Knowledge

Structural coloration

Source đź“ť

487: 791: 916: 433: 876: 1089: 570: 952: 1010: 988: 898: 970: 737: 934: 3786: 418: 251: 472: 861: 1111: 458:. When the waves are one or more whole wavelengths apart – in other words, at certain specific angles, they add (interfere constructively), giving a strong reflection. At other angles and phase differences, they can subtract, giving weak reflections. The thin film therefore selectively reflects just one wavelength – a pure colour – at any given angle, but other wavelengths – different colours – at different angles. So, as a thin-film structure such as a butterfly's wing or bird's feather moves, it seems to change colour. 1028: 1061: 1046: 626: 297: 33: 158: 529:, a bird of paradise. The barbules of the feathers of its brightly coloured breast patch are V-shaped, creating thin-film microstructures that strongly reflect two different colours, bright blue-green and orange-yellow. When the bird moves the colour switches sharply between these two colours, rather than drifting iridescently. During courtship, the male bird systematically makes small movements to attract females, so the structures must have evolved through 5090: 5100: 4464: 656: 849:. These are arranged to reflect blue–green light in a wide viewing direction. The fast flashes of the blue rings are achieved using muscles under neural control. Under normal circumstances, each ring is hidden by contraction of muscles above the iridophores. When these relax and muscles outside the ring contract, the bright blue rings are exposed. 1129:. This used a photosensitive emulsion fine enough for the interference caused by light waves reflecting off the back of the glass plate to be recorded in the thickness of the emulsion layer, in a monochrome (black and white) photographic process. Shining white light through the plate effectively reconstructs the colours of the photographed scene. 756:, the layer is 2.7 micrometres thick. The unusual starch cells form a diffuse but strong reflector, enhancing the flower's brilliance. The curved petals form a paraboloidal dish which directs the sun's heat to the reproductive parts at the centre of the flower, keeping it some degrees Celsius above the ambient temperature. 1201:
is densely packed with microscopic projections that have the effect of reducing reflection and hence increasing transmission of incident light. Similarly, the eyes of some moths have antireflective surfaces, again using arrays of pillars smaller than the wavelength of light. "Moth-eye" nanostructures
436:
A 3-slide series of pictures taken with and without a pair of MasterImage 3D circularly polarized movie glasses of some dead European rose chafers (Cetonia aurata) whose shiny green colour comes from left-polarized light. Note that, without glasses, both the beetles and their mirror images have shiny
278:
But Beddard then largely dismissed structural coloration, firstly as subservient to pigments: "in every case the colour needs for its display a background of dark pigment;" and then by asserting its rarity: "By far the commonest source of colour in invertebrate animals is the presence in the skin of
218:
The finely colour'd Feathers of some Birds, and particularly those of Peacocks Tails, do, in the very same part of the Feather, appear of several Colours in several Positions of the Eye, after the very same manner that thin Plates were found to do in the 7th and 19th Observations, and therefore their
199:
shells, do not onely reflect a very brisk light, but tinge that light in a most curious manner; and by means of various positions, in respect of the light, they reflect back now one colour, and then another, and those most vividly. Now, that these colours are onely fantastical ones, that is, such as
2538:
MORPHOTEX, the world's first structurally colored fiber, features a stack structure with several tens of nano-order layers of polyester and nylon fibers with different refractive indexes, facilitating control of color using optical coherence tomography. Structural control means that a single fiber
829:
squid is controlled by electric charge. When charge is absent, the proteins stack together tightly, forming a thin, more reflective layer; when charge is present, the molecules stack more loosely, forming a thicker layer. Since chromatophores contain multiple reflectin layers, the switch changes the
770:
is exposed and light is diffracted by the proteins in the fibrils. The coloration or wavelength of the diffracted light depends on the angle of observation and can be enhanced by covering the meat with translucent foils. Roughening the surface or removing water content by drying causes the structure
449:
reflect part of the light falling on them from their top surfaces. The rest of the light goes through the films, and a further part of it is reflected from their bottom surfaces. The two sets of reflected waves travel back upwards in the same direction. But since the bottom-reflected waves travelled
269:
The colours of animals are due either solely to the presence of definite pigments in the skin, or … beneath the skin; or they are partly caused by optical effects due to the scattering, diffraction or unequal refraction of the light rays. Colours of the latter kind are often spoken of as structural
94:, combined with refraction as light enters and leaves such films. The geometry then determines that at certain angles, the light reflected from both surfaces interferes constructively, while at other angles, the light interferes destructively. Different colours therefore appear at different angles. 482:
A number of fixed structures can create structural colours, by mechanisms including diffraction gratings, selective mirrors, photonic crystals, crystal fibres and deformed matrices. Structures can be far more elaborate than a single thin film: films can be stacked up to give strong iridescence, to
192:
The parts of the Feathers of this glorious Bird appear, through the Microscope, no less gaudy then do the whole Feathers; for, as to the naked eye 'tis evident that the stem or quill of each Feather in the tail sends out multitudes of Lateral branches, … so each of those threads in the Microscope
1163:
inks appear as different colours depending on the angle the banknote is viewed from. Because the ink is hard to obtain, and because a photocopier or scanner (which works from only one angle) cannot reproduce or even perceive the color-shifting effect, the ink serves to make counterfeiting more
551:
and are about the same distance apart. The holes are arranged regularly in small patches; neighbouring patches contain arrays with differing orientations. The result is that these emerald-patched cattleheart scales reflect green light evenly at different angles instead of being iridescent. In
510:
and air gives rise to the iridescent colours of various butterfly wing scales as well as to the tail feathers of birds such as the peacock. Hooke and Newton were correct in their claim that the peacock's colours are created by interference, but the structures responsible, being close to the
483:
combine two colours, or to balance out the inevitable change of colour with angle to give a more diffuse, less iridescent effect. Each mechanism offers a specific solution to the problem of creating a bright colour or combination of colours visible from different directions.
595:
for two wavelengths of light. Yellow light is reflected directly from the centres of the pits; blue light is reflected twice by the sides of the pits. The combination appears green, but can be seen as an array of yellow spots surrounded by blue circles under a microscope.
750:, based on the top two layers of a buttercup's petals. The brilliant yellow gloss derives from a combination, rare among plants, of yellow pigment and structural coloration. The very smooth upper epidermis acts as a reflective and iridescent thin film; for example, in 618:, warning predators not to attack. The chitin walls of the hollow bristles form a hexagonal honeycomb-shaped photonic crystal; the hexagonal holes are 0.51 ÎĽm apart. The structure behaves optically as if it consisted of a stack of 88 diffraction gratings, making 728:
is the first organism known to show such random polarization of light, which, nevertheless does not have a visual function, as the seed-eating birds who visit this plant species are not able to perceive polarised light. Spiral microstructures are also found in
1202:
could be used to create low-reflectance glass for windows, solar cells, display devices, and military stealth technologies. Antireflective biomimetic surfaces using the "moth-eye" principle can be manufactured by first creating a mask by lithography with gold
915: 875: 562:, the chitin exoskeleton is covered in iridescent green oval scales. These contain diamond-based crystal lattices oriented in all directions to give a brilliant green coloration that hardly varies with angle. The scales are effectively divided into 951: 391:. This is because the reflected colour depends on the viewing angle, which in turn governs the apparent spacing of the structures responsible. Structural colours can be combined with pigment colours: peacock feathers are pigmented brown with 777:
can occur in microscale structures, such as sessile water droplets and biphasic oil-in-water droplets as well as polymer microstructured surfaces. In this structural coloration mechanism, light rays that travel by different paths of
219:
Colours arise from the thinness of the transparent parts of the Feathers; that is, from the slenderness of the very fine Hairs, or Capillamenta, which grow out of the sides of the grosser lateral Branches or Fibres of those Feathers.
1009: 711:
butterflies, and is one of the first instances of structural coloration known from any plant. Each cell has its own thickness of stacked fibres, making it reflect a different colour from its neighbours, and producing a
1118:'s colour photographs, "Le Cervin", 1899, made using a monochrome photographic process (a single emulsion). The colours are structural, created by interference with light reflected from the back of the glass plate. 897: 200:
arise immediately from the refractions of the light, I found by this, that water wetting these colour'd parts, destroy'd their colours, which seem'd to proceed from the alteration of the reflection and refraction.
124:. In the few plants that exploit structural coloration, brilliant colours are produced by structures within cells. The most brilliant blue coloration known in any living tissue is found in the marble berries of 987: 1961: 1088: 437:
colour. The right-polarizer removes the colour of the beetles but leaves the color of the mirror images. The left-polarizer does the opposite, showing reversal of handedness of the reflected light.
933: 1148:, in a transparent nylon sheath with an oval cross-section. The materials are arranged so that the colour does not vary with angle. The fibres have been produced in red, green, blue, and violet. 693:, resulting in the most intense blue coloration known in nature. The berry's surface has four layers of cells with thick walls, containing spirals of transparent cellulose spaced so as to allow 1060: 860: 3668: 1269: 120:
also show structural coloration due to the exposure of the periodic arrangement of the muscular fibres. Many of these photonic mechanisms correspond to elaborate structures visible by
2772: 1167:
Structural coloration could be further exploited industrially and commercially, and research that could lead to such applications is under way. A direct parallel would be to create
837:
cells. If they are provoked, they quickly change colour, becoming bright yellow with each of the 50-60 rings flashing bright iridescent blue within a third of a second. In the
547:, the emerald-patched cattleheart butterfly, photonic crystals are formed of arrays of nano-sized holes in the chitin of the wing scales. The holes have a diameter of about 150 1902:
Galusha, Jeremy W., Lauren R. Richey, John S. Gardner, Jennifer N. Cha, Michael H. Bart (May 2008). "Discovery of a diamond-based photonic crystal structure in beetle scales".
3083: 2685:
Morhard, C., Pacholski, C., Lehr, D., Brunner, R., Helgert, M., Sundermann, M., Spatz, J.P. (2010). "Tailored antireflective biomimetic nanostructures for UV applications".
