2283: 2278: 2273: 2269: 2248: 2236: 2233: 2214: 2211: 2191: 2181: 2177: 2161: 2148: 2147: 2136: 2133: 2130: 2127: 2124: 2121: 2099: 2094: 2091: 2069: 2064: 2061: 2039: 2027: 2005: 2000: 1997: 1967: 1945: 1942: 1922: 1896: 1874: 1840: 1818: 1797: 1776: 1773: 1768: 1764: 1760: 1757: 1737: 1734: 1731: 1711: 1708: 1705: 1700: 1696: 1683: 1680: 1663: 1660: 1657: 1654: 1651: 1627: 1624: 1621: 1601: 1598: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1557: 1554: 1551: 1548: 1545: 1521: 1518: 1515: 1495: 1492: 1472: 1448: 1445: 1442: 1439: 1436: 1412: 1400: 1388: 1385: 1382: 1379: 1376: 1373: 1351: 1346: 1343: 1323: 1318: 1313: 1310: 1300: 1284: 1246:TVS embedding 1234: 1226: 1218: 1210: 1191: 1180: 1172: 1152: 1149: 1125: 1122: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1016: 1013: 1010: 1007: 1004: 988: 978: 970: 946: 918: 893: 887: 881: 878: 875: 872: 869: 844: 838: 835: 832: 809: 778: 759: 745: 707: 704: 660: 657: 654: 651: 647: 643: 640: 620: 617: 614: 611: 608: 605: 601: 597: 593: 560: 532: 500: 497: 470:test functions 453: 450: 446:Hilbert spaces 438: 437: 425: 422: 401: 380: 377: 374: 371: 368: 365: 362: 359: 356: 353: 333: 330: 327: 324: 320: 316: 313: 302: 286: 283: 280: 277: 274: 271: 268: 265: 262: 242: 239: 236: 233: 230: 227: 223: 219: 215: 194:has a natural 187: 184: 182: 179: 166: 162: 137: 100:Sobolev spaces 96:Hilbert spaces 69: 26: 9: 6: 4: 3: 2: 36362: 36351: 36350:Vector spaces 36348: 36346: 36343: 36341: 36338: 36336: 36333: 36332: 36330: 36315: 36307: 36306: 36303: 36297: 36294: 36292: 36289: 36287: 36284: 36282: 36278: 36274: 36272:) convex 36271: 36268: 36266: 36263: 36261: 36257: 36255: 36252: 36250: 36247: 36245: 36244:Semi-complete 36242: 36240: 36237: 36235: 36232: 36230: 36226: 36223: 36221: 36217: 36215: 36212: 36210: 36207: 36205: 36202: 36200: 36197: 36195: 36192: 36190: 36187: 36185: 36182: 36180: 36177: 36175: 36172: 36170: 36167: 36165: 36162: 36160: 36159:Infrabarreled 36157: 36155: 36152: 36150: 36147: 36143: 36140: 36139: 36138: 36135: 36133: 36130: 36128: 36125: 36123: 36120: 36118: 36117:Distinguished 36115: 36113: 36110: 36108: 36105: 36103: 36100: 36098: 36095: 36093: 36089: 36085: 36083: 36080: 36078: 36074: 36070: 36068: 36065: 36063: 36060: 36058: 36055: 36054: 36052: 36050:Types of TVSs 36048: 36042: 36038: 36034: 36032: 36029: 36027: 36024: 36022: 36019: 36017: 36014: 36012: 36008: 36004: 36002: 35999: 35998: 35996: 35992: 35986: 35983: 35981: 35978: 35976: 35973: 35971: 35970:Prevalent/Shy 35968: 35966: 35963: 35961: 35960:Extreme point 35958: 35956: 35950: 35948: 35942: 35940: 35937: 35935: 35932: 35930: 35927: 35925: 35922: 35920: 35917: 35915: 35912: 35910: 35907: 35905: 35902: 35900: 35897: 35896: 35894: 35892:Types of sets 35890: 35884: 35881: 35879: 35876: 35874: 35871: 35869: 35866: 35862: 35859: 35857: 35854: 35852: 35849: 35848: 35847: 35844: 35842: 35839: 35835: 35834:Discontinuous 35832: 35830: 35827: 35825: 35822: 35820: 35817: 35815: 35812: 35810: 35807: 35805: 35802: 35801: 35800: 35797: 35793: 35790: 35789: 35788: 35785: 35784: 35782: 35778: 35772: 35769: 35765: 35762: 35761: 35760: 35757: 35754: 35751: 35749: 35745: 35742: 35740: 35737: 35735: 35732: 35730: 35727: 35725: 35722: 35721: 35719: 35717: 35713: 35707: 35704: 35702: 35699: 35697: 35694: 35692: 35691:Metrizability 35689: 35687: 35684: 35682: 35679: 35677: 35676:FrĂ©chet space 35674: 35672: 35669: 35667: 35664: 35662: 35659: 35657: 35654: 35653: 35651: 35647: 35642: 35635: 35630: 35628: 35623: 35621: 35616: 35615: 35612: 35600: 35592: 35591: 35588: 35582: 35579: 35577: 35574: 35572: 35571:Weak topology 35569: 35567: 35564: 35562: 35559: 35557: 35554: 35553: 35551: 35547: 35540: 35536: 35533: 35531: 35528: 35526: 35523: 35521: 35518: 35516: 35513: 35511: 35508: 35506: 35503: 35501: 35498: 35496: 35495:Index theorem 35493: 35491: 35488: 35486: 35483: 35481: 35478: 35477: 35475: 35471: 35465: 35462: 35460: 35457: 35456: 35454: 35452:Open problems 35450: 35444: 35441: 35439: 35436: 35434: 35431: 35429: 35426: 35424: 35421: 35419: 35416: 35415: 35413: 35409: 35403: 35400: 35398: 35395: 35393: 35390: 35388: 35385: 35383: 35380: 35378: 35375: 35373: 35370: 35368: 35365: 35363: 35360: 35358: 35355: 35354: 35352: 35348: 35342: 35339: 35337: 35334: 35332: 35329: 35327: 35324: 35322: 35319: 35317: 35314: 35312: 35309: 35307: 35304: 35302: 35299: 35298: 35296: 35294: 35290: 35280: 35277: 35275: 35272: 35270: 35267: 35264: 35260: 35256: 35253: 35251: 35248: 35246: 35243: 35242: 35240: 35236: 35230: 35227: 35225: 35222: 35220: 35217: 35215: 35212: 35210: 35207: 35205: 35202: 35200: 35197: 35195: 35192: 35190: 35187: 35185: 35182: 35181: 35178: 35175: 35171: 35166: 35162: 35158: 35151: 35146: 35144: 35139: 35137: 35132: 35131: 35128: 35121: 35116: 35112: 35111: 35101: 35097: 35093: 35087: 35083: 35079: 35075: 35074:Voigt, JĂĽrgen 35071: 35067: 35063: 35059: 35053: 35049: 35045: 35041: 35037: 35033: 35029: 35025: 35019: 35015: 35011: 35007: 35003: 34999: 34995: 34989: 34985: 34981: 34977: 34972: 34968: 34966:0-201-04166-9 34962: 34958: 34954: 34950: 34946: 34942: 34938: 34932: 34928: 34924: 34920: 34916: 34910: 34906: 34902: 34901:Horváth, John 34898: 34894: 34890: 34886: 34880: 34875: 34874: 34868: 34864: 34860: 34856: 34852: 34846: 34842: 34837: 34833: 34829: 34825: 34819: 34815: 34811: 34810: 34805: 34801: 34797: 34793: 34789: 34785: 34779: 34775: 34771: 34767: 34763: 34759: 34755: 34751: 34747: 34745:3-540-13627-4 34741: 34737: 34733: 34729: 34725: 34713: 34709: 34705: 34701: 34700: 34689: 34685: 34681: 34675: 34671: 34667: 34663: 34659: 34655: 34651: 34645: 34641: 34636: 34632: 34628: 34624: 34618: 34614: 34610: 34606: 34602: 34598: 34594: 34588: 34584: 34580: 34576: 34572: 34568: 34564: 34560: 34554: 34550: 34546: 34545: 34540: 34539:Rudin, Walter 34536: 34532: 34528: 34524: 34518: 34514: 34509: 34505: 34501: 34497: 34493: 34489: 34483: 34479: 34475: 34471: 34467: 34463: 34459: 34453: 34449: 34444: 34440: 34436: 34432: 34426: 34422: 34418: 34413: 34412: 34400:, p. 35. 34399: 34394: 34387: 34382: 34375: 34370: 34368: 34366: 34358: 34353: 34346: 34341: 34334: 34329: 34322: 34321:Wilansky 2013 34317: 34315: 34313: 34305: 34300: 34298: 34291:, p. 63. 34290: 34289:Wilansky 2013 34285: 34278: 34273: 34266: 34261: 34259: 34252:, p. 25. 34251: 34246: 34244: 34236: 34231: 34229: 34227: 34225: 34223: 34215: 34210: 34203: 34198: 34196: 34194: 34192: 34190: 34188: 34180: 34175: 34169:, p. 38. 34168: 34163: 34161: 34153: 34148: 34141: 34136: 34134: 34127:, p. 55. 34126: 34121: 34119: 34112:, p. 42. 34111: 34110:Wilansky 2013 34106: 34100:, p. 43. 34099: 34098:Wilansky 2013 34094: 34087: 34082: 34076:, p. 35. 34075: 34070: 34064:, p. 38. 34063: 34058: 34056: 34054: 34046: 34041: 34039: 34031: 34026: 34019: 34014: 34007: 34002: 34000: 33998: 33990: 33985: 33983: 33967: 33963: 33957: 33950: 33945: 33938: 33933: 33931: 33929: 33922:, p. 16. 33921: 33916: 33909: 33904: 33897: 33892: 33877: 33873: 33872: 33867: 33861: 33854: 33849: 33842: 33837: 33830: 33825: 33823: 33821: 33819: 33817: 33809: 33804: 33797: 33792: 33790: 33788: 33781:, p. 53. 33780: 33779:Wilansky 2013 33775: 33768: 33763: 33756: 33751: 33749: 33747: 33745: 33743: 33741: 33733: 33728: 33721: 33716: 33714: 33712: 33710: 33708: 33700: 33695: 33693: 33691: 33689: 33687: 33685: 33683: 33681: 33679: 33677: 33675: 33673: 33671: 33669: 33667: 33665: 33663: 33661: 33659: 33657: 33649: 33648:Wilansky 2013 33644: 33642: 33640: 33632: 33627: 33620: 33615: 33609:, p. 91. 33608: 33603: 33601: 33599: 33591: 33586: 33582: 33557: 33550: 33535: 33526: 33523: 33520: 33514: 33511: 33508: 33505: 33502: 33496: 33487: 33484: 33481: 33475: 33472: 33469: 33466: 33463: 33460: 33457: 33451: 33442: 33439: 33436: 33430: 33427: 33424: 33421: 33418: 33415: 33412: 33409: 33406: 33383: 33380: 33377: 33374: 33371: 33368: 33348: 33345: 33342: 33339: 33336: 33329:and so using 33310: 33307: 33301: 33298: 33295: 33286: 33283: 33280: 33277: 33274: 33271: 33268: 33265: 33262: 33256: 33247: 33241: 33238: 33235: 33232: 33229: 33226: 33223: 33220: 33217: 33211: 33202: 33196: 33193: 33190: 33187: 33184: 33178: 33175: 33166: 33147: 33127: 33121: 33101: 33098: 33092: 33086: 33081: 33077: 33073: 33070: 33050: 33030: 33007: 33001: 32996: 32992: 32971: 32951: 32948: 32945: 32940: 32936: 32932: 32926: 32920: 32915: 32911: 32907: 32904: 32901: 32898: 32878: 32875: 32872: 32867: 32863: 32859: 32853: 32847: 32842: 32838: 32834: 32825: 32819: 32816: 32810: 32805: 32801: 32797: 32791: 32785: 32780: 32776: 32772: 32769: 32749: 32746: 32743: 32733: 32711: 32705: 32700: 32696: 32685: 32666: 32663: 32643: 32622: 32618: 32615: 32612: 32608: 32604: 32584: 32581: 32578: 32574: 32570: 32567: 32564: 32560: 32556: 32536: 32533: 32530: 32527: 32524: 32519: 32515: 32511: 32491: 32488: 32485: 32482: 32479: 32476: 32456: 32436: 32433: 32428: 32424: 32420: 32414: 32411: 32408: 32402: 32399: 32396: 32393: 32387: 32381: 32361: 32358: 32355: 32352: 32349: 32329: 32326: 32321: 32317: 32313: 32310: 32305: 32301: 32297: 32294: 32286: 32282: 32275: 32255: 32234: 32230: 32227: 32224: 32220: 32216: 32196: 32193: 32190: 32187: 32184: 32164: 32159: 32155: 32151: 32148: 32145: 32142: 32139: 32134: 32130: 32126: 32120: 32117: 32114: 32108: 32105: 32102: 32096: 32076: 32070: 32067: 32064: 32044: 32041: 32038: 32033: 32029: 32025: 32005: 32002: 31999: 31996: 31993: 31989: 31985: 31979: 31976: 31969: 31965: 31960: 31956: 31935: 31932: 31929: 31909: 31906: 31903: 31900: 31896: 31892: 31886: 31883: 31876: 31872: 31869: 31866: 31863: 31857: 31854: 31848: 31845: 31825: 31822: 31819: 31816: 31813: 31810: 31790: 31787: 31784: 31781: 31778: 31758: 31755: 31752: 31747: 31743: 31736: 31733: 31727: 31723: 31719: 31713: 31710: 31703: 31699: 31694: 31690: 31670: 31667: 31661: 31641: 31638: 31635: 31615: 31612: 31609: 31606: 31603: 31596: 31593: 31590: 31586: 31580: 31577: 31557: 31554: 31547: 31544: 31541: 31537: 31515: 31505: 31485: 31465: 31462: 31459: 31456: 31450: 31447: 31444: 31438: 31435: 31432: 31410: 31406: 31402: 31399: 31396: 31391: 31387: 31383: 31380: 31377: 31372: 31368: 31364: 31361: 31341: 31338: 31335: 31332: 31329: 31322:By replacing 31309: 31306: 31303: 31298: 31294: 31273: 31267: 31264: 31261: 31255: 31252: 31249: 31230: 31218: 31214: 31193: 31190: 31187: 31184: 31181: 31171: 31153: 31150: 31147: 31142: 31138: 31134: 31128: 31122: 31119: 31116: 31111: 31107: 31086: 31083: 31078: 31074: 31070: 31067: 31057: 31039: 31033: 31030: 31027: 30992: 30988: 30963: 30909: 30904: 30892: 30891:Minkowski sum 30876: 30851: 30846: 30819: 30799: 30794: 30791: 30786: 30783: 30763: 30743: 30738: 30721: 30703: 30700: 30693:is closed in 30677: 30671: 30666: 30662: 30658: 30655: 30635: 30615: 30612: 30606: 30603: 30600: 30597: 30593: 30589: 30585: 30562: 30556: 30551: 30547: 30543: 30540: 30517: 30511: 30506: 30502: 30498: 30495: 30487: 30481: 30462: 30454: 30436: 30432: 30421: 30418: 30415: 30411: 30400: 30393: 30387: 30378: 30371: 30351: 30328: 30305: 30295: 30276: 30266: 30262: 30252: 30249: 30243: 30240: 30234: 30231: 30229: 30226: 30223: 30220: 30214: 30211: 30205: 30202: 30200: 30197: 30194: 30191: 30185: 30182: 30176: 30173: 30171: 30168: 30162: 30159: 30156: 30153: 30150: 30149:Hilbert space 30147: 30141: 30138: 30135: 30132: 30131: 30120: 30118: 30115: 30113: 30110: 30108: 30105: 30090: 30082: 30077: 30075: 30072: 30070: 30067: 30065: 30062: 30060: 30055: 30053: 30048: 30046: 30043: 30041: 30038: 30033: 30031: 30028: 30026: 30021: 30014: 30012: 30009: 30002: 29997: 29992: 29989: 29984: 29981: 29976: 29971: 29969: 29966: 29964: 29961: 29959: 29956: 29954: 29951: 29948: 29947: 29932: 29924: 29915: 29878: 29862: 29729: 29721: 29720: 29716: 29714: 29705: 29696: 29694: 29685: 29683: 29681: 29679: 29656: 29654: 29652: 29650: 29648: 29646: 29644: 29642: 29597: 29596: 29592: 29590: 29581: 29572: 29570: 29561: 29559: 29557: 29555: 29433: 29432: 29428: 29412: 29410: 29408: 29406: 29397: 29395: 29393: 29264: 29263: 29260: 29257: 29255: 29253: 29209: 29207: 29163: 29161: 29159: 29157: 29099: 29096: 29095: 29091: 29089: 29087: 29050: 29048: 29046: 29044: 29042: 29040: 29038: 28937: 28936: 28932: 28930: 28928: 28891: 28889: 28887: 28885: 28883: 28881: 28879: 28778: 28777: 28773: 28771: 28769: 28732: 28730: 28728: 28726: 28724: 28722: 28720: 28619: 28618: 28615: 28612: 28610: 28608: 28564: 28562: 28560: 28558: 28556: 28554: 28531: 28459: 28456: 28455: 28452: 28449: 28447: 28445: 28401: 28399: 28397: 28388: 28386: 28356: 28291: 28288: 28287: 28284: 28283:Balanced hull 28281: 28279: 28277: 28233: 28231: 28229: 28185: 28113: 28112:Balanced hull 28110: 28109: 28106: 28105:Balanced core 28103: 28101: 28099: 28083: 28081: 28072: 28070: 28068: 28066: 28064: 28062: 27955: 27954:Balanced core 27952: 27951: 27948: 27945: 27943: 27941: 27925: 27923: 27914: 27912: 27910: 27908: 27892: 27827: 27797: 27794: 27793: 27790: 27787: 27785: 27783: 27781: 27751: 27749: 27747: 27619: 27616: 27615: 27611: 27560: 27544: 27422: 27421: 27417: 27218: 27217: 27213: 27162: 27019: 27018: 27003: 27000: 26997: 26990: 26988: 26986: 26984: 26982: 26980: 26978: 26969: 26967: 26965: 26963: 26947: 26945: 26943: 26941: 26932: 26855: 26852: 26849: 26842: 26841: 26837: 26828: 26826: 26817: 26815: 26806: 26804: 26802: 26800: 26798: 26796: 26688: 26687: 26684: 26666: 26658: 26649: 26647: 26638: 26636: 26627: 26625: 26623: 26621: 26619: 26617: 26510: 26492: 26484: 26483: 26468: 26465: 26462: 26455: 26446: 26430: 26428: 26419: 26410: 26408: 26275: 26272: 26269: 26262: 26261: 26257: 26255: 26253: 26216: 26073: 26072: 26069: 26051: 26043: 26041: 26039: 26002: 25860: 25842: 25834: 25833: 25818: 25815: 25812: 25805: 25754: 25745: 25708: 25610: 25607: 25604: 25597: 25596: 25592: 25590: 25587: 25585: 25582: 25580: 25577: 25562: 25554: 25549: 25547: 25544: 25542: 25539: 25537: 25534: 25532: 25527: 25525: 25520: 25518: 25515: 25513: 25510: 25505: 25503: 25500: 25498: 25493: 25486: 25484: 25481: 25474: 25469: 25464: 25461: 25456: 25453: 25448: 25443: 25441: 25438: 25436: 25433: 25431: 25428: 25426: 25423: 25422: 25406: 25386: 25383: 25364: 25361: 25349: 25343: 25329: 25326: 25323: 25314: 25300: 25286: 25282: 25280: 25275: 25273: 25269: 25266: 25262: 25261: 25255: 25241: 25238: 25235: 25215: 25195: 25175: 25172: 25169: 25162:The elements 25149: 25145: 25140: 25136: 25130: 25127: 25120: 25116: 25113: 25110: 25107: 25104: 25100: 25096: 25087: 25081: 25078: 25075: 25072: 25069: 25063: 25043: 25040: 25037: 25017: 25011: 25008: 25002: 24999: 24996: 24990: 24987: 24984: 24981: 24975: 24969: 24966: 24960: 24954: 24951: 24948: 24945: 24939: 24936: 24917: 24914: 24911: 24908: 24888: 24885: 24879: 24853: 24847: 24827: 24818: 24815: 24812: 24806: 24803: 24800: 24797: 24794: 24788: 24779: 24773: 24770: 24767: 24764: 24761: 24755: 24752: 24733: 24730: 24727: 24724: 24704: 24701: 24698: 24690: 24671: 24665: 24656: 24654: 24652: 24645: 24642: 24641: 24637: 24624: 24621: 24601: 24598: 24589: 24576: 24570: 24561: 24555: 24552: 24546: 24543: 24540: 24537: 24514: 24505: 24499: 24496: 24490: 24487: 24484: 24481: 24461: 24458: 24455: 24452: 24449: 24446: 24426: 24423: 24420: 24417: 24414: 24394: 24391: 24388: 24385: 24382: 24379: 24373: 24370: 24364: 24361: 24347: 24344: 24341: 24338: 24335: 24332: 24329: 24326: 24323: 24317: 24314: 24311: 24305: 24302: 24288: 24285: 24282: 24279: 24276: 24273: 24270: 24264: 24261: 24258: 24252: 24232: 24212: 24209: 24206: 24203: 24200: 24191: 24175: 24160: 24159:balanced hull 24144: 24138: 24135: 24132: 24126: 24123: 24117: 24111: 24108: 24105: 24099: 24090: 24087: 24084: 24078: 24075: 24055: 24049: 24046: 24043: 24037: 24034: 24014: 24011: 24003: 24002:balanced hull 23987: 23984: 23981: 23973: 23968: 23955: 23952: 23949: 23946: 23943: 23923: 23920: 23917: 23911: 23908: 23905: 23899: 23896: 23893: 23873: 23870: 23867: 23864: 23856: 23853: 23850: 23830: 23827: 23824: 23821: 23818: 23815: 23812: 23806: 23803: 23800: 23777: 23768: 23751: 23748: 23745: 23742: 23736: 23733: 23714: 23708: 23705: 23702: 23699: 23693: 23690: 23670: 23660: 23646: 23626: 23623: 23620: 23617: 23614: 23611: 23591: 23588: 23585: 23576: 23575: 23571: 23569: 23565: 23549: 23546: 23543: 23533: 23530: 23526: 23522: 23519: 23499: 23491: 23490:nowhere dense 23487: 23471: 23451: 23442: 23428: 23420: 23404: 23396: 23380: 23371: 23369: 23368:nowhere dense 23365: 23364:nowhere dense 23361: 23356: 23355: 23346: 23342: 23340: 23334: 23331: 23330: 23326: 23313: 23309: 23302: 23299: 23296: 23290: 23285: 23281: 23277: 23271: 23268: 23265: 23259: 23254: 23250: 23245: 23241: 23238: 23232: 23220: 23217: 23214: 23208: 23205: 23199: 23194: 23190: 23166: 23163: 23160: 23154: 23149: 23145: 23121: 23118: 23115: 23109: 23104: 23100: 23079: 23076: 23073: 23070: 23067: 23047: 23041: 23038: 23035: 23029: 23024: 23020: 23016: 23010: 23007: 23004: 22998: 22993: 22989: 22982: 22970: 22967: 22964: 22958: 22955: 22949: 22944: 22940: 22919: 22899: 22879: 22876: 22873: 22870: 22867: 22844: 22838: 22835: 22832: 22826: 22821: 22817: 22808: 22804: 22790: 22784: 22781: 22778: 22772: 22767: 22763: 22754: 22740: 22734: 22731: 22728: 22722: 22717: 22713: 22704: 22703: 22702: 22699: 22698: 22694: 22681: 22678: 22658: 22638: 22635: 22632: 22629: 22626: 22623: 22618: 22614: 22593: 22568: 22565: 22542: 22534: 22531: 22528: 22525: 22522: 22519: 22516: 22510: 22504: 22498: 22495: 22490: 22486: 22465: 22462: 22415: 22412: 22409: 22394: 22391: 22387: 22380: 22374: 22371: 22366: 22362: 22342: 22339: 22336: 22333: 22324: 22310: 22303:moreover, if 22290: 22287: 22267: 22264: 22259: 22255: 22251: 22248: 22245: 22240: 22237: 22234: 22230: 22209: 22206: 22203: 22200: 22180: 22171: 22158: 22152: 22146: 22141: 22137: 22133: 22127: 22121: 22116: 22112: 22091: 22088: 22085: 22062: 22059: 22056: 22050: 22045: 22041: 22034: 22027: 22020: 22014: 22009: 22005: 22001: 21995: 21989: 21984: 21980: 21975: 21971: 21966: 21962: 21944: 21941: 21938: 21932: 21927: 21923: 21916: 21907: 21901: 21896: 21892: 21888: 21882: 21876: 21871: 21867: 21846: 21843: 21840: 21837: 21834: 21825: 21811: 21808: 21803: 21799: 21778: 21775: 21770: 21766: 21762: 21759: 21756: 21753: 21750: 21742: 21739: 21736: 21727: 21714: 21708: 21705: 21699: 21694: 21690: 21686: 21682: 21678: 21675: 21670: 21666: 21661: 21656: 21652: 21649: 21646: 21642: 21621: 21618: 21615: 21607: 21604: 21601: 21581: 21561: 21558: 21555: 21535: 21532: 21529: 21524: 21520: 21516: 21513: 21507: 21504: 21498: 21493: 21489: 21465: 21462: 21454: 21451: 21448: 21445: 21425: 21405: 21399: 21396: 21390: 21385: 21381: 21377: 21374: 21371: 21366: 21362: 21358: 21338: 21318: 21315: 21312: 21303: 21289: 21286: 21279:is closed in 21266: 21246: 21239:is closed in 21226: 21223: 21220: 21200: 21180: 21160: 21140: 21130: 21128: 21123: 21122: 21118: 21105: 21102: 21099: 21096: 21093: 21090: 21070: 21050: 21047: 21027: 21007: 20987: 20967: 20958: 20944: 20924: 20904: 20884: 20864: 20854: 20834: 20825: 20820: 20816: 20811: 20807: 20801: 20781: 20778: 20773: 20769: 20760: 20744: 20724: 20716: 20713:. Thus, in a 20712: 20707: 20706: 20697: 20684: 20678: 20672: 20667: 20663: 20659: 20656: 20653: 20650: 20627: 20621: 20616: 20612: 20608: 20605: 20585: 20577: 20561: 20553: 20534: 20528: 20523: 20519: 20498: 20478: 20475: 20472: 20463: 20460: 20457: 20434: 20431: 20422: 20416: 20411: 20407: 20403: 20400: 20380: 20357: 20351: 20346: 20342: 20321: 20301: 20295: 20289: 20284: 20280: 20271: 20252: 20246: 20241: 20237: 20233: 20230: 20227: 20224: 20201: 20195: 20190: 20186: 20182: 20179: 20176: 20170: 20147: 20124: 20118: 20113: 20109: 20088: 20079: 20077: 20058: 20052: 20047: 20043: 20038: 20034: 20028: 20025: 20022: 20015: 19999: 19996: 19989:is closed in 19976: 19956: 19952: 19948: 19928: 19908: 19878: 19869: 19864: 19860: 19855: 19851: 19845: 19825: 19818:The image if 19817: 19802: 19799: 19794: 19790: 19782: 19764: 19758: 19753: 19749: 19745: 19742: 19735: 19732: 19716: 19709: 19708: 19707: 19693: 19690: 19670: 19667: 19664: 19641: 19635: 19630: 19626: 19617: 19601: 19591: 19587: 19573: 19570: 19564: 19558: 19553: 19549: 19545: 19542: 19522: 19502: 19499: 19496: 19476: 19473: 19468: 19464: 19460: 19454: 19448: 19443: 19439: 19435: 19432: 19413: 19410: 19407: 19404: 19395: 19393: 19389: 19370: 19364: 19359: 19355: 19351: 19348: 19345: 19342: 19339: 19334: 19330: 19309: 19306: 19303: 19294: 19281: 19275: 19269: 19264: 19260: 19239: 19229: 19225: 19211: 19203: 19184: 19178: 19173: 19169: 19148: 19142: 19119: 19116: 19108: 19104: 19103:compact space 19085: 19079: 19074: 19070: 19061: 19042: 19036: 19031: 19027: 19018: 18999: 18993: 