1027: 138:
is produced by thin-film reflection by the epidermis supplemented by yellow pigmentation, and strong diffuse scattering by a layer of starch cells immediately beneath.
1140:
butterfly wing scales. The fibres are composed of 61 flat alternating layers, between 70 and 100 nanometres thick, of two plastics with different refractive indices,
652:. Since the reflections are not all arranged in the same direction, the colours, while still magnificent, do not vary much with angle, so they are not iridescent. 1958: 720:
effect with different blues speckled with brilliant green, purple, and red dots. The fibres in any one cell are either left-handed or right-handed, so each cell
3018: 2242:
Goodling, Amy E.; Nagelberg, Sara; Kaehr, Bryan; Meredith, Caleb H.; Cheon, Seong Ik; Saunders, Ashley P.; Kolle, Mathias; Zarzar, Lauren D. (February 2019).
2866: 195:… their upper sides seem to me to consist of a multitude of thin plated bodies, which are exceeding thin, and lie very close together, and thereby, like 2011: 515:. Another way to produce a diffraction grating is with tree-shaped arrays of chitin, as in the wing scales of some of the brilliantly coloured tropical 4716: 2444: 969: 3648: 1045: 2736: 2671: 2634: 2385: 2101: 1945: 1804: 1503: 2307:"Tunable and Responsive Structural Color from Polymeric Microstructured Surfaces Enabled by Interference of Totally Internally Reflected Light" 486: 2986: 2515: 1277: 1186:
do. The ability to vary reflectivity to different wavelengths of light could also lead to efficient optical switches that could function like
2429: 3710: 3075: 790: 583:
to create interference effects are formed of micron-sized bowl-shaped pits lined with multiple layers of chitin in the wing scales of
833:
Blue-ringed octopuses spend much of their time hiding in crevices whilst displaying effective camouflage patterns with their dermal
4867: 3198: 270:
colours; they are caused by the structure of the coloured surfaces. The metallic lustre of the feathers of many birds, such as the
230:
by showing that light could also behave as a wave. He showed in 1803 that light could diffract from sharp edges or slits, creating
67:
are pigmented brown, but their microscopic structure makes them also reflect blue, turquoise, and green light, and they are often
3623: 3600: 3356: 3304: 4857: 4721: 4086: 3208: 2946: 2874:"Iridescent plumage in satin bowerbirds: Structure, mechanisms and nanostructural predictors of individual variation in colour" 1686: 51:
in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with
566:
about a micrometre wide. Each such pixel is a single crystal and reflects light in a direction different from its neighbours.
432: 3894: 2573:
Huang, J., Wang, X., Wang, Z.L. (2008). "Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes".
2412: 1453: 1412: 90:
a century later. Young described iridescence as the result of interference between reflections from two or more surfaces of
3235: 2684: 4933: 3334: 3045: 3785: 2115:
Vignolini, Silvia; Paula J. Rudall; Alice V. Rowland; Alison Reed; Edwige Moyroud; Robert B. Faden; Jeremy J. Baumberg;
4013: 3247: 1901: 1717: 36:
The brilliant iridescent colors of the peacock's tail feathers are created by structural coloration, as first noted by
3225: 3037: 511:
wavelength of light in scale (see micrographs), were smaller than the striated structures they could see with their
4878: 3960: 3633: 3458: 304:, the waves reflected from the upper and lower surfaces travel different distances depending on the angle, so they 17: 5103: 5057: 3703: 3653: 3555: 3453: 3274: 2763:
Animal Coloration, An Account of the Principal Facts and Theories Relating to the Colours and Markings of Animals
2181:"Visual Ecology" by Cronin, T.W., Johnson, S., Marshall, N.J. and Warrant, E.J. (2014) Princeton University Press 1404:
Animal Coloration: an account of the principal facts and theories relating to the colours and markings of animals
1125:
won the Nobel Prize in Physics in 1908 for his work on a structural coloration method of colour photography, the
891:
the brilliant colours are produced by intricate firtree-shaped microstructures too small for optical microscopes.
569: 231: 214:
described the mechanism of the colours other than the brown pigment of peacock tail feathers. Newton noted that
4938: 4873: 4862: 3538: 2762: 2018: 1443: 1136:
Fibers' Morphotex, an undyed fabric woven from structurally coloured fibres, mimicking the microstructure of
239: 4741: 4401: 3448: 1468:
Parker, A.R., Martini, N. (June–September 2006). "Structural colour in animals—simple to complex optics".
5124: 4175: 3822: 3643: 3502: 3299: 846: 838: 3393: 5139: 4943: 4601: 4530: 4259: 4079: 4018: 3696: 3443: 3438: 3361: 3264: 3230: 3193: 3052: 2939: 2343: 963:
weevil contain diamond-based crystal lattices oriented in all directions to give almost uniform green.
4918: 4736: 4708: 3889: 3408: 3324: 2978: 1713:"Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules" 1664: 779: 694: 2595: 2522: 736: 4923: 4913: 4908: 4903: 4386: 4119: 3279: 3220: 3203: 3188: 3133: 2493: 1763: 1537: 442: 322:
are produced when a material is scored with fine parallel lines, or formed of one or more parallel
227: 223: 87: 2044: 5134: 4970: 4928: 3257: 3010: 1630: 927:, is created by arrays of microscopic bowls that reflect yellow directly and blue from the sides. 333:
Structural coloration is responsible for the blues and greens of the feathers of many birds (the
1308:(4th ed.). William Innys at the West-End of St. Paul's, London. pp. Prop. V., page 251 909:
bird of paradise signals to the female with his breast feathers that switch from blue to yellow.
116:, crystal fibres, matrices of nanochannels and proteins that can vary their configuration. Some 4151: 3628: 3618: 3383: 3346: 3319: 3213: 2590: 1156: 1051: 796: 602:, formed of hexagonal arrays of hollow nanofibres, create the bright iridescent colours of the 408: 141:
Structural coloration has potential for industrial, commercial and military applications, with
4326: 1094:
Two photographs of the same Eupholus weevil exhibit the unique expression of structural color.
4852: 4607: 4508: 4496: 4072: 4023: 3982: 3955: 3675: 3582: 3468: 3463: 3252: 3140: 2932: 2730: 2628: 2379: 2095: 1939: 1798: 1497: 959: 721: 697:
with blue light. Below these cells is a layer two or three cells thick containing dark brown
649: 630: 554: 417: 305: 2853:
Kinoshita, S. (2008). "Structural Color in the Realm of Nature". World Scientific Publishing
2244:"Colouration by total internal reflection and interference at microscale concave interfaces" 4825: 4003: 3935: 3884: 3589: 3309: 3066: 2694: 2582: 2255: 2136: 2059: 1911: 1834: 1549: 1477: 1340: 1303: 1207: 869:
owe their brilliant colours partly to diffraction grating microstructures in their feathers
1819: 766:. The structural coloration on meat cuts appears only after the ordered pattern of muscle 8: 4955: 4640: 4540: 4472: 4361: 4163: 3398: 3378: 3294: 3284: 3145: 2757: 2706: 2604: 1398: 1171: 1035: 1021:(a species of sea mouse) reflect light in yellows, reds and greens to warn off predators. 825: 588: 574: 502: 476: 471: 421: 255: 244: 121: 109: 2856:
Mouchet, S. R., Deparis, O. (2021). "Natural Photonics and Bioinspiration". Artech House
2698: 2586: 2259: 2140: 2063: 1978: 1915: 1838: 1553: 1481: 1344: 250: 59:, although some structural coloration occurs in combination with pigments. For example, 4369: 4321: 4269: 4254: 4249: 4227: 4156: 3950: 3613: 3329: 3242: 2970: 2903: 2718: 2616: 2326: 2287: 2219: 2192: 2159: 2120: 2116: 2083: 1786: 1739: 1712: 1606: 1581: 1358: 1229: 1110: 1017: 999: 977: 866: 526: 56: 2649: 1846: 475:
Butterfly wing at different magnifications reveals microstructured chitin acting as a
5065: 5018: 4746: 4615: 4513: 4430: 4391: 4308: 4264: 4053: 4048: 4008: 3967: 3915: 3572: 3544: 3426: 3403: 3351: 3269: 3155: 2895: 2710: 2665: 2608: 2408: 2367: 2330: 2322: 2279: 2271: 2224: 2164: 2075: 1959:
The Photonic Beetle: Nature Builds Diamond-like Crystals for Future Optical Computers
1927: 1850: 1790: 1744: 1611: 1557: 1449: 1408: 1362: 1219: 1168: 941: 923: 689: 661: 543: 274:, is due to the presence of excessively fine striae upon the surface of the feathers. 126: 113: 97: 83: 2914: 2907: 2722: 2291: 2243: 1888: 1690: 1489: 762:, consisting of ordered surface features due to exposure of ordered muscle cells on 5013: 5008: 4988: 4983: 4568: 4341: 4336: 4316: 4274: 4232: 4210: 4134: 4033: 3866: 3758: 3738: 3532: 3508: 3484: 3314: 3060: 2885: 2702: 2620: 2600: 2357: 2318: 2306: 2305:
Goodling, Amy E.; Nagelberg, Sara; Kolle, Mathias; Zarzar, Lauren D. (2020-07-06).
2263: 2214: 2204: 2154: 2144: 2114: 2087: 2067: 1919: 1884: 1842: 1778: 1734: 1726: 1601: 1593: 1485: 1348: 1151:
Several countries and regions, including the U.S., European Union, and Brazil, use
1122: 1115: 994: 752: 684: 537: 530: 512: 451: 323: 301: 280: 318:
Structural coloration is caused by interference effects rather than by pigments.
283:
has "structural peculiarities" in its hair that "give rise to brilliant colours".
5043: 5033: 5028: 4993: 4895: 4731: 4678: 4595: 4590: 4501: 4396: 3817: 3753: 3743: 3520: 3289: 3183: 2445:"Seven fabrics inspired by nature: from the lotus leaf to butterflies and sharks" 2346:"How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?" 2009: 1965: 1402: 905: 193:
appears a large long body, consisting of a multitude of bright reflecting parts.