18988: 18984: 18963: 18943: 18935: 18922: 18919: 18915: 18911: 18905: 18899: 18894: 18890: 18869: 18866: 18856: 18842: 18836: 18830: 18825: 18821: 18800: 18797: 18774: 18751: 18745: 18739: 18734: 18730: 18726: 18720: 18697: 18694: 18671: 18648: 18634: 18621: 18618: 18615: 18612: 18606: 18603: 18600: 18597: 18594: 18591: 18568: 18565: 18545: 18542: 18539: 18536: 18533: 18530: 18524: 18521: 18518: 18507: 18504: 18501: 18478: 18475: 18472: 18466: 18463: 18460: 18454: 18451: 18448: 18445: 18436: 18433: 18425: 18422: 18419: 18416: 18413: 18393: 18390: 18385: 18381: 18377: 18374: 18368: 18365: 18362: 18359: 18353: 18350: 18347: 18344: 18338: 18335: 18332: 18326: 18323: 18320: 18317: 18297: 18272: 18264: 18248: 18240: 18237: 18217: 18211: 18208: 18200: 18192: 18184: 18181: 18175: 18170: 18166: 18145: 18125: 18117: 18101: 18081: 18078: 18075: 18072: 18061: 18055: 18052: 18049: 18026: 18023: 18020: 18012: 18007: 18003: 17999: 17993: 17990: 17987: 17984: 17981: 17978: 17975: 17969: 17966: 17963: 17957: 17954: 17951: 17945: 17939: 17936: 17933: 17910: 17907: 17904: 17899: 17895: 17891: 17888: 17868: 17865: 17862: 17842: 17833: 17820: 17817: 17809: 17784: 17762: 17758: 17737: 17734: 17731: 17728: 17723: 17720: 17712: 17704: 17701: 17697: 17693: 17690: 17685: 17681: 17677: 17674: 17671: 17666: 17662: 17641: 17621: 17618: 17615: 17606: 17593: 17590: 17587: 17582: 17578: 17574: 17568: 17565: 17562: 17559: 17556: 17553: 17550: 17544: 17541: 17538: 17532: 17529: 17526: 17503: 17500: 17480: 17460: 17440: 17437: 17432: 17428: 17424: 17421: 17401: 17398: 17395: 17390: 17386: 17382: 17379: 17359: 17339: 17319: 17316: 17313: 17310: 17304: 17298: 17295: 17292: 17286: 17283: 17280: 17274: 17271: 17268: 17265: 17262: 17242: 17239: 17236: 17233: 17230: 17227: 17207: 17198: 17185: 17179: 17176: 17173: 17170: 17167: 17161: 17158: 17155: 17126: 17123: 17120: 17117: 17114: 17108: 17105: 17102: 17093: 17090: 17070: 17065: 17055: 17052: 17032: 17012: 17009: 17004: 17000: 16996: 16993: 16973: 16953: 16950: 16945: 16941: 16937: 16934: 16914: 16911: 16906: 16902: 16881: 16878: 16873: 16869: 16865: 16859: 16836: 16813: 16810: 16807: 16802: 16798: 16789: 16773: 16765: 16761: 16756: 16743: 16737: 16734: 16731: 16725: 16720: 16716: 16712: 16709: 16706: 16701: 16697: 16693: 16690: 16684: 16675: 16669: 16664: 16660: 16656: 16650: 16644: 16639: 16635: 16613: 16609: 16606: 16601: 16597: 16592: 16588: 16583: 16579: 16572: 16566: 16563: 16558: 16554: 16538: 16534: 16531: 16526: 16522: 16517: 16513: 16508: 16504: 16497: 16491: 16488: 16483: 16479: 16458: 16438: 16435: 16432: 16429: 16426: 16417: 16416: 16412: 16398: 16376: 16366: 16363: 16343: 16335: 16331: 16327: 16311: 16302: 16288: 16285: 16265: 16257: 16253: 16208: 16179: 16176: 16171: 16166: 16162: 16158: 16153: 16148: 16144: 16123: 16120: 16115: 16111: 16107: 16104: 16084: 16081: 16078: 16075: 16055: 16052: 16049: 16046: 16026: 16023: 15990: 15977: 15971: 15968: 15965: 15942: 15934: 15930: 15906: 15903: 15900: 15877: 15857: 15835: 15832: 15829: 15824: 15819: 15815: 15811: 15806: 15801: 15797: 15776: 15773: 15770: 15750: 15747: 15727: 15707: 15698: 15684: 15664: 15644: 15637:assumed that 15634: 15620: 15617: 15612: 15608: 15601: 15592: 15589: 15583: 15577: 15574: 15571: 15568: 15565: 15556: 15550: 15544: 15535: 15532: 15526: 15520: 15517: 15514: 15511: 15508: 15499: 15493: 15490: 15485: 15481: 15460: 15452: 15434: 15430: 15426: 15423: 15403: 15395: 15392: 15376: 15367: 15354: 15351: 15331: 15324: 15308: 15305: 15302: 15279: 15276: 15270: 15267: 15264: 15258: 15255: 15252: 15249: 15246: 15237: 15228: 15225: 15219: 15213: 15210: 15207: 15204: 15201: 15195: 15192: 15172: 15163: 15149: 15146: 15143: 15123: 15120: 15117: 15097: 15077: 15074: 15071: 15051: 15031: 15011: 15008: 15005: 14997: 14993: 14989: 14986:Every TVS is 14984: 14983: 14974: 14960: 14937: 14934: 14931: 14925: 14920: 14916: 14912: 14909: 14906: 14901: 14897: 14876: 14873: 14868: 14864: 14860: 14857: 14854: 14849: 14845: 14824: 14821: 14818: 14796: 14792: 14786: 14782: 14778: 14775: 14772: 14767: 14763: 14757: 14753: 14744: 14728: 14725: 14716: 14713: 14699: 14679: 14676: 14673: 14666: 14661: 14647: 14644: 14641: 14622: 14619: 14616: 14613: 14594: 14591: 14588: 14585: 14566: 14563: 14560: 14555: 14551: 14530: 14527: 14522: 14518: 14497: 14489: 14473: 14470: 14450: 14430: 14422: 14418: 14416: 14412: 14407: 14406: 14389: 14386: 14366: 14363: 14360: 14350: 14340: 14326: 14322: 14319: 14290: 14287: 14283: 14280: 14259: 14251: 14247: 14222: 14219: 14198: 14185: 14168: 14165: 14156: 14150: 14146: 14142: 14117: 14097: 14094: 14072: 14043: 14028: 14025: 14022: 14006: 14001: 13998: 13995: 13991: 13983: 13966: 13962: 13939: 13935: 13926: 13925:inner product 13922: 13919: 13905: 13896: 13869: 13860: 13845: 13841: 13832:reflexive is 13829: 13827: 13824: 13821: 13817: 13801: 13798: 13778: 13772: 13769: 13766: 13763: 13741: 13737: 13728: 13724: 13723:Banach spaces 13721: 13718: 13714: 13710: 13706: 13705:Normed spaces 13703: 13700: 13696: 13693: 13690: 13686: 13682: 13678: 13674: 13671: 13656: 13645: 13634: 13627: 13613: 13610: 13607: 13604: 13598: 13595: 13587: 13582: 13579: 13576: 13568: 13528: 13519: 13516: 13514: 13510: 13506: 13502: 13499: 13496: 13492: 13488: 13485: 13482: 13478: 13474: 13471: 13468: 13464: 13461: 13447: 13444: 13441: 13438: 13435: 13415: 13412: 13409: 13406: 13384: 13380: 13371: 13367: 13363: 13359: 13355: 13352: 13338: 13335: 13332: 13324: 13308: 13304: 13294: 13290: 13287: 13286: 13285: 13282: 13280: 13276: 13265: 13263: 13259: 13243: 13223: 13203: 13196: 13180: 13172: 13167: 13153: 13130: 13124: 13104: 13090: 13077: 13074: 13064: 13050: 13042: 13038: 13032: 13030: 13014: 13006: 12990: 12981: 12980: 12954: 12934: 12914: 12911: 12908: 12905: 12902: 12899: 12896: 12876: 12873: 12853: 12850: 12847: 12844: 12841: 12831: 12817: 12814: 12811: 12808: 12805: 12802: 12782: 12774: 12760: 12757: 12737: 12717: 12709: 12706: 12690: 12682: 12674: 12671: 12668: 12665: 12662: 12659: 12631: 12625: 12617: 12611: 12600: 12567: 12564: 12556: 12544: 12528: 12523: 12496: 12493: 12473: 12465: 12464: 12460: 12446: 12426: 12423: 12420: 12417: 12414: 12411: 12408: 12400: 12399: 12397: 12384: 12377: 12373: 12372:homeomorphism 12355: 12351: 12330: 12327: 12307: 12304: 12301: 12295: 12287: 12283: 12263: 12233: 12230: 12210: 12207: 12204: 12201: 12198: 12195: 12175: 12155: 12152: 12147: 12143: 12139: 12136: 12116: 12096: 12093: 12090: 12087: 12084: 12081: 12071: 12057: 12037: 12034: 12031: 12028: 12025: 12022: 12019: 12014: 12010: 11989: 11969: 11949: 11924: 11919: 11915: 11894: 11888: 11885: 11860: 11857: 11837: 11817: 11797: 11789: 11786: 11763: 11755: 11751: 11747: 11744: 11741: 11721: 11701: 11698: 11691:for any such 11678: 11670: 11667: 11647: 11644: 11641: 11635: 11627: 11623: 11602: 11591: 11586: 11582: 11561: 11558: 11555: 11552: 11549: 11546: 11526: 11479: 11469: 11466: 11463: 11458: 11453: 11449: 11445: 11423: 11420: 11417: 11414: 11411: 11384: 11381: 11378: 11373: 11369: 11364: 11360: 11355: 11333: 11313: 11310: 11307: 11304: 11301: 11281: 11256: 11253: 11233: 11230: 11227: 11207: 11182: 11162: 11142: 11139: 11136: 11113: 11110: 11102: 11094: 11086: 11083: 11077: 11072: 11068: 11013:Proof outline 11005: 11001: 11000:absorbing set 10963: 10933: 10932: 10930: 10914: 10894: 10891: 10888: 10885: 10882: 10874: 10860: 10850: 10848: 10829: 10823: 10820: 10800: 10797: 10794: 10791: 10788: 10780: 10779: 10778: 10774: 10760: 10740: 10737: 10734: 10731: 10728: 10708: 10705: 10702: 10699: 10696: 10676: 10657: 10654: 10646: 10642: 10624: 10597: 10592: 10576: 10573: 10559: 10537: 10510: 10502: 10484: 10457: 10437: 10434: 10431: 10428: 10425: 10383: 10375: 10282: 10280: 10276: 10272: 10262: 10248: 10245: 10242: 10214: 10211: 10208: 10205: 10202: 10196: 10193: 10180: 10176: 10172: 10168: 10164: 10148: 10120: 10114: 10107:converges to 10091: 10083: 10079: 10059: 10056: 10036: 10016: 10008: 9991: 9987: 9966: 9963: 9960: 9940: 9932: 9928: 9905: 9902: 9899: 9894: 9889: 9885: 9881: 9858: 9845: 9841: 9813: 9810: 9802: 9786: 9783: 9762: 9746: 9738: 9687: 9684: 9664: 9656: 9652: 9642: 9640: 9635: 9633: 9628: 9612: 9608: 9599: 9583: 9562: 9556: 9552: 9548: 9545: 9541: 9518: 9514: 9493: 9473: 9453: 9450: 9442: 9422: 9419: 9397: 9393: 9383: 9382: 9378: 9365: 9362: 9359: 9356: 9353: 9345: 9341: 9338: 9335: 9332: 9328: 9312: 9292: 9266: 9263: 9253: 9249: 9248: 9242: 9241: 9237: 9223: 9190: 9187: 9167: 9159: 9155: 9134: 9112: 9108: 9097: 9094: 9091: 9087: 9078: 9064: 9061: 9041: 9034: 9030: 9015: 9007: 8991: 8983: 8968: 8948: 8928: 8920: 8917: 8914: 8910: 8909: 8908: 8906: 8902: 8899: 8895: 8891: 8886: 8884: 8883: 8877: 8864: 8861: 8858: 8855: 8835: 8832: 8829: 8809: 8806: 8801: 8797: 8793: 8788: 8784: 8763: 8743: 8740: 8720: 8712: 8694: 8691: 8688: 8683: 8678: 8674: 8670: 8665: 8660: 8656: 8647: 8643: 8638: 8636: 8632: 8628: 8624: 8620: 8616: 8612: 8608: 8604: 8599: 8586: 8583: 8563: 8555: 8536: 8533: 8530: 8519: 8518: 8511: 8501: 8488: 8485: 8463: 8448: 8422: 8418: 8415: 8388: 8386: 8385: 8379: 8377: 8375: 8370: 8364: 8362: 8354: 8335: 8332: 8329: 8319: 8305: 8302: 8282: 8279: 8272:the topology 8259: 8239: 8231: 8227: 8224: 8205: 8202: 8199: 8189: 8175: 8172: 8164: 8161: 8145: 8138:is closed in 8122: 8111: 8110: 8109: 8092: 8089: 8086: 8071: 8063:Metrizability 8060: 8047: 8044: 8024: 8004: 7984: 7981: 7961: 7953: 7948: 7935: 7932: 7912: 7892: 7885:: the subset 7884: 7868: 7848: 7845: 7842: 7839: 7836: 7816: 7796: 7776: 7756: 7747: 7733: 7730: 7727: 7724: 7704: 7684: 7676: 7675: 7658: 7638: 7629: 7628: 7624: 7622: 7606: 7603: 7595: 7594:balanced sets 7579: 7571: 7567: 7566:absorbing set 7548: 7545: 7542: 7539: 7536: 7516: 7513: 7510: 7507: 7504: 7496: 7495: 7491: 7476: 7468: 7467: 7462: 7461: 7456: 7442: 7439: 7436: 7433: 7430: 7410: 7407: 7404: 7398: 7395: 7392: 7386: 7383: 7380: 7372: 7371: 7367: 7353: 7350: 7342: 7317: 7314: 7311: 7308: 7300: 7296: 7295: 7291: 7277: 7274: 7271: 7263: 7238: 7218: 7215: 7212: 7209: 7189: 7186: 7183: 7163: 7160: 7157: 7154: 7134: 7126: 7125: 7121: 7120: 7119: 7105: 7085: 7074:Local notions 7071: 7057: 7037: 7017: 7009: 6993: 6990: 6987: 6967: 6964: 6961: 6941: 6938: 6933: 6929: 6925: 6922: 6919: 6913: 6910: 6907: 6901: 6896: 6892: 6871: 6868: 6865: 6862: 6842: 6839: 