3768: 2344:
Mäthger, L.M., Bell, G.R., Kuzirian, A.M., Allen, J.J. and Hanlon, R.T. (2012).
5129: 5093: 5038: 5023: 5003: 4998: 4781: 4563: 4449: 4418: 4374: 4331: 4203: 4168: 4141: 3940: 3856: 3844: 3748: 3563: 3388: 3371: 3341: 3128: 2129:
Proceedings of the National Academy of Sciences of the United States of America
1923: 1126: 883: 707: 517: 492: 454:
of the film, and the angle at which the light fell – the two sets of waves are
131: 2919: 2267: 1782: 1580:
van der Kooi, C.J.; Elzenga, J.T.M.; Dijksterhuis, J.; Stavenga, D.G. (2017).
1427: 5118: 4978: 4776: 4558: 4550: 4483: 4351: 4291: 4215: 4198: 4104: 3930: 3849: 3827: 3802: 3773: 3763: 3725: 3608: 3490: 3432: 2275: 1711:
Stavenga, Doekele G.; Leertouwer, H. L.; Marshall, N. J.; Osorio, D. (2010).
834: 820: 455: 52: 2149: 1710: 1329:"Experimental Demonstration of the General Law of the Interference of Light" 4950: 4813: 4769: 4585: 4580: 4575: 4491: 4444: 4413: 4346: 4190: 3861: 3807: 3496: 3366: 3175: 3150: 3113: 2955: 2899: 2792: 2785: 2780: 2714: 2612: 2371: 2283: 2228: 2168: 2079: 1931: 1854: 1748: 1730: 1615: 1597: 1561: 1353: 1203: 1194: 1160: 763: 730: 680: 625: 378: 260: 211: 181: 176: 166: 161: 117: 79: 75: 41: 37: 32: 1428:
Structural colour under the microscope! Feathers, beetles and butterflie!!
157: 4808: 4631: 4535: 4379: 4284: 4242: 4237: 4180: 4146: 4038: 3920: 3839: 3733: 3514: 3123: 3002: 2209: 1079: 804: 717: 412: 346: 296: 271: 68: 2470: 2071: 326:, or otherwise composed of microstructures on the scale of the colour's 4960: 4803: 4523: 4279: 4220: 4028: 3925: 3638: 3526: 2362: 2345: 1579: 1224: 1187: 1183: 1105: 1074: 815:
which can be switched between two configurations. The configuration of
808: 767: 713: 615: 396: 366: 342: 338: 327: 146: 142: 91: 2890: 2873: 2551: 2010:
McPhedran, Ross; McKenzie, David; Nicorovici, Nicolae (3 April 2002).
4820: 4793: 4788: 4297: 4043: 3876: 3832: 3812: 1179: 1145: 816: 740: 677: 611: 548: 446: 382: 362: 334: 135: 101: 3688: 2872:
Doucet, S. M.; Shawkey, M. D.; Hill, G. E.; Montgomerie, R. (2006).
2496:. Fashionably Early Forum, National Gallery Canberra. pp. 61–70 1328: 5075: 4798: 4406: 3910: 3160: 3101: 2924: 1983: 1198: 1152: 812: 673: 387: 105: 4463: 1764:"Beyond butterflies—the diversity of biological photonic crystals" 1631:"Nature's Palette: How animals, including humans, produce colours" 4847: 4129: 3972: 3945: 3118: 3106: 2994: 2797: 1689:. University of Alaska, Fairbanks (Honors Thesis). Archived from 1190:, enabling engineers to make fast optical computers and routers. 1175: 641: 392: 370: 358: 313: 206: 185: 64: 60: 4064: 74:
Structural coloration was first described by English scientists
5070: 4673: 4663: 3672: 2572: 1159:, which is structurally coloured, as a security feature. These 1133: 1068: 830:
layer spacing and hence the colour of light that is reflected.
698: 640:, consisting of randomly oriented nanochannels in a spongelike 592: 563: 559: 507: 354: 350: 319: 2241: 807:
such as squid are able to vary their colours rapidly for both
247:(1858–1925) acknowledged the existence of structural colours: 4698: 4693: 4683: 4653: 4124: 4095: 3998: 1141: 743:
petals exploit both yellow pigment and structural coloration.
425: 374: 196: 2871: 2539:
will always show the same colors regardless of its location.
2304: 1761: 782:
along an interface interfere to generate iridescent colour.
4688: 4668: 4648: 4518: 4435: 2867:
National Geographic News: Peacock Plumage Secrets Uncovered
2407:] (in German) (4th ed.). Dover. pp. 668–672. 1254:
Of Peacoks, Ducks, and Other Feathers of Changeable Colours
1248: 1246: 1244: 771:
to collapse, thus, the structural coloration to disappear.
614:, a non-wormlike genus of marine annelids. The colours are 603: 399:
pigments for yellowness and thin films for reflectiveness.
2820:
The Optics of Life: A Biologist's Guide to Light in Nature
2430:"Lippmann's and Gabor's Revolutionary Approach to Imaging" 2042: 4764: 4658: 4423: 3794: 1988: 1467: 1333:
Philosophical Transactions of the Royal Society of London
1274:
Natural Photonics (originally in Physics Review Magazine)
1252:
Hooke, Robert. Micrographia. Chapter 36 ('Observ. XXXVI.
655: 644:
matrix, create the diffuse non-iridescent blue colour of
521:
butterflies (see drawing). Yet another variant exists in
130:, where a spiral structure of cellulose fibrils produces 27:
Colour in living creatures caused by interference effects
2017:. University of Sydney School of Physics. Archived from 1241: 279:
definite pigments", though he does later admit that the
149:, efficient optical switches and low-reflectance glass. 145:
surfaces that could provide brilliant colours, adaptive
2516:"Teijin Limited | Annual Report 2006 | R&D Efforts" 1380:. New York: Holt Rinehart and Winston. pp. 96–101. 573:
Structural coloration through selective mirrors in the
2647: 1276:. University of Exeter. September 1998. Archived from 945:, creates its brilliant green using photonic crystals. 170:
contains the first observations of structural colours.
2190: 1704: 1132:
In 2010, the dressmaker Donna Sgro made a dress from
775:
Interference from multiple total internal reflections
724:
the light it reflects in one direction or the other.
1687:"What Makes the Peacock Feather Bright and Colorful" 1054:
in a soap bubble. Colour varies with film thickness.
1039:, has been studied for its ability to change colour. 1264: 1262: 450:a little farther – controlled by the thickness and 100:such as on the feathers of birds and the scales of 4717:Linguistic relativity and the colour naming debate 1875:Vukusic, P. (February 2004). "Natural Photonics". 811:and signalling. The mechanisms include reversible 264:golden moles' thick fur was structurally coloured. 3649:Statal Institute of Higher Education Isaac Newton 1817: 1628: 5116: 2193:"Iridescence in Meat Caused by Surface Gratings" 1868: 1259: 622:one of the most iridescent of marine organisms. 2813:Animal Biochromes and Animal Structural Colours 2392: 1582:"Functional optics of glossy buttercup flowers" 1442:Mouchet, SĂ©bastien R; Deparis, Olivier (2021), 2442: 1441: 4080: 3704: 2940: 2043:Vukusic, P., Sambles, J.R. (14 August 2003). 2036: 1437: 1435: 993:Electron micrograph of the three-dimensional 705:produces a stronger colour than the wings of 2848:Nature's Palette: The Science of Plant Color 2735:: CS1 maint: multiple names: authors list ( 2670:: CS1 maint: multiple names: authors list ( 2641: 2633:: CS1 maint: multiple names: authors list ( 2384:: CS1 maint: multiple names: authors list ( 2100:: CS1 maint: multiple names: authors list ( 1944:: CS1 maint: multiple names: authors list ( 1820:"Photonic Crystals: Semiconductors of Light" 1803:: CS1 maint: multiple names: authors list ( 1535: 1502:: CS1 maint: multiple names: authors list ( 1078:genera often produce a bluish tint from the 687:in the "marble berries" of the African herb 2337: 1874: 402: 184:described the "fantastical" colours of the 5099: 4087: 4073: 3711: 3697: 2947: 2933: 2427: 1762:Welch, V.L., Vigneron, J.-P. (July 2007). 1665:"What Makes the Peacock Feather Colorful?" 1432: 2889: 2789:, John Martyn and James Allestry, London. 2594: 2521:. Teijin Japan. July 2006. Archived from 2361: 2218: 2208: 2158: 2148: 2108: 1738: 1684: 1662: 1605: 1393: 1391: 1389: 1387: 1352: 921:Brilliant green of emerald swallowtail, 591:butterfly. These act as highly selective 490:Drawing of 'firtree' micro-structures in 134:scattering of light. The bright gloss of 4868:International Commission on Illumination 1297: 1295: 1109: 789: 735: 654: 624: 568: 485: 470: 431: 416: 295: 291: 249: 156: 104:, interference is created by a range of 31: 2827:Photonic Structures Inspired by Nature 2678: 2191:Martinez-Hurtado, J L (November 2013). 1575: 1573: 1571: 1531: 1529: 1527: 1525: 1523: 1521: 1519: 1517: 1515: 1513: 1397: 939:Emerald-patched cattleheart butterfly, 733:where they produce iridescent colours. 659:The most intense blue known in nature: 14: 5117: 4858:Color Association of the United States 2443:Cherny-Scanlon, Xenya (29 July 2014). 1622: 1586:Journal of the Royal Society Interface 1384: 1375: 1301: 785: 629:Magnificent non-iridescent colours of 4068: 3895:Evolution of color vision in primates 3718: 3692: 3199:Newton's law of universal gravitation 2928: 2920:Butterflies and Gyroids – Numberphile 2566: 2184: 1461: 1326: 1292: 1178:to match their environments, just as 794:Variable ring patterns on mantles of 3357:Newton's theorem of revolving orbits 2954: 2491: 2398: 1568: 1510: 1445:Natural Photonics and Bioinspiration 1174:fabrics that vary their colours and 541:can be formed in different ways. In 3305:Leibniz–Newton calculus controversy 3046:standing on the shoulders of giants 2751: 2350:The Journal of Experimental Biology 1971: 1818:Yablonovitch, Eli (December 2001). 466: 445:in 1803, is created when extremely 395:, while buttercup petals have both 24: 4722:Blue–green distinction in language 1979:"Sea mouse promises bright future" 1718:Proceedings of the Royal Society B 25: 5151: 4094: 2915:Causes of Color: Peacock feathers 2860: 2815:. University of California Press. 2428:Biedermann, Klaus (15 May 2005). 2121:"Pointillist structural color in 1847:10.1038/scientificamerican1201-46 845:), the rings contain multi-layer 5098: 5089: 5088: 4879:International Colour Association 4462: 3784: 3634:Isaac Newton Group of Telescopes 2841:Colour in Art, Design and Nature 2833: 2554:. Transmaterial. 12 October 2010 2468: 2323:10.1021/acsmaterialslett.0c00143 2045:"Photonic Structures in Biology" 1099: 1087: 1082:of their otherwise black chitin. 1059: 1044: 1026: 1008: 986: 968: 950: 932: 914: 896: 874: 859: 748:Thin film with diffuse reflector 345:, for example), as well as many 4874:International Colour Consortium 3654:Newton International Fellowship 3335:generalized Gauss–Newton method 3248:Newton's method in optimization 2878:Journal of Experimental Biology 2746: 2544: 2508: 2494:"Biomimicry + Fashion Practice" 2485: 2462: 2436: 2421: 2298: 2235: 2175: 2003: 1968:. Biomimicry News, 21 May 2008. 1952: 1895: 1811: 1755: 1678: 1663:Smyth, S.; et al. (2007). 1656: 1490:10.1016/j.optlastec.2005.06.037 4939:List of Crayola crayon colours 4863:International Colour Authority 2850:. University of Chicago Press. 2707:10.1088/0957-4484/21/42/425301 2605:10.1088/0957-4484/19/02/025602 1448:(1st ed.), Artech House, 1421: 1369: 1320: 633:created by random nanochannels 226:(1773–1829) extended Newton's 13: 1: 2822:. Princeton University Press. 2492:Sgro, Donna (9 August 2012). 1470:Optics & Laser Technology 1235: 1015:Hollow nanofibre bristles of 461: 441:Iridescence, as explained by 286: 4742:Traditional colours of Japan 4519:Achromatic colours (Neutral) 4402:Multi-primary colour display 3275:Newton's theorem about ovals 2766:. Swan Sonnenschein, London. 2012:"A Natural Photonic Crystal" 1378:Great Experiments in Physics 1270:"Iridescence in Lepidoptera" 428:showing multiple thin layers 7: 4176:Spectral power distribution 3823:Simple eye in invertebrates 3644:Sir Isaac Newton Sixth Form 3300:Corpuscular theory of light 3226:Schrödinger–Newton equation 2805: 2652:. University of Southampton 2648:Boden, S.A., Bagnall, D.M. 2405:Geschichte der Photographie 2119:; Ullrich Steinera (2012). 1213: 852: 839:greater blue-ringed octopus 10: 5156: 4602:Colour realism (art style) 4260:Evolution of colour vision 4019:Infrared sensing in snakes 3053:Notes on the Jewish Temple 1924:10.1103/PhysRevE.77.050904 1629:Wallin, Margareta (2002). 1103: 424:of a fractured surface of 406: 311: 152: 5084: 5056: 4969: 4919:List of colours (compact) 4894: 4887: 4838: 4757: 4737:Colour in Chinese culture 4707: 4639: 4630: 4549: 4482: 4471: 4460: 4360: 4307: 4189: 4112: 4103: 3991: 3903: 3890:Evolution of color vision 3875: 3793: 3782: 3724: 3662: 3599: 3554: 3477: 3419: 3174: 3094: 3029: 2962: 2268:10.1038/s41586-019-0946-4 1889:10.1088/2058-7058/17/2/34 1783:10.1007/s11082-007-9094-4 1536:Ball, Philip (May 2012). 823:cells in the skin of the 780:total internal reflection 695:constructive interference 506:constructed of layers of 4924:List of colours by shade 4387:Digital image processing 4120:Electromagnetic spectrum 3204:post-Newtonian expansion 3084:Corruptions of Scripture 3076:Ancient Kingdoms Amended 2801:, William Innys, London. 403:Principle of iridescence 365:petals. These are often 357:) and (while rare among 228:particle theory of light 4929:List of colour palettes 3394:Absolute space and time 3258:truncated Newton method 3231:Newton's laws of motion 3194:Newton's law of cooling 2150:10.1073/pnas.1210105109 1538:"Nature's Color Tricks" 1376:Shamos, Morris (1959). 1302:Newton, Isaac (1730) . 1033:Longfin inshore squid, 803:Some animals including 4152:Structural colouration 3629:Isaac Newton Telescope 3619:Isaac Newton Institute 3389:Newton–Puiseux theorem 3384:Parallelogram of force 3372:kissing number problem 3362:Newton–Euler equations 3265:Gauss–Newton algorithm 3214:gravitational constant 2839:Brebbia, C.A. (2011). 2401:History of Photography 1731:10.1098/rspb.2010.2293 1598:10.1098/rsif.2016.0933 1354:10.1098/rstl.1804.0001 1327:Young, Thomas (1804). 1206:, and then performing 1157:optically variable ink 1119: 1052:Thin-film interference 843:Hapalochlaena lunulata 800: 797:Hapalochlaena lunulata 744: 666: 634: 577: 497: 479: 438: 429: 409:thin-film interference 309: 300:When light falls on a 276: 265: 221: 202: 171: 108:mechanisms, including 45: 4934:List of colour spaces 4853:Color Marketing Group 4608:On Vision and Colours 4541:Tinctures in heraldry 4524:Polychromatic colours 4509:Complementary colours 4497:Monochromatic colours 4024:Monocular deprivation 3983:Underwater camouflage 3978:Structural coloration 3956:Disruptive coloration 3583:Isaac Newton Gargoyle 3493: (nephew-in-law) 3469:Copernican Revolution 3464:Scientific Revolution 3325:Newton–Cotes formulas 3189:Newton's inequalities 3166:Structural coloration 2399:Eder, J. M. (1945) . 2311:ACS Materials Letters 1407:. Swan Sonnenschein. 1113: 1104:Further information: 997:within the scales on 975:Iridescent scales on 960:Lamprocyphus augustus 957:Iridescent scales of 793: 739: 658: 650:blue-and-yellow macaw 631:blue-and-yellow macaw 628: 572: 555:Lamprocyphus augustus 489: 474: 435: 420: 407:Further information: 312:Further information: 299: 292:Structure not pigment 267: 253: 216: 190: 160: 112:, selective mirrors, 49:Structural coloration 35: 4914:List of colours: N–Z 4909:List of colours: G–M 4904:List of colours: A–F 4826:Tint, shade and tone 4709:Cultural differences 4004:Blindness in animals 3936:Counter-illumination 3885:Evolution of the eye 3590:Astronomers Monument 3280:Newton–Pepys problem 3253:Apollonius's problem 3221:Newton–Cartan theory 3134:Newton–Okounkov body 3067:hypotheses non fingo 3056: (c. 1680) 2818:Johnsen, S. (2011). 