6836: 6827: 6813: 6810: 6807: 6801: 6781: 6775: 6755: 6752: 6749: 6746: 6726: 6723: 6717: 6697: 6691: 6671: 6668: 6665: 6641: 6638: 6633: 6629: 6620: 6619:homeomorphism 6604: 6601: 6596: 6592: 6585: 6565: 6559: 6539: 6536: 6533: 6528: 6524: 6515: 6514: 6513: 6505: 6497: 6484: 6481: 6461: 6457: 6453: 6434: 6428: 6405: 6385: 6381: 6377: 6357: 6337: 6329: 6313: 6309: 6305: 6285: 6282: 6279: 6276: 6269: 6253: 6244: 6242: 6238: 6234: 6218: 6215: 6207: 6206:abelian group 6197: 6195: 6179: 6176: 6173: 6162: 6138: 6135: 6132: 6097: 6096: 6083: 6048: 6027: 6024: 6016: 5973: 5970: 5950: 5908: 5899: 5896: 5881: 5874: 5860: 5854: 5851: 5848: 5837: 5799: 5754: 5751: 5748: 5725: 5722: 5709: 5682: 5678: 5674: 5671: 5661: 5656: 5652: 5647: 5643: 5635: 5632: 5624: 5620: 5605: 5596: 5556: 5552: 5548: 5543: 5539: 5516: 5512: 5508: 5503: 5499: 5473: 5468: 5464: 5443: 5435: 5430: 5426: 5422: 5417: 5413: 5382: 5378: 5374: 5370: 5332: 5329: 5284: 5274: 5271: 5266: 5260: 5256: 5252: 5247: 5243: 5238: 5233: 5228: 5224: 5220: 5215: 5211: 5199: 5196: 5182: 5172: 5169: 5164: 5158: 5154: 5150: 5145: 5141: 5136: 5131: 5126: 5122: 5118: 5113: 5109: 5097: 5094: 5080: 5070: 5067: 5062: 5056: 5052: 5048: 5044: 5039: 5034: 5030: 5026: 5015: 5012: 4998: 4993: 4989: 4978: 4975: 4971: 4967: 4962: 4958: 4954: 4951: 4940: 4937: 4923: 4919: 4910: 4907: 4904: 4899: 4895: 4890: 4886: 4881: 4877: 4873: 4870: 4859: 4856: 4842: 4839: 4817: 4813: 4809: 4804: 4800: 4777: 4773: 4769: 4764: 4760: 4734: 4730: 4722: 4705: 4701: 4693: 4692: 4691: 4677: 4657: 4630: 4627: 4622: 4617: 4613: 4609: 4604: 4599: 4595: 4567: 4564: 4559: 4554: 4550: 4546: 4541: 4536: 4532: 4522: 4520: 4514: 4501: 4498: 4475: 4472: 4469: 4463: 4460: 4454: 4451: 4448: 4442: 4422: 4400: 4396: 4375: 4355: 4333: 4329: 4308: 4288: 4285: 4282: 4279: 4259: 4256: 4248: 4223: 4200: 4194: 4191: 4185: 4182: 4176: 4154: 4150: 4126: 4120: 4117: 4111: 4108: 4102: 4094: 4076: 4072: 4051: 4048: 4042: 4036: 4016: 4011: 4007: 4001: 3998: 3995: 3991: 3970: 3967: 3964: 3944: 3941: 3938: 3935: 3932: 3909: 3903: 3900: 3894: 3888: 3885: 3879: 3876: 3873: 3867: 3847: 3838: 3825: 3821: 3814: 3803: 3799: 3793: 3789: 3785: 3782: 3779: 3774: 3770: 3765: 3761: 3756: 3752: 3745: 3735: 3731: 3727: 3723: 3719: 3716: 3709: 3705: 3701: 3697: 3692: 3681: 3675: 3669: 3647: 3643: 3639: 3636: 3616: 3613: 3607: 3601: 3578: 3575: 3572: 3563: 3560: 3557: 3548: 3535: 3531: 3523: 3519: 3514: 3510: 3507: 3504: 3497: 3493: 3488: 3484: 3481: 3473: 3470: 3462: 3459: 3454: 3450: 3446: 3443: 3440: 3437: 3431: 3424: 3418: 3414: 3410: 3407: 3404: 3399: 3395: 3390: 3386: 3381: 3377: 3372: 3368: 3362: 3334: 3329: 3325: 3321: 3318: 3298: 3295: 3292: 3270: 3266: 3262: 3257: 3254: 3251: 3247: 3243: 3238: 3235: 3232: 3228: 3205: 3201: 3197: 3194: 3167: 3164: 3161: 3156: 3151: 3147: 3143: 3138: 3133: 3129: 3086: 3084: 3079: 3077: 3061: 3053: 3040: 3018: 3015: 3012: 3007: 3003: 2982: 2977: 2974: 2971: 2967: 2963: 2958: 2954: 2933: 2925: 2922: 2906: 2883: 2880: 2858: 2854: 2833: 2825: 2817: 2810: 2793: 2789: 2780: 2773: 2759: 2754: 2750: 2741: 2740: 2735: 2734: 2729: 2728: 2723: 2719: 2715: 2711: 2710: 2705: 2704: 2700: 2686: 2683: 2661: 2657: 2653: 2648: 2645: 2642: 2638: 2634: 2629: 2626: 2623: 2619: 2610: 2603: 2602: 2601: 2585: 2581: 2573:The sequence 2560: 2555: 2551: 2542: 2524: 2520: 2499: 2494: 2490: 2481: 2467: 2444: 2440: 2420: 2417: 2395: 2391: 2382: 2360: 2356: 2335: 2332: 2305: 2302: 2299: 2294: 2289: 2285: 2281: 2276: 2271: 2267: 2246: 2232: 2230: 2225: 2212: 2209: 2189: 2179: 2175: 2134: 2131: 2128: 2125: 2122: 2119: 2092: 2089: 2062: 2059: 2028: 2025: 2021: 1998: 1995: 1987: 1986: 1985: 1983: 1943: 1940: 1920: 1912: 1872: 1864: 1860: 1856: 1816: 1809:Suppose that 1796: 1794: 1790: 1789:homeomorphism 1774: 1771: 1766: 1762: 1755: 1735: 1729: 1709: 1706: 1703: 1698: 1694: 1679: 1675: 1658: 1655: 1652: 1641: 1640:neighborhoods 1625: 1622: 1619: 1599: 1596: 1593: 1584: 1581: 1578: 1555: 1549: 1546: 1543: 1535: 1519: 1516: 1513: 1493: 1490: 1470: 1462: 1443: 1440: 1437: 1410: 1399: 1386: 1383: 1380: 1377: 1374: 1371: 1344: 1341: 1321: 1311: 1308: 1301:if for every 1298: 1273:A collection 1271: 1270: 1266: 1264: 1260: 1256: 1255:metrizability 1252: 1247: 1245: 1241: 1240:homeomorphism 1238: 1228: 1220: 1212: 1211:(abbreviated 1204: 1201: 1199: 1195: 1188: 1182: 1177:TVS embedding 1174: 1173:(abbreviated 1166: 1163: 1150: 1147: 1139: 1136:is given the 1123: 1120: 1100: 1094: 1088: 1085: 1082: 1079: 1076: 1068: 1052: 1049: 1046: 1040: 1037: 1034: 1014: 1008: 1005: 1002: 995: 992: 985: 980: 972: 971:(abbreviated 964: 961: 959: 933: 907: 891: 798: 793: 792: 788: 786: 782: 772: 770: 766: 762: 743: 735: 730: 729: 725: 723: 718: 705: 702: 694: 686: 678: 674: 658: 652: 649: 641: 638: 618: 612: 609: 606: 603: 599: 595: 591: 583: 579: 575: 550: 546: 530: 522: 518: 510: 505: 496: 494: 490: 485: 483: 479: 478:Montel spaces 475: 474:distributions 471: 467: 463: 459: 449: 447: 443: 442:Banach spaces 423: 420: 378: 375: 372: 369: 360: 357: 354: 331: 325: 322: 314: 311: 303: 300: 284: 281: 278: 269: 266: 263: 240: 234: 231: 228: 225: 221: 217: 213: 205: 204: 203: 201: 197: 193: 186:Normed spaces 178: 164: 152: 127: 123: 118: 116: 112: 108: 103: 101: 97: 93: 92:Banach spaces 89: 85: 81: 77: 73: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 36220:Polynomially 36149:Grothendieck 36142:tame FrĂ©chet 36092:Bornological 35952:Linear cone 35944:Convex cone 35919:Banach disks 35861:Sesquilinear 35716:Main results 35706:Vector space 35700: 35661:Completeness 35656:Banach space 35640: 35561:Balanced set 35535:Distribution 35473:Applications 35326:Krein–Milman 35311:Closed graph 35228: 35077: 35043: 35013: 34975: 34956: 34926: 34904: 34872: 34840: 34807: 34765: 34731: 34718:20 September 34716:. Retrieved 34711: 34669: 34639: 34612: 34578: 34543: 34512: 34477: 34447: 34416: 34408:Bibliography 34393: 34388:, p. 6. 34381: 34357:Jarchow 1981 34352: 34340: 34328: 34284: 34272: 34265:Jarchow 1981 34209: 34174: 34152:Jarchow 1981 34147: 34105: 34093: 34081: 34069: 34025: 34013: 33970:. Retrieved 33968:. 2016-04-22 33965: 33956: 33944: 33915: 33903: 33891: 33880:, retrieved 33869: 33860: 33848: 33836: 33810:, p. 8. 33803: 33774: 33762: 33727: 33626: 33614: 33585: 33165: 32732: 32684: 31170: 31056: 30991: 30720: 30480: 30452: 30399: 30391: 30386: 30377: 30294: 30265: 30161:Normed space 30134:Banach space 30050:Sequentially 29985:Neighborhood 25522:Sequentially 25457:Neighborhood 25354:Property of 25315: 25292: 24657: 24650: 24643: 24639: 24638: 24590: 24192: 23969: 23769: 23767:also works. 23577: 23573: 23572: 23443: 23372: 23357: 23353: 23352: 23332: 23328: 23327: 22859: 22700: 22697:Closed hulls 22696: 22695: 22325: 22172: 21826: 21728: 21304: 21131: 21124: 21120: 21119: 20959: 20855: 20708: 20704: 20703: 20080: 20074:is always a 20014:quotient map 19900: 19683:of this TVS 19396: 19295: 18640: 17834: 17607: 17199: 16757: 16418: 16414: 16413: 16303: 16245:) such that 16221:(indexed by 15991: 15699: 15368: 15164: 14985: 14981: 14980: 14745:of the form 14692:of a subset 14662: 14420: 14409: 14404: 14352: 14152: 14021:Hardy spaces 13954:spaces, the 13822:of measures. 13756:spaces with 13501:Montel space 13428:but not for 13283: 13271: 13168: 13096: 12982: 12978: 12977: 12370:is a linear 11942:centered at 11015: 10956:is itself a 10450:and so that 10283: 10279:neighborhood 10268: 10161:This TVS is 9648: 9436: 9384: 9380: 9379: 9337:seminormable 9251: 9245: 9243: 9239: 9238: 9215: 9079:If a series 8981:is complete. 8887: 8880: 8878: 8710: 8639: 8607:completeness 8600: 8515: 8513: 8389: 8382: 8380: 8373: 8366: 8358: 8067: 7949: 7748: 7672: 7630: 7626: 7625: 7563: 7492: 7464: 7458: 7368: 7298: 7292: 7122: 7077: 7008:neighborhood 6828: 6657: 6503: 6245: 6203: 6099: 6070: 5900: 5894: 5727: 5723: 5622: 5621: 5380: 5376: 5372: 5368: 5299: 5198:Intersection 5197: 5095: 5013: 4938: 4858:Set of knots 4857: 4720: 4523: 4516: 3839: 3549: 3088: 3080: 3032: 2898: 2819: 2811: 2774: 2737: 2731: 2725: 2721: 2717: 2713: 2707: 2701: 2604: 2540: 2460: 2376: 2375:is called a 2238: 2231: 2227: 2149: 1798: 1685: 1677: 1568:(defined by 1401: 1272: 1268: 1267: 1259:completeness 1248: 1202: 1187:monomorphism 1185:topological 1164: 1067:open mapping 962: 958:-linear maps 794: 790: 789: 734:Walter Rudin 731: 727: 726: 719: 691:TVS topology 688: 680: 545:vector space 520: 516: 514: 486: 455: 439: 189: 151:real numbers 119: 104: 80:completeness 56:vector space 47: 43: 39: 35: 29: 36214:Quasinormed 36127:FK-AK space 36021:Linear span 36016:Convex hull 36001:Affine hull 35804:Almost open 35744:Hahn–Banach 35490:Heat kernel 35480:Hardy space 35387:Trace class 35301:Hahn–Banach 35263:Topological 34953:Lang, Serge 34398:Swartz 1992 34179:Conway 1990 33949:Swartz 1992 33882:26 February 33043:of any set 32469:is convex, 31286:belongs to 30451:is said to 30069:Bornivorous 29259:Linear span 29098:Linear span 28451:Convex hull 28290:Convex hull 25541:Bornivorous 25289:be bounded. 23419:Baire space 22805:The closed 21824:is convex. 21040:containing 20447:defined by 14665:convex hull 14488:convex hull 13725:: Complete 13509:bounded set 13362:convex sets 13093:Linear maps 12830:there are, 12588:defined by 9739:. This set 9598:Hamel basis 9435:called the 8228:There is a 8112:The origin 7251:satisfying 6794:defined by 6710:defined by 6578:defined by 5895:fundamental 4142:and if all 3083:subadditive 1982:filter base 1865:subsets of 1748:defined by 1263:normability 1140:induced by 936:continuous 767:, and even 509:translation 344:defined by 253:defined by 115:convergence 32:mathematics 36329:Categories 36254:Stereotype 36112:(DF)-space 36107:Convenient 35846:Functional 35814:Continuous 35799:Linear map 35739:F. Riesz's 35681:Linear map 35423:C*-algebra 35238:Properties 35100:1145563701 34386:Rudin 1991 34125:Rudin 1991 34062:Rudin 1991 34030:Rudin 1991 34018:Rudin 1991 34006:Rudin 1991 33972:2020-10-07 33966:What's new 33896:Rudin 1991 33853:Köthe 1983 33841:Rudin 1991 33808:Rudin 1991 33796:Rudin 1991 33607:Köthe 1983 33590:Rudin 1991 30121:Operation 29949:Operation 25593:Operation 25351:Operation 25278:be closed. 