2758:Beddard, Frank Evers 2552:"Fabric | Morphotex" 2210:10.3390/foods2040499 1771:Opt Quantum Electron 1638:Bioscience Explained 1399:Beddard, Frank Evers 1208:reactive-ion etching 887:butterflies such as 722:circularly polarizes 496:butterfly wing scale 110:diffraction gratings 82:, and its principle— 4961:List of web colours 4956:List of RAL colours 4362:Colour reproduction 4327:LĂĽscher colour test 4164:Colour of chemicals 3399:Luminiferous aether 3347:Newton's identities 3320:Newton's cannonball 3295:Classical mechanics 3285:Newtonian potential 3146:Newtonian telescope 2699:2010Nanot..21P5301M 2587:2008Nanot..19b5602H 2528:on 17 November 2016 2260:2019Natur.566..523G 2141:2012PNAS..10915712V 2135:(39): 15712–15715. 2072:10.1038/nature01941 2064:2003Natur.424..852V 1916:2008PhRvE..77e0904G 1839:2001SciAm.285f..46Y 1827:Scientific American 1725:(1715): 2098–2104. 1554:2012SciAm.306e..74B 1542:Scientific American 1482:2006OptLT..38..315P 1345:1804RSPT...94....1Y 1193:The surface of the 1172:military camouflage 1036:Doryteuthis pealeii 867:European bee-eaters 826:Doryteuthis pealeii 786:Variable structures 589:emerald swallowtail 575:emerald swallowtail 503:diffraction grating 477:diffraction grating 422:Electron micrograph 256:Frank Evers Beddard 245:Frank Evers Beddard 122:electron microscopy 5125:Animal coat colors 4370:Colour photography 4322:Colour preferences 4265:Impossible colours 4255:Colour vision test 4250:Colour temperature 4228:Colour calibration 4157:Animal colouration 3951:Deimatic behaviour 3624:Isaac Newton Medal 3429: (birthplace) 3243:Newtonian dynamics 3141:Newton's reflector 2846:Lee, D.W. (2008). 2825:Kolle, M. (2011). 2811:Fox, D.L. (1992). 2363:10.1242/jeb.076869 2117:Beverley J. Glover 1964:2012-11-02 at the 1685:Smyth, S. (2009). 1230:Patterns in nature 1169:active or adaptive 1120: 1018:Aphrodita aculeata 1000:Entimus imperialis 978:Entimus imperialis 801: 745: 667: 635: 578: 498: 480: 439: 430: 377:shells such as of 310: 266: 172: 46: 5140:Optical materials 5112: 5111: 5052: 5051: 4834: 4833: 4758:Colour dimensions 4747:Human skin colour 4626: 4625: 4616:Theory of Colours 4514:Analogous colours 4458: 4457: 4392:Colour management 4309:Colour psychology 4191:Colour perception 4062: 4061: 4054:Visual perception 4049:Underwater vision 4014:Feature detection 4009:Eyespot apparatus 3968:Eyespot (mimicry) 3916:Animal coloration 3719:Vision in animals 3686: 3685: 3578: (sculpture) 3545:Abraham de Moivre 3499: (professor) 3427:Woolsthorpe Manor 3379:Newton's quotient 3352:Newton polynomial 3310:Newton's notation 3041: (1661–1665) 2891:10.1242/jeb.01988 2773:2nd Edition, 1895 2414:978-0-486-23586-8 2356:(21): 3752–3757. 2254:(7745): 523–527. 2058:(6950): 852–855. 2024:on 25 August 2012 1991:. January 3, 2001 1904:Physical Review E 1592:(127): 20160933. 1455:978-163-081-797-8 1414:978-0-543-91406-4 1220:Animal coloration 995:photonic crystals 942:Parides sesostris 924:Papilio palinurus 690:Pollia condensata 662:Pollia condensata 638:Deformed matrices 585:Papilio palinurus 581:Selective mirrors 544:Parides sesostris 538:Photonic crystals 513:light microscopes 240:Animal Coloration 237:In his 1892 book 204:In his 1704 book 174:In his 1665 book 127:Pollia condensata 114:photonic crystals 84:wave interference 16:(Redirected from 5147: 5102: 5101: 5092: 5091: 4892: 4891: 4637: 4636: 4569:Secondary colour 4480: 4479: 4466: 4342:National colours 4337:Political colour 4317:Colour symbolism 4275:Opponent process 4233:Colour constancy 4211:Colour blindness 4142:Spectral colours 4110: 4109: 4089: 4082: 4075: 4066: 4065: 4034:Palpebral (bone) 3867:Schizochroal eye 3788: 3713: 3706: 3699: 3690: 3689: 3674: 3569: (monotype) 3533:William Stukeley 3529: (disciple) 3509:Benjamin Pulleyn 3485:Catherine Barton 3404:Newtonian series 3315:Rotating spheres 3061:General Scholium 2956:Sir Isaac Newton 2949: 2942: 2935: 2926: 2925: 2911: 2893: 2752:Pioneering books 2741: 2740: 2734: 2726: 2682: 2676: 2675: 2669: 2661: 2659: 2657: 2650:"Antireflection" 2645: 2639: 2638: 2632: 2624: 2598: 2570: 2564: 2563: 2561: 2559: 2548: 2542: 2541: 2535: 2533: 2527: 2520: 2512: 2506: 2505: 2503: 2501: 2489: 2483: 2482: 2480: 2478: 2466: 2460: 2459: 2457: 2455: 2440: 2434: 2433: 2425: 2419: 2418: 2396: 2390: 2389: 2383: 2375: 2365: 2341: 2335: 2334: 2302: 2296: 2295: 2239: 2233: 2232: 2222: 2212: 2188: 2182: 2179: 2173: 2172: 2162: 2152: 2112: 2106: 2105: 2099: 2091: 2049: 2040: 2034: 2033: 2031: 2029: 2023: 2016: 2007: 2001: 2000: 1998: 1996: 1975: 1969: 1956: 1950: 1949: 1943: 1935: 1899: 1893: 1892: 1872: 1866: 1865: 1863: 1861: 1824: 1815: 1809: 1808: 1802: 1794: 1777:(4–6): 295–303. 1768: 1759: 1753: 1752: 1742: 1708: 1702: 1701: 1699: 1698: 1682: 1676: 1675: 1672:NNIN REU Journal 1669: 1660: 1654: 1653: 1651: 1649: 1635: 1626: 1620: 1619: 1609: 1577: 1566: 1565: 1533: 1508: 1507: 1501: 1493: 1476:(4–6): 315–322. 1465: 1459: 1458: 1439: 1430: 1425: 1419: 1418: 1395: 1382: 1381: 1373: 1367: 1366: 1356: 1324: 1318: 1317: 1315: 1313: 1299: 1290: 1289: 1287: 1285: 1280:on April 7, 2014 1266: 1257: 1250: 1123:Gabriel Lippmann 1116:Gabriel Lippmann 1091: 1063: 1048: 1030: 1012: 990: 972: 954: 936: 918: 900: 878: 863: 760:Surface gratings 753:Ranunculus acris 685:Bragg reflection 558:, a weevil from 531:sexual selection 467:Fixed structures 452:refractive index 281:Cape golden mole 21: 18:Structural color 5155: 5154: 5150: 5149: 5148: 5146: 5145: 5144: 5115: 5114: 5113: 5108: 5080: 5048: 4965: 4883: 4840: 4830: 4753: 4732:Blue in culture 4728:Colour history 4703: 4622: 4596:Colour analysis 4591:Colour triangle 4545: 4502:black-and-white 4474: 4467: 4454: 4397:Colour printing 4356: 4303: 4185: 4099: 4093: 4063: 4058: 3987: 3899: 3871: 3789: 3780: 3720: 3717: 3687: 3682: 3681: 3680: 3679: 3678: 3671: 3658: 3614:Newton's cradle 3595: 3550: 3523: (student) 3521:William Whiston 3517: (student) 3473: 3454:Religious views 3415: 3330:Newton's method 3290:Newtonian fluid 3184:Bucket argument 3170: 3090: 3025: 2958: 2953: 2863: 2836: 2808: 2754: 2749: 2744: 2728: 2727: 2683: 2679: 2663: 2662: 2655: 2653: 2646: 2642: 2626: 2625: 2596:10.1.1.655.2198 2571: 2567: 2557: 2555: 2550: 2549: 2545: 2531: 2529: 2525: 2518: 2514: 2513: 2509: 2499: 2497: 2490: 2486: 2476: 2474: 2467: 2463: 2453: 2451: 2441: 2437: 2426: 2422: 2415: 2397: 2393: 2377: 2376: 2342: 2338: 2303: 2299: 2240: 2236: 2189: 2185: 2180: 2176: 2113: 2109: 2093: 2092: 2047: 2041: 2037: 2027: 2025: 2021: 2014: 2008: 2004: 1994: 1992: 1977: 1976: 1972: 1966:Wayback Machine 1957: 1953: 1937: 1936: 1900: 1896: 1873: 1869: 1859: 1857: 1822: 1816: 1812: 1796: 1795: 1766: 1760: 1756: 1709: 1705: 1696: 1694: 1683: 1679: 1667: 1661: 1657: 1647: 1645: 1633: 1627: 1623: 1578: 1569: 1534: 1511: 1495: 1494: 1466: 1462: 1456: 1440: 1433: 1426: 1422: 1415: 1396: 1385: 1374: 1370: 1325: 1321: 1311: 1309: 1300: 1293: 1283: 1281: 1268: 1267: 1260: 1251: 1242: 1238: 1216: 1108: 1102: 1095: 1092: 1083: 1064: 1055: 1049: 1040: 1031: 1022: 1013: 1004: 991: 982: 973: 964: 955: 946: 937: 928: 919: 910: 906:Parotia lawesii 901: 892: 879: 870: 864: 855: 788: 527:Lawes's parotia 523:Parotia lawesii 469: 464: 415: 405: 361:) the gloss of 316: 294: 289: 197:mother of Pearl 194: 155: 28: 23: 22: 15: 12: 11: 5: 5153: 5143: 5142: 5137: 5135:Nanotechnology 5132: 5127: 5110: 5109: 5107: 5106: 5096: 5085: 5082: 5081: 5079: 5078: 5073: 5068: 5062: 5060: 5054: 5053: 5050: 5049: 5047: 5046: 5041: 5036: 5031: 5026: 5021: 5016: 5011: 5006: 5001: 4996: 4991: 4986: 4981: 4975: 4973: 4967: 4966: 4964: 4963: 4958: 4953: 4948: 4947: 4946: 4936: 4931: 4926: 4921: 4916: 4911: 4906: 4900: 4898: 4889: 4885: 4884: 4882: 4881: 4876: 4871: 4865: 4860: 4855: 4850: 4844: 4842: 4836: 4835: 4832: 4831: 4829: 4828: 4823: 4818: 4817: 4816: 4811: 4806: 4801: 4796: 4786: 4785: 4784: 4782:Pastel colours 4774: 4773: 4772: 4761: 4759: 4755: 4754: 4752: 4751: 4750: 4749: 4744: 4739: 4734: 4726: 4725: 4724: 4713: 4711: 4705: 4704: 4702: 4701: 4696: 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4645: 4643: 4634: 4628: 4627: 4624: 4623: 4621: 4620: 4612: 4611:(Schopenhauer) 4604: 4599: 4593: 4588: 4583: 4578: 4573: 4572: 4571: 4566: 4564:Primary colour 4555: 4553: 4547: 4546: 4544: 4543: 4538: 4533: 4528: 4527: 4526: 4521: 4516: 4511: 4506: 4505: 4504: 4488: 4486: 4477: 4469: 4468: 4461: 4459: 4456: 4455: 4453: 4452: 4450:Colour mapping 4447: 4442: 4441: 4440: 4439: 4438: 4428: 4427: 4426: 4411: 4410: 4409: 4404: 4394: 4389: 4384: 4383: 4382: 4377: 4375:Colour balance 4366: 4364: 4358: 4357: 4355: 4354: 4349: 4344: 4339: 4334: 4332:Kruithof curve 4329: 4324: 4319: 4313: 4311: 4305: 4304: 4302: 4301: 4294: 4289: 4288: 4287: 4282: 4272: 4267: 4262: 4257: 4252: 4247: 4246: 4245: 4235: 4230: 4225: 4224: 4223: 4218: 4208: 4207: 4206: 4204:Sonochromatism 4195: 4193: 4187: 4186: 4184: 4183: 4178: 4173: 4172: 4171: 4161: 4160: 4159: 4154: 4144: 4139: 4138: 4137: 4132: 4127: 4116: 4114: 4113:Colour physics 4107: 4105:Colour science 4101: 4100: 4092: 4091: 4084: 4077: 4069: 4060: 4059: 4057: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4011: 4006: 4001: 3995: 3993: 3992:Related topics 3989: 3988: 3986: 3985: 3980: 3975: 3970: 3965: 3964: 3963: 3953: 3948: 3943: 3941:Countershading 3938: 3933: 3928: 3923: 3918: 3913: 3907: 3905: 3901: 3900: 3898: 3897: 3892: 3887: 3881: 3879: 3873: 3872: 3870: 3869: 3864: 3859: 3857:Holochroal eye 3854: 3853: 3852: 3847: 3837: 3836: 3835: 3825: 3820: 3815: 3810: 3805: 3799: 3797: 3791: 3790: 3783: 3781: 3779: 3778: 3777: 3776: 3771: 3766: 3756: 3751: 3746: 3741: 3736: 3730: 3728: 3722: 3721: 3716: 3715: 3708: 3701: 3693: 3684: 3683: 3670: 3669: 3667: 3666: 3664: 3660: 3659: 3657: 3656: 3651: 3646: 3641: 3636: 3631: 3626: 3621: 3616: 3611: 3605: 3603: 3597: 3596: 3594: 3593: 3586: 3579: 3570: 3560: 3558: 3552: 3551: 3549: 3548: 3547: (friend) 3542: 3541: (friend) 3536: 3535: (friend) 3530: 3524: 3518: 3512: 3506: 3505: (mentor) 3503:William Clarke 3500: 3494: 3488: 3481: 3479: 3475: 3474: 3472: 3471: 3466: 3461: 3459:Occult studies 3456: 3451: 3446: 3441: 3436: 3430: 3423: 3421: 3417: 3416: 3414: 3413: 3412: 3411: 3401: 3396: 3391: 3386: 3381: 3376: 3375: 3374: 3364: 3359: 3354: 3349: 3344: 3342:Newton fractal 3339: 3338: 3337: 3327: 3322: 3317: 3312: 3307: 3302: 3297: 3292: 3287: 3282: 3277: 3272: 3270:Newton's rings 3267: 3262: 3261: 3260: 3255: 3245: 3240: 3239: 3238: 3228: 3223: 3218: 3217: 3216: 3211: 3206: 3196: 3191: 3186: 3180: 3178: 3172: 3171: 3169: 3168: 3163: 3158: 3156:Newton's metal 3153: 3148: 3143: 3138: 3137: 3136: 3129:Newton polygon 3126: 3121: 3116: 3111: 3110: 3109: 3098: 3096: 3092: 3091: 3089: 3088: 3080: 3072: 3063:" (1713; 3057: 3049: 3042: 3033: 3031: 3030:Other writings 3027: 3026: 3024: 3023: 3015: 3007: 2999: 2991: 2983: 2975: 2966: 2964: 2960: 2959: 2952: 2951: 2944: 2937: 2929: 2923: 2922: 2917: 2912: 2884:(2): 380–390. 2869: 2862: 2861:External links 2859: 2858: 2857: 2854: 2851: 2844: 2835: 2832: 2831: 2830: 2823: 2816: 2807: 2804: 2803: 2802: 2790: 2777: 2776: 2768: 2767: 2753: 2750: 2748: 2745: 2743: 2742: 2693:(42): 425301. 2687:Nanotechnology 2677: 2640: 2575:Nanotechnology 2565: 2543: 2507: 2484: 2461: 2435: 2432:. Nobel Prize. 2420: 2413: 2391: 2336: 2317:(7): 754–763. 2297: 2234: 2203:(4): 499–506. 2183: 2174: 2107: 2035: 2002: 1970: 1951: 1894: 1867: 1810: 1754: 1703: 1677: 1655: 1621: 1567: 1509: 1460: 1454: 1431: 1420: 1413: 1383: 1368: 1319: 1291: 1258: 1239: 1237: 1234: 1233: 1232: 1227: 1222: 1215: 1212: 1127:Lippmann plate 1101: 1098: 1097: 1096: 1093: 1086: 1084: 1065: 1058: 1056: 1050: 1043: 1041: 1032: 1025: 1023: 1014: 1007: 1005: 992: 985: 983: 974: 967: 965: 956: 949: 947: 938: 931: 929: 920: 913: 911: 902: 895: 893: 880: 873: 871: 865: 858: 854: 851: 787: 784: 731:scarab beetles 600:Crystal fibres 468: 465: 463: 460: 404: 401: 293: 290: 288: 285: 154: 151: 86:—explained by 26: 9: 6: 4: 3: 2: 5152: 5141: 5138: 5136: 5133: 5131: 5128: 5126: 5123: 5122: 5120: 5105: 5097: 5095: 5087: 5086: 5083: 5077: 5074: 5072: 5069: 5067: 5064: 5063: 5061: 5059: 5055: 5045: 5042: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5007: 5005: 5002: 5000: 4997: 4995: 4992: 4990: 4987: 4985: 4982: 4980: 4977: 4976: 4974: 4972: 4968: 4962: 4959: 4957: 4954: 4952: 4949: 4945: 4942: 4941: 4940: 4937: 4935: 4932: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4901: 4899: 4897: 4893: 4890: 4886: 4880: 4877: 4875: 4872: 4869: 4866: 4864: 4861: 4859: 4856: 4854: 4851: 4849: 4846: 4845: 4843: 4841:organisations 4837: 4827: 4824: 4822: 4819: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4795: 4792: 4791: 4790: 4787: 4783: 4780: 4779: 4778: 4777:Colourfulness 4775: 4771: 4768: 4767: 4766: 4763: 4762: 4760: 4756: 4748: 4745: 4743: 4740: 4738: 4735: 4733: 4730: 4729: 4727: 4723: 4720: 4719: 4718: 4715: 4714: 4712: 4710: 4706: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4646: 4644: 4642: 4638: 4635: 4633: 4629: 4618: 4617: 4613: 4610: 4609: 4605: 4603: 4600: 4597: 4594: 4592: 4589: 4587: 4584: 4582: 4579: 4577: 4574: 4570: 4567: 4565: 4562: 4561: 4560: 4559:Colour mixing 4557: 4556: 4554: 4552: 4551:Colour theory 4548: 4542: 4539: 4537: 4534: 4532: 4531:Light-on-dark 4529: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4503: 4500: 4499: 4498: 4495: 4494: 4493: 4490: 4489: 4487: 4485: 4484:Colour scheme 4481: 4478: 4476: 4470: 4465: 4451: 4448: 4446: 4443: 4437: 4434: 4433: 4432: 4429: 4425: 4422: 4421: 4420: 4417: 4416: 4415: 4412: 4408: 4405: 4403: 4400: 4399: 4398: 4395: 4393: 4390: 4388: 4385: 4381: 4378: 4376: 4373: 4372: 4371: 4368: 4367: 4365: 4363: 4359: 4353: 4352:Chromotherapy 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4328: 4325: 4323: 4320: 4318: 4315: 4314: 4312: 4310: 4306: 4300: 4299: 4295: 4293: 4292:Tetrachromacy 4290: 4286: 4283: 4281: 4278: 4277: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4251: 4248: 4244: 4241: 4240: 4239: 4236: 4234: 4231: 4229: 4226: 4222: 4219: 4217: 4216:Achromatopsia 4214: 4213: 4212: 4209: 4205: 4202: 4201: 4200: 4199:Chromesthesia 4197: 4196: 4194: 4192: 4188: 4182: 4179: 4177: 4174: 4170: 4167: 4166: 4165: 4162: 4158: 4155: 4153: 4150: 4149: 4148: 4145: 4143: 4140: 4136: 4133: 4131: 4128: 4126: 4123: 4122: 4121: 4118: 4117: 4115: 4111: 4108: 4106: 4102: 4097: 4090: 4085: 4083: 4078: 4076: 4071: 4070: 4067: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3999:Animal senses 3997: 3996: 3994: 3990: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3962: 3959: 3958: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3931:Chromatophore 3929: 3927: 3924: 3922: 3919: 3917: 3914: 3912: 3909: 3908: 3906: 3902: 3896: 3893: 3891: 3888: 3886: 3883: 3882: 3880: 3878: 3874: 3868: 3865: 3863: 3860: 3858: 3855: 3851: 3848: 3846: 3843: 3842: 3841: 3838: 3834: 3831: 3830: 3829: 3828:Mammalian eye 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3803:Arthropod eye 3801: 3800: 3798: 3796: 3792: 3787: 3775: 3772: 3770: 3767: 3765: 3762: 3761: 3760: 3757: 3755: 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3731: 3729: 3727: 3723: 3714: 3709: 3707: 3702: 3700: 3695: 3694: 3691: 3677: 3673: 3665: 3661: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3615: 3612: 3610: 3609:Newton (unit) 3607: 