24653:-seminorms 23663:hold, let 23512:such that 21213:such that 20576:completion 20076:closed map 19230:not closed 17797:such that 16336:subset of 15870:converges 14347:See also: 14343:Properties 14135:Dual space 13791:the space 13685:ILH spaces 13358:local base 13171:hyperplane 13029:metrizable 12541:induces a 12129:such that 12002:such that 10350:and endow 10175:metrizable 9639:metrizable 8913:completion 8776:such that 8631:precompact 8554:uniformity 8223:metrizable 7829:such that 7717:such that 7202:such that 6194:metrizable 5491:such that 5379:or simply 4236:such that 2112:such that 1364:such that 1244:surjective 994:linear map 991:continuous 499:Definition 181:Motivation 36270:Uniformly 36229:Reflexive 36077:Barrelled 36073:Countably 35985:Symmetric 35883:Transpose 35397:Unbounded 35392:Transpose 35350:Operators 35279:Separable 35274:Reflexive 35259:Algebraic 35245:Barrelled 35066:316568534 35032:853623322 35012:(2006) . 34945:180577972 34730:(1987) . 34688:849801114 34631:175294365 34601:840278135 34531:144216834 34504:840293704 34476:(1983) . 34439:297140003 33876:EMS Press 33577:Citations 33558:◼ 33524:− 33506:∈ 33485:− 33467:∈ 33440:− 33422:∈ 33416:− 33308:− 33278:∈ 33233:∈ 33188:∈ 33125:∖ 33087:⁡ 33002:⁡ 32946:⁡ 32933:⊆ 32921:⁡ 32902:⊆ 32873:⁡ 32860:⊆ 32848:⁡ 32811:⁡ 32786:⁡ 32747:∈ 32706:⁡ 32616:⁡ 32579:⊆ 32568:⁡ 32531:∈ 32434:∈ 32412:− 32359:⁡ 32353:∈ 32311:− 32228:⁡ 32149:− 32118:− 32100:↦ 32074:→ 32039:∈ 32000:⁡ 31994:∩ 31966:∈ 31933:⁡ 31907:⁡ 31901:∩ 31873:⁡ 31867:∈ 31820:⁡ 31814:∈ 31788:⁡ 31782:∈ 31753:⁡ 31700:⁡ 31665:→ 31639:≠ 31594:− 31545:− 31448:− 31403:− 31384:− 31365:− 31304:⁡ 31265:− 31148:⁡ 31135:∪ 31117:⁡ 31084:⁡ 31071:∈ 31034:τ 30672:⁡ 30610:→ 30604:× 30594:⋅ 30586:⋅ 30557:⁡ 30544:× 30512:⁡ 30455:in a TVS 30427:∞ 30412:∑ 30403:A series 30289:be a TVS. 30112:Separable 30019:subspace 30007:Balanced 29995:Balanced 29979:subspace 29974:Balanced 29968:Symmetric 29953:Absorbing 26667:∩ 26493:∩ 26466:∩ 26273:∩ 26052:∪ 25843:∪ 25816:∪ 25608:∪ 25584:Separable 25491:subspace 25479:Balanced 25467:Balanced 25451:subspace 25446:Balanced 25440:Symmetric 25425:Absorbing 25327:∪ 25239:∈ 25173:∈ 25108:∈ 25073:∈ 25041:≠ 25006:‖ 25000:− 24994:‖ 24985:∈ 24964:‖ 24958:‖ 24949:∈ 24912:∈ 24883:‖ 24877:‖ 24869:denotes " 24816:− 24798:∈ 24765:∈ 24728:∈ 24702:∈ 24689:predicate 24574:∅ 24556:∪ 24547:⁡ 24541:∩ 24518:∅ 24500:∪ 24491:⁡ 24485:∩ 24456:∪ 24424:⊆ 24389:⁡ 24365:⁡ 24342:⁡ 24330:⁡ 24306:⁡ 24210:⊆ 24136:⁡ 24127:⁡ 24109:⁡ 24100:⊆ 24088:⁡ 24079:⁡ 24047:⁡ 24038:⁡ 23985:⊆ 23974:of a set 23953:≤ 23947:≤ 23921:⊆ 23909:− 23770:A subset 23700:− 23618:⊆ 23589:⊆ 23564:nonmeager 23534:∈ 23527:⋃ 23486:nonmeager 23300:⁡ 23291:⁡ 23278:∪ 23269:⁡ 23260:⁡ 23242:⁡ 23218:∪ 23209:⁡ 23200:⁡ 23164:⁡ 23155:⁡ 23119:⁡ 23110:⁡ 23077:⊆ 23039:⁡ 23030:⁡ 23008:⁡ 22999:⁡ 22959:⁡ 22950:⁡ 22877:⊆ 22836:⁡ 22827:⁡ 22782:⁡ 22773:⁡ 22732:⁡ 22723:⁡ 22630:⊆ 22624:⁡ 22526:⊆ 22511:⋂ 22505:⊇ 22496:⁡ 22478:However, 22395:∈ 22388:⋂ 22372:⁡ 22337:⊆ 22265:⁡ 22252:⊆ 22231:⋂ 22204:⊆ 22147:⁡ 22122:⁡ 22051:⁡ 22015:⁡ 21990:⁡ 21972:⁡ 21933:⁡ 21917:⊆ 21902:⁡ 21877:⁡ 21844:⊆ 21809:⁡ 21776:⁡ 21760:⊆ 21740:⊆ 21700:⁡ 21676:⁡ 21650:⁡ 21619:⁡ 21605:⁡ 21559:⊆ 21530:⁡ 21499:⁡ 21469:∅ 21449:≠ 21418:where if 21391:⁡ 21378:⊆ 21372:⁡ 21316:⊆ 21224:∩ 21100:⊆ 20826:⁡ 20805:→ 20779:⁡ 20737:of a TVS 20673:⁡ 20660:× 20654:≅ 20622:⁡ 20609:× 20529:⁡ 20470:↦ 20429:→ 20417:⁡ 20404:× 20352:⁡ 20290:⁡ 20247:⁡ 20196:⁡ 20183:∩ 20119:⁡ 20053:⁡ 20032:→ 19870:⁡ 19849:→ 19800:⁡ 19759:⁡ 19668:⊆ 19636:⁡ 19588:arbitrary 19559:⁡ 19500:⊆ 19474:⁡ 19461:⊆ 19449:⁡ 19408:⊆ 19365:⁡ 19340:⁡ 19307:⊆ 19270:⁡ 19179:⁡ 19080:⁡ 19037:⁡ 18994:⁡ 18923:∈ 18916:⋂ 18900:⁡ 18831:⁡ 18740:⁡ 18616:⁡ 18610:∖ 18604:⁡ 18598:∈ 18572:∞ 18569:≠ 18540:⁡ 18534:⊆ 18476:⊆ 18423:⁡ 18417:∈ 18360:− 18348:⁡ 18321:⁡ 18263:symmetric 18241:∩ 18185:∈ 18065:∅ 18024:≠ 18013:⁡ 18000:⊆ 17991:≤ 17967:− 17905:⁡ 17892:∈ 17866:⊆ 17735:⊆ 17698:⋃ 17678:⊆ 17672:⁡ 17619:⊆ 17588:⁡ 17575:⊆ 17542:− 17516:that is, 17438:⁡ 17425:∈ 17396:⁡ 17383:∈ 17314:⁡ 17305:⊆ 17296:⁡ 17284:− 17269:⁡ 17237:≤ 17124:≥ 17010:⁡ 16997:∈ 16951:⁡ 16938:∈ 16912:⁡ 16879:⁡ 16866:∪ 16829:in a TVS 16817:∅ 16814:≠ 16808:⁡ 16726:⁡ 16713:⊆ 16707:⁡ 16685:⊆ 16670:⁡ 16645:⁡ 16607:⁡ 16589:⁡ 16564:⁡ 16532:⁡ 16514:⁡ 16489:⁡ 16436:⊆ 16334:absorbing 16263:→ 16258:∙ 16180:∈ 16149:∙ 16121:⁡ 16108:∈ 16079:∈ 16050:⊆ 15972:τ 15940:→ 15935:∙ 15907:ν 15833:∈ 15802:∙ 15777:ν 15774:⊆ 15771:τ 15728:ν 15708:τ 15618:⁡ 15602:⊆ 15590:≤ 15569:∈ 15557:⊆ 15545:⊆ 15512:∈ 15500:⊆ 15491:⁡ 15396:in a TVS 15391:absorbing 15306:∈ 15295:for some 15268:− 15250:∈ 15205:∈ 15147:− 15121:⊆ 15009:⊆ 14988:connected 14926:∈ 14910:… 14874:∈ 14858:… 14822:≥ 14776:⋯ 14677:⁡ 14645:⁡ 14617:⁡ 14589:⁡ 14561:⁡ 14528:⁡ 14379:of a TVS 14364:⊆ 14294:→ 14288:× 14227:→ 13901:∞ 13874:∞ 13776:∞ 13773:≤ 13767:≤ 13673:LF-spaces 13635:ℓ 13605:− 13599:∈ 13583:ℓ 13573:‖ 13566:‖ 13533:∞ 13410:≥ 12906:⁡ 12851:⁡ 12812:≥ 12806:⁡ 12675:⁡ 12663:⁡ 12571:→ 12424:≥ 12412:⁡ 12385:◼ 12234:⊆ 12205:∈ 12199:≠ 12140:⊆ 12091:∈ 12085:≠ 12032:≠ 12026:⊆ 12020:⋅ 11925:⊆ 11892:→ 11886:× 11790:⊆ 11615:given by 11600:→ 11556:∈ 11550:≠ 11480:⊆ 11475:∞ 11421:∈ 11415:≠ 11390:∞ 11326:whenever 11305:⋅ 11257:⊆ 11231:⊆ 11087:∈ 10886:⁡ 10792:⁡ 10775:Hausdorff 10738:≠ 10732:⁡ 10700:⁡ 10575:Hausdorff 10435:⁡ 10246:≠ 10215:∈ 10167:Hausdorff 10007:converges 9964:∈ 9911:∞ 9696:→ 9609:τ 9553:τ 9515:τ 9394:τ 9357:⁡ 9344:Hausdorff 9270:∅ 9165:→ 9160:∙ 9103:∞ 9088:∑ 8859:≥ 8833:≥ 8822:whenever 8807:∈ 8794:− 8692:∈ 8661:∙ 8619:Tychonoff 8564:τ 8537:τ 8520:on a TVS 8421:Hausdorff 8412:be a non- 8376:-seminorm 8367:A TVS is 8336:τ 8280:τ 8206:τ 8160:countable 8093:τ 7883:seminorms 7840:⊆ 7728:⊆ 7631:A subset 7537:− 7511:⊆ 7505:− 7494:symmetric 7440:≤ 7434:≤ 7408:⊆ 7396:− 7351:≤ 7315:⊆ 7272:≤ 7216:∈ 7158:∈ 7124:absorbing 7078:A subset 6965:∈ 6939:⁡ 6902:⁡ 6866:⊆ 6840:∈ 6808:− 6805:↦ 6779:→ 6753:− 6721:↦ 6695:→ 6669:≠ 6639:≠ 6621:, but if 6589:↦ 6563:→ 6534:∈ 6280:⊆ 6216:− 6177:τ 6163:τ 6139:τ 6049:τ 5974:⁡ 5882:τ 5855:τ 5755:τ 5683:∙ 5675:⁡ 5662:∈ 5657:∙ 5648:⋃ 5636:⁡ 5606:⊆ 5595:prefilter 5557:∙ 5549:⊆ 5544:∙ 5517:∙ 5509:⊆ 5504:∙ 5474:∈ 5469:∙ 5436:∈ 5431:∙ 5418:∙ 5373:downwards 5275:∈ 5253:∩ 5229:∙ 5221:∩ 5216:∙ 5173:∈ 5127:∙ 5114:∙ 5071:∈ 5035:∙ 4979:∈ 4972:⋂ 4963:∙ 4955:⁡ 4911:∈ 4882:∙ 4874:⁡ 4810:⊆ 4778:∙ 4770:⊆ 4765:∙ 4735:∙ 4706:∙ 4631:∈ 4600:∙ 4568:∈ 4537:∙ 4473:− 4401:∙ 4283:∈ 4257:≤ 4192:≤ 4109:− 3999:≥ 3992:⋂ 3942:∈ 3886:≤ 3804:∈ 3783:… 3757:∙ 3728:− 3720:⋯ 3702:− 3567:→ 3508:⋯ 3485:∈ 3460:≥ 3441:≥ 3408:… 3382:∙ 3322:∈ 3296:≥ 3263:⊆ 3198:∈ 3173:∞ 3134:∙ 2975:− 2921:absorbing 2859:∙ 2826:in a TVS 2794:∙ 2733:barrelled 2727:symmetric 2709:absorbing 2654:⊆ 2607:Summative 2600:is/is a: 2586:∙ 2556:∙ 2541:beginning 2495:∙ 2396:∙ 2361:∙ 2311:∞ 2272:∙ 2182:basis at 2129:⊆ 2093:∈ 2063:∈ 2024:absorbing 1999:∈ 1863:absorbing 1855:non-empty 1759:↦ 1733:→ 1704:∈ 1659:τ 1623:× 1591:↦ 1553:→ 1547:× 1517:× 1471:τ 1381:⊆ 1345:∈ 1312:∈ 1194:injective 1080:⁡ 1050:⁡ 1044:→ 1012:→ 932:morphisms 781:separable 775:separated 769:Tychonoff 765:Hausdorff 656:→ 650:× 639:⋅ 616:→ 610:× 600:⋅ 592:⋅ 493:subfields 440:Thus all 373:⋅ 367:↦ 329:→ 323:× 312:⋅ 276:↦ 238:→ 232:× 222:⋅ 214:⋅ 107:functions 36314:Category 36265:Strictly 36239:Schwartz 36179:LF-space 36174:LB-space 36132:FK-space 36102:Complete 36082:BK-space 36007:Relative 35954:(subset) 35946:(subset) 35873:Seminorm 35856:Bilinear 35599:Category 35411:Algebras 35293:Theorems 35250:Complete 35219:Schwartz 35165:glossary 35076:(2020). 35048:Elsevier 34955:(1972). 34925:(1979). 34903:(1966). 34869:(1973). 34859:30593138 34832:18412261 34806:(1988). 34792:21195908 34764:(1990). 34754:17499190 34706:(1988). 34668:(2013). 34658:24909067 34611:(1996). 34567:21163277 34541:(1991). 32891:Because 32209:The set 31570:so that 30453:converge 30128:See also 30052:Complete 30045:Complete 29958:Balanced 27947:Interior 27796:Interior 26679: of 26505: of 26064: of 25855: of 25524:Complete 25517:Complete 25430:Balanced 24450:∉ 23936:for all 23373:Suppose 20550:has the 19202:subspace 18764:Because 18116:balanced 16788:balanced 16415:Interior 16391:) or if 16068:and let 14411:balanced 14353:For any 14323:′ 14284:′ 14223:′ 14169:′ 13717:seminorm 13325:for all 13293:complete 13289:F-spaces 12543:seminorm 11574:the map 11129:for all 10179:normable 10173:but not 10163:complete 9927:sequence 9331:complete 9207:Examples 8890:open map 8646:sequence 8414:discrete 8384:normable 7570:balanced 7294:balanced 6552:the map 6516:for all 6268:subspace 6013:forms a 5623:Notation 5369:directed 4721:contains 4272:and all 3925:for all 3640:∉ 3311:For all 3285:for all 3078:string. 2703:Balanced 2512:The set 2480:-th knot 2020:balanced 1859:balanced 1722:the map 1299:additive 1192:, is an 934:are the 930:and the 797:category 582:topology 36279:)  36227:)  36169:K-space 36154:Hilbert 36137:FrĂ©chet 36122:F-space 36097:Brauner 36090:)  36075:)  36057:Asplund 36039:)  36009:)  35929:Bounded 35824:Compact 35809:Bounded 35746: ( 35402:Unitary 35382:Nuclear 35367:Compact 35362:Bounded 35357:Adjoint 35331:Min–max 35224:Sobolev 35209:Nuclear 35199:Hilbert 35194:FrĂ©chet 35159: ( 34496:0248498 34466:8210342 33878:, 2001 32057:Define 30079:Nowhere 30064:Bounded 30036:Convex 30034:Compact 30030:Compact 30025:bounded 30023:Totally 30000:Convex 29990:Closed 27789:Closure 27618:Closure 25551:Nowhere 25536:Bounded 25508:Convex 25506:Compact 25502:Compact 25497:bounded 25495:Totally 25472:Convex 25462:Closed 23397:. Then 21574:and if 20268:) is a 18558:and if 15449:is the 15416:and if 15110:and if 14953:sum to 14408:(resp. 13513:compact 12834:, only 10376:. Let 10306:denote 9953:and if 8623:compact 7674:bounded 7299:circled 5729:Theorem 4670:and if 4064:If all 3550:Define 3090:Theorem 2706:(resp. 1800:Theorem 989:, is a 906:objects 578:complex 547:over a 149:or the 36291:Webbed 36277:Quasi- 36199:Montel 36189:Mackey 36088:Ultra- 36067:Banach 35975:Radial 35939:Convex 35909:Affine 35851:Linear 35819:Closed 35643:(TVSs) 35377:Normal 35214:Orlicz 35204:Hölder 35184:Banach 35173:Spaces 35161:topics 35098:  35088:  35064:  35054:  35030:  35020:  35002:589250 35000:  34990:  34963:  34943:  34933:  34911:  34893:886098 34891:  34881:  34857:  34847:  34830:  34820:  34790:  34780:  34752:  34742:  34686:  34676:  34656:  34646:  34629:  34619:  34599:  34589:  34565:  34555:  34529:  34519:  34502:  34494:  34484:  34464:  34454:  34437:  34427:  33549:Q.E.D. 32688:Since 32679:Q.E.D. 32449:since 31771:Since 31532:  31509:  31247:  31224:  30983:Proofs 30107:Meager 30057:Banach 30017:Vector 30015:Closed 30011:Barrel 30005:Convex 30003:Closed 29998:Closed 29993:Closed 29977:Vector 29972:Convex 29963:Convex 25579:Meager 25529:Banach 25489:Vector 25487:Closed 25483:Barrel 25477:Convex 25475:Closed 25470:Closed 25465:Closed 25449:Vector 25444:Convex 25435:Convex 24646:family 24359:  24351:  24300:  24292:  24121:  24115:  24103:  24097:  23562:Every 23444:A TVS 23343:convex 23236:  23230:  22986:  22980:  22807:disked 22508:  22502:  22431:where 22384:  22378:  22038:  22032:  21959:  21951:  21920:  21914:  21127:barrel 19616:"tube" 17750:where 17308:  17302:  16688:  16682:  16576:  16570:  16551:  16543:  16501:  16495:  15605:  15599:  15560:  15554:  15548:  15542:  15503:  15497:  15389:is an 15241:  15235:  14811:where 14415:disked 14405:convex 14147:, and 13818:, and 13677:limits 13505:closed 13469:holds. 