3606: 3604: 3602: 3598: 3592: 3591: 3587: 3585: 3584: 3580: 3577: 3575: 3571: 3568: 3566: 3562: 3561: 3559: 3557: 3553: 3546: 3543: 3540: 3539:William Jones 3537: 3534: 3531: 3528: 3525: 3522: 3519: 3516: 3513: 3511: (tutor) 3510: 3507: 3504: 3501: 3498: 3495: 3492: 3491:John Conduitt 3489: 3487: (niece) 3486: 3483: 3482: 3480: 3476: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3434: 3433:Cranbury Park 3431: 3428: 3425: 3424: 3422: 3420:Personal life 3418: 3410: 3407: 3406: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3373: 3370: 3369: 3368: 3367:Newton number 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3336: 3333: 3332: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3259: 3256: 3254: 3251: 3250: 3249: 3246: 3244: 3241: 3237: 3236:Kepler's laws 3234: 3233: 3232: 3229: 3227: 3224: 3222: 3219: 3215: 3212: 3210: 3209:parameterized 3207: 3205: 3202: 3201: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3181: 3179: 3177: 3173: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3135: 3132: 3131: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3108: 3105: 3104: 3103: 3100: 3099: 3097: 3095:Contributions 3093: 3086: 3085: 3081: 3078: 3077: 3073: 3070: 3068: 3062: 3058: 3055: 3054: 3050: 3048:" (1675) 3047: 3043: 3040: 3039: 3035: 3034: 3032: 3028: 3021: 3020: 3016: 3013: 3012: 3008: 3005: 3004: 3000: 2997: 2996: 2992: 2989: 2988: 2984: 2981: 2980: 2976: 2973: 2972: 2968: 2967: 2965: 2961: 2957: 2950: 2945: 2943: 2938: 2936: 2931: 2930: 2927: 2921: 2918: 2916: 2913: 2909: 2905: 2901: 2897: 2892: 2887: 2883: 2879: 2875: 2870: 2868: 2865: 2864: 2855: 2852: 2849: 2845: 2842: 2838: 2837: 2834:General books 2828: 2824: 2821: 2817: 2814: 2810: 2809: 2800: 2799: 2794: 2793:Newton, Isaac 2791: 2788: 2787: 2782: 2781:Hooke, Robert 2779: 2778: 2774: 2770: 2769: 2765: 2764: 2759: 2756: 2755: 2738: 2732: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2681: 2673: 2667: 2651: 2644: 2636: 2630: 2622: 2618: 2614: 2610: 2606: 2602: 2597: 2592: 2588: 2584: 2581:(2): 025602. 2580: 2576: 2569: 2553: 2547: 2540: 2524: 2517: 2511: 2495: 2488: 2472: 2469:Sgro, Donna. 2465: 2450: 2446: 2439: 2431: 2424: 2416: 2410: 2406: 2402: 2395: 2387: 2381: 2373: 2369: 2364: 2359: 2355: 2351: 2347: 2340: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2301: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2238: 2230: 2226: 2221: 2216: 2211: 2206: 2202: 2198: 2194: 2187: 2178: 2170: 2166: 2161: 2156: 2151: 2146: 2142: 2138: 2134: 2130: 2126: 2124: 2118: 2111: 2103: 2097: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2046: 2039: 2020: 2013: 2006: 1990: 1986: 1985: 1980: 1974: 1967: 1963: 1960: 1955: 1947: 1941: 1933: 1929: 1925: 1921: 1917: 1913: 1910:(5): 050904. 1909: 1905: 1898: 1890: 1886: 1882: 1878: 1877:Physics World 1871: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1814: 1806: 1800: 1792: 1788: 1784: 1780: 1776: 1772: 1765: 1758: 1750: 1746: 1741: 1736: 1732: 1728: 1724: 1720: 1719: 1714: 1707: 1693:on 2016-03-04 1692: 1688: 1681: 1673: 1666: 1659: 1643: 1639: 1632: 1625: 1617: 1613: 1608: 1603: 1599: 1595: 1591: 1587: 1583: 1576: 1574: 1572: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1532: 1530: 1528: 1526: 1524: 1522: 1520: 1518: 1516: 1514: 1505: 1499: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1457: 1451: 1447: 1446: 1438: 1436: 1429: 1424: 1416: 1410: 1406: 1405: 1400: 1394: 1392: 1390: 1388: 1379: 1372: 1364: 1360: 1355: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1307: 1306: 1298: 1296: 1279: 1275: 1271: 1265: 1263: 1255: 1249: 1247: 1245: 1240: 1231: 1228: 1226: 1223: 1221: 1218: 1217: 1211: 1209: 1205: 1204:nanoparticles 1200: 1196: 1191: 1189: 1185: 1181: 1177: 1173: 1170: 1165: 1162: 1158: 1155:that include 1154: 1149: 1147: 1143: 1139: 1135: 1130: 1128: 1124: 1117: 1112: 1107: 1100:In technology 1090: 1085: 1081: 1077: 1076: 1071: 1070: 1066:Wasps of the 1062: 1057: 1053: 1047: 1042: 1038: 1037: 1029: 1024: 1020: 1019: 1011: 1006: 1002: 1001: 996: 989: 984: 980: 979: 971: 966: 962: 961: 953: 948: 944: 943: 935: 930: 926: 925: 917: 912: 908: 907: 899: 894: 890: 889:Morpho helena 886: 885: 877: 872: 868: 862: 857: 856: 850: 848: 844: 840: 836: 835:chromatophore 831: 828: 827: 822: 821:chromatophore 818: 814: 810: 806: 799: 798: 792: 783: 781: 776: 772: 769: 765: 761: 757: 755: 754: 749: 742: 738: 734: 732: 727: 723: 719: 715: 710: 709: 704: 700: 696: 692: 691: 686: 682: 679: 675: 671: 664: 663: 657: 653: 651: 647: 643: 639: 632: 627: 623: 621: 617: 613: 609: 605: 601: 597: 594: 590: 586: 582: 576: 571: 567: 565: 561: 557: 556: 550: 546: 545: 540: 539: 534: 532: 528: 524: 520: 519: 514: 509: 505: 504: 495: 494: 488: 484: 478: 473: 459: 457: 453: 448: 444: 434: 427: 423: 419: 414: 410: 400: 398: 394: 390: 389: 384: 380: 379:pearl oysters 376: 373:feathers and 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 331: 329: 325: 321: 315: 307: 303: 298: 284: 282: 275: 273: 272:humming birds 263: 262: 257: 252: 248: 246: 242: 241: 235: 233: 229: 225: 220: 215: 213: 209: 208: 201: 198: 189: 188:'s feathers: 187: 183: 179: 178: 169: 168: 163: 159: 150: 148: 144: 139: 137: 133: 129: 128: 123: 119: 115: 111: 107: 103: 99: 95: 93: 89: 85: 81: 77: 72: 70: 66: 62: 58: 54: 53:visible light 50: 43: 39: 34: 30: 19: 4951:Colour chart 4814:Fluorescence 4770:Dichromatism 4632:Colour terms 4614: 4606: 4586:Colour wheel 4581:Colour solid 4576:Chromaticity 4445:Colour space 4414:Colour model 4347:Chromophobia 4296: 3977: 3862:Parietal eye 3808:Compound eye 3676:Isaac Newton 3588: 3581: 3573: 3564: 3497:Isaac Barrow 3435: (home) 3176:Newtonianism 3165: 3151:Newton scale 3114:Impact depth 3087: (1754) 3082: 3079: (1728) 3074: 3064: 3051: 3036: 3022: (1711) 3017: 3014: (1707) 3009: 3006: (1704) 3001: 2998: (1704) 2993: 2990: (1687) 2985: 2982: (1684) 2977: 2974: (1671) 2969: 2963:Publications 2881: 2877: 2847: 2843:. WIT Press. 2840: 2826: 2819: 2812: 2796: 2786:Micrographia 2784: 2761: 2747:Bibliography 2731:cite journal 2690: 2686: 2680: 2654:. Retrieved 2643: 2629:cite journal 2578: 2574: 2568: 2556:. Retrieved 2546: 2537: 2530:. Retrieved 2523:the original 2510: 2498:. Retrieved 2487: 2475:. Retrieved 2473:. Donna Sgro 2464: 2452:. Retrieved 2449:The Guardian 2448: 2438: 2423: 2404: 2400: 2394: 2380:cite journal 2353: 2349: 2339: 2314: 2310: 2300: 2251: 2247: 2237: 2200: 2196: 2186: 2177: 2132: 2128: 2122: 2110: 2096:cite journal 2055: 2051: 2038: 2026:. Retrieved 2019:the original 2005: 1993:. Retrieved 1982: 1973: 1954: 1940:cite journal 1907: 1903: 1897: 1883:(2): 35–39. 1880: 1876: 1870: 1858:. Retrieved 1833:(6): 46–55. 1830: 1826: 1813: 1799:cite journal 1774: 1770: 1757: 1722: 1716: 1706: 1695:. Retrieved 1691:the original 1680: 1671: 1658: 1648:November 17, 1646:. Retrieved 1641: 1637: 1624: 1589: 1585: 1548:(5): 74–79. 1545: 1541: 1498:cite journal 1473: 1469: 1463: 1444: 1423: 1403: 1377: 1371: 1336: 1332: 1322: 1310:. Retrieved 1304: 1282:. Retrieved 1278:the original 1273: 1253: 1195:compound eye 1192: 1166: 1150: 1137: 1131: 1121: 1073: 1067: 1034: 1016: 998: 976: 958: 940: 922: 904: 888: 882: 842: 832: 824: 819:proteins in 802: 795: 774: 773: 764:cuts of meat 759: 758: 751: 747: 746: 725: 706: 702: 688: 681:microfibrils 674:helicoidally 672:, formed of 670:Spiral coils 669: 668: 660: 646:Ara ararauna 645: 637: 636: 619: 607: 599: 598: 584: 580: 579: 553: 542: 536: 535: 522: 516: 501: 499: 491: 481: 456:out of phase 443:Thomas Young 440: 386: 353:wing-cases ( 332: 317: 277: 268: 261:Chrysospalax 259: 258:noted that 238: 236: 232:interference 224:Thomas Young 222: 217: 212:Isaac Newton 205: 203: 191: 182:Robert Hooke 177:Micrographia 175: 173: 167:Micrographia 165: 162:Robert Hooke 140: 125: 118:cuts of meat 96: 88:Thomas Young 80:Isaac Newton 76:Robert Hooke 73: 48: 47: 42:Robert Hooke 38:Isaac Newton 29: 4809:Iridescence 4641:Basic terms 4536:Web colours 4492:Colour tool 4431:subtractive 4380:Colour cast 4285:Unique hues 4243:Colour code 4238:Colour task 4181:Colorimetry 4147:Chromophore 4039:Pseudopupil 3921:Aposematism 3840:Mollusc eye 3576:by Paolozzi 3515:Roger Cotes 3124:Newton disc 3038:Quaestiones 3011:Arithmetica 2829:. Springer. 