13372:. The 13323:spaces 13277:, the 13262:closed 13258:kernel 12652:where 12376:Q.E.D. 11404:where 10645:finest 10610:where 10169:, and 9713:where 8711:Cauchy 7950:Every 7370:convex 6398:where 6241:normal 5731:  5625:: Let 5208:  5106:  5024:  4949:  4939:Kernel 4868:  4757:  3957:) and 3749:  3743:  3435:  3429:  3092:  2919:is an 2777:String 2718:convex 2714:closed 1988:Every 1802:  1261:, and 1237:linear 1227:or an 1065:is an 756:to be 464:, the 391:where 200:metric 190:Every 122:scalar 48:t.v.s. 36249:Smith 36234:Riesz 36225:Semi- 36037:Quasi 36031:Polar 35189:Besov 32762:then 32597:Thus 32374:then 31354:with 30370:space 30364:is a 30257:Notes 30081:dense 29987:of 0 29982:Open 26683:chain 26509:chain 26068:chain 25859:chain 25553:dense 25459:of 0 25454:Open 24474:then 24106:cobal 23639:; if 23604:then 23417:is a 22833:cobal 22222:then 21859:then 21791:then 21259:then 20937:then 20598:then 19941:then 19590:open 19535:then 18584:then 18494:then 18114:is a 17654:then 17255:then 16849:then 16786:is a 16762:of a 16097:Then 15922:then 15763:Then 15473:then 15064:then 14998:. If 14642:cobal 13268:Types 13031:) is 12795:when 12439:then 12070:does 11294:then 11175:be a 10907:then 10813:then 10235:with 9979:then 9925:is a 9600:then 9147:then 8903:of a 8898:dense 8351:is a 7497:: if 7469:: if 7373:: if 7301:: if 7006:is a 6980:then 6884:then 6617:is a 6154:then 5971:Knots 5834:is a 5672:Knots 5633:Knots 5593:is a 5345:then 4871:Knots 4435:then 4095:then 3840:Then 2818:or a 1980:is a 1909:is a 1885:then 1853:is a 1787:is a 1461:group 1459:is a 1069:when 785:below 687:or a 543:is a 109:, or 35868:Norm 35792:form 35780:Maps 35537:(or 35255:Dual 35096:OCLC 35086:ISBN 35062:OCLC 35052:ISBN 35028:OCLC 35018:ISBN 34998:OCLC 34988:ISBN 34961:ISBN 34941:OCLC 34931:ISBN 34909:ISBN 34889:OCLC 34879:ISBN 34855:OCLC 34845:ISBN 34828:OCLC 34818:ISBN 34788:OCLC 34778:ISBN 34750:OCLC 34740:ISBN 34720:2020 34684:OCLC 34674:ISBN 34654:OCLC 34644:ISBN 34627:OCLC 34617:ISBN 34597:OCLC 34587:ISBN 34563:OCLC 34553:ISBN 34527:OCLC 34517:ISBN 34500:OCLC 34482:ISBN 34462:OCLC 34452:ISBN 34435:OCLC 34425:ISBN 33884:2021 32504:and 32486:< 32480:< 32194:< 32188:< 31803:and 31555:< 31191:< 31185:< 31174:Fix 30889:the 30083:(in 30059:disk 25555:(in 25531:disk 25270:The 25009:< 24967:< 24886:< 24225:and 23970:The 23868:> 23854:> 23492:set 23360:disk 23335:fail 23137:and 22586:and 22238:> 21331:and 21173:and 21000:and 20217:and 19228:but 18505:> 18449:> 18209:< 18158:and 18039:and 17985:< 17881:and 17818:< 17721:< 17705:< 17566:< 17560:< 17473:and 17414:and 17231:< 17177:> 16764:disk 16758:The 16627:and 16451:and 16039:let 15992:Let 15720:and 15700:Let 15533:< 15394:disk 15277:< 15226:< 15024:and 14990:and 14889:and 14663:The 14421:hull 14402:the 14019:and 13713:norm 13707:and 13687:are 13675:are 13507:and 13445:< 13439:< 13336:> 13291:are 12459:has 11436:and 11246:and 11155:Let 11140:> 11111:< 10851:only 10523:and 10284:Let 9634:and 9244:The 9216:Let 8848:and 8644:(or 8514:The 8390:Let 7460:disk 7187:> 7127:(in 6246:Let 5531:and 4587:and 4091:are 3347:let 3220:and 3121:Let 2924:disk 2722:open 2379:knot 2239:Let 2022:and 1861:and 1506:and 904:The 795:The 671:are 574:real 444:and 98:and 78:and 34:, a 34583:GTM 32964:if 32736:If 32613:int 32565:int 32356:int 32342:If 32225:int 32089:by 31997:int 31930:int 31904:int 31785:int 31523:def 31295:int 31238:def 31139:Int 31108:Int 31075:Int 30864:In 30724:In 25287:not 25283:not 25276:not 25254:). 24658:If 24655:. 24648:of 24530:or 24407:If 24193:If 24190:). 24133:bal 24076:bal 24044:bal 24004:of 23661:not 23578:If 23484:is 23060:If 22912:or 22860:If 22779:bal 22173:If 21827:If 21729:If 21305:If 20960:If 20757:is 20578:of 20373:in 20272:of 19901:If 19729:is 19296:If 19232:in 19109:of 19019:on 18859:in 18613:Int 18537:Int 18440:sup 18420:Int 18345:Int 18318:Int 18138:in 18094:If 18004:Int 17835:If 17663:Int 17608:If 17579:int 17387:int 17311:Int 17266:Int 17200:If 17142:is 17001:Int 16942:Int 16903:Int 16870:Int 16799:Int 16717:Int 16698:Int 16661:Int 16636:Int 16598:Int 16505:Int 16480:Int 16419:If 16304:If 16278:in 16201:in 15955:in 15890:in 15850:in 15635:not 15482:Int 15453:of 15369:If 15344:on 14660:). 14614:bal 14552:Int 14423:of 14058:or 13830:not 13814:of 13715:or 13679:of 13592:sup 13511:is 13260:is 13065:not 13043:on 13033:not 13007:on 12983:If 12903:dim 12848:dim 12803:dim 12672:ker 12660:ker 12486:on 12409:dim 12401:If 12072:not 11220:If 10883:dim 10875:If 10789:dim 10781:If 10729:dim 10721:If 10697:dim 10432:dim 10328:or 10269:By 10261:). 10136:in 10029:in 10009:to 9931:net 9846:on 9636:not 9629:not 9627:is 9443:on 9412:on 9354:dim 9250:or 9180:in 8921:If 8733:of 8709:is 8642:net 8637:). 8576:on 8232:on 8221:is 8076:If 7671:is 7463:or 7297:or 7030:in 6829:If 6100:If 5738:If 5383:if 5300:If 5096:Sum 4952:ker 4524:If 4301:If 3983:on 3686:inf 3629:if 3594:by 2899:If 2846:if 2781:if 2611:if 2543:of 2482:of 2383:of 2180:sub 2176:not 2150:If 2018:is 1913:at 1427:If 858:or 695:on 576:or 521:TVS 484:. 46:or 44:TVS 30:In 36331:: 35163:– 35094:. 35084:. 35060:. 35026:. 34996:. 34986:. 34978:. 34939:. 34887:. 34853:. 34826:. 34816:. 34802:; 34786:. 34776:. 34768:. 34748:. 34734:. 34710:. 34682:. 34652:. 34625:. 34595:. 34581:. 34561:. 34551:. 34525:. 34498:. 34492:MR 34490:. 34460:. 34433:. 34423:. 34364:^ 34311:^ 34296:^ 34257:^ 34242:^ 34221:^ 34186:^ 34159:^ 34132:^ 34117:^ 34052:^ 34037:^ 33996:^ 33981:^ 33964:. 33927:^ 33874:, 33868:, 33815:^ 33786:^ 33739:^ 33706:^ 33655:^ 33638:^ 33597:^ 33160:). 33078:cl 32993:cl 32937:cl 32912:cl 32864:cl 32839:cl 32802:cl 32777:cl 32697:cl 32330:0. 32197:1. 31870:cl 31817:cl 31744:cl 31691:cl 30663:cl 30548:cl 30503:cl 30372:). 30103:) 25575:) 24544:co 24488:co 24386:co 24362:co 24339:co 24327:co 24303:co 24124:co 24085:co 24035:co 23956:1. 23570:. 23370:. 23358:A 23297:co 23282:cl 23266:co 23251:cl 23239:co 23206:co 23191:cl 23161:co 23146:cl 23116:co 23101:cl 23036:co 23021:cl 23005:co 22990:cl 22956:co 22941:cl 22818:cl 22764:cl 22729:co 22714:cl 22615:cl 22487:cl 22363:cl 22256:cl 22138:cl 22113:cl 22042:cl 22006:cl 21981:cl 21963:cl 21924:cl 21893:cl 21868:cl 21800:cl 21767:cl 21691:cl 21667:cl 21647:cl 21616:cl 21602:cl 21521:cl 21490:cl 21382:cl 21363:cl 21129:. 20817:cl 20770:cl 20664:cl 20613:cl 20520:cl 20408:cl 20343:cl 20281:cl 20238:cl 20187:cl 20110:cl 20044:cl 19861:cl 19791:cl 19750:cl 19627:cl 19592:or 19550:cl 19465:cl 19440:cl 19394:. 19356:cl 19331:cl 19261:cl 19170:cl 19101:a 19071:cl 19028:cl 18985:cl 18891:cl 18822:cl 18731:cl 18601:cl 18437::= 18176::= 17946::= 17896:cl 17821:1. 17429:cl 17293:cl 17094::= 17056::= 16580:cl 16555:cl 16523:cl 16112:cl 15609:cl 15427::= 14961:1. 14674:co 14586:co 14519:cl 14419:) 14413:, 14143:, 14029:: 13683:. 13448:1. 13339:0. 13264:. 13169:A 12900::= 12374:. 11642::= 11143:0. 11078::= 10861:0. 10709:0. 10429::= 10197::= 10165:, 9814::= 9649:A 9641:. 9366:0. 9329:) 8907:. 8648:) 8609:, 7746:. 7457:a 7443:1. 7354:1. 6930:cl 6893:cl 6512:: 6243:. 5898:. 5644::= 5375:) 5234::= 5200:: 5132::= 5098:: 5040::= 5016:: 4968::= 4941:: 4887::= 4860:: 4749:: 4521:. 4461::= 4052:0. 3682::= 3369::= 3299:0. 2964::= 2736:, 2730:, 2724:, 2720:, 2716:, 2712:, 1257:, 1253:, 1203:A 1200:. 1165:A 1086::= 1077:Im 1047:Im 963:A 787:. 523:) 515:A 495:. 487:A 102:. 94:, 36275:( 36260:B 36258:( 36218:( 36086:( 36071:( 36035:( 36005:( 35755:) 35633:e 35626:t 35619:v 35541:) 35265:) 35261:/ 35257:( 35167:) 35149:e 35142:t 35135:v 35102:. 35068:. 35034:. 35004:. 34969:. 34947:. 34917:. 34895:. 34861:. 34834:. 34794:. 34756:. 34722:. 34690:. 34660:. 34633:. 34603:. 34569:. 34533:. 34506:. 34468:. 34441:. 33975:. 33536:. 33533:} 33530:) 33527:z 33521:y 33518:( 33515:P 33512:: 33509:X 33503:y 33500:{ 33497:= 33494:} 33491:) 33488:z 33482:y 33479:( 33476:P 33473:, 33470:X 33464:y 33461:: 33458:y 33455:{ 33452:= 33449:} 33446:) 33443:z 33437:y 33434:( 33431:P 33428:, 33425:X 33419:z 33413:y 33410:: 33407:y 33404:{ 33384:, 33381:X 33378:= 33375:X 33372:+ 33369:z 33349:x 33346:+ 33343:z 33340:= 33337:y 33317:} 33314:) 33311:z 33305:) 33302:x 33299:+ 33296:z 33293:( 33290:( 33287:P 33284:, 33281:X 33275:x 33272:: 33269:x 33266:+ 33263:z 33260:{ 33257:= 33254:} 33251:) 33248:x 33245:( 33242:P 33239:, 33236:X 33230:x 33227:: 33224:x 33221:+ 33218:z 33215:{ 33212:= 33209:} 33206:) 33203:x 33200:( 33197:P 33194:: 33191:X 33185:x 33182:{ 33179:+ 33176:z 33148:S 33128:S 33122:X 33102:S 33099:= 33096:} 33093:0 33090:{ 33082:X 33074:+ 33071:S 33051:S 33031:X 33011:} 33008:0 33005:{ 32997:X 32972:S 32952:, 32949:S 32941:X 32930:} 32927:0 32924:{ 32916:X 32908:+ 32905:S 32899:S 32879:. 32876:S 32868:X 32857:} 32854:s 32851:{ 32843:X 32835:= 32832:) 32829:} 32826:0 32823:{ 32820:+ 32817:s 32814:( 32806:X 32798:= 32795:} 32792:0 32789:{ 32781:X 32773:+ 32770:s 32750:S 32744:s 32715:} 32712:0 32709:{ 32701:X 32667:. 32664:C 32644:X 32623:) 32619:C 32609:( 32605:h 32585:. 32582:C 32575:) 32571:C 32561:( 32557:h 32537:, 32534:C 32528:c 32525:, 32520:0 32516:c 32512:s 32492:, 32489:1 32483:r 32477:0 32457:C 32437:C 32429:0 32425:c 32421:s 32418:) 32415:r 32409:1 32406:( 32403:+ 32400:c 32397:r 32394:= 32391:) 32388:c 32385:( 32382:h 32362:C 32350:c 32327:= 32322:0 32318:c 32314:r 32306:0 32302:c 32298:r 32295:= 32292:) 32287:0 32283:c 32279:( 32276:h 32256:X 32235:) 32231:C 32221:( 32217:h 32191:r 32185:0 32165:, 32160:0 32156:c 32152:r 32146:x 32143:r 32140:= 32135:0 32131:c 32127:s 32124:) 32121:r 32115:1 32112:( 32109:+ 32106:x 32103:r 32097:x 32077:X 32071:X 32068:: 32065:h 32045:. 