2558:23 November 2532:23 November 2500:23 November 2477:23 November 2454:23 November 1188:transistors 1184:cephalopods 1164:difficult. 1161:pearlescent 1080:sculpturing 847:iridophores 805:cephalopods 718:pointillist 413:iridescence 324:thin layers 132:Bragg's law 102:butterflies 55:instead of 5119:Categories 4971:Shades of: 4804:Brightness 4475:philosophy 4280:Afterimage 4270:Metamerism 4221:Dichromacy 4029:Ommatidium 3961:coincident 3926:Camouflage 3904:Coloration 3845:cephalopod 3739:Chameleons 3663:Categories 3639:XMM-Newton 3556:Depictions 3527:John Keill 3449:Apple tree 3444:Later life 3439:Early life 3019:De Analysi 1697:2015-09-21 1236:References 1225:Camouflage 1180:chameleons 1106:Biomimicry 1075:Hemipepsis 809:camouflage 714:pixellated 616:aposematic 549:nanometres 462:Mechanisms 447:thin films 397:carotenoid 367:iridescent 339:kingfisher 328:wavelength 287:Principles 234:patterns. 147:camouflage 143:biomimetic 136:buttercups 98:In animals 92:thin films 69:iridescent 4821:Grayscale 4794:Lightness 4789:Luminance 4598:(fashion) 4298:The dress 4044:Rhopalium 3877:Evolution 3850:gastropod 3818:Eye shine 3813:Eagle eye 3744:Dinosaurs 3478:Relations 2987:Principia 2591:CiteSeerX 2331:219739918 2276:1476-4687 1995:April 26, 1791:121911730 1644:(2): 1–12 1363:110408369 1312:April 27, 1284:April 27, 1153:banknotes 1146:polyester 903:The male 817:reflectin 741:Buttercup 683:, create 678:cellulose 620:Aphrodita 612:sea mouse 608:Aphrodita 383:Pteriidae 363:buttercup 347:butterfly 335:bee-eater 306:interfere 302:thin film 254:In 1892, 5094:Category 5076:Lighting 4799:Darkness 4619:(Goethe) 4419:additive 4407:Quattron 3911:Albinism 3601:Namesake 3567:by Blake 3161:Spectrum 3102:Calculus 3071: ) 2971:Fluxions 2908:14595674 2900:16391360 2806:Research 2795:(1704). 2783:(1665). 2760:(1892). 2723:29902805 2715:20858934 2666:cite web 2613:21817544 2372:23053367 2292:71144355 2284:30814712 2229:28239133 2169:23019355 2080:12917700 1984:BBC News 1962:Archived 1932:18643018 1855:11759585 1749:21159676 1616:28228540 1562:22550931 1401:(1892). 1339:: 1–16. 1214:See also 1199:housefly 1176:patterns 853:Examples 813:proteins 676:stacked 604:bristles 388:Nautilus 375:nacreous 369:, as in 164:'s 1665 106:photonic 65:feathers 57:pigments 5058:Related 5019:Magenta 4944:history 4848:Pantone 4135:Visible 4130:Rainbow 3973:Mimicry 3946:Crypsis 3759:Mammals 3119:Inertia 3107:fluxion 3003:Queries 2995:Opticks 2979:De Motu 2798:Opticks 2695:Bibcode 2656:May 19, 2621:7184882 2583:Bibcode 2471:"About" 2256:Bibcode 2220:5302279 2160:3465391 2137:Bibcode 2088:4413969 2060:Bibcode 1912:Bibcode 1835:Bibcode 1740:3107630 1607:5332578 1550:Bibcode 1478:Bibcode 1341:Bibcode 1305:Opticks 1197:of the 1114:One of 768:fibrils 699:tannins 665:berries 642:keratin 593:mirrors 393:melanin 371:peacock 359:flowers 349:wings, 320:Colours 314:Feather 207:Opticks 186:peacock 153:History 61:peacock 5071:Qualia 5066:Vision 5014:Purple 5009:Violet 4989:Yellow 4984:Orange 4839:Colour 4679:Orange 4674:Purple 4664:Yellow 4473:Colour 4098:topics 4096:Colour 3764:horses 3726:Vision 3574:Newton 3565:Newton 2906:  2898:  2721:  2713:  2619:  2611:  2593:  2411:  2370:  2329:  2290:  2282:  2274:  2248:Nature 2227:  2217:  2167:  2157:  2125:fruit" 2123:Pollia 2086:  2078:  2052:Nature 2028:18 May 1930:  1860:15 May 1853:  1789:  1747:  1737:  1614:  1604:  1560:  1452:  1411:  1361:  1138:Morpho 1134:Teijin 1069:Pepsis 1003:weevil 981:weevil 884:Morpho 726:Pollia 708:Morpho 703:Pollia 648:, the 610:, the 587:, the 564:pixels 560:Brazil 518:Morpho 508:chitin 493:Morpho 385:) and 355:elytra 351:beetle 343:roller 5130:Color 5104:Index 5044:Black 5034:White 5029:Brown 4994:Green 4896:Lists 4888:Names 4870:(CIE) 4699:Brown 4694:White 4684:Black 4654:Green 4169:Water 4125:Light 3833:human 3754:Toads 3734:Birds 3409:table 2904:S2CID 2719:S2CID 2617:S2CID 2526:(PDF) 2519:(PDF) 2403:[ 2327:S2CID 2288:S2CID 2197:Foods 2084:S2CID 2048:(PDF) 2022:(PDF) 2015:(PDF) 1823:(PDF) 1787:S2CID 1767:(PDF) 1668:(PDF) 1634:(PDF) 1359:S2CID 1142:nylon 426:nacre 63:tail 5039:Gray 5024:Pink 5004:Blue 4999:Cyan 4689:Grey 4669:Pink 4649:Blue 4436:CMYK 3795:Eyes 3774:cats 3769:dogs 3749:Fish 2896:PMID 2771:--- 2737:link 2711:PMID 2672:link 2658:2012 2635:link 2609:PMID 2560:2018 2534:2018 2502:2018 2479:2018 2456:2018 2409:ISBN 2386:link 2368:PMID 2280:PMID 2272:ISSN 2225:PMID 2165:PMID 2102:link 2076:PMID 2030:2012 1997:2012 1946:link 1928:PMID 1862:2012 1851:PMID 1805:link 1745:PMID 1650:2011 1612:PMID 1558:PMID 1504:link 1450:ISBN 1409:ISBN 1314:2012 1286:2012 1182:and 1144:and 1072:and 411:and 341:and 78:and 40:and 4979:Red 4765:Hue 4659:Red 4424:RGB 2886:doi 2882:209 2703:doi 2601:doi 2358:doi 2354:215 2319:doi 2264:doi 2252:566 2215:PMC 2205:doi 2155:PMC 2145:doi 2133:109 2068:doi 2056:424 1989:BBC 1920:doi 1885:doi 1843:doi 1831:285 1779:doi 1735:PMC 1727:doi 1723:278 1602:PMC 1594:doi 1546:306 1486:doi 1349:doi 1256:.') 881:In 716:or 606:of 5121:: 2902:. 2894:. 2880:. 2876:. 2733:}} 2729:{{ 2717:. 2709:. 2701:. 2691:21 2689:. 2668:}} 2664:{{ 2631:}} 2627:{{ 2615:. 2607:. 2599:. 2589:. 2579:19 2577:. 2536:. 2447:. 2382:}} 2378:{{ 2366:. 2352:. 2348:. 2325:. 2313:. 2309:. 2286:. 2278:. 2270:. 2262:. 2250:. 2246:. 2223:. 2213:. 2199:. 2195:. 2163:. 2153:. 2143:. 2131:. 2127:. 2098:}} 2094:{{ 2082:. 2074:. 2066:. 2054:. 2050:. 1987:. 1981:. 1942:}} 1938:{{ 1926:. 1918:. 1908:77 1906:. 1881:17 1879:. 1849:. 1841:. 1829:. 1825:. 1801:}} 1797:{{ 1785:. 1775:39 1773:. 1769:. 1743:. 1733:. 1721:. 1715:. 1670:. 1640:. 1636:. 1610:. 1600:. 1590:14 1588:. 1584:. 1570:^ 1556:. 1544:. 1540:. 1512:^ 1500:}} 1496:{{ 1484:. 1474:38 1472:. 1434:^ 1386:^ 1357:. 1347:. 1337:94 1335:. 1331:. 1294:^ 1272:. 1261:^ 1243:^ 1210:. 701:. 533:. 525:, 500:A 337:, 330:. 243:, 210:, 180:, 71:. 4088:e 4081:t 4074:v 3712:e 3705:t 3698:v 3069:" 3065:" 3059:" 3044:" 2948:e 2941:t 2934:v 2910:. 2888:: 2775:. 2739:) 2725:. 2705:: 2697:: 2674:) 2660:. 2637:) 2623:. 2603:: 2585:: 2562:. 2504:. 2481:. 2458:. 2417:. 2388:) 2374:. 2360:: 2333:. 2321:: 2315:2 2294:. 2266:: 2258:: 2231:. 2207:: 2201:2 2171:. 2147:: 2139:: 2104:) 2090:. 2070:: 2062:: 2032:. 1999:. 1948:) 1934:. 1922:: 1914:: 1891:. 1887:: 1864:. 1845:: 1837:: 1807:) 1793:. 1781:: 1751:. 1729:: 1700:. 1674:. 1652:. 1642:1 1618:. 1596:: 1564:. 1552:: 1506:) 1492:. 1488:: 1480:: 1417:. 1365:. 1351:: 1343:: 1316:. 1288:. 841:( 381:( 308:. 44:. 20:)

Index

Structural color

Isaac Newton
Robert Hooke
visible light
pigments
peacock
feathers
iridescent
Robert Hooke
Isaac Newton
wave interference
Thomas Young
thin films
In animals
butterflies
photonic
diffraction gratings
photonic crystals
cuts of meat
electron microscopy
Pollia condensata
Bragg's law
buttercups
biomimetic
camouflage

Robert Hooke
Micrographia
Micrographia

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