32042:C 32034:0 32030:c 32026:s 32006:, 32003:C 31990:) 31986:C 31980:s 31977:1 31970:( 31961:0 31957:c 31936:C 31910:C 31897:) 31893:C 31887:s 31884:1 31877:( 31864:y 31858:s 31855:1 31849:= 31846:x 31826:, 31823:C 31811:y 31791:C 31779:x 31759:. 31756:C 31748:X 31737:s 31734:1 31728:= 31724:) 31720:C 31714:s 31711:1 31704:( 31695:X 31671:, 31668:X 31662:X 31642:0 31636:s 31616:. 31613:x 31610:s 31607:= 31604:x 31597:1 31591:r 31587:r 31581:= 31578:y 31558:0 31548:1 31542:r 31538:r 31516:= 31506:s 31486:C 31466:, 31463:0 31460:= 31457:y 31454:) 31451:r 31445:1 31442:( 31439:+ 31436:x 31433:r 31411:0 31407:w 31400:y 31397:, 31392:0 31388:w 31381:x 31378:, 31373:0 31369:w 31362:C 31342:y 31339:, 31336:x 31333:, 31330:C 31310:. 31307:C 31299:X 31274:y 31271:) 31268:r 31262:1 31259:( 31256:+ 31253:x 31250:r 31231:= 31219:0 31215:w 31194:1 31188:r 31182:0 31154:. 31151:S 31143:X 31132:} 31129:0 31126:{ 31123:= 31120:S 31112:X 31087:S 31079:X 31068:0 31040:. 31037:) 31031:, 31028:X 31025:( 31004:S 30964:. 30960:R 30938:R 30916:Z 30910:2 30905:+ 30901:Z 30877:, 30873:R 30852:. 30847:2 30842:R 30820:y 30800:, 30795:x 30792:1 30787:= 30784:y 30764:y 30744:, 30739:2 30734:R 30704:. 30701:X 30681:} 30678:0 30675:{ 30667:X 30659:+ 30656:S 30636:S 30616:. 30613:X 30607:X 30601:X 30598:: 30590:+ 30566:} 30563:0 30560:{ 30552:X 30541:S 30521:} 30518:0 30515:{ 30507:X 30499:+ 30496:S 30463:X 30437:i 30433:x 30422:1 30419:= 30416:i 30368:1 30366:T 30352:X 30332:} 30329:0 30326:{ 30306:X 30277:X 30091:X 29933:R 29730:R 27004:S 27001:+ 26998:R 26856:S 26853:+ 26850:R 26469:S 26463:R 26276:S 26270:R 25819:S 25813:R 25611:S 25605:R 25563:X 25407:X 25387:, 25384:S 25365:, 25362:R 25330:S 25324:R 25301:X 25242:X 25236:z 25216:z 25196:X 25176:X 25170:x 25150:. 25146:} 25141:) 25137:x 25131:s 25128:1 25121:( 25117:P 25114:: 25111:X 25105:x 25101:{ 25097:= 25094:} 25091:) 25088:x 25085:( 25082:P 25079:: 25076:X 25070:x 25067:{ 25064:s 25044:0 25038:s 25018:. 25015:} 25012:1 25003:z 24997:x 24991:: 24988:X 24982:x 24979:{ 24976:= 24973:} 24970:1 24961:x 24955:: 24952:X 24946:x 24943:{ 24940:+ 24937:z 24918:, 24915:X 24909:z 24889:1 24880:x 24857:) 24854:x 24851:( 24848:P 24828:. 24825:} 24822:) 24819:z 24813:x 24810:( 24807:P 24804:: 24801:X 24795:x 24792:{ 24789:= 24786:} 24783:) 24780:x 24777:( 24774:P 24771:: 24768:X 24762:x 24759:{ 24756:+ 24753:z 24734:, 24731:X 24725:z 24705:X 24699:x 24675:) 24672:x 24669:( 24666:P 24651:F 24625:. 24622:X 24602:, 24599:X 24577:. 24571:= 24568:) 24565:} 24562:x 24559:{ 24553:S 24550:( 24538:R 24515:= 24512:) 24509:} 24506:x 24503:{ 24497:R 24494:( 24482:S 24462:, 24459:S 24453:R 24447:x 24427:X 24421:S 24418:, 24415:R 24395:. 24392:S 24383:a 24380:= 24377:) 24374:S 24371:a 24368:( 24348:, 24345:S 24336:+ 24333:R 24324:= 24321:) 24318:S 24315:+ 24312:R 24309:( 24289:, 24286:S 24283:a 24280:+ 24277:R 24274:a 24271:= 24268:) 24265:S 24262:+ 24259:R 24256:( 24253:a 24233:a 24213:X 24207:S 24204:, 24201:R 24176:2 24171:R 24145:, 24142:) 24139:S 24130:( 24118:= 24112:S 24094:) 24091:S 24082:( 24056:. 24053:) 24050:S 24041:( 24015:; 24012:S 23988:X 23982:S 23950:t 23944:0 23924:C 23918:C 23915:) 23912:t 23906:1 23903:( 23900:+ 23897:C 23894:t 23874:, 23871:0 23865:t 23857:0 23851:s 23831:C 23828:t 23825:+ 23822:C 23819:s 23816:= 23813:C 23810:) 23807:t 23804:+ 23801:s 23798:( 23778:C 23755:} 23752:x 23749:2 23746:, 23743:x 23740:{ 23737:= 23734:S 23715:; 23712:} 23709:x 23706:, 23703:x 23697:{ 23694:= 23691:S 23671:x 23647:S 23627:S 23624:+ 23621:S 23615:S 23612:2 23592:X 23586:S 23550:. 23547:D 23544:n 23538:N 23531:n 23523:= 23520:X 23500:D 23472:X 23452:X 23429:X 23405:X 23381:X 23314:. 23310:] 23306:) 23303:S 23294:( 23286:X 23275:) 23272:R 23263:( 23255:X 23246:[ 23233:= 23227:) 23224:) 23221:S 23215:R 23212:( 23203:( 23195:X 23170:) 23167:S 23158:( 23150:X 23125:) 23122:R 23113:( 23105:X 23080:X 23074:S 23071:, 23068:R 23048:. 23045:) 23042:S 23033:( 23025:X 23017:+ 23014:) 23011:R 23002:( 22994:X 22983:= 22977:) 22974:) 22971:S 22968:+ 22965:R 22962:( 22953:( 22945:X 22920:R 22900:S 22880:X 22874:S 22871:, 22868:R 22845:. 22842:) 22839:S 22830:( 22822:X 22791:. 22788:) 22785:S 22776:( 22768:X 22741:. 22738:) 22735:S 22726:( 22718:X 22682:. 22679:X 22659:U 22639:U 22636:+ 22633:U 22627:U 22619:X 22594:S 22573:R 22569:= 22566:X 22546:} 22543:X 22535:U 22532:, 22529:U 22523:S 22520:: 22517:U 22514:{ 22499:U 22491:X 22466:. 22463:X 22441:N 22419:) 22416:N 22413:+ 22410:S 22407:( 22400:N 22392:N 22381:= 22375:S 22367:X 22343:, 22340:X 22334:S 22311:S 22291:; 22288:X 22268:S 22260:X 22249:S 22246:r 22241:1 22235:r 22210:, 22207:X 22201:S 22181:X 22159:. 22156:) 22153:S 22150:( 22142:X 22134:+ 22131:) 22128:R 22125:( 22117:X 22092:S 22089:+ 22086:R 22066:) 22063:S 22060:+ 22057:R 22054:( 22046:X 22035:= 22028:] 22024:) 22021:S 22018:( 22010:X 22002:+ 21999:) 21996:R 21993:( 21985:X 21976:[ 21967:X 21948:) 21945:S 21942:+ 21939:R 21936:( 21928:X 21911:) 21908:S 21905:( 21897:X 21889:+ 21886:) 21883:R 21880:( 21872:X 21847:X 21841:S 21838:, 21835:R 21812:S 21804:X 21779:S 21771:X 21763:2 21757:S 21754:+ 21751:S 21743:X 21737:S 21715:. 21712:) 21709:S 21706:A 21703:( 21695:X 21687:= 21683:) 21679:S 21671:X 21662:( 21657:) 21653:A 21643:( 21622:A 21608:S 21582:A 21562:X 21556:S 21536:. 21533:S 21525:X 21517:a 21514:= 21511:) 21508:S 21505:a 21502:( 21494:X 21466:= 21463:S 21455:, 21452:0 21446:a 21426:X 21406:, 21403:) 21400:S 21397:a 21394:( 21386:X 21375:S 21367:X 21359:a 21339:a 21319:X 21313:S 21290:. 21287:X 21267:M 21247:X 21227:N 21221:U 21201:X 21181:N 21161:X 21141:M 21106:. 21103:U 21097:N 21094:+ 21091:K 21071:N 21051:, 21048:K 21028:X 21008:U 20988:X 20968:K 20945:S 20925:S 20905:S 20885:X 20865:S 20841:) 20838:} 20835:0 20832:{ 20829:( 20821:X 20812:/ 20808:X 20802:X 20782:S 20774:X 20745:X 20725:S 20685:. 20682:} 20679:0 20676:{ 20668:X 20657:H 20651:X 20631:} 20628:0 20625:{ 20617:X 20606:C 20586:H 20562:C 20538:} 20535:0 20532:{ 20524:X 20499:H 20479:n 20476:+ 20473:h 20467:) 20464:n 20461:, 20458:h 20455:( 20435:, 20432:X 20426:} 20423:0 20420:{ 20412:X 20401:H 20381:X 20361:} 20358:0 20355:{ 20347:X 20322:H 20302:. 20299:} 20296:0 20293:{ 20285:X 20256:} 20253:0 20250:{ 20242:X 20234:+ 20231:H 20228:= 20225:X 20205:} 20202:0 20199:{ 20191:X 20180:H 20177:= 20174:} 20171:0 20168:{ 20148:H 20128:} 20125:0 20122:{ 20114:X 20089:X 20062:} 20059:0 20056:{ 20048:X 20039:/ 20035:X 20029:X 20026:: 20023:q 20000:. 19997:X 19977:M 19957:M 19953:/ 19949:X 19929:X 19909:M 19885:) 19882:} 19879:0 19876:{ 19873:( 19865:X 19856:/ 19852:X 19846:X 19826:S 19803:S 19795:X 19768:} 19765:0 19762:{ 19754:X 19746:+ 19743:S 19733:. 19717:S 19694:, 19691:X 19671:X 19665:S 19645:} 19642:0 19639:{ 19631:X 19602:S 19574:S 19571:= 19568:} 19565:0 19562:{ 19554:X 19546:+ 19543:S 19523:X 19503:X 19497:S 19477:S 19469:X 19458:} 19455:0 19452:{ 19444:X 19436:+ 19433:S 19414:, 19411:X 19405:S 19374:} 19371:0 19368:{ 19360:X 19352:+ 19349:S 19346:= 19343:S 19335:X 19310:X 19304:S 19282:. 19279:} 19276:0 19273:{ 19265:X 19240:X 19212:X 19188:} 19185:0 19182:{ 19174:X 19149:. 19146:} 19143:0 19140:{ 19120:. 19117:X 19089:} 19086:0 19083:{ 19075:X 19046:} 19043:0 19040:{ 19032:X 19003:} 19000:0 18997:{ 18989:X 18964:X 18944:N 18939:) 18936:0 18933:( 18928:N 18920:N 18912:= 18909:} 18906:0 18903:{ 18895:X 18870:. 18867:X 18843:, 18840:} 18837:0 18834:{ 18826:X 18801:, 18798:X 18778:} 18775:0 18772:{ 18752:. 18749:} 18746:0 18743:{ 18735:X 18727:= 18724:} 18721:0 18718:{ 18698:, 18695:X 18675:} 18672:0 18669:{ 18649:X 18622:. 18619:N 18607:N 18595:x 18592:r 18566:r 18546:, 18543:N 18531:x 18528:) 18525:r 18522:, 18519:0 18516:[ 18508:1 18502:r 18482:} 18479:N 18473:x 18470:) 18467:r 18464:, 18461:0 18458:[ 18455:: 18452:0 18446:r 18443:{ 18434:r 18426:N 18414:x 18394:, 18391:N 18386:1 18382:B 18378:= 18375:N 18372:) 18369:1 18366:, 18363:1 18357:( 18354:= 18351:N 18342:) 18339:1 18336:, 18333:0 18330:[ 18327:= 18324:N 18298:x 18294:R 18273:0 18249:x 18245:R 18238:N 18218:, 18215:} 18212:1 18205:| 18201:a 18197:| 18193:: 18189:K 18182:a 18179:{ 18171:1 18167:B 18146:X 18126:0 18102:N 18082:. 18079:y 18076:= 18073:x 18062:= 18059:) 18056:x 18053:, 18050:x 18047:[ 18027:y 18021:x 18008:X 17997:} 17994:1 17988:t 17982:0 17979:: 17976:y 17973:) 17970:t 17964:1 17961:( 17958:+ 17955:x 17952:t 17949:{ 17943:) 17940:y 17937:, 17934:x 17931:[ 17911:, 17908:S 17900:X 17889:y 17869:X 17863:S 17843:x 17814:| 17810:a 17806:| 17785:a 17763:1 17759:B 17738:N 17732:N 17729:a 17724:1 17717:| 17713:a 17709:| 17702:0 17694:= 17691:N 17686:1 17682:B 17675:N 17667:X 17642:X 17622:X 17616:N 17594:. 17591:C 17583:X 17572:} 17569:1 17563:t 17557:0 17554:: 17551:y 17548:) 17545:t 17539:1 17536:( 17533:+ 17530:x 17527:t 17524:{ 17504:; 17501:C 17481:y 17461:x 17441:C 17433:X 17422:x 17402:, 17399:C 17391:X 17380:y 17360:X 17340:C 17320:. 17317:C 17299:C 17290:) 17287:t 17281:1 17278:( 17275:+ 17272:C 17263:t 17243:, 17240:1 17234:t 17228:0 17208:C 17186:. 17183:} 17180:0 17174:y 17171:x 17168:: 17165:) 17162:y 17159:, 17156:x 17153:( 17150:{ 17130:} 17127:0 17121:y 17118:x 17115:: 17112:) 17109:y 17106:, 17103:x 17100:( 17097:{ 17091:S 17071:, 17066:2 17061:R 17053:X 17033:S 17013:S 17005:X 16994:0 16974:S 16954:S 16946:X 16935:0 16915:S 16907:X 16882:S 16874:X 16863:} 16860:0 16857:{ 16837:X 16811:S 16803:X 16774:S 16744:. 16741:) 16738:S 16735:+ 16732:R 16729:( 16721:X 16710:S 16702:X 16694:+ 16691:R 16679:) 16676:S 16673:( 16665:X 16657:+ 16654:) 16651:R 16648:( 16640:X 16614:) 16610:S 16602:X 16593:( 16584:X 16573:= 16567:S 16559:X 16539:) 16535:S 16527:X 16518:( 16509:X 16498:= 16492:S 16484:X 16459:S 16439:X 16433:S 16430:, 16427:R 16399:X 16377:2 16372:R 16367:= 16364:X 16344:X 16312:X 16289:. 16286:X 16266:x 16254:s 16231:N 16209:S 16185:N 16177:N 16172:) 16167:N 16163:s 16159:( 16154:= 16145:s 16124:S 16116:X 16105:x 16085:. 16082:X 16076:x 16056:, 16053:X 16047:S 16027:, 16024:X 16002:N 15978:. 15975:) 15969:, 15966:X 15963:( 15943:0 15931:x 15910:) 15904:, 15901:X 15898:( 15878:0 15858:X 15836:I 15830:i 15825:) 15820:i 15816:x 15812:( 15807:= 15798:x 15751:. 15748:X 15685:K 15665:p 15645:K 15621:K 15613:X 15596:} 15593:1 15587:) 15584:x 15581:( 15578:p 15575:: 15572:X 15566:x 15563:{ 15551:K 15539:} 15536:1 15530:) 15527:x 15524:( 15521:p 15518:: 15515:X 15509:x 15506:{ 15494:K 15486:X 15461:K 15435:K 15431:p 15424:p 15404:X 15377:K 15355:. 15352:X 15332:p 15309:X 15303:z 15283:} 15280:1 15274:) 15271:z 15265:x 15262:( 15259:p 15256:: 15253:X 15247:x 15244:{ 15238:= 15232:} 15229:1 15223:) 15220:x 15217:( 15214:p 15211:: 15208:X 15202:x 15199:{ 15196:+ 15193:z 15173:X 15150:S 15144:S 15124:X 15118:S 15098:X 15078:U 15075:+ 15072:S 15052:X 15032:U 15012:X 15006:S 14941:] 14938:1 14935:, 14932:0 14929:[ 14921:n 14917:t 14913:, 14907:, 14902:1 14898:t 14877:S 14869:n 14865:s 14861:, 14855:, 14850:1 14846:s 14825:1 14819:n 14797:n 14793:s 14787:n 14783:t 14779:+ 14773:+ 14768:1 14764:s 14758:1 14754:t 14729:, 14726:S 14700:S 14680:S 14648:S 14623:, 14620:S 14595:, 14592:S 14567:, 14564:S 14556:X 14531:S 14523:X 14498:S 14474:. 14471:S 14451:X 14431:S 14390:, 14387:X 14367:X 14361:S 14327:. 14320:X 14298:K 14291:X 14281:X 14260:X 14231:K 14220:X 14199:. 14195:K 14166:X 14118:n 14098:, 14095:n 14073:n 14068:C 14044:n 14039:R 14023:. 14007:, 14002:k 13999:, 13996:2 13992:W 13967:2 13963:L 13940:2 13936:L 13906:. 13897:L 13870:L 13846:1 13842:L 13802:V 13799:B 13779:, 13770:p 13764:1 13742:p 13738:L 13701:. 13657:. 13653:| 13649:) 13646:x 13643:( 13638:) 13632:( 13628:f 13623:| 13617:] 13614:k 13611:, 13608:k 13602:[ 13596:x 13588:= 13580:, 13577:k 13569:f 13546:) 13542:R 13538:( 13529:C 13497:. 13483:. 13442:p 13436:0 13416:, 13413:1 13407:p 13385:p 13381:L 13333:p 13309:p 13305:L 13244:f 13224:X 13204:f 13181:X 13154:X 13134:) 13131:X 13128:( 13125:f 13105:f 13078:. 13075:X 13051:X 13015:X 12991:X 12955:X 12935:X 12915:2 12912:= 12909:X 12897:n 12877:. 12874:X 12854:X 12845:+ 12842:1 12818:, 12815:2 12809:X 12783:X 12761:. 12758:X 12738:X 12718:X 12691:. 12687:| 12683:f 12679:| 12669:= 12666:f 12639:| 12635:) 12632:x 12629:( 12626:f 12622:| 12618:= 12615:) 12612:x 12609:( 12605:| 12601:f 12597:| 12575:R 12568:X 12565:: 12561:| 12557:f 12553:| 12529:, 12524:n 12519:K 12497:, 12494:X 12474:f 12447:X 12427:2 12421:n 12418:= 12415:X 12356:x 12352:M 12331:, 12328:X 12308:x 12305:B 12302:= 12299:) 12296:B 12293:( 12288:x 12284:M 12264:, 12260:K 12238:K 12231:B 12211:, 12208:X 12202:x 12196:0 12176:X 12156:. 12153:x 12148:n 12144:B 12137:S 12117:n 12097:, 12094:X 12088:x 12082:0 12058:S 12038:, 12035:X 12029:W 12023:S 12015:r 12011:B 11990:X 11970:S 11950:0 11929:K 11920:r 11916:B 11895:X 11889:X 11882:K 11861:, 11858:X 11838:W 11818:X 11798:. 11794:K 11787:F 11767:) 11764:F 11761:( 11756:x 11752:M 11748:= 11745:x 11742:F 11722:X 11702:, 11699:x 11679:x 11675:K 11671:= 11668:X 11648:x 11645:a 11639:) 11636:a 11633:( 11628:x 11624:M 11603:X 11596:K 11592:: 11587:x 11583:M 11562:, 11559:X 11553:x 11547:0 11527:X 11506:K 11484:K 11470:1 11467:= 11464:i 11459:) 11454:i 11450:a 11446:( 11424:X 11418:x 11412:0 11385:1 11382:= 11379:i 11374:) 11370:x 11365:i 11361:a 11356:( 11334:S 11314:X 11311:= 11308:S 11302:B 11282:0 11261:K 11254:B 11234:X 11228:S 11208:. 11204:K 11183:1 11163:X 11137:r 11117:} 11114:r 11107:| 11103:a 11099:| 11095:: 11091:K 11084:a 11081:{ 11073:r 11069:B 11047:K 11025:K 11006:. 10985:K 10964:1 10943:K 10915:X 10895:1 10892:= 10889:X 10833:} 10830:0 10827:{ 10824:= 10821:X 10801:0 10798:= 10795:X 10761:X 10741:0 10735:X 10706:= 10703:X 10677:X 10658:. 10655:X 10625:n 10620:K 10598:, 10593:n 10588:K 10560:X 10538:n 10533:K 10511:X 10485:n 10480:K 10458:X 10438:X 10426:n 10405:K 10384:X 10359:K 10337:C 10315:R 10293:K 10249:0 10243:f 10223:} 10219:R 10212:r 10209:: 10206:f 10203:r 10200:{ 10194:f 10190:R 10149:. 10145:R 10124:) 10121:x 10118:( 10115:f 10095:) 10092:x 10089:( 10084:n 10080:f 10060:, 10057:x 10037:X 10017:f 9992:n 9988:f 9967:X 9961:f 9941:X 9906:1 9903:= 9900:n 9895:) 9890:n 9886:f 9882:( 9859:. 9855:R 9825:R 9819:R 9811:X 9787:, 9784:, 9778:R 9772:R 9747:X 9722:R 9700:R 9692:R 9688:: 9685:f 9665:X 9613:f 9584:X 9563:) 9557:f 9549:, 9546:X 9542:( 9519:f 9494:X 9474:X 9454:, 9451:X 9423:, 9420:X 9398:f 9363:= 9360:X 9313:X 9293:X 9273:} 9267:, 9264:X 9261:{ 9224:X 9191:. 9188:X 9168:0 9156:x 9135:X 9113:i 9109:x 9098:1 9095:= 9092:i 9065:. 9062:x 9042:x 9016:X 8992:X 8969:C 8949:C 8929:C 8865:. 8862:n 8856:j 8836:n 8830:i 8810:V 8802:j 8798:x 8789:i 8785:x 8764:n 8744:, 8741:0 8721:V 8695:I 8689:i 8684:) 8679:i 8675:x 8671:( 8666:= 8657:x 8587:. 8584:X 8540:) 8534:, 8531:X 8528:( 8489:. 8486:n 8464:n 8459:K 8432:K 8399:K 8374:F 8355:. 8339:) 8333:, 8330:X 8327:( 8306:. 8303:X 8283:, 8260:X 8240:X 8209:) 8203:, 8200:X 8197:( 8176:. 8173:X 8146:X 8126:} 8123:0 8120:{ 8096:) 8090:, 8087:X 8084:( 8048:. 8045:X 8025:M 8005:M 7985:, 7982:X 7962:M 7936:. 7933:E 7913:p 7893:E 7869:X 7849:. 7846:V 7843:t 7837:E 7817:t 7797:V 7777:E 7757:E 7734:V 7731:t 7725:E 7705:t 7685:V 7659:X 7639:E 7607:; 7604:0 7580:0 7549:. 7546:E 7543:= 7540:E 7517:, 7514:E 7508:E 7477:E 7437:t 7431:0 7411:E 7405:E 7402:) 7399:t 7393:1 7390:( 7387:+ 7384:E 7381:t 7347:| 7343:t 7339:| 7318:E 7312:E 7309:t 7278:. 7275:r 7268:| 7264:c 7260:| 7239:c 7219:E 7213:x 7210:c 7190:0 7184:r 7164:, 7161:X 7155:x 7135:X 7106:X 7086:E 7058:S 7038:X 7018:x 6994:S 6991:+ 6988:x 6968:S 6962:0 6942:S 6934:X 6926:+ 6923:x 6920:= 6917:) 6914:S 6911:+ 6908:x 6905:( 6897:X 6872:, 6869:X 6863:S 6843:X 6837:x 6814:, 6811:x 6802:x 6782:X 6776:X 6756:1 6750:= 6747:s 6727:x 6724:s 6718:x 6698:X 6692:X 6672:0 6666:s 6642:0 6634:0 6630:x 6605:x 6602:+ 6597:0 6593:x 6586:x 6566:X 6560:X 6540:, 6537:X 6529:0 6525:x 6485:. 6482:X 6462:M 6458:/ 6454:X 6435:. 6432:} 6429:0 6426:{ 6406:M 6386:M 6382:/ 6378:X 6358:X 6338:M 6314:M 6310:/ 6306:X 6286:, 6283:X 6277:M 6254:X 6219:1 6180:. 6174:= 6168:S 6142:) 6136:, 6133:X 6130:( 6109:S 6084:. 6080:S 6054:S 6028:. 6025:X 6000:S 5978:S 5951:X 5930:S 5909:X 5861:. 5858:) 5852:, 5849:X 5846:( 5821:S 5800:X 5779:S 5758:) 5752:, 5749:X 5746:( 5710:. 5706:S 5679:U 5666:S 5653:U 5640:S 5580:S 5553:V 5540:W 5513:U 5500:W 5478:S 5465:W 5444:, 5440:S 5427:V 5423:, 5414:U 5392:S 5371:( 5354:S 5333:, 5330:X 5309:S 5285:. 5279:N 5272:i 5267:) 5261:i 5257:V 5248:i 5244:U 5239:( 5225:V 5212:U 5183:. 5177:N 5170:i 5165:) 5159:i 5155:V 5151:+ 5146:i 5142:U 5137:( 5123:V 5119:+ 5110:U 5081:. 5075:N 5068:i 5063:) 5057:i 5053:U 5049:s 5045:( 5031:U 5027:s 4999:. 4994:i 4990:U 4983:N 4976:i 4959:U 4924:. 4920:} 4915:N 4908:i 4905:: 4900:i 4896:U 4891:{ 4878:U 4843:. 4840:i 4818:i 4814:V 4805:i 4801:U 4774:V 4761:U 4731:U 4702:V 4678:s 4658:X 4635:N 4628:i 4623:) 4618:i 4614:V 4610:( 4605:= 4596:V 4572:N 4565:i 4560:) 4555:i 4551:U 4547:( 4542:= 4533:U 4502:. 4499:X 4479:) 4476:y 4470:x 4467:( 4464:f 4458:) 4455:y 4452:, 4449:x 4446:( 4443:d 4423:X 4397:U 4376:X 4356:f 4334:i 4330:U 4309:X 4289:. 4286:X 4280:x 4260:1 4253:| 4249:s 4245:| 4224:s 4204:) 4201:x 4198:( 4195:f 4189:) 4186:x 4183:s 4180:( 4177:f 4155:i 4151:U 4130:) 4127:x 4124:( 4121:f 4118:= 4115:) 4112:x 4106:( 4103:f 4077:i 4073:U 4049:= 4046:) 4043:0 4040:( 4037:f 4017:; 4012:i 4008:U 4002:0 3996:i 3971:0 3968:= 3965:f 3945:X 3939:y 3936:, 3933:x 3913:) 3910:y 3907:( 3904:f 3901:+ 3898:) 3895:x 3892:( 3889:f 3883:) 3880:y 3877:+ 3874:x 3871:( 3868:f 3848:f 3826:. 3822:} 3818:) 3815:x 3812:( 3808:S 3800:) 3794:k 3790:n 3786:, 3780:, 3775:1 3771:n 3766:( 3762:= 3753:n 3746:: 3736:k 3732:n 3724:2 3717:+ 3710:1 3706:n 3698:2 3693:{ 3679:) 3676:x 3673:( 3670:f 3648:0 3644:U 3637:x 3617:1 3614:= 3611:) 3608:x 3605:( 3602:f 3582:] 3579:1 3576:, 3573:0 3570:[ 3564:X 3561:: 3558:f 3536:. 3532:} 3524:k 3520:n 3515:U 3511:+ 3505:+ 3498:1 3494:n 3489:U 3482:u 3474:, 3471:i 3463:0 3455:i 3451:n 3447:, 3444:1 3438:k 3432:: 3425:) 3419:k 3415:n 3411:, 3405:, 3400:1 3396:n 3391:( 3387:= 3378:n 3373:{ 3366:) 3363:u 3360:( 3356:S 3335:, 3330:0 3326:U 3319:u 3293:i 3271:i 3267:U 3258:1 3255:+ 3252:i 3248:U 3244:+ 3239:1 3236:+ 3233:i 3229:U 3206:i 3202:U 3195:0 3168:0 3165:= 3162:i 3157:) 3152:i 3148:U 3144:( 3139:= 3130:U 3103:R 3094:( 3062:X 3041:U 3019:. 3016:U 3013:= 3008:1 3004:U 2983:U 2978:i 2972:1 2968:2 2959:i 2955:U 2934:X 2907:U 2884:. 2881:X 2855:U 2834:X 2790:U 2760:. 2755:i 2751:U 2687:. 2684:i 2662:i 2658:U 2649:1 2646:+ 2643:i 2639:U 2635:+ 2630:1 2627:+ 2624:i 2620:U 2582:U 2561:. 2552:U 2525:1 2521:U 2500:. 2491:U 2468:i 2445:i 2441:U 2421:, 2418:i 2392:U 2357:U 2336:. 2333:X 2306:1 2303:= 2300:i 2295:) 2290:i 2286:U 2282:( 2277:= 2268:U 2247:X 2213:. 2210:X 2190:0 2160:B 2135:, 2132:B 2126:U 2123:+ 2120:U 2098:B 2090:U 2068:B 2060:B 2038:B 2026:, 2004:B 1996:B 1966:B 1944:. 1941:X 1921:0 1895:B 1873:X 1839:B 1817:X 1775:x 1772:+ 1767:0 1763:x 1756:x 1736:X 1730:X 1710:, 1707:X 1699:0 1695:x 1662:) 1656:, 1653:X 1650:( 1626:X 1620:X 1600:y 1597:+ 1594:x 1588:) 1585:y 1582:, 1579:x 1576:( 1556:X 1550:X 1544:X 1520:X 1514:X 1494:, 1491:X 1447:) 1444:+ 1441:, 1438:X 1435:( 1411:0 1387:. 1384:N 1378:U 1375:+ 1372:U 1350:N 1342:U 1322:, 1317:N 1309:N 1283:N 1151:. 1148:Y 1124:, 1121:u 1101:, 1098:) 1095:X 1092:( 1089:u 1083:u 1053:u 1041:X 1038:: 1035:u 1015:Y 1009:X 1006:: 1003:u 945:K 917:K 892:. 886:K 880:t 877:c 874:e 871:V 868:T 843:K 837:S 834:V 831:T 808:K 760:1 758:T 744:X 706:. 703:X 659:X 653:X 646:K 642:: 619:X 613:X 607:X 604:: 596:+ 559:K 531:X 519:( 511:. 424:, 421:X 400:K 379:, 376:x 370:s 364:) 361:x 358:, 355:s 352:( 332:X 326:X 319:K 315:: 285:y 282:+ 279:x 273:) 270:y 267:, 264:x 261:( 241:X 235:X 229:X 226:: 218:+ 165:, 161:R 136:C 20:)

Index

Topological vector spaces
mathematics
functional analysis
vector space
topological space
continuous functions
uniform topological structure
uniform convergence
completeness
Hausdorff space
locally convex topological vector spaces
Banach spaces
Hilbert spaces
Sobolev spaces
functions
linear operators
convergence
scalar
complex numbers
real numbers
normed vector space
topological structure
metric
triangle inequality
Banach spaces
Hilbert spaces
holomorphic functions
infinitely differentiable functions
Schwartz